1
|
Fang C, Zhang W, Wang C, Li S, Dou X, Liu J. Acidic-thermal coupled degradation of tylosin by using magnetic sulfonated resins under microwave irradiation. J Environ Sci (China) 2025; 155:127-138. [PMID: 40246452 DOI: 10.1016/j.jes.2024.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/19/2024] [Accepted: 10/29/2024] [Indexed: 04/19/2025]
Abstract
Acidic- and alkalic-hydrolyses are selective in breaking functional bonds and falling off pharmacological moieties of antibiotics in production wastewater in comparison with advanced oxidation processes. Elevating temperature can accelerate hydrolytic kinetics and improve efficiency. In this work, magnetic sulfonated polypropylene resin (Fe3O4@PS-S) composites were reported for acidic-thermal hydrolysis of tylosin by employing the acidic feature of sulfonic group, the dielectric effect of resin, and the magnetic-loss effect of magnetite under microwave irradiation. As observed, a rapid and complete mitigation 100 mg/L of tylosin was achieved within 15 min by the catalysts. Acidic cleavage of tylosin was fulfilled by sulfonic groups in the composites, and microwave thermal accelerated the hydrolysis reactions due to the dielectric and magnetic-loss effects. Differentiating the dielectric and magnetic-loss effects through electromagnetic analyses indicated that the latter contributed more in converting microwave energy to heat. The interactions under multiple operational conditions were quantitatively fitted using the Behnajady model and visually demonstrated, which indicated that a synergic effect of microwave thermal- and acidic-hydrolyses contributed to the efficient mitigation of tylosin. The transformation products were identified and the pathways were supposed. Cleaving deoxyaminosugars groups and destructing lactone structures led to reduced antibacterial potential and toxicity reduction. The acute toxicity of tylosin and transformation products to fish, daphnia, and green algae were all classified as non-toxic. This work suggested that this synergistic acid-thermal hydrolytic method is attractive and promising in pretreating tylosin production wastewater in field.
Collapse
Affiliation(s)
- Caitiao Fang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Wei Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Chunmei Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Shiling Li
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Xiaomin Dou
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Jun Liu
- Guangdong-Hong Kong Joint Laboratory for Water Security, Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, China.
| |
Collapse
|
2
|
Liu Y, Lv J, Guo C, Jin X, Zuo D, Xu J. Environmental behavior, risks, and management of antidepressants in the aquatic environment. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025. [PMID: 40293178 DOI: 10.1039/d4em00793j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Antidepressants are increasingly detected in aquatic environments due to their incomplete removal in wastewater treatment, raising significant concerns about their ecological impacts. This review focuses on the three most widely used classes of antidepressants-tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs), and serotonin-norepinephrine reuptake inhibitors (SNRIs). It systematically explores their physicochemical properties and how these properties influence their environmental fate, including sorption, mobility, and bioaccumulation in aquatic ecosystems. The sublethal effects of these antidepressants on aquatic organisms, particularly their impacts on behavior, reproduction, and development, are critically analyzed, highlighting potential threats to biodiversity and ecological stability. Key knowledge gaps are identified, including the long-term impacts of chronic low-dose exposure, the role of bioactive metabolites, and the combined toxicity of antidepressants with other contaminants. The review underscores the importance of advanced wastewater treatment technologies, environmentally mindful prescribing practices, and public awareness campaigns as essential measures to mitigate these risks. By addressing these challenges, this study aims to inform future research and guide sustainable environmental management strategies.
Collapse
Affiliation(s)
- Yingying Liu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Jiapei Lv
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Depeng Zuo
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jian Xu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
3
|
Es'hagi M, Farbodi M, Gharbani P, Ghasemi E, Jamshidi S, Majdan-Cegincara R, Mehrizad A, Seyyedi K, Shahverdizadeh GH. A comparative review on the mitigation of metronidazole residues in aqueous media using various physico-chemical technologies. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7294-7310. [PMID: 39469862 DOI: 10.1039/d4ay01502a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
In the last few decades, pharmaceuticals have emerged as a new class of serious environmental pollutants. The presence of these emerging contaminants even in minimal amounts (micro- to nanograms) has side effects, and they can cause chronic toxicity to health and the environment. Furthermore, the presence of pharmaceutical contaminants in water resources leads to significant antibiotic resistance in bacteria. Hence, the removal of antibiotics from water resources is essential. Thus far, a wide range of methods, including adsorption, photodegradation, oxidation, photolysis, micro-/nanofiltration, and reverse osmosis, has been used to remove pharmaceutical contaminants from water systems. In this article, research related to the processes for the removal of metronidazole antibiotics from water and wastewater, including adsorption (carbon nanotubes (CNTs), magnetic nanocomposites, magnetic molecularly imprinted polymer (MMIP), and metal-organic frameworks), filtration, advanced oxidation processes (photocatalytic process, electrochemical advanced oxidation processes, sonolysis and sonocatalysis) and aqueous two-phase systems (ATPSs), was reviewed. Results reveal that advanced oxidation processes, especially photocatalytic and sonolysis processes, have high potential in removing MNZ (more than 90%).
Collapse
Affiliation(s)
- Moosa Es'hagi
- Department of Chemistry, Islamic Azad University, Tabriz Branch, Tabriz, Iran.
- Industrial Nanotechnology Research Center, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Maryam Farbodi
- Department of Chemistry, Islamic Azad University, Tabriz Branch, Tabriz, Iran.
- Industrial Nanotechnology Research Center, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Parvin Gharbani
- Industrial Nanotechnology Research Center, Islamic Azad University, Tabriz Branch, Tabriz, Iran
- Department of Chemistry, Islamic Azad University, Ahar Branch, Ahar, Iran.
| | - Elnaz Ghasemi
- Department of Chemistry, Islamic Azad University, Tabriz Branch, Tabriz, Iran.
- Industrial Nanotechnology Research Center, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Sona Jamshidi
- Department of Chemistry, Islamic Azad University, Tabriz Branch, Tabriz, Iran.
- Industrial Nanotechnology Research Center, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Roghayeh Majdan-Cegincara
- Department of Chemistry, Islamic Azad University, Tabriz Branch, Tabriz, Iran.
- Industrial Nanotechnology Research Center, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Ali Mehrizad
- Department of Chemistry, Islamic Azad University, Tabriz Branch, Tabriz, Iran.
- Industrial Nanotechnology Research Center, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Kambiz Seyyedi
- Department of Chemistry, Islamic Azad University, Tabriz Branch, Tabriz, Iran.
- Industrial Nanotechnology Research Center, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Gholam Hossein Shahverdizadeh
- Department of Chemistry, Islamic Azad University, Tabriz Branch, Tabriz, Iran.
- Industrial Nanotechnology Research Center, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| |
Collapse
|
4
|
Wang J, Hui X, Liu H, Dai X. Classification, characteristics, harmless treatment and safety assessment of antibiotic pharmaceutical wastewater (APWW): A comprehensive review. CHEMOSPHERE 2024; 366:143504. [PMID: 39389375 DOI: 10.1016/j.chemosphere.2024.143504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/17/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
The issues related to the spread of antibiotics and antibiotic resistance genes (ARGs) have garnered significant attention from researchers and governments. The production of antibiotics can lead to the emission of high-concentration pharmaceutical wastewater, which contains antibiotic residues and various other pollutants. This review compiles the classification and characteristics of antibiotic pharmaceutical wastewater (APWW), offers an overview of the development, advantages, and disadvantages of diverse harmless treatment processes, and presents a strategy for selecting appropriate treatment approaches. Biological treatment remains the predominant approach for treating APWW. In addition, several alternative methods can be employed to address the challenges associated with APWW treatment. On the other hand, the present safety assessment of the effluent resulting from APWW treatment is inadequate, necessitating more comprehensive research in this domain. It is recommended that researches in this area consider the issue of toxicity and antibiotic resistance as well. The PNECR model (similar to ecotoxicological PNECs but used to specifically refer to endpoints related to antimicrobial resistance) (Murray et al., 2024) is an emerging tool used for evaluating the antimicrobial resistance (AMR) issue. This model is, characterized by its simplicity and effectiveness, is a promising tool for assessing the safety of treated APWW.
