1
|
Manoochehrabadi T, Solouki A, Majidi J, Khosravimelal S, Lotfi E, Lin K, Daryabari SH, Gholipourmalekabadi M. Silk biomaterials for corneal tissue engineering: From research approaches to therapeutic potentials; A review. Int J Biol Macromol 2025; 305:141039. [PMID: 39956223 DOI: 10.1016/j.ijbiomac.2025.141039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
The corneal complications can result in opacity and eventual blindness. Furthermore, a shortage of available donors constrains the existing therapeutic options. Therefore, one of the most promising strategies involves the application of biomaterials, particularly silk. Silk has garnered significant attention among these biomaterials due to its natural origin and diverse features derived from different sources. One of the most critical factors of silk is its transparency, which is crucial for the cornea, and there are no concerns about infection. This material also possesses several advantages, including cost-effectiveness in production, biocompatibility in vivo and in vitro, biodegradation, and desirable mechanical characteristics. Modifications in the topographical structure, porosity, and crystallinity of silk enhance its properties and optimize its suitability for wound dressing, efficient drug delivery systems, and various cornea-related treatments. In each layer, silk was examined as a single biomaterial or blended with the others, so, this review aims to explore silk as a potential material for corneal regenerative medicine from a novel viewpoint. By considering a range of studies, a classification system has been developed that categorizes the utilization of silk in the various layers of the cornea and sub-categorizes the different modifications and applications of silk.
Collapse
Affiliation(s)
- Tahereh Manoochehrabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Solouki
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jila Majidi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sadjad Khosravimelal
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Ehsan Lotfi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kaili Lin
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China; Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China.
| | | | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; NanoBiotechnology & Regenerative Medicine Innovation Group, Noavarn Salamat ZHINO (PHC), Tehran, Iran.
| |
Collapse
|
2
|
Cheng KKW, Fingerhut L, Duncan S, Prajna NV, Rossi AG, Mills B. In vitro and ex vivo models of microbial keratitis: Present and future. Prog Retin Eye Res 2024; 102:101287. [PMID: 39004166 DOI: 10.1016/j.preteyeres.2024.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Microbial keratitis (MK) is an infection of the cornea, caused by bacteria, fungi, parasites, or viruses. MK leads to significant morbidity, being the fifth leading cause of blindness worldwide. There is an urgent requirement to better understand pathogenesis in order to develop novel diagnostic and therapeutic approaches to improve patient outcomes. Many in vitro, ex vivo and in vivo MK models have been developed and implemented to meet this aim. Here, we present current in vitro and ex vivo MK model systems, examining their varied design, outputs, reporting standards, and strengths and limitations. Major limitations include their relative simplicity and the perceived inability to study the immune response in these MK models, an aspect widely accepted to play a significant role in MK pathogenesis. Consequently, there remains a dependence on in vivo models to study this aspect of MK. However, looking to the future, we draw from the broader field of corneal disease modelling, which utilises, for example, three-dimensional co-culture models and dynamic environments observed in bioreactors and organ-on-a-chip scenarios. These remain unexplored in MK research, but incorporation of these approaches will offer further advances in the field of MK corneal modelling, in particular with the focus of incorporation of immune components which we anticipate will better recapitulate pathogenesis and yield novel findings, therefore contributing to the enhancement of MK outcomes.
Collapse
Affiliation(s)
- Kelvin Kah Wai Cheng
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom
| | - Leonie Fingerhut
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom
| | - Sheelagh Duncan
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom
| | - N Venkatesh Prajna
- Department of Cornea and Refractive Surgery Services, Aravind Eye Hospital and Postgraduate Institute of Ophthalmology, Madurai, Tamil Nadu, India
| | - Adriano G Rossi
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom
| | - Bethany Mills
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom.
