1
|
ZHANG HENG, YANG XIAO, GUO YUJIN, ZHAO HAIBO, JIANG PEI, YU QINGQING. The regulatory role of lncRNA in tumor drug resistance: refracting light through a narrow aperture. Oncol Res 2025; 33:837-849. [PMID: 40191723 PMCID: PMC11964869 DOI: 10.32604/or.2024.053882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/05/2024] [Indexed: 04/09/2025] Open
Abstract
As living conditions improve and diagnostic capabilities advance, the incidence of tumors has increased, with cancer becoming a leading cause of death worldwide. Surgery, chemotherapy, and radiotherapy are the most common treatments. Despite advances in treatment options, chemotherapy remains a routine first-line treatment for most tumors. Due to the continuous and extensive use of chemotherapy drugs, tumor resistance often develops, becoming a significant cause of treatment failure and poor prognosis. Recent research has increasingly focused on how long stranded non-coding RNAs (LncRNAs) influence the development of malignant tumors and drug resistance by regulating gene expression and other biological mechanisms during cell growth. Studies have demonstrated that variations in lncRNA expression levels, influenced by both interpatient variability and intratumoral genetic and epigenetic differences, are closely linked to tumor drug resistance. Therefore, this review advocates using lncRNA as a framework to investigate the regulation of genes associated with drug resistance, proposing lncRNA-targeted therapeutic strategies to potentially increase the efficacy of chemotherapy, improve patient outcomes, and guide future research directions.
Collapse
Affiliation(s)
- HENG ZHANG
- Department of Laboratory, Shandong Daizhuang Hospital, Jining, 272051, China
| | - XIAO YANG
- Department of Anesthesiology, Affiliated Hospital of Jining Medical University, Jining, 272000, China
| | - YUJIN GUO
- Department of Clinical Pharmacy, Jining No.1 People’s Hospital, Jining, 272002, China
| | - HAIBO ZHAO
- Department of Oncology, Jining No.1 People’s Hospital, Jining, 272002, China
| | - PEI JIANG
- Translational Pharmaceutical Laboratory, Jining No.1 People’s Hospital, Jining, 272002, China
| | - QING-QING YU
- Department of Clinical Pharmacy, Jining No.1 People’s Hospital, Jining, 272002, China
| |
Collapse
|
2
|
Doghish AS, Moustafa HAM, Elballal MS, Sarhan OM, Darwish SF, Elkalla WS, Mohammed OA, Atta AM, Abdelmaksoud NM, El-Mahdy HA, Ismail A, Abdel Mageed SS, Elrebehy MA, Abdelfatah AM, Abulsoud AI. miRNAs as potential game-changers in retinoblastoma: Future clinical and medicinal uses. Pathol Res Pract 2023; 247:154537. [PMID: 37216745 DOI: 10.1016/j.prp.2023.154537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Retinoblastoma (RB) is a rare tumor in children, but it is the most common primitive intraocular malignancy in childhood age, especially those below three years old. The RB gene (RB1) undergoes mutations in individuals with RB. Although mortality rates remain high in developing countries, the survival rate for this type of cancer is greater than 95-98% in industrialized countries. However, it is lethal if left untreated, so early diagnosis is essential. As a non-coding RNA, miRNA significantly impacts RB development and treatment resistance because it can control various cellular functions. In this review, we illustrate the recent advances in the role of miRNAs in RB. That includes the clinical importance of miRNAs in RB diagnosis, prognosis, and treatment. Moreover, the regulatory mechanisms of miRNAs in RB and therapeutic interventions are discussed.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt.