Collapse
Affiliation(s)
- Jiawen Wang
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Xuesong Hui
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Huiling Liu
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Xiaohu Dai
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| |
Collapse
|
5
|
Jamali GA, Devrajani SK, Memon SA, Qureshi SS, Anbuchezhiyan G, Mubarak NM, Shamshuddin SZM, Siddiqui MTH. Holistic insight mechanism of ozone-based oxidation process for wastewater treatment. CHEMOSPHERE 2024; 359:142303. [PMID: 38734250 DOI: 10.1016/j.chemosphere.2024.142303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024]
Abstract
The world is facing water crises because freshwater scarcity has become a global issue due to rapid population growth, resulting in the need for more industries, agriculture, and domestic sectors. Therefore, it is challenging for scientists and environmental engineers to treat wastewater with cost-effective treatment techniques. As compared to conventional processes (physical, chemical, and biological), advanced oxidation processes (AOP) play an essential role in the removal of wastewater contaminants, with the help of a powerful hydroxyl (OH•) through oxidation reactions. This review study investigates the critical role of O3-based Advanced Oxidation Processes (AOPs) in tackling the complex difficulties of wastewater treatment. Effective treatment methods are critical, with wastewater originating from various sources, including industrial activity, pharmaceutical manufacturing, agriculture, and a wide range of toxins. O3-based AOPs appear to be powerful therapies capable of degrading a wide range of pollutants, including stubborn organics, medicines, and pesticides, reducing environmental and human health risks. This review sheds light on their efficacy in wastewater treatment by explaining the underlying reaction mechanisms and applications of several O3-based AOP processes, such as O3, O3/UV, and O3/H2O2. Ozone, a powerful oxidizing agent, stimulates the breakdown of complex chemical molecules by oxidation processes, which are aided further by synergistic combinations with ultraviolet (UV) radiation or hydrogen peroxide (H2O2). Notably, while ozonation alone may not always produce the best outcomes, it acts as an essential pretreatment step prior to traditional treatments, increasing total treatment efficiency. Furthermore, O3-based AOPs' transformational capacity to convert organic chemicals into simpler, more stable inorganic forms with little sludge creation emphasizes its sustainability and environmental benefits. This study sheds light on the processes, uses, and benefits of O3-based AOPs, presenting practical solutions for sustainable water management and environmental protection. It is a valuable resource for academics, engineers, and politicians looking for new ways to combat wastewater contamination and protect water resources.
Collapse
Affiliation(s)
- Ghazala Akber Jamali
- US-Pakistan Center for Advanced Studies in Water, Mehran University of Engineering and Technology, Jamshoro, Sindh, Pakistan.
| | - Satesh Kumar Devrajani
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy
| | - Sheeraz Ahmed Memon
- Institute of Environmental Engineering and Management, Mehran University of Engineering and Technology, Jamshoro, Pakistan
| | - Sundus Saeed Qureshi
- Australian Rivers Institute and *School of Environment and Science, Griffith University, Nathan Campus, 4111, Queensland, Australia
| | - Gnanasambandam Anbuchezhiyan
- Department of Mechanical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam; Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Jalandhar, Punjab, India.
| | - S Z M Shamshuddin
- Chemistry Research Laboratory, HMS Institute of Technology, Tumakuru, 572104, Karnataka India
| | | |
Collapse
|
6
|
Wang H, Yang J, Zhang H, Zhao J, Liu H, Wang J, Li G, Liang H. Membrane-based technology in water and resources recovery from the perspective of water social circulation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168277. [PMID: 37939956 DOI: 10.1016/j.scitotenv.2023.168277] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
In this review, the application of membrane-based technology in water social circulation was summarized. Water social circulation encompassed the entire process from the acquirement to discharge of water from natural environment for human living and development. The focus of this review was primarily on the membrane-based technology in recovery of water and other valuable resources such as mineral ions, nitrogen and phosphorus. The main text was divided into four main sections according to water flow in the social circulation: drinking water treatment, agricultural utilization, industrial waste recycling, and urban wastewater reuse. In drinking water treatment, the acquirement of water resources was of the most importance. Pressure-driven membranes, such as ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) were considered suitable in natural surface water treatment. Additionally, electrodialysis (ED) and membrane capacitive deionization (MCDI) were also effective in brackish water desalination. Agriculture required abundant water with relative low quality for irrigation. Therefore, the recovery of water from other stages of the social circulation has become a reasonable solution. Membrane bioreactor (MBR) was a typical technique attributed to low-toxicity effluent. In industrial waste reuse, the osmosis membranes (FO and PRO) were utilized due to the complex physical and chemical properties of industrial wastewater. Especially, membrane distillation (MD) might be promising when the wastewater was preheated. Resources recovery in urban wastewater was mainly divided into recovery of bioenergy (via anaerobic membrane bioreactors, AnMBR), nitrogen (utilizing MD and gas-permeable membrane), and phosphorus (through MBR with chemical precipitation). Furthermore, hybrid/integrated systems with membranes as the core component enhanced their performance and long-term working ability in utilization. Generally, concentrate management and energy consumption control might be the key areas for future advancements of membrane-based technology.
Collapse
Affiliation(s)
- Hesong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jiaxuan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Han Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jing Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Hongzhi Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jinlong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
7
|
Kumari S, Kumar V, Kothari R, Kumar P. Nutrient sequestration and lipid production potential of Chlorella vulgaris under pharmaceutical wastewater treatment: experimental, optimization, and prediction modeling studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:7179-7193. [PMID: 38158522 DOI: 10.1007/s11356-023-31719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The efficient management and treatment of pharmaceutical industry wastewater (PIWW) have become a serious environmental issue due to its high toxicity. To overcome this problem, the present study deals with the phycoremediation of PIWW using Chlorella vulgaris microalga isolated from the Ganga River at Haridwar, India. For this, response surface methodology (RSM) and artificial neural network (ANN) tools were used to identify the best reduction of total phosphorus (TP) and total Kjeldahl's nitrogen (TKN) based pollutants along with the lipid production efficiency of C. vulgaris. Three different concentrations of pharmaceutical wastewater (0, 50, and 100%), operating temperatures (20, 25, and 30 °C), and light intensity (2000, 3000, and 4000 lx) were used to design the phycoremediation experiments having 6:18 h of dark/light period and reactor functional volume of 15L. Findings revealed that C. vulgaris was good enough to remove maximum TP (90.35%), TKN (83.55%) along 20.88% of lipid yield at 25.62 °C temperature, 60.73% PIWW concentration, and 4000 lx of light intensity, respectively. Based on the model performance and validation results, ANN showed more accuracy as compared to the RSM tool. Therefore, the findings of this study showed that C. vulgaris is capable of treating PIWW efficiently along with significant production of lipid content which can further be used in various applications including biofuel production.
