1
|
He T, Qin L, Chen S, Huo S, Li J, Zhang F, Yi W, Mei Y, Xiao G. Bone-derived factors mediate crosstalk between skeletal and extra-skeletal organs. Bone Res 2025; 13:49. [PMID: 40307216 PMCID: PMC12044029 DOI: 10.1038/s41413-025-00424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/15/2025] [Accepted: 03/20/2025] [Indexed: 05/02/2025] Open
Abstract
Bone has long been acknowledged as a fundamental structural entity that provides support and protection to the body's organs. However, emerging research indicates that bone plays a crucial role in the regulation of systemic metabolism. This is achieved through the secretion of a variety of hormones, cytokines, metal ions, extracellular vesicles, and other proteins/peptides, collectively referred to as bone-derived factors (BDFs). BDFs act as a medium through which bones can exert targeted regulatory functions upon various organs, thereby underscoring the profound and concrete implications of bone in human physiology. Nevertheless, there remains a pressing need for further investigations to elucidate the underlying mechanisms that inform the effects of bone on other body systems. This review aims to summarize the current findings related to the roles of these significant modulators across different organs and metabolic contexts by regulating critical genes and signaling pathways in vivo. It also addresses their involvement in the pathogenesis of various diseases affecting the musculoskeletal system, circulatory system, glucose and lipid metabolism, central nervous system, urinary system, and reproductive system. The insights gained from this review may contribute to the development of innovative therapeutic strategies through a focused approach to bone secretomes. Continued research into BDFs is expected to enhance our understanding of bone as a multifunctional organ with diverse regulatory roles in human health.
Collapse
Affiliation(s)
- Tailin He
- Department of Rheumatology and Immunology, Shenzhen Third People's Hospital, Shenzhen, 518112, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), 100101, Beijing, China
- Department of Biochemistry, Homeostatic Medicine Institute, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lei Qin
- Department of Orthopedics, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shaochuan Huo
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China, Shenzhen Research Institute of Guangzhou University of Traditional Medicine (Futian), Shenzhen, 518000, China
| | - Jie Li
- Department of Biochemistry, Homeostatic Medicine Institute, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fuping Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), 100101, Beijing, China
| | - Weihong Yi
- Department of Orthopedics, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Yifang Mei
- Department of Rheumatology and Immunology, Shenzhen Third People's Hospital, Shenzhen, 518112, China.
| | - Guozhi Xiao
- Department of Biochemistry, Homeostatic Medicine Institute, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Zhou B, Gan L, Zhou P, Yang T, Tang F, Jin P, Jin P, Chen J. LINC00426 promotes the progression of atherosclerosis by regulating miR-873-5p/SRRM2 axis. Cytokine 2025; 191:156938. [PMID: 40233646 DOI: 10.1016/j.cyto.2025.156938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/13/2025] [Accepted: 04/03/2025] [Indexed: 04/17/2025]
Abstract
BACKGROUND Atherosclerosis (AS) is a disease that occurs in the great arteries and is the main cause of cardiovascular disease and death. OBJECTIVE To investigate the clinical significance of LINC00426 in AS and to investigate that LINC00426 regulates PDGF-BB-induced proliferation, migration, invasion and inflammatory response of vascular smooth muscle cells (VSMCs) by modulating miR-873-5p/SRRM2 axis. METHODS The expression of LINC00426 was detected using RT-qPCR. The diagnostic role of LINC00426 in AS was analyzed with ROC curves. CCK-8 assay was used to measure cell proliferation, and transwell assay was used to measure cell migration and invasion ability. The targeted binding relationship between LINC00426 and miR-873-5p, miR-873-5p and SRRM2 was detected using dual-luciferase reporter gene assay. The concentration of proinflammatory factors was detected by using ELISA kit. RESULT The expression of LINC00426 was increased in patients with AS, and LINC00426 had a diagnostic role in AS. In addition, LINC00426 regulated PDGF-BB-induced proliferation, migration, invasion, and inflammation of VSMCs by regulating miR-873-5p/SRRM2 axis. CONCLUSION LINC00426 may function as a biomarker for the diagnosis and treatment of AS.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Cardiology, Zhejiang Provincial People's Hospital Bijie Hospital, Bijie 551700, China
| | - Lu Gan
- Department of Basic Medical Sciences, Bijie Medical College, Bijie 551700, China
| | - Pimo Zhou
- Department of Cardiology, Zhejiang Provincial People's Hospital Bijie Hospital, Bijie 551700, China
| | - Tai Yang
- Department of Cardiology, Zhejiang Provincial People's Hospital Bijie Hospital, Bijie 551700, China
| | - Fang Tang
- Department of Cardiology, Zhejiang Provincial People's Hospital Bijie Hospital, Bijie 551700, China
| | - Peng Jin
- Department of Cardiology, Zhejiang Provincial People's Hospital Bijie Hospital, Bijie 551700, China
| | - Ping Jin
- Department of Cardiology, Zhejiang Provincial People's Hospital Bijie Hospital, Bijie 551700, China
| | - Jiulin Chen
- Department of Cardiology, Qian Xi Nan People's Hospital, Xingyi 562400, China.