| | - Hebatallah Ahmed Mohamed Moustafa
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Omnia M Sarhan
- Department of Pharmaceutics, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Samar F Darwish
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Wagiha S Elkalla
- Microbiology and Immunology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt; Department of Clinical Pharmacology, Faculty of Medicine, Bisha University, Bisha 61922, Saudi Arabia
| | - Asmaa M Atta
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | | | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Amr M Abdelfatah
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Badr University in Cairo, Badr, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| |
Collapse
|
3
|
Li JS, Liu TM, Li L, Jiang C. LncRNA PROX1 antisense RNA 1 promotes PD-L1-mediated proliferation, metastasis, and immune escape in colorectal cancer by interacting with miR-520d. Anticancer Drugs 2023; 34:669-679. [PMID: 36730426 PMCID: PMC10072212 DOI: 10.1097/cad.0000000000001437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/09/2022] [Indexed: 02/04/2023]
Abstract
It was recently found that lncRNA PROX1 antisense RNA 1 (PROX1-AS1) manifested oncogenicity in a variety of malignancies. This work intended to investigate the molecular mechanisms of PROX1-AS1 in colorectal cancer (CRC) development and immune evasion. In this study, both PROX1-AS1 and PD-L1 expressions were lifted in CRC tissues and cells. PROX1-AS1 interference restrained CRC cell proliferation, migration, invasion, as well as CD8 + T-lymphocyte apoptosis, but increased the cytotoxicity and percentage of CD8 + T lymphocytes. The inhibitory effects of PROX1-AS1 inhibition on CRC progression and immune escape were positively related to PD-L1 suppression. PROX1-AS1 absorbed miR-520d to upregulate PD-L1 expression. PROX1-AS1 facilitated CRC progression and immune escape by targeting miR-520d. Furthermore, PROX1-AS1 deletion impaired CRC tumor growth in vivo . To sum up, this study affirmed that PROX1-AS1 could absorb miR-520d to upregulate PD-L1 in CRC, thereby promoting tumor progression and immune escape.
Collapse
Affiliation(s)
- Jian-sheng Li
- Department of Anorectal Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan
| | - Tong-ming Liu
- Department of Anorectal Surgery, Feicheng People’s Hospital, Feicheng
| | - Li Li
- Department of Anorectal Surgery, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser hospital), Qingdao, China
| | - Chuan Jiang
- Department of Anorectal Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan
| |
Collapse
|
4
|
Rad LM, Sadoughi MM, Nicknam A, Colagar AH, Hussen BM, Taheri M, Ghafouri-Fard S. The impact of non-coding RNAs in the pathobiology of eye disorders. Int J Biol Macromol 2023; 239:124245. [PMID: 37001772 DOI: 10.1016/j.ijbiomac.2023.124245] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
Eye disorders are common disorders with significant effects on personal, economic, and social aspects of life. These disorders have a genetic background and are associated with dysregulation of non-coding RNAs. Three classes of these transcripts, namely long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) and microRNAs (miRNAs) have established roles in the regulation of gene expression and pathoetiology of ocular disorders. H19, MEG3, BANCR, UCA1, HOTAIR, ANRIL, XIST and MIAT are among important lncRNAs in ocular disorders. CircRNAs from ZBTB44, HIPK3, circ-PSEN1, COL1A2, ZNF532 and FAM158A loci have also been found to affect pathoetiology of ocular disorders. Both lncRNAs and circRNAs can serve as molecular sponges for miRNAs. In this review, we searched PubMed and Google Scholar databases to find the research articles summarizing the impact of non-coding RNAs in ocular disorders. The results of these studies would help in identification of suitable targets for treatment of ocular disorders.
Collapse
|
5
|
Long non-coding RNAs involved in retinoblastoma. J Cancer Res Clin Oncol 2023; 149:401-421. [PMID: 36305946 DOI: 10.1007/s00432-022-04398-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/05/2022] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Retinoblastoma (RB) is the most common childhood tumor that can occur in the retina and develop in a sporadic or heritable form. Although various traditional treatment options have been used for patients with RB, identifying novel strategies for childhood cancers is necessary. MATERIAL AND METHODS Recently, molecular-based targeted therapies have opened a greater therapeutic window for RB. Long non-coding RNAs (lncRNAs) presented a potential role as a biomarker for the detection of RB in various stages. CONCLUSION LncRNAs by targeting several miRNA/transcription factors play critical roles in the stimulation or suppression of RB. In this review, we summarized recent progress on the functions of tumor suppressors or oncogenes lncRNAs in RB.
