1
|
Lai S, Guo Z. Stem cell therapies for chronic obstructive pulmonary disease: mesenchymal stem cells as a promising treatment option. Stem Cell Res Ther 2024; 15:312. [PMID: 39300523 DOI: 10.1186/s13287-024-03940-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
Chronic obstructive pulmonary disease(COPD) is an inflammatory disease characterized by the progressive and irreversible structural and functional damage of lung tissue. Although COPD is a significant global disease burden, the available treatments only ameliorate the symptoms, but cannot reverse lung damage. Researchers in regenerative medicine have examined the use of stem cell transplantation for treatment of COPD and other diseases because these cells have the potential for unlimited self-renewal and the ability to undergo directed differentiation. Stem cells are typically classified as embryonic stem cells, induced pluripotent stem cells, and adult stem cells (which includes mesenchymal stem cells [MSCs]), each with its own advantages and disadvantages regarding applications in regenerative medicine. Although the heterogeneity and susceptibility to senescence of MSCs make them require careful consideration for clinical applications. However, the low tumourigenicity and minimal ethical concerns of MSCs make them appear to be excellent candidates. This review summarizes the characteristics of various stem cell types and describes their therapeutic potential in the treatment of COPD, with a particular emphasis on MSCs. We aim to facilitate subsequent in-depth research and preclinical applications of MSCs by providing a comprehensive overview.
Collapse
Affiliation(s)
- Sumei Lai
- Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.
| | - Zhifeng Guo
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
2
|
Chen Q, Lin J, Deng Z, Qian W. Exosomes derived from human umbilical cord mesenchymal stem cells protect against papain-induced emphysema by preventing apoptosis through activating VEGF-VEGFR2-mediated AKT and MEK/ERK pathways in rats. Regen Ther 2022; 21:216-224. [PMID: 36092502 PMCID: PMC9420880 DOI: 10.1016/j.reth.2022.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/25/2022] [Accepted: 07/07/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction Chronic obstructive pulmonary disease (COPD) is a leading cause of high mortality and heavy burden in the world. Unfortunately, emphysema, as an important component of COPD, has no curative treatments currently. Recently, human umbilical cord mesenchymal stem cells-derived exosomes (hUCMSC-Ex) constitute a promising alternative approach for tissue regeneration and repair. However, the roles of hUCMSC-Ex in emphysema and its mechanism are largely unknown. Here, we investigated the effect and the action mechanism of hUCMSC-Ex in repairing emphysema induced by papain in rats. Methods SD rats were used to establish a papain-induced emphysema model and estimate the effect and mechanism of hUCMSC-Ex treatment. H&E staining and mean linear intercept (MLI) were used to evaluate the hUCMSC-Ex effect on emphysema. Western blotting, TUNEL and miRNA-seq were used to investigate the molecular mechanisms of hUCMSC-Ex treatment in models of papain-induced emphysema. Results Papain treatment led to typical emphysema, while hUCMSC-Ex reversed emphysematous changes effectively. Apoptosis of endothelial cells and other types of cells were observed in models, while hUCMSC-Ex effectively prevented their apoptosis. hUCMSC-Ex repressed active caspase-3, activated VEGF-VEGFR2-mediated AKT pathway and MEK/ERK pathway in emphysematous lungs. Notably, several miRNAs, such as hsa-miR-10a-5p and hsa-miR-146a-5p, were target related to the roles of hUCMSC-Ex in papain-induced emphysema through VEGF-VEGFR2-mediated AKT and MEK/ERK pathways. Conclusions hUCMSC-Ex effectively rescued the papain-induced emphysema injury through VEGF-VEGFR2-mediated AKT pathway and MEK/ERK pathway. Exosomes from human umbilical cord mesenchymal stem cells (hUCMSC-Ex) pro protect against papain-injured emphysema in rats. hUCMSC-Ex prevent lung cells apoptosis by activating VEGF-VEGFR2-mediated AKT and MEK/ERK pathways. Several miRNAs, such as hsa-miR-10a-5p, were target related to the roles of hUCMSC-Ex.