| |
Collapse
|
3
|
Ma CN, Shi SR, Zhang XY, Xin GS, Zou X, Li WL, Guo SD. Targeting PDGF/PDGFR Signaling Pathway by microRNA, lncRNA, and circRNA for Therapy of Vascular Diseases: A Narrow Review. Biomolecules 2024; 14:1446. [PMID: 39595622 PMCID: PMC11592287 DOI: 10.3390/biom14111446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Despite the significant progress in diagnostic and therapeutic strategies, vascular diseases, such as cardiovascular diseases (CVDs) and respiratory diseases, still cannot be successfully eliminated. Vascular cells play a key role in maintaining vascular homeostasis. Notably, a variety of cells produce and secrete platelet-derived growth factors (PDGFs), which promote mitosis and induce the division, proliferation, and migration of vascular cells including vascular smooth muscle cells (SMCs), aortic SMCs, endothelial cells, and airway SMCs. Therefore, PDGF/PDGR receptor signaling pathways play vital roles in regulating the homeostasis of blood vessels and the onset and development of CVDs, such as atherosclerosis, and respiratory diseases including asthma and pulmonary arterial hypertension. Recently, accumulating evidence has demonstrated that microRNA, long-chain non-coding RNA, and circular RNA are involved in the regulation of PDGF/PDGFR signaling pathways through competitive interactions with target mRNAs, contributing to the occurrence and development of the above-mentioned diseases. These novel findings are useful for laboratory research and clinical studies. The aim of this article is to conclude the recent progresses in this field, particular the mechanisms of action of these non-coding RNAs in regulating vascular remodeling, providing potential strategies for the diagnosis, prevention, and treatment of vascular-dysfunction-related diseases, particularly CVDs and respiratory diseases.
Collapse
Affiliation(s)
- Chao-Nan Ma
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (C.-N.M.); (S.-R.S.); (X.-Y.Z.)
| | - Shan-Rui Shi
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (C.-N.M.); (S.-R.S.); (X.-Y.Z.)
| | - Xue-Ying Zhang
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (C.-N.M.); (S.-R.S.); (X.-Y.Z.)
| | - Guo-Song Xin
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin 150076, China; (G.-S.X.); (X.Z.)
| | - Xiang Zou
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin 150076, China; (G.-S.X.); (X.Z.)
| | - Wen-Lan Li
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin 150076, China; (G.-S.X.); (X.Z.)
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China; (C.-N.M.); (S.-R.S.); (X.-Y.Z.)
- School of Pharmacy, Engineering Research Center for Medicine, Harbin University of Commerce, Harbin 150076, China; (G.-S.X.); (X.Z.)
| |
Collapse
|
4
|
Jiang Y, Chen M, Xu N, Li Z, Li X, Yu H, Sun J, Wang A, Huang Y, Wang L. Adaptor protein 14-3-3zeta promotes corneal wound healing via regulating cell homeostasis, a potential novel therapy for corneal injury. Exp Eye Res 2024; 244:109948. [PMID: 38815790 DOI: 10.1016/j.exer.2024.109948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Severe corneal injury can lead to blindness even after prompt treatment. 14-3-3zeta, a member of an adaptor protein family, contributes to tissue repair by enhancing cellular viability and inhibiting fibrosis and inflammation in renal disease or arthritis. However, its role in corneal regeneration is less studied. In this study, filter disc of 2-mm diameter soaked in sodium hydroxide with a concentration of 0.5 N was placed at the center of the cornea for 30 s to establish a mouse model of corneal alkali injury. We found that 14-3-3zeta, which is mainly expressed in the epithelial layer, was upregulated following injury. Overexpression of 14-3-3zeta in ocular tissues via adeno-associated virus-mediated subconjunctival delivery promoted corneal wound healing, showing improved corneal structure and transparency. In vitro studies on human corneal epithelial cells showed that 14-3-3zeta was critical for cell proliferation and migration. mRNA-sequencing in conjunction with KEGG analysis and validation experiments revealed that 14-3-3zeta regulated the mRNA levels of ITGB1, PIK3R1, FGF5, PRKAA1 and the phosphorylation level of Akt, suggesting the involvement of the PI3K-Akt pathway in 14-3-3zeta-mediated tissue repair. 14-3-3zeta is a potential novel therapeutic candidate for treating severe corneal injury.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- 14-3-3 Proteins/metabolism
- 14-3-3 Proteins/genetics
- 14-3-3 Proteins/biosynthesis
- Blotting, Western
- Burns, Chemical/metabolism
- Burns, Chemical/pathology
- Burns, Chemical/drug therapy
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Corneal Injuries/metabolism
- Corneal Injuries/pathology
- Corneal Injuries/genetics
- Disease Models, Animal
- Epithelium, Corneal/metabolism
- Epithelium, Corneal/drug effects
- Epithelium, Corneal/injuries
- Eye Burns/chemically induced
- Gene Expression Regulation
- Homeostasis
- Mice, Inbred C57BL
- Sodium Hydroxide
- Wound Healing/drug effects
- Wound Healing/physiology
Collapse
Affiliation(s)
- Yilin Jiang
- Medical School of Chinese PLA, Beijing, 100089, China; Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100089, China; National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100089, China
| | - Mingxiong Chen
- School of Medicine, Nankai University, Tianjin, 300071, China; National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100089, China
| | - Ning Xu
- Medical School of Chinese PLA, Beijing, 100089, China; Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100089, China; National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100089, China
| | - Zongyuan Li
- Medical School of Chinese PLA, Beijing, 100089, China; Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100089, China; National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100089, China
| | - Xiaoqi Li
- Medical School of Chinese PLA, Beijing, 100089, China; Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100089, China; National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100089, China
| | - Hanrui Yu
- Medical School of Chinese PLA, Beijing, 100089, China; Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100089, China; National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100089, China
| | - Jiaying Sun
- Medical School of Chinese PLA, Beijing, 100089, China; Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100089, China; National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100089, China
| | - An Wang
- Medical School of Chinese PLA, Beijing, 100089, China; Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100089, China; National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100089, China
| | - Yifei Huang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100089, China
| | - Liqiang Wang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100089, China; School of Medicine, Nankai University, Tianjin, 300071, China; National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100089, China.