Collapse
Affiliation(s)
- Sonika Kumari
- Agro-ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukul Kangri (Deemed to be University), Haridwar, Uttarakhand, 249404, India
- Department of Environmental Sciences, Central University of Jammu, Jammu and Kashmir, Samba, India
| | - Vinod Kumar
- Agro-ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukul Kangri (Deemed to be University), Haridwar, Uttarakhand, 249404, India.
| | - Richa Kothari
- Department of Environmental Sciences, Central University of Jammu, Jammu and Kashmir, Samba, India
| | - Pankaj Kumar
- Agro-ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukul Kangri (Deemed to be University), Haridwar, Uttarakhand, 249404, India
| |
Collapse
|
8
|
Wang J, Li J, Wan S, Yi G, Yu X, Luo X, Su X, Shan Y, Cheng Q, Hu Z, Shen Y. Recycling Waste Glyceroborate to Aqueous Lubricant for Tribological Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18558-18572. [PMID: 38049106 DOI: 10.1021/acs.langmuir.3c02886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
The present study attempts to explore the direct recyclability of glyceroborate from medicine pharmaceutical production wastewater into an aqueous lubricant instead of conventional waste processing methods from the tribological view. In order to determine the tribological feasibility, the physicochemical properties of crude pharmaceutical wastewater are investigated and compared with those of pure glycerol to access their potential lubrication properties. The results demonstrated that the crude pharmaceutical wastewater has better friction-reducing and antiwear properties under the same working conditions. Besides outstanding lubricating properties, the friction-induced formation of borate tribo-film and intermediate FeOOH compound favors lowering of the shear stress between the rubbing surfaces. This finding better provides an alternative to transform glyceroborate from medicine pharmaceutical production wastewater after simple distillation processing to a potential aqueous lubricant.
Collapse
Affiliation(s)
- Junyang Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jipeng Li
- Jiugang Hongxing Iron & Steel Co., Ltd., Jiayuguan 735100, China
| | - Shanhong Wan
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Gewen Yi
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xianglong Yu
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaoyang Luo
- Jiugang Hongxing Iron & Steel Co., Ltd., Jiayuguan 735100, China
| | - Xiaozhi Su
- Jiugang Hongxing Iron & Steel Co., Ltd., Jiayuguan 735100, China
| | - Yu Shan
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Qianqian Cheng
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhenyu Hu
- Jiangsu Hengsheng Pharmaceutical Co., Zhangjiagang 215600, China
| | - Yu Shen
- Taizhou Hailings Hydraulic Machinery Co., Taizhou 225300, China
| |
Collapse
|
9
|
Shamsudin MS, Taib MHA, Azha SF, Bonilla-Petriciolet A, Ismail S. Preparation and evaluation of a coated smectite clay-based material modified with epichlorohydrin-dimethylamine for the diclofenac removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124596-124609. [PMID: 35608765 DOI: 10.1007/s11356-022-20815-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
This study reports the analysis of diclofenac removal from aqueous solution using a novel adsorbent coating with amphoteric surface. This adsorbent coating was improved using a new amphoteric ratio to increase its performance for the removal of pharmaceuticals such as diclofenac. The adsorbent coating was formulated using acrylic polymer emulsion, smectite-based clay powder and epichlorohydrin-dimethylamine to obtain a layer form via the implementation of a facile synthesis method. In a previous study, this adsorbent coating was successful to remove cationic and anionic dyes. Therefore, this research aimed to further investigate and test its application in the removal of other emerging water pollutants like pharmaceuticals. SEM, EDX, and FTIR analyses were carried out for the characterization of this novel adsorbent. The effects of adsorbent composition, diclofenac concentration, temperature, and solution pH were studied and modeled. The best conditions to improve the diclofenac adsorption was 303 K and pH 3 where the adsorption capacity was 25.59 mg/g. Adsorption isotherms and kinetics were quantified and modeled, and the corresponding adsorption mechanism was also analyzed. Diclofenac adsorption with this novel material was exothermic and spontaneous. This alternative adsorbent is promising for diclofenac removal from industrial wastewater systems.
Collapse
Affiliation(s)
- Muhamad Sharafee Shamsudin
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia
| | - Muhammad Haziq Abdul Taib
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia
| | - Syahida Farhan Azha
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia
| | | | - Suzylawati Ismail
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
10
|
Kózka B, Sośnicka A, Nałęcz-Jawecki G, Drobniewska A, Turło J, Giebułtowicz J. Various species of Basidiomycota fungi reveal different abilities to degrade pharmaceuticals and also different pathways of degradation. CHEMOSPHERE 2023; 338:139481. [PMID: 37454990 DOI: 10.1016/j.chemosphere.2023.139481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/19/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
The presence of pharmaceuticals (PhACs) in the aquatic environment is an emerging problem worldwide. PhACs reach surface water via the effluents of wastewater treatment plants (WWTPs). WWTPs, although able to remove organic pollutants, do not always remove PhACs. Currently, in the treatment of sewage with the activated sludge method, numerous microorganisms are used, mostly bacteria. Nevertheless, these microorganisms are not resistant to many drug contaminants, and some may also pose a risk to human health. White-rot fungi (WRF), which degrade a wide spectrum of environmental pollutants, may be used as an alternative to microorganisms. However, little data exists comparing the removal of various PhACs by different WRF. In this study, we aimed to determine the ability of three WRF Basidiomycota species, Armillaria mellea, Phanerochaete chrysosporium, and Pleurotus ostreatus, to remove PhACs from various therapeutic groups over the course of 1 h-4 days. Additionally, we identified the fungal metabolites of PhACs, proposed the degradation pathways, and assessed the toxicity of the post-culture media. All selected WRF removed PhACs, but the degree of removal depended on WRF species and PhACs type. Antidepressants and immunosuppressants were removed most efficiently by P. ostreatus, cardiovascular drugs and sulfamethoxazole by A. mellea, and erythromycin by P. chrysosporium. The vast differences observed highlight the need for more intensive testing of different WRF species to select the best species for removing pharmaceuticals of interest. The structure of metabolites generated during degradation strongly depended on WRF species, but the most frequent xenobiotic transformations were oxidation and dealkylation. The obtained results gave insight into the substrate specificity of selected WRF while also providing a broad extension of the knowledge of pharmaceutical degradation by A. mellea.
Collapse
Affiliation(s)
- B Kózka
- Medical University of Warsaw, Faculty of Pharmacy, Department of Drug Chemistry, Poland
| | - A Sośnicka
- Medical University of Warsaw, Faculty of Pharmacy, Department of Drug Technology and Pharmaceutical Biotechnology, Poland
| | - G Nałęcz-Jawecki
- Medical University of Warsaw, Faculty of Pharmacy, Department of Environmental Health Sciences, Poland
| | - A Drobniewska
- Medical University of Warsaw, Faculty of Pharmacy, Department of Environmental Health Sciences, Poland
| | - J Turło
- Medical University of Warsaw, Faculty of Pharmacy, Department of Drug Technology and Pharmaceutical Biotechnology, Poland
| | - J Giebułtowicz
- Medical University of Warsaw, Faculty of Pharmacy, Department of Drug Chemistry, Poland.
| |
Collapse
|
11
|
Ahmad FA. The use of agro-waste-based adsorbents as sustainable, renewable, and low-cost alternatives for the removal of ibuprofen and carbamazepine from water. Heliyon 2023; 9:e16449. [PMID: 37292321 PMCID: PMC10245173 DOI: 10.1016/j.heliyon.2023.e16449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/17/2023] [Indexed: 06/10/2023] Open
Abstract
The occurrence of residual pharmaceuticals in the aquatic environment poses major toxicological impacts and adds to the increasing pressure on water resources. Many countries are already suffering from water scarcity, and with the burdening costs of water and wastewater treatment, the race towards innovative sustainable strategies for pharmaceutical remediation is ongoing. Out of the available treatment methods, adsorption proved to be a promising, environmentally friendly technique, particularly when efficient waste-based adsorbents are produced from agricultural residues, thus maximizing the value of wastes, minimizing production costs, and saving natural resources from depletion. Among the residual pharmaceuticals, ibuprofen and carbamazepine are heavily consumed and highly occurring in the environment. This paper aims to review the most recent literature on the application of agro-waste-based adsorbents as sustainable alternatives for the removal of ibuprofen and carbamazepine from contaminated waters. Highlights on the major mechanisms implicated in the adsorption of ibuprofen and carbamazepine are presented, and light is shed on multiple operational parameters that hold a key role in the adsorption process. This review also highlights the effects of different production parameters on adsorption efficiency and discusses many limitations currently encountered. Finally, an analysis is included to compare the efficiency of agro-waste-based adsorbents relative to other green and synthetic adsorbents.