Collapse
Affiliation(s)
- Qin Chen
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Jiang Lin
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Zhaoqun Deng
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Wei Qian
- Department of Otolaryngology-Head and Neck Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
- Corresponding author. Department of Otolaryngology-Head and Neck Surgery, Affiliated People's Hospital of Jiangsu University, Dianli RD. 8, Zhenjiang, Jiangsu Province, 212002, China.
| |
Collapse
|
3
|
Li P, Peng J, Chen G, Chen F, Shen Y, Liu L, Chen L. DNA Methylation Profiling in a Cigarette Smoke-Exposed Mouse Model of Airway Inflammation. Int J Chron Obstruct Pulmon Dis 2022; 17:2443-2450. [PMID: 36213088 PMCID: PMC9533786 DOI: 10.2147/copd.s369702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Material and Methods Results Conclusion
Collapse
Affiliation(s)
- Ping Li
- Laboratory of Pulmonary Diseases and Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, People’s Republic of China
| | - Junjie Peng
- Laboratory of Pulmonary Diseases and Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, People’s Republic of China
| | - Guangxi Chen
- Laboratory of Pulmonary Diseases and Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, People’s Republic of China
- Department of Sleep Medicine, Jiujiang First People’s Hospital, Jiujiang, People’s Republic of China
| | - Fangying Chen
- Laboratory of Pulmonary Diseases and Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, People’s Republic of China
- Department of Tuberculosis, the Third People’s Hospital of Tibet Autonomous Region, Lhasa, People’s Republic of China
| | - Yongchun Shen
- Laboratory of Pulmonary Diseases and Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, People’s Republic of China
| | - Lin Liu
- Department of Respiratory and Critical Care Medicine, 363 Hospital, Chengdu, People’s Republic of China
- Lin Liu, Department of Respiratory and Critical Care Medicine, 363 Hospital, Chengdu, People’s Republic of China, Email
| | - Lei Chen
- Laboratory of Pulmonary Diseases and Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, People’s Republic of China
- Correspondence: Lei Chen, Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, People’s Republic of China, Email
| |
Collapse
|
4
|
Abstract
There is no justification for a therapeutic nihilism in clinical practice because current management (pharmacological and non-pharmacological) of the patients with chronic obstructive pulmonary disease according to treatable traits is effective in decreasing their respiratory symptoms, increasing their exercise tolerance and capacity, improving their quality of life, preventing (and treating) many of their exacerbations and decreasing their mortality.
Collapse
Affiliation(s)
- Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), University of Messina, Messina, Italy
| | - Andrea Bianco
- Department of Translational Medical Sciences, L. Vanvitelli University of Campania, Naples, Italy
| | - Teresa David
- Unit of Emergency Medicine, G. Martino University Hospital, Messina, Italy
| | - Ilaria Salvato
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), University of Messina, Messina, Italy
| | - Ian M Adcock
- Section of Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), University of Messina, Messina, Italy -
| |
Collapse
|
5
|
Uwagboe I, Adcock IM, Lo Bello F, Caramori G, Mumby S. New drugs under development for COPD. Minerva Med 2022; 113:471-496. [PMID: 35142480 DOI: 10.23736/s0026-4806.22.08024-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The characteristic features of chronic obstructive pulmonary disease (COPD) include inflammation and remodelling of the lower airways and lung parenchyma together with activation of inflammatory and immune processes. Due to the increasing habit of cigarette smoking worldwide COPD prevalence is increasing globally. Current therapies are unable to prevent COPD progression in many patients or target many of its hallmark characteristics which may reflect the lack of adequate biomarkers to detect the heterogeneous clinical and molecular nature of COPD. In this chapter we review recent molecular data that may indicate novel pathways that underpin COPD subphenotypes and indicate potential improvements in the classes of drugs currently used to treat COPD. We also highlight the evidence for new drugs or approaches to treat COPD identified using molecular and other approaches including kinase inhibitors, cytokine- and chemokine-directed biologicals and small molecules, antioxidants and redox signalling pathway inhibitors, inhaled anti-infectious agents and senolytics. It is important to consider the phenotypes/molecular endotypes of COPD patients together with specific outcome measures to target new therapies to particular COPD subtypes. This will require greater understanding of COPD molecular pathologies and a focus on biomarkers of predicting disease subsets and responder/non-responder populations.