Collapse
|
6
|
Ahangar Davoodi N, Najafi S, Naderi Ghale-Noie Z, Piranviseh A, Mollazadeh S, Ahmadi Asouri S, Asemi Z, Morshedi M, Tamehri Zadeh SS, Hamblin MR, Sheida A, Mirzaei H. Role of non-coding RNAs and exosomal non-coding RNAs in retinoblastoma progression. Front Cell Dev Biol 2022; 10:1065837. [PMID: 36619866 PMCID: PMC9816416 DOI: 10.3389/fcell.2022.1065837] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Retinoblastoma (RB) is a rare aggressive intraocular malignancy of childhood that has the potential to affect vision, and can even be fatal in some children. While the tumor can be controlled efficiently at early stages, metastatic tumors lead to high mortality. Non-coding RNAs (ncRNAs) are implicated in a number of physiological cellular process, including differentiation, proliferation, migration, and invasion, The deregulation of ncRNAs is correlated with several diseases, particularly cancer. ncRNAs are categorized into two main groups based on their length, i.e. short and long ncRNAs. Moreover, ncRNA deregulation has been demonstrated to play a role in the pathogenesis and development of RB. Several ncRNAs, such as miR-491-3p, miR-613,and SUSD2 have been found to act as tumor suppressor genes in RB, but other ncRNAs, such as circ-E2F3, NEAT1, and TUG1 act as tumor promoter genes. Understanding the regulatory mechanisms of ncRNAs can provide new opportunities for RB therapy. In the present review, we discuss the functional roles of the most important ncRNAs in RB, their interaction with the genes responsible for RB initiation and progression, and possible future clinical applications as diagnostic and prognostic tools or as therapeutic targets.
Collapse
Affiliation(s)
- Nasrin Ahangar Davoodi
- Eye Research Center, Rassoul Akram Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zari Naderi Ghale-Noie
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ashkan Piranviseh
- Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammadamin Morshedi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran,*Correspondence: Amirhossein Sheida, ; Hamed Mirzaei, ,
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran,*Correspondence: Amirhossein Sheida, ; Hamed Mirzaei, ,
| |
Collapse
|
7
|
Vetchinkina EA, Kalinkin AI, Kuznetsova EB, Kiseleva AE, Alekseeva EA, Nemtsova MV, Bure IV. Diagnostic and prognostic value of long non-coding RNA PROX1‑AS1 and miR-647 expression in gastric cancer. ADVANCES IN MOLECULAR ONCOLOGY 2022. [DOI: 10.17650/2313-805x-2022-9-4-50-60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction. Gastric cancer remains one of the most common cancers and has a high mortality rate worldwide. Epigenetic alternations of non-coding RNAs (ncRNAs), including microRNAs and long ncRNAs can contribute to its pathogenesis and progression, and could be potent diagnostic and prognostic biomarkers.Aim. Estimation of PROX1‑AS1 and miR-647 expression in gastric cancer and investigation of its clinical significance. Materials and methods. Tumor and adjacent normal tissues (n = 62), and sectional normal tissue samples (n = 5) were included in the study. The expression of the ncRNAs was quantified by reverse transcription-polymerase chain reaction assay.Results. We have reviled the significant difference in the PROX1‑AS1 expression in tumor (p = 0.002) and non-tumor tissues (p <0.001) obtained from gastric cancer patients in comparison with sectional gastric tissues without pathology. Pearson correlation analysis confirmed a negative correlation between PROX1‑AS1 and miR-647 in gastric cancer both in tumor (р <0,001) and adjacent normal tissues (р <0.001). Besides, expression of PROX1‑AS1 and miR-647 was associated with the size and extent of the primary tumor.Conclusion. The obtained results allow to suggest a potential prognostic value of PROX1‑AS1 and miR-647 in gastric cancer.