Collapse
|
12
|
Hazaraimi MH, Goh PS, Lau WJ, Ismail AF, Wu Z, Subramaniam MN, Lim JW, Kanakaraju D. The state-of-the-art development of photocatalysts for the degradation of persistent herbicides in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156975. [PMID: 35764157 DOI: 10.1016/j.scitotenv.2022.156975] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Herbicides are one of the most recurring pollutants in the aquatic system due to their widespread usage in the agriculture sector for weed control. Semiconductor-based photocatalysts have gained recognition due to their ability to degrade and mineralize pollutants into harmless by-products completely. Lately, many studies have been done to design photocatalysts with efficient separation of photogenerated charge carriers and enhanced light absorption. Photocatalyst engineering through doping with metal and non-metal elements and the formation of heterojunction are proven effective for minimizing the recombination of electron-hole pairs and enlarging the absorption in the visible light region. This review focuses on discussing and evaluating the recent progress in the types of photocatalysts and their performance in the remediation of herbicides in wastewater. The development of innovative hybrid technologies is also highlighted. The limitations and challenges of photocatalysis technology in the present literature have been identified, and future studies are recommended.
Collapse
Affiliation(s)
- M H Hazaraimi
- Advanced Membrane Technology Research Center, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - P S Goh
- Advanced Membrane Technology Research Center, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| | - W J Lau
- Advanced Membrane Technology Research Center, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - A F Ismail
- Advanced Membrane Technology Research Center, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Z Wu
- Aston Institute of Materials Research, School of Engineering and Applied Science, Aston University, Birmingham B4 7ET, UK
| | - M N Subramaniam
- Aston Institute of Materials Research, School of Engineering and Applied Science, Aston University, Birmingham B4 7ET, UK
| | - J W Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan 32610, Malaysia
| | - D Kanakaraju
- Faculty of Resource and Science Technology, Universiti Malaysia, Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| |
Collapse
|
13
|
Ren L, Chen J, Lu Q, Han J, Liang J, Wu H. Cucurbit[n]uril-rotaxanes functionalized membranes with heterogeneous channel and regenerable surface for efficient and sustainable nanofiltration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Pronschinske MA, Corsi SR, DeCicco LA, Furlong ET, Ankley GT, Blackwell BR, Villeneuve DL, Lenaker PL, Nott MA. Prioritizing Pharmaceutical Contaminants in Great Lakes Tributaries Using Risk-Based Screening Techniques. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2221-2239. [PMID: 35852176 PMCID: PMC9542422 DOI: 10.1002/etc.5403] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/05/2022] [Accepted: 06/06/2022] [Indexed: 05/31/2023]
Abstract
In a study of 44 diverse sampling sites across 16 Great Lakes tributaries, 110 pharmaceuticals were detected of 257 monitored. The present study evaluated the ecological relevance of detected chemicals and identified heavily impacted areas to help inform resource managers and guide future investigations. Ten pharmaceuticals (caffeine, nicotine, albuterol, sulfamethoxazole, venlafaxine, acetaminophen, carbamazepine, gemfibrozil, metoprolol, and thiabendazole) were distinguished as having the greatest potential for biological effects based on comparison to screening-level benchmarks derived using information from two biological effects databases, the ECOTOX Knowledgebase and the ToxCast database. Available evidence did not suggest substantial concern for 75% of the monitored pharmaceuticals, including 147 undetected pharmaceuticals and 49 pharmaceuticals with screening-level alternative benchmarks. However, because of a lack of biological effects information, screening values were not available for 51 detected pharmaceuticals. Samples containing the greatest pharmaceutical concentrations and having the highest detection frequencies were from Lake Erie, southern Lake Michigan, and Lake Huron tributaries. Samples collected during low-flow periods had higher pharmaceutical concentrations than those collected during increased-flow periods. The wastewater-treatment plant effluent content in streams correlated positively with pharmaceutical concentrations. However, deviation from this correlation demonstrated that secondary factors, such as multiple pharmaceutical sources, were likely present at some sites. Further research could investigate high-priority pharmaceuticals as well as those for which alternative benchmarks could not be developed. Environ Toxicol Chem 2022;41:2221-2239. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | - Steven R. Corsi
- Upper Midwest Water Science CenterUS Geological SurveyMadisonWisconsinUSA
| | - Laura A. DeCicco
- Upper Midwest Water Science CenterUS Geological SurveyMadisonWisconsinUSA
| | - Edward T. Furlong
- Laboratory & Analytical Services DivisionUS Geological SurveyDenverColoradoUSA
| | - Gerald T. Ankley
- Great Lakes Toxicology and Ecology DivisionUS Environmental Protection AgencyDuluthMinnesotaUSA
| | - Brett R. Blackwell
- Great Lakes Toxicology and Ecology DivisionUS Environmental Protection AgencyDuluthMinnesotaUSA
| | - Daniel L. Villeneuve
- Great Lakes Toxicology and Ecology DivisionUS Environmental Protection AgencyDuluthMinnesotaUSA
| | - Peter L. Lenaker
- Upper Midwest Water Science CenterUS Geological SurveyMadisonWisconsinUSA
| | - Michelle A. Nott
- Upper Midwest Water Science CenterUS Geological SurveyMadisonWisconsinUSA
| |
Collapse
|
15
|
Pal S, Ahamed Z, Pal P. Removal of antibiotics and pharmaceutically active compounds from water Environment: Experiments towards industrial scale up. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Pugazhendi A, Jamal MT, Al-Mur BA, Jeyakumar RB. Bioaugmentation of electrogenic halophiles in the treatment of pharmaceutical industrial wastewater and energy production in microbial fuel cell under saline condition. CHEMOSPHERE 2022; 288:132515. [PMID: 34627818 DOI: 10.1016/j.chemosphere.2021.132515] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/06/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceutical wastewater with different toxic recalcitrant materials and high salinity requires a novel treatment technology before released into the environment. The present research details the treatment of pharmaceutical wastewater along with energy production using bioaugmentation of halophilic consortium in air cathode microbial fuel cell (ACMFC) under saline condition (4%). Organic load (OL) varied from 1.04 to 3.51 gCOD/L was studied in ACMFC. TCOD (Total Chemical Oxygen Demand) removal exhibited 65%, 72%, 84% and 89% at 1.04, 1.52, 2.01 and 2.52 gCOD/L OL respectively. SCOD (Soluble Chemical Oxygen Demand) removal of 60%, 66%, 76% and 82% was recorded during the operation of identical OL (1.04-2.52 gCOD/L). Prominent TCOD (92%), SCOD (90%), TSS (Total Suspended Solids) removal of 73% was attained at 3.02 gCOD/L OL with corresponding energy production of 896 mV (Current density (CD) - 554 mA/m2, Power density (PD)-505 mW/m2). CE (Columbic Efficiency) was 43%, 38%, 33%, 30%, 28% and 22% at different OL ranged between 1.04 and 3.51 gCOD/L. Increase in OL to 3.51 gCOD/L revealed decrement in TCOD (68%), SCOD (62%), TSS (52%) removal and energy production (CD-234 mA/m2, PD-165 mW/m2). Complete removal of phenol was accomplished at different OL in 6 (1.04, 1.52 gCOD/L) and 8 (2.01, 2.52 and 3.02 gCOD/L) days respectively. Ochrobactrum, Marinobacter, Bacillus and Rhodococcus were the dominant halophilic electrogenic strain in ACMFC at different OL.