Collapse
Affiliation(s)
- Isabel Uwagboe
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Ian M Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK -
| | - Federica Lo Bello
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Sharon Mumby
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
6
|
Chen YT, Miao K, Zhou L, Xiong WN. Stem cell therapy for chronic obstructive pulmonary disease. Chin Med J (Engl) 2021; 134:1535-1545. [PMID: 34250959 PMCID: PMC8280064 DOI: 10.1097/cm9.0000000000001596] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Indexed: 12/25/2022] Open
Abstract
ABSTRACT Chronic obstructive pulmonary disease (COPD), characterized by persistent and not fully reversible airflow restrictions, is currently one of the most widespread chronic lung diseases in the world. The most common symptoms of COPD are cough, expectoration, and exertional dyspnea. Although various strategies have been developed during the last few decades, current medical treatment for COPD only focuses on the relief of symptoms, and the reversal of lung function deterioration and improvement in patient's quality of life are very limited. Consequently, development of novel effective therapeutic strategies for COPD is urgently needed. Stem cells were known to differentiate into a variety of cell types and used to regenerate lung parenchyma and airway structures. Stem cell therapy is a promising therapeutic strategy that has the potential to restore the lung function and improve the quality of life in patients with COPD. This review summarizes the current state of knowledge regarding the clinical research on the treatment of COPD with mesenchymal stem cells (MSCs) and aims to update the understanding of the role of MSCs in COPD treatment, which may be helpful for developing effective therapeutic strategies in clinical settings.
Collapse
Affiliation(s)
- Yun-Tian Chen
- Department of Pulmonary and Critical Care Medicine, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Kang Miao
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Linfu Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wei-Ning Xiong
- Department of Pulmonary and Critical Care Medicine, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
7
|
Song L, Peng J, Guo X. Exosomal lncRNA TCONS_00064356 derived from injured alveolar epithelial type II cells affects the biological characteristics of mesenchymal stem cells. Life Sci 2021; 278:119568. [PMID: 33964296 DOI: 10.1016/j.lfs.2021.119568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 01/15/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent respiratory disease, and a leading cause of morbidity and mortality worldwide. There is still a lack of effective treatment to improve pulmonary structural abnormality and reverse the progression of COPD. Mesenchymal stem cell (MSC)-based therapies have attracted much attention and show promising clinical application prospects in COPD treatment. Understanding the communication between injured alveolar cells and MSCs will help us improve the efficiency of MSC-based therapies. Here, we showed that exosomes secreted by injured alveolar epithelial type II (AEC-II) cells could promote the proliferation and migration of MSCs, accompanied with increased expression levels of genes related to mitochondrial synthesis and transfer. Moreover, we identified 21 significantly dysregulated exosomal lncRNAs (16 upregulated and 5 downregulated) using lncRNA sequencing. In addition, we found that lncRNA TCONS_00064356-overexpressing MSCs showed increased proliferation and migration capacities and upregulated expression levels of the genes related to mitochondrial synthesis and transfer. Together, our study uncovers a new potential exosome-mediated communication pathway between injured AEC-II cells and MSCs and provides new targets and ideas for improving the efficiency of MSC-based therapies for COPD.