| |
Collapse
|
3
|
Riaz A, Gidvall S, Prgomet Z, Hernandez AR, Ruzgas T, Nilsson EJ, Davies J, Valetti S. Three-Dimensional Oral Mucosal Equivalents as Models for Transmucosal Drug Permeation Studies. Pharmaceutics 2023; 15:pharmaceutics15051513. [PMID: 37242755 DOI: 10.3390/pharmaceutics15051513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Oral transmucosal administration, where drugs are absorbed directly through the non-keratinized, lining mucosa of the mouth, represents a solution to drug delivery with several advantages. Oral mucosal equivalents (OME) developed as 3D in vitro models are of great interest since they express the correct cell differentiation and tissue architecture, simulating the in vivo conditions better than monolayer cultures or animal tissues. The aim of this work was to develop OME to be used as a membrane for drug permeation studies. We developed both full-thickness (i.e., connective plus epithelial tissue) and split-thickness (i.e., only epithelial tissue) OME using non-tumor-derived human keratinocytes OKF6 TERT-2 obtained from the floor of the mouth. All the OME developed here presented similar transepithelial electrical resistance (TEER) values, comparable to the commercial EpiOral™. Using eletriptan hydrobromide as a model drug, we found that the full-thickness OME had similar drug flux to EpiOral™ (28.8 vs. 29.6 µg/cm2/h), suggesting that the model had the same permeation barrier properties. Furthermore, full-thickness OME showed an increase in ceramide content together with a decrease in phospholipids in comparison to the monolayer culture, indicating that lipid differentiation occurred due to the tissue-engineering protocols. The split-thickness mucosal model resulted in 4-5 cell layers with basal cells still undergoing mitosis. The optimum period at the air-liquid interface for this model was twenty-one days; after longer times, signs of apoptosis appeared. Following the 3R principles, we found that the addition of Ca2+, retinoic acid, linoleic acid, epidermal growth factor and bovine pituitary extract was important but not sufficient to fully replace the fetal bovine serum. Finally, the OME models presented here offer a longer shelf-life than the pre-existing models, which paves the way for the further investigation of broader pharmaceutical applications (i.e., long-term drug exposure, effect on the keratinocytes' differentiation and inflammatory conditions, etc.).
Collapse
Affiliation(s)
- Azra Riaz
- Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden
- Biofilms-Research Center for Biointerfaces (BRCB), Malmö University, 205 06 Malmö, Sweden
| | - Sanna Gidvall
- Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden
- Biofilms-Research Center for Biointerfaces (BRCB), Malmö University, 205 06 Malmö, Sweden
| | - Zdenka Prgomet
- Section for Oral Biology and Pathology, Faculty of Odontology, Malmö University, 205 06 Malmö, Sweden
| | - Aura Rocio Hernandez
- Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden
- Biofilms-Research Center for Biointerfaces (BRCB), Malmö University, 205 06 Malmö, Sweden
| | - Tautgirdas Ruzgas
- Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden
- Biofilms-Research Center for Biointerfaces (BRCB), Malmö University, 205 06 Malmö, Sweden
| | - Emelie J Nilsson
- Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden
- Biofilms-Research Center for Biointerfaces (BRCB), Malmö University, 205 06 Malmö, Sweden
| | - Julia Davies
- Biofilms-Research Center for Biointerfaces (BRCB), Malmö University, 205 06 Malmö, Sweden
- Section for Oral Biology and Pathology, Faculty of Odontology, Malmö University, 205 06 Malmö, Sweden
| | - Sabrina Valetti
- Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden
- Biofilms-Research Center for Biointerfaces (BRCB), Malmö University, 205 06 Malmö, Sweden
| |
Collapse
|
4
|
Shiju TM, Carlos de Oliveira R, Wilson SE. 3D in vitro corneal models: A review of current technologies. Exp Eye Res 2020; 200:108213. [PMID: 32890484 DOI: 10.1016/j.exer.2020.108213] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/11/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023]
Abstract
Three-dimensional (3D) in vitro models are excellent tools for studying complex biological systems because of their physiological similarity to in vivo studies, cost-effectiveness and decreased reliance on animals. The influence of tissue microenvironment on the cells, cell-cell interaction and the cell-matrix interactions can be elucidated in 3D models, which are difficult to mimic in 2D cultures. In order to develop a 3D model, the required cell types are derived from the tissues or stem cells. A 3D tissue/organ model typically includes all the relevant cell types and the microenvironment corresponding to that tissue/organ. For instance, a full corneal 3D model is expected to have epithelial, stromal, endothelial and nerve cells, along with the extracellular matrix and membrane components associated with the cells. Although it is challenging to develop a corneal 3D model, several attempts have been made and various technologies established which closely mimic the in vivo environment. In this review, three major technologies are highlighted: organotypic cultures, organoids and 3D bioprinting. Also, several combinations of organotypic cultures, such as the epithelium and stroma or endothelium and neural cultures are discussed, along with the disease relevance and potential applications of these models. In the future, new biomaterials will likely promote better cell-cell and cell-matrix interactions in organotypic corneal cultures.