Collapse
Affiliation(s)
- Arulazhagan Pugazhendi
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Mamdoh T Jamal
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bandar A Al-Mur
- Department of Environmental Science, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rajesh Banu Jeyakumar
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudy, Thiruvarur-610005, Tamil Nadu, India
| |
Collapse
|
17
|
Dai C, Yang L, Wang J, Li D, Zhang Y, Zhou X. Enhancing anaerobic digestion of pharmaceutical industries wastewater with the composite addition of zero valent iron (ZVI) and granular activated carbon (GAC). BIORESOURCE TECHNOLOGY 2022; 346:126566. [PMID: 34921919 DOI: 10.1016/j.biortech.2021.126566] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Anaerobic digestion of pharmaceutical wastewater is challenged by its contained toxic compounds which limits the stability and efficiency of methane production and organic degradation. In this study, zero valent iron (ZVI) and granular activated carbon (GAC) were added with different strategies to improve anaerobic digestion of pharmaceutical wastewater. The results confirmed synergy effects of ZVI + GAC for both COD removal (increased by 13.4%) and methane production (increased by 11.0%). Furthermore, ZVI + GAC improved the removal of pharmaceutical intermediates, in particular, the residues (%) of dehydroepiandrosterone (DHEA) and 2,2'-methylenebis(6-tert-butyl-4-methylphenol) were only 30.48 ± 6.53 and 39.92 ± 4.50, and effectively reduced biotoxicity. The promoted results were attributed to the establishment of direct interspecies electron transfer (DIET). Microbial community analysis revealed that ZVI + GAC decreased species evenness and richness in bacterial whereas increased in archaeal. The relative abundance of acetotrophic methanogens decreased but hydrogenotrophic and methylotrophic methanogens increased, which broadening the pathway of methane production.
Collapse
Affiliation(s)
- Chenbo Dai
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Libin Yang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, PR China
| | - Jun Wang
- SPH XingLing Sci&Tech.Pharmaceutical Co.,Ltd., Shanghai 201703, PR China
| | - Dezhen Li
- SPH XingLing Sci&Tech.Pharmaceutical Co.,Ltd., Shanghai 201703, PR China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
18
|
Alam MU, Ferdous S, Ercumen A, Lin A, Kamal A, Luies SK, Sharior F, Khan R, Rahman MZ, Parvez SM, Amin N, Tadesse BT, Moushomi NA, Hasan R, Taneja N, Islam MA, Rahman M. Effective Treatment Strategies for the Removal of Antibiotic-Resistant Bacteria, Antibiotic-Resistance Genes, and Antibiotic Residues in the Effluent From Wastewater Treatment Plants Receiving Municipal, Hospital, and Domestic Wastewater: Protocol for a Systematic Review. JMIR Res Protoc 2021; 10:e33365. [PMID: 34842550 PMCID: PMC8665387 DOI: 10.2196/33365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/11/2021] [Accepted: 09/11/2021] [Indexed: 11/21/2022] Open
Abstract
Background The widespread and unrestricted use of antibiotics has led to the emergence and spread of antibiotic-resistant bacteria (ARB), antibiotic-resistance genes (ARGs), and antibiotic residues in the environment. Conventional wastewater treatment plants (WWTPs) are not designed for effective and adequate removal of ARB, ARGs, and antibiotic residues, and therefore, they play an important role in the dissemination of antimicrobial resistance (AMR) in the natural environment. Objective We will conduct a systematic review to determine the most effective treatment strategies for the removal of ARB, ARGs, and antibiotic residues from the treated effluent disposed into the environment from WWTPs that receive municipal, hospital, and domestic discharge. Methods We will search the MEDLINE, EMBASE, Web of Science, World Health Organization Global Index Medicus, and ProQuest Environmental Science Collection databases for full-text peer-reviewed journal articles published between January 2001 and December 2020. We will select only articles published in the English language. We will include studies that measured (1) the presence, concentration, and removal rate of ARB/ARGs going from WWTP influent to effluent, (2) the presence, concentration, and types of antibiotics in the effluent, and (3) the possible selection of ARB in the effluent after undergoing treatment processes in WWTPs. At least two independent reviewers will extract data and perform risk of bias assessment. An acceptable or narrative synthesis method will be followed to synthesize the data and present descriptive characteristics of the included studies in a tabular form. The study has been approved by the Ethics Review Board at the International Centre for Diarrhoeal Disease Research, Bangladesh (protocol number: PR-20113). Results This protocol outlines our proposed methodology for conducting a systematic review. Our results will provide an update to the existing literature by searching additional databases. Conclusions Findings from our systematic review will inform the planning of proper treatment methods that can effectively reduce the levels of ARB, ARGs, and residual antibiotics in effluent, thus lowering the risk of the environmental spread of AMR and its further transmission to humans and animals. International Registered Report Identifier (IRRID) PRR1-10.2196/33365
Collapse
Affiliation(s)
- Mahbub-Ul Alam
- Environmental Interventions Unit, Infectious Disease Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Sharika Ferdous
- Environmental Interventions Unit, Infectious Disease Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Ayse Ercumen
- North Carolina State University, North Carolina, NC, United States
| | - Audrie Lin
- University of California Berkeley, Berkeley, CA, United States
| | - Abul Kamal
- Environmental Interventions Unit, Infectious Disease Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Sharmin Khan Luies
- Environmental Interventions Unit, Infectious Disease Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Fazle Sharior
- Environmental Interventions Unit, Infectious Disease Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Rizwana Khan
- Environmental Interventions Unit, Infectious Disease Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Md Ziaur Rahman
- Environmental Interventions Unit, Infectious Disease Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Sarker Masud Parvez
- Environmental Interventions Unit, Infectious Disease Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Nuhu Amin
- Environmental Interventions Unit, Infectious Disease Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | | | - Niharu Akter Moushomi
- Environmental Interventions Unit, Infectious Disease Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Rezaul Hasan
- Environmental Interventions Unit, Infectious Disease Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Neelam Taneja
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Mahbubur Rahman
- Environmental Interventions Unit, Infectious Disease Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| |
Collapse
|
19
|
Kaur G, Singh N, Rajor A, Kushwaha JP. Deep eutectic solvent functionalized rice husk ash for effective adsorption of ofloxacin from aqueous environment. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 242:103847. [PMID: 34166909 DOI: 10.1016/j.jconhyd.2021.103847] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/20/2021] [Accepted: 06/06/2021] [Indexed: 05/22/2023]
Abstract
Deep eutectic solvents (DESs) have achieved the rising attention of the scientific community because of their distinctive physicochemical properties and variety of applications. Herein, DES composed of choline chloride as hydrogen bond acceptor (HBA) and glycolic acid as hydrogen bond donor (HBD) was synthesized. Next, the prepared DES was examined as a functionalization agent for rice husk ash (RHA) to form a novel adsorbent (DES-RHA). To ensure the formation of DES and to recognize the modifications occurred due to the functionalization process, a comprehensive characterization study was performed using 1HNMR, FTIR spectroscopy, TGA, XRD, FESEM, HR-TEM and BET surface area. Potential of the prepared DES-RHA was investigated for the uptake of ofloxacin (OFL) from an aqueous environment. The impact of relevant process parameters was evaluated under optimum conditions, and the data were examined applying various kinetic and isotherm models. As per the regression findings, adsorption kinetics data were well described by pseudo-second-order model, and the isotherm data were in good agreement with Langmuir, Temkin, RP and Freundlich isotherm models. Further, the adsorption procedure was endothermic and spontaneous. The high regeneration and adsorption capacity of DES-RHA than untreated RHA adds a promising approach to eliminate emerging pollutants present in effluent sites.