Collapse
Affiliation(s)
- Lin Song
- Department of Respiratory Medicine, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200090, China
| | - Juan Peng
- Department of Respiratory Medicine, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200090, China
| | - Xuejun Guo
- Department of Respiratory Medicine, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200090, China.
| |
Collapse
|
8
|
Karnati S, Seimetz M, Kleefeldt F, Sonawane A, Madhusudhan T, Bachhuka A, Kosanovic D, Weissmann N, Krüger K, Ergün S. Chronic Obstructive Pulmonary Disease and the Cardiovascular System: Vascular Repair and Regeneration as a Therapeutic Target. Front Cardiovasc Med 2021; 8:649512. [PMID: 33912600 PMCID: PMC8072123 DOI: 10.3389/fcvm.2021.649512] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide and encompasses chronic bronchitis and emphysema. It has been shown that vascular wall remodeling and pulmonary hypertension (PH) can occur not only in patients with COPD but also in smokers with normal lung function, suggesting a causal role for vascular alterations in the development of emphysema. Mechanistically, abnormalities in the vasculature, such as inflammation, endothelial dysfunction, imbalances in cellular apoptosis/proliferation, and increased oxidative/nitrosative stress promote development of PH, cor pulmonale, and most probably pulmonary emphysema. Hypoxemia in the pulmonary chamber modulates the activation of key transcription factors and signaling cascades, which propagates inflammation and infiltration of neutrophils, resulting in vascular remodeling. Endothelial progenitor cells have angiogenesis capabilities, resulting in transdifferentiation of the smooth muscle cells via aberrant activation of several cytokines, growth factors, and chemokines. The vascular endothelium influences the balance between vaso-constriction and -dilation in the heart. Targeting key players affecting the vasculature might help in the development of new treatment strategies for both PH and COPD. The present review aims to summarize current knowledge about vascular alterations and production of reactive oxygen species in COPD. The present review emphasizes on the importance of the vasculature for the usually parenchyma-focused view of the pathobiology of COPD.
Collapse
Affiliation(s)
- Srikanth Karnati
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Michael Seimetz
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Avinash Sonawane
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Thati Madhusudhan
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Akash Bachhuka
- UniSA Science, Technology, Engineering and Mathematics, University of South Australia, Mawson Lakes Campus, Adelaide, SA, Australia
| | - Djuro Kosanovic
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.,Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, University of Giessen, Giessen, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| |
Collapse
|
9
|
Tantucci C. Assessment and treatment of airflow obstruction in patients with chronic obstructive pulmonary disorder: a guide for the clinician. Expert Rev Respir Med 2021; 15:385-391. [PMID: 33215956 DOI: 10.1080/17476348.2021.1851602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Introduction: Chronic obstructive pulmonary disorder (COPD) is a common cause of disability, morbidity and mortality worldwide. Early diagnosis and adequate treatment maintained over time are crucial to reducing these harmful consequences.Areas covered Persistent, not reversible and naturally progressive airflow obstruction is the functional hallmark of COPD. Therefore, in the presence of individual and environmental risk factors, with or without reported suggestive symptoms, simple spirometry must be performed enough quickly to objectify an obstructive ventilatory defect and assist physicians in making a diagnosis of COPD. Then, to cope with the heterogeneity of COPD patients, more specific functional tests and imaging techniques should be implemented to better define the underlying prevalent disease and its severity. That is necessary to decide whether to introduce ICS and establish the initial level of the treatment with just one or two bronchodilators, to control and freeze, when possible, the underlying pathological process.Expert opinion: The objective assessment of airflow obstruction is mandatory to make a diagnosis of COPD, but the prevalent disease sustaining the disorder should also be investigated to select a targeted therapy, because main determinants of airflow obstruction can be different in COPD patients and may differently respond to treatment.
Collapse
Affiliation(s)
- Claudio Tantucci
- Department of Clinical and Experimental Sciences, Respiratory Medicine Unit, Spedali Civili Brescia, University of Brescia, Brescia, Italy
| |
Collapse
|
10
|
Lo Bello F, Hansbro PM, Donovan C, Coppolino I, Mumby S, Adcock IM, Caramori G. New drugs under development for COPD. Expert Opin Emerg Drugs 2020; 25:419-431. [DOI: 10.1080/14728214.2020.1819982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Federica Lo Bello
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e Delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, Australia
- Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, Australia
| | - Chantal Donovan
- Centre for Inflammation, Centenary Institute, Sydney, Australia
- Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, Australia
| | - Irene Coppolino
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e Delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Sharon Mumby
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Ian M. Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e Delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| |
Collapse
|