| |
Collapse
|
5
|
Xin Y, Zhang Z, Lv S, Xu S, Liu A, Li H, Li P, Han H, Liu Y. Elucidating VSMC phenotypic transition mechanisms to bridge insights into cardiovascular disease implications. Front Cardiovasc Med 2024; 11:1400780. [PMID: 38803664 PMCID: PMC11128571 DOI: 10.3389/fcvm.2024.1400780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide, despite advances in understanding cardiovascular health. Significant barriers still exist in effectively preventing and managing these diseases. Vascular smooth muscle cells (VSMCs) are crucial for maintaining vascular integrity and can switch between contractile and synthetic functions in response to stimuli such as hypoxia and inflammation. These transformations play a pivotal role in the progression of cardiovascular diseases, facilitating vascular modifications and disease advancement. This article synthesizes the current understanding of the mechanisms and signaling pathways regulating VSMC phenotypic transitions, highlighting their potential as therapeutic targets in cardiovascular disease interventions.
Collapse
Affiliation(s)
- Yuning Xin
- Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zipei Zhang
- Traditional Chinese Medicine, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Shan Lv
- Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Shan Xu
- Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Aidong Liu
- Traditional Chinese Medicine, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Hongyu Li
- Traditional Chinese Medicine, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Pengfei Li
- Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Huize Han
- Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yinghui Liu
- Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
6
|
Sun K, Sun Y, Jia Y, Duan X, Ma Z, Zhang X, Wang L, Zhu Y, Gao Y, Basang W. MicroRNA miR-212-5p Regulates the MEK/ERK Signaling Pathway by Targeting A-Raf proto-oncogene serine/threonine-protein kinase ( ARAF) to Regulate Cowshed PM 2.5-Induced NR8383 Apoptosis. TOXICS 2023; 11:981. [PMID: 38133382 PMCID: PMC10748134 DOI: 10.3390/toxics11120981] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Objective: To investigate the role of miR-212-5p-targeted ARAF during the apoptosis of rat alveolar macrophages induced by cowshed PM2.5. Methods: miRNA and related target genes and pathways were predicted using the KEGG, TargetScan, and other prediction websites. NR8383 macrophages were treated with cowshed PM2.5 to establish an in vitro lung injury model in rats; meanwhile, for the assessment of cell viability, apoptosis, intracellular calcium ions, and mitochondrial membrane potential in NR8383 cells, RT-qPCR was used to detect the expression of miR-212-5p and the target gene ARAF. Results: The bioinformatic analyses showed that miR-212-5p and ARAF were involved in PM2.5-associated cellular damage. Exposure to different concentrations (0 μg/mL, 60 μg/mL, 180 μg/mL, 300 μg/mL) with different durations (0 h, 12 h, 24 h, 48 h) of cowshed PM2.5 resulted in apoptosis, increased intracellular calcium ions, and decreased mitochondrial membrane potential. The miR-212-5p mimic group showed an up-regulation of Bax and cleaved Caspase 3 expression but decreased Bcl2 expression compared to the NC group, and overexpression of ARAF up-regulated the expression of p-MEK1/2 and p-ERK1/2 and simultaneously reversed the above phenomena. Conclusions: miR-212-5p targets ARAF to affect the cowshed PM2.5-induced apoptosis through the MEK/ERK signaling pathway, providing a potential target for relevant farming industry and pathology studies.
Collapse
Affiliation(s)
- Ke Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (K.S.)
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa 850009, China
| | - Yize Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (K.S.)
| | - Yunna Jia
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (K.S.)
| | - Xinran Duan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (K.S.)
| | - Zhenhua Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (K.S.)
| | - Xiqing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (K.S.)
| | - Lixia Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa 850009, China
| | - Yunhang Gao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (K.S.)
| | - Wangdui Basang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa 850009, China
| |
Collapse
|