Collapse
Affiliation(s)
- Gurleenjot Kaur
- School of Energy and Environment, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Neetu Singh
- Department of Chemical Engineering, Thapar Institute of Engineering and Technology, Patiala 147004, India.
| | - Anita Rajor
- School of Energy and Environment, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Jai Prakash Kushwaha
- Department of Chemical Engineering, Thapar Institute of Engineering and Technology, Patiala 147004, India
| |
Collapse
|
20
|
Reddy K, Renuka N, Kumari S, Bux F. Algae-mediated processes for the treatment of antiretroviral drugs in wastewater: Prospects and challenges. CHEMOSPHERE 2021; 280:130674. [PMID: 34162077 DOI: 10.1016/j.chemosphere.2021.130674] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 06/13/2023]
Abstract
The prevalence of pharmaceuticals (PCs), especially antiretroviral (ARV) drugs in various aquatic ecosystems has been expansively reported, wherein wastewater treatment plants (WWTPs) are identified as the primary point source. Consequently, the occurrence, ecotoxicity and treatment of ARV drugs in WWTPs have drawn much attention in recent years. Numerous studies have shown that the widely employed activated sludge-based WWTPs are incapable of removing ARV drugs efficiently from wastewater. Recently, algae-based wastewater treatment processes have shown promising results in PCs removal from wastewater, either completely or partially, through different processes such as biosorption, bioaccumulation, and intra-/inter-cellular degradation. Algal species have also shown to tolerate high concentrations of ARV drugs than the reported concentrations in the environmental matrices. In this review, emphasis has been given on discussing the current status of the occurrence of ARV drugs in the aquatic environment and WWTPs. Besides, the current trends and future perspectives of PCs removal by algae are critically reviewed and discussed. The potential pathways and mechanisms of ARV drugs removal by algae have also been discussed.
Collapse
Affiliation(s)
- Karen Reddy
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Nirmal Renuka
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
21
|
Bioenergy Potential of Albumin, Acetic Acid, Sucrose, and Blood in Microbial Fuel Cells Treating Synthetic Wastewater. Processes (Basel) 2021. [DOI: 10.3390/pr9081289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Microbial fuel cells (MFCs) are a recent biotechnology that can simultaneously produce electricity and treat wastewater. As the nature of industrial wastewater is very complex, and it may contain a variety of substrates—such as carbohydrates, proteins, lipids, etc.—previous investigations dealt with treatment of individual pollutants in MFCs; the potential of acetic acid, sucrose, albumin, blood, and their mixture has rarely been reported. Hence, the current investigation explored the contribution of each substrate, both separately and in mixture. The voltage generation potential, current, and power density of five different substrates—namely, acetic acid, sucrose, albumin, blood, and a mixture of all of the substrates—was tested in a dual-chambered, anaerobic MFC operated at 35 °C. The reaction time of the anaerobic batch mode MFC was 24 h, and each substrate was treated for 7 runs under the same conditions. The dual-chambered MFC consisted of anode and cathode chambers; the anode chamber contained the biocatalyst (sludge), while the cathode chamber contained the oxidizing material (KMnO4). The maximum voltage of 769 mV was generated by acetic acid, while its corresponding values of current and power density were 7.69 mA and 347.85 mW, respectively. Similarly, being a simple and readily oxidizable substrate, acetic acid exhibited the highest COD removal efficiency (85%) and highest Coulombic efficiency (72%) per run. The anode accepted the highest number of electrons (0.078 mmol/L) when acetic acid was used as a substrate. The voltage, current, and power density generated were found to be directly proportional to COD concentration. The least voltage (61 mV), current (0.61 mA), and power density (2.18 mW) were observed when blood was treated in the MFC. Further research should be focused on testing the interaction of two or more substrates simultaneously in the MFC.
Collapse
|
22
|
Ma D, Yi H, Lai C, Liu X, Huo X, An Z, Li L, Fu Y, Li B, Zhang M, Qin L, Liu S, Yang L. Critical review of advanced oxidation processes in organic wastewater treatment. CHEMOSPHERE 2021; 275:130104. [PMID: 33984911 DOI: 10.1016/j.chemosphere.2021.130104] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 05/19/2023]
Abstract
With the development of industrial society, organic wastewater produced by industrial manufacturing has caused many environmental problems. The vast majority of organic pollutants in water bodies are persistent in the environment, posing a threat to human and animal health. Therefore, efficient treatment methods for highly concentrated organic wastewater are urgently needed. Advanced oxidation processes (AOPs) are widely noticed in the area of treating organic wastewater. Compared with other chemical methods, AOPs have the characteristics of high oxidation efficiency and no secondary pollution. In this paper, the mechanisms, advantages, and limitations of AOPs are comprehensively reviewed. Besides, the basic principles of combining different AOPs to enhance the treatment efficiency are described. Furthermore, the applications of AOPs in various wastewater treatments, such as oily wastewater, dyeing wastewater, pharmaceutical wastewater, and landfill leachate, are also presented. Finally, we conclude that the main direction in the future of AOPs are the modification of catalysts and the optimization of operating parameters, with the challenges focusing on industrial applications.
Collapse
Affiliation(s)
- Dengsheng Ma
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Huan Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Xigui Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Xiuqin Huo
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Ziwen An
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Yukui Fu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Bisheng Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Lu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| |
Collapse
|
23
|
Zhang YM, An CW, Zhang DF, Liu T, Yan JS, Zhang J. Photocatalytic Activity of Vanadium-Substituted Polyoxometalate Doped Magnetic Carbon Nitride towards Antibiotics. RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621050223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Occurrence and Human Health Risk Assessment of Pharmaceuticals and Hormones in Drinking Water Sources in the Metropolitan Area of Turin in Italy. TOXICS 2021; 9:toxics9040088. [PMID: 33923920 PMCID: PMC8073697 DOI: 10.3390/toxics9040088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/03/2022]
Abstract
Pharmaceuticals and hormones (PhACs) enter the aquatic environment in multiple ways, posing potential adverse effects on non-target organisms. They have been widely detected in drinking water sources, challenging water companies to reassure good quality drinking water. The aim of this study was to evaluate the concentration of sixteen PhACs in both raw and treated drinking water sources in the Metropolitan Area of Turin—where Società Metropolitana Acque Torino (SMAT) is the company in charge of the water cycle management—and evaluate the potential human health risks associated to these compounds. Multivariate spatial statistical analysis techniques were used in order to characterize the areas at higher risk of pollution, taking into account the already existing SMAT sampling points’ network. Health risks were assessed considering average detected concentrations and provisional guideline values for individual compounds as well as their combined mixture. As reported in the just-issued Drinking Water Directive 2020/2184/UE, in order to establish priority substances, a risk assessment of contaminants present in raw drinking water sources is required for monitoring, identifying potential health risks and, if necessary, managing their removal. The results showed negligibly low human health risks in both raw water sources and treated water.