Collapse
Affiliation(s)
- E. A. Vetchinkina
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | | | - E. B. Kuznetsova
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia; N.P. Bochkov Medical and Genetic Research Center
| | - A. E. Kiseleva
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | - E. A. Alekseeva
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia; N.P. Bochkov Medical and Genetic Research Center
| | - M. V. Nemtsova
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia; N.P. Bochkov Medical and Genetic Research Center
| | - I. V. Bure
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia
| |
Collapse
|
8
|
Nucleic acid therapy in pediatric cancer. Pharmacol Res 2022; 184:106441. [PMID: 36096420 DOI: 10.1016/j.phrs.2022.106441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022]
Abstract
The overall survival, progress free survival, and life quality of cancer patients have improved due to the advance in minimally invasive surgery, precision radiotherapy, and various combined chemotherapy in the last decade. Furthermore, the discovery of new types of therapeutics, such as immune checkpoint inhibitors and immune cell therapies have facilitated both patients and doctors to fight with cancers. Moreover, in the context of the development in biocompatible and cell type targeting nano-carriers as well as nucleic acid-based drugs for initiating and enhancing the anti-tumor response have come to the age. The treatment paradigms utilization of nucleic acids, including short interfering RNA (siRNA), antisense oligonucleotides (ASO), and messenger RNA (mRNA), can target specific protein expression to achieve the therapeutic effects. Over ten nucleic acid therapeutics have been approved by the FDA and EMA in rare diseases and genetic diseases as well as dozens of registered clinical trails for varies cancers. Though generally less dangerous of pediatric cancers than adult cancers was observed during the past decades, yet pediatric cancers accounted for a significant proportion of child deaths which hurt those family very deeply. Therefore, it is necessary to pay more attention for improving the treatment of pediatric cancer and discovering new nucleic acid therapeutics which may help to improve the therapeutic effect and prognoses in turns to ameliorate the survival period and quality of life for children patient. In this review, we focus on the nucleic acid therapy in pediatric cancers.
Collapse
|
9
|
Yin X, Lin H, Lin L, Miao L, He J, Zhuo Z. LncRNAs and CircRNAs in cancer. MedComm (Beijing) 2022; 3:e141. [PMID: 35592755 PMCID: PMC9099016 DOI: 10.1002/mco2.141] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xin Yin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
- College of Pharmacy Jinan University Guangzhou Guangdong China
| | - Huiran Lin
- Faculty of Medicine Macau University of Science and Technology Macau China
| | - Lei Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou Guangdong China
- Laboratory Animal Center, School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen China
| |
Collapse
|
10
|
Ke N, Chen L, Liu Q, Xiong H, Chen X, Zhou X. Downregulation of miR-211-5p Promotes Carboplatin Resistance in Human Retinoblastoma Y79 Cells by Affecting the GDNF-LIF Interaction. Front Oncol 2022; 12:848733. [PMID: 35311096 PMCID: PMC8925320 DOI: 10.3389/fonc.2022.848733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose To investigate the role of the miR-211-5p-GDNF signaling pathway in carboplatin resistance of retinoblastoma Y79 cells and what factors it may be affected by. Methods A carboplatin-resistant retinoblastoma cell line (Y79R) was established in vitro. RNA-seq and microRNA-seq were constructed between Y79 and Y79R cells. RNA interference, RT-PCR, Western blot (WB), and flow cytometry were used to verify the expression of genes and proteins between the two cell lines. The TargetScan database was used to predict the microRNAs that regulate the target genes. STING sites and Co-Immunoprecipitation (COIP) were used to study protein–protein interactions. Results GDNF was speculated to be the top changed gene in the drug resistance in Y79R cell lines. Moreover, the speculation was verified by subsequent RT-PCR and WB results. When the expression of GDNF was knocked down, the IC50 of the Y79R cell line significantly reduced. GDNF was found to be the target gene of miR-211-5p. Downregulation of miR-211-5p promotes carboplatin resistance in human retinoblastoma Y79 cells. MiR-211-5p can regulate the expression of GDNF. Our further research also found that GDNF can bind to LIF which is also a secreted protein. Conclusion Our results suggest that downregulation of miR-211-5p promotes carboplatin resistance in human retinoblastoma Y79 cells, and this process can be affected by GDNF–LIF interaction. These results can provide evidence for the reversal of drug resistance of RB.
Collapse
Affiliation(s)
- Ning Ke
- Department of Ophthalmology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Chen
- Department of Ophthalmology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Liu
- Department of Ophthalmology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Haibo Xiong
- Department of Ophthalmology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xinke Chen
- Department of Ophthalmology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiyuan Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|