Collapse
|
25
|
O'Flynn D, Lawler J, Yusuf A, Parle-McDermott A, Harold D, Mc Cloughlin T, Holland L, Regan F, White B. A review of pharmaceutical occurrence and pathways in the aquatic environment in the context of a changing climate and the COVID-19 pandemic. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:575-594. [PMID: 33507166 DOI: 10.1039/d0ay02098b] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Active pharmaceutical ingredients (APIs) are increasingly being identified as contaminants of emerging concern (CECs). They have potentially detrimental ecological and human health impacts but most are not currently subject to environmental regulation. Addressing the life cycle of these pharmaceuticals plays a significant role in identifying the potential sources and understanding the environmental impact that pharmaceuticals may have in surface waters. The stability and biological activity of these "micro-pollutants" can lead to a pseudo persistence, with ensuing unknown chronic behavioural and health-related effects. Research that investigates pharmaceuticals predominantly focuses on their occurrence and effect within surface water environments. However, this review will help to collate this information with factors that affect their environmental concentration. This review focuses on six pharmaceuticals (clarithromycin, ciprofloxacin, sulfamethoxazole, venlafaxine, gemfibrozil and diclofenac), chosen because they are heavily consumed globally, have poor removal rates in conventional activated sludge wastewater treatment plants (CAS WWTPs), and are persistent in the aquatic environment. Furthermore, these pharmaceuticals are included in numerous published prioritisation studies and/or are on the Water Framework Directive (WFD) "Watch List" or are candidates for the updated Watch List (WL). This review investigates the concentrations seen in European Union (EU) surface waters and examines factors that influence final concentrations prior to release, thus giving a holistic overview on the source of pharmaceutical surface water pollution. A period of 10 years is covered by this review, which includes research from 2009-2020 examining over 100 published studies, and highlighting that pharmaceuticals can pose a severe risk to surface water environments, with each stage of the lifecycle of the pharmaceutical determining its concentration. This review additionally highlights the necessity to improve education surrounding appropriate use, disposal and waste management of pharmaceuticals, while implementing a source directed and end of pipe approach to reduce pharmaceutical occurrence in surface waters.
Collapse
Affiliation(s)
- Dylan O'Flynn
- DCU Water Institute, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Boulard L, Parrhysius P, Jacobs B, Dierkes G, Wick A, Buchmeier G, Koschorreck J, Ternes TA. Development of an analytical method to quantify pharmaceuticals in fish tissues by liquid chromatography-tandem mass spectrometry detection and application to environmental samples. J Chromatogr A 2020; 1633:461612. [PMID: 33130421 DOI: 10.1016/j.chroma.2020.461612] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 01/09/2023]
Abstract
A sensitive multiresidue method was developed to quantify 35 pharmaceuticals and 28 metabolites/transformation products (TPs) in fish liver, fish fillet and fish plasma via LC-MS/MS. The method was designed to cover a broad range of substance polarities. This objective was realized by using non-discriminating sample clean-ups including separation technique based on size exclusion, namely restricted access media (RAM) chromatography. This universal clean-up allows for an easy integration of further organic micropollutants into the analytical method. Limits of quantification (LOQ) ranged from 0.05 to 5.5 ng/mL in fish plasma, from 0.1 to 19 ng/g d.w. (dry weight) in fish fillet and from 0.46 to 48 ng/g d.w. in fish liver. The method was applied for the analysis of fillets and livers of breams from the rivers Rhine and Saar, the Teltow Canal as well as carps kept in fish monitoring ponds fed by effluent from municipal wastewater treatment plants. This allowed for the first detection of 17 analytes including 10 metabolites/TPs such as gabapentin lactam and norlidocaine in fish tissues. These results highlight the importance of including metabolites and transformation products of pharmaceuticals in fish monitoring campaigns and further investigating their potential effects.
Collapse
Affiliation(s)
- Lise Boulard
- Federal Institute of Hydrology, Am Mainzer Tor 1, Koblenz 56068, Germany
| | - Pia Parrhysius
- Federal Institute of Hydrology, Am Mainzer Tor 1, Koblenz 56068, Germany
| | - Björn Jacobs
- Federal Institute of Hydrology, Am Mainzer Tor 1, Koblenz 56068, Germany
| | - Georg Dierkes
- Federal Institute of Hydrology, Am Mainzer Tor 1, Koblenz 56068, Germany
| | - Arne Wick
- Federal Institute of Hydrology, Am Mainzer Tor 1, Koblenz 56068, Germany
| | - Georgia Buchmeier
- Unit Aquatic Ecotoxicology, Microbial Ecology, Bavarian Environmental Agency, Demollstr. 31, Wielenbach 82407, Germany
| | - Jan Koschorreck
- Federal Environmental Agency (Umweltbundesamt), Bismarckplatz 1, Berlin 10643, Germany
| | - Thomas A Ternes
- Federal Institute of Hydrology, Am Mainzer Tor 1, Koblenz 56068, Germany.
| |
Collapse
|
27
|
Mramba AS, Ndibewu PP, Sibali LL, Makgopa K. A Review on Electrochemical Degradation and Biopolymer Adsorption Treatments for Toxic Compounds in Pharmaceutical Effluents. ELECTROANAL 2020. [DOI: 10.1002/elan.202060454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Anita S. Mramba
- Department of Chemistry, Faculty of Science Tshwane University of Technology, Private Bag X680 175 Nelson Mandela Drive Arcadia Pretoria 0001 South Africa
| | - Peter P. Ndibewu
- Department of Chemistry, Faculty of Science Tshwane University of Technology, Private Bag X680 175 Nelson Mandela Drive Arcadia Pretoria 0001 South Africa
| | - Linda L. Sibali
- University of South Africa, Department of Environmental Sciences, Florida Campus postcode is missing Florida South Africa
| | - Katlego Makgopa
- Department of Chemistry, Faculty of Science Tshwane University of Technology, Private Bag X680 175 Nelson Mandela Drive Arcadia Pretoria 0001 South Africa
| |
Collapse
|
28
|
Sych NV, Kotynskaya LI, Vikarchuk VM, Tsyba NN, Kovtun MF. Sorption of Phenolic Acids on Powdered Carbon Prepared by Complex Processing of Spent Coffee Grounds. J WATER CHEM TECHNO+ 2020. [DOI: 10.3103/s1063455x20020095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Adeyemi JO, Onwudiwe DC. SnS 2 and SnO 2 Nanoparticles Obtained from Organotin(IV) Dithiocarbamate Complex and Their Photocatalytic Activities on Methylene Blue. MATERIALS 2020; 13:ma13122766. [PMID: 32570834 PMCID: PMC7345225 DOI: 10.3390/ma13122766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 02/03/2023]
Abstract
This work reports the photocatalytic degradation of methylene blue (MB) dye using SnS2 and SnO2 nanoparticles obtained from a solvothermal decomposition (in oleylamine) and pyrolysis (in a furnace) processes, respectively, of the diphenyltin(IV) p-methylphenyldithiocarbamate complex. The complex, which was used as a single-source precursor and represented as [(C6H5)2Sn(L)2] (L = p-methylphenyldithiocarbamato), was synthesized and characterized using various spectroscopic techniques and elemental analysis. The structural properties and morphology of the as-synthesized nanoparticles were studied using X-ray diffraction (XRD) technique and transmission electron microscopy (TEM). UV-visible spectroscopy was used to study the optical property. The hexagonal phase of SnS2 and tetragonal SnO2 nanoparticles were identified, which exhibited varying sizes of hexagonal platelets and rod-like morphologies, respectively. The direct band gap energies of both materials, estimated from their absorption spectra, were 2.31 and 3.79 eV for SnS2 and SnO2, respectively. The photocatalytic performances of the SnS2 and SnO2 nanoparticle, studied using methylene blue (MB) as a model dye pollutant under light irradiation, showed that SnO2 nanoparticles exhibited a degradation efficiency of 48.33% after 120 min reaction, while the SnS2 nanoparticles showed an efficiency of 62.42% after the same duration of time. The higher efficiency of SnS2 compared to the SnO2 nanoparticles may be attributed to the difference in the structural properties, morphology and nature of the material’s band gap energy.
Collapse
Affiliation(s)
- Jerry O. Adeyemi
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Science, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa;
- Department of Chemistry, Faculty of Natural and Agricultural Science, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Damian C. Onwudiwe
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Science, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa;
- Department of Chemistry, Faculty of Natural and Agricultural Science, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Correspondence: ; Tel.: +27-18-389-2545
| |
Collapse
|
30
|
Development and Validation of a LC-MS/MS Method for Determination of Multi-Class Antibiotic Residues in Aquaculture and River Waters, and Photocatalytic Degradation of Antibiotics by TiO2 Nanomaterials. Catalysts 2020. [DOI: 10.3390/catal10030356] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study presents a multi-residue method for simultaneous qualitative and quantitative analysis of eight antibiotics from some common classes, including beta-lactam, tetracyclines, lincosamides, glycopeptides, and sulfonamides in 39 aquaculture and river water samples from the Mekong Delta (Vietnam) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). As a result, doxycycline (DXC), oxytetracycline (OTC), lincomycin (LCM), sulfamethoxazole (SMX), and sulfamethazine (SMZ) were detected with high frequency over 65% and an average concentration of 22.6–76.8 ng·mL−1. The result suggests that antibiotic residues in the aquaculture and river waters are considered as an emerging environmental problem of the region. To address this issue, we fabricated the well-defined TiO2 nanotube arrays (TNAs) and nanowires on nanotube arrays (TNWs/TNAs) using the anodization method. The TNAs had an inner tube diameter of ~95 nm and a wall thickness of ~25 nm. Meanwhile, the TNWs/TNAs had a layer of TiO2 nanowires with a length of ~6 µm partially covering the TNAs. In addition, both TNAs and TNWs/TNAs had pure anatase phase TiO2 with (101) and (112) dominant preferred orientations. Moreover, the TNAs and TNWs/TNAs effectively and rapidly degraded the antibiotic residues under UV-VIS irradiation at 120 mW/cm2 and obtained over 95% removal at 20 min. Indeed, the photocatalytic reaction rate constants (k) were in the range of 0.14–0.36 min−1 for TNAs, and 0.15–0.38 min−1 for TNWs/TNAs. Noticeably, the k values of TNWs/TNAs were slightly higher than those of TNAs for LCM, DXC, OTC, SMZ, and SMX that could be attributed to the larger surface area of TNWs/TNAs than TNAs when TNWs/TNAs had an additional ~6μm TNWs top layer.
Collapse
|
31
|
Rogowska J, Zimmermann A, Muszyńska A, Ratajczyk W, Wolska L. Pharmaceutical Household Waste Practices: Preliminary Findings from a Case Study in Poland. ENVIRONMENTAL MANAGEMENT 2019; 64:97-106. [PMID: 31076828 PMCID: PMC6598946 DOI: 10.1007/s00267-019-01174-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/30/2019] [Indexed: 05/30/2023]
Abstract
Pharmaceutical consumption continues to grow constantly. Unused/expired pharmaceuticals are disposed of to the municipal sewage system or waste disposal. Consequently, many countries have implemented a system of collecting pharmaceutical waste, with pharmacies playing an important role. It is important to educate consumers on rational consumption and the appropriate disposal of unused/expired pharmaceuticals and to identify the level of public awareness. Two studies were conducted in Poland to estimate the problem of collection and disposal of expired/unused pharmaceuticals. The purpose of the Survey I was to identify the scale of pharmaceutical consumption and the way pharmaceuticals are disposed of by various social groups. The Survey II was aimed to identify patients' attitudes regarding expired/unused pharmaceuticals at home. Of the respondents who participated in in Survey I, almost 74% indicated that analgesics were among the over-the-counter drugs they purchased. Group of pharmaceuticals 65% of the respondents purchased were medicines for treating flu symptoms. Almost 68% of the respondents said they usually disposed of expired pharmaceuticals in their household waste or by flushing them down the toilet. In Survey II more than 35% reported that they disposed of pharmaceuticals in the same ways. Of all respondents, ~30% returned their expired pharmaceuticals to pharmacies. Most respondents (over 65%) who participated Survey I indicated that they were aware that pharmaceutical waste can be returned to pharmacies. It should be noted that local governments are currently not obliged by law to work with or compensate pharmacies in the collection and proper disposal of unused pharmaceuticals.
Collapse
Affiliation(s)
- Justyna Rogowska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdańsk, Dębowa Str. 23A, Gdańsk, 80-204, Poland.
| | - Agnieszka Zimmermann
- Department of Medical and Pharmacy Law, Chair of Social Medicine, Faculty of Health Sciences, Medical University of Gdańsk, Tuwima Str. 15, Gdańsk, 80-210, Poland
| | - Agnieszka Muszyńska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdańsk, Dębowa Str. 23A, Gdańsk, 80-204, Poland
| | - Wojciech Ratajczyk
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdańsk, Dębowa Str. 23A, Gdańsk, 80-204, Poland
| | - Lidia Wolska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdańsk, Dębowa Str. 23A, Gdańsk, 80-204, Poland
| |
Collapse
|
32
|
Chen Z, Dou X, Zhang Y, Yang M, Wei D. Rapid thermal-acid hydrolysis of spiramycin by silicotungstic acid under microwave irradiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:36-44. [PMID: 30878860 DOI: 10.1016/j.envpol.2019.02.074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/17/2019] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
Spiramycin is a widely used macrolide antibiotic and exists at high concentration in production wastewater. A thermal-acid hydrolytic pretreatment using silicotungstic acid (STA) under microwave (MW) irradiation was suggested to mitigate spiramycin from production wastewater. Positive correlations were observed between STA dosage, MW power, interaction time and the hydrolytic removal efficiencies, and an integrative equation was generalized quantitively. Rapid and complete removal 100 mg/L of spiramycin was achieved after 8 min of reaction with 1.0 g/L of STA under 200 W of MW irradiation, comparing to 30.1% by MW irradiation or 15.9% by STA alone. The synergetic effects of STA and MW irradiation were originated from the dissociated-proton catalysis by STA and the dipolar rotation heating effect of MW. STA performed much better than the mineral acid H2SO4 under MW, due to the much stronger Brönsted acidity and higher Hammett acidity. After 8 min, 98.0% of antibacterial potency was also reduced. The m/z 558.8614 fragment (P1) and m/z 448.1323 fragment (P2) were identified as the primary products, which were formed by breaking glucosidic bonds and losing mycarose and forosamine for P1 and further mycaminose moiety for P2. Finally, production wastewater with 433 mg/L of spiramycin was effectively treated using this thermal-acid hydrolytic method. Spiramycin and its antibacterial potency both dropped to 0 after 6 min. The potency drop was supposed from the losing of mycarose and/or forosamine. To decrease both the concentration of spiramycin and its antibacterial potency, combinedly using STA and MW was suggested in this work to break down the structural bonds of the functional groups rather than to destroy the whole antibiotic molecules. It is promising for pretreating spiramycin-contained production wastewater to mitigate both the antibiotic and its antibacterial potency.
Collapse
Affiliation(s)
- Zheng Chen
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Xiaomin Dou
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongbin Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
33
|
Treatment of real pharmaceutical wastewater using combined approach of Fenton applications and aerobic biological treatment. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.02.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|