Collapse
|
5
|
da Mata Martins TM, da Silva Cunha P, Rodrigues MA, de Carvalho JL, de Souza JE, de Carvalho Oliveira JA, Gomes DA, de Goes AM. Epithelial basement membrane of human decellularized cornea as a suitable substrate for differentiation of embryonic stem cells into corneal epithelial-like cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111215. [PMID: 32806330 DOI: 10.1016/j.msec.2020.111215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022]
Abstract
The ability to decellularize and recellularize the corneas deemed unsuitable for transplantation may increase the number of available grafts. Decellularized corneas (DCs) may provide a natural microenvironment for cell adhesion and differentiation. Despite this, no study to date has evaluated their efficacy as a substrate for the induction of stem cell differentiation into corneal cells. The present study aimed to compare the efficiency of NaCl and NaCl plus nucleases methods to decellularize whole human corneas, and to investigate the effect of epithelial basement membrane (EBM) of whole DCs on the ability of human embryonic stem cells (hESCs) to differentiate into corneal epithelial-like cells when cultured in animal serum-free differentiation medium. As laminin is the major component of EBM, we also investigated its effect on hESCs differentiation. The decellularization efficiency and integrity of the extracellular matrix (ECM) obtained were investigated by histology, electron microscopy, DNA quantification, immunofluorescence, and nuclear staining. The ability of hESCs to differentiate into corneal epithelial-like cells when seeded on the EBM of DCs or laminin-coated wells was evaluated by immunofluorescence and RT-qPCR analyses. NaCl treatment alone, without nucleases, was insufficient to remove cellular components, while NaCl plus nucleases treatment resulted in efficient decellularization and preservation of the ECM. Unlike cells induced to differentiate on laminin, hESCs differentiated on DCs expressed high levels of corneal epithelial-specific markers, keratin 3 and keratin 12. It was demonstrated for the first time that the decellularized matrices had a positive effect on the differentiation of hESCs towards corneal epithelial-like cells. Such a strategy supports the potential applications of human DCs and hESCs in corneal epithelium tissue engineering.
Collapse
Affiliation(s)
- Thaís Maria da Mata Martins
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| | - Pricila da Silva Cunha
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Michele Angela Rodrigues
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Juliana Lott de Carvalho
- Department of Genomic Sciences and Biotechnology, Catholic University of Brasilia, QS 07 - Lote 01, EPCT - Taguatinga, Brasília, Distrito Federal 71966-700, Brazil; Faculty of Medicine, University of Brasilia, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70910-900, Brazil
| | - Joyce Esposito de Souza
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Junnia Alvarenga de Carvalho Oliveira
- Department of Microbiology, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Dawidson Assis Gomes
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Alfredo Miranda de Goes
- Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil
| |
Collapse
|
6
|
Potential for combined delivery of riboflavin and all-trans retinoic acid, from silk fibroin for corneal bioengineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110093. [DOI: 10.1016/j.msec.2019.110093] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 08/08/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022]
|
7
|
Hayashi N, Sato T, Yumoto M, Kokabu S, Fukushima Y, Kawata Y, Kajihara T, Mizuno Y, Mizuno Y, Kawakami T, Kirita T, Hayata T, Noda M, Yoda T. Cyclic stretch induces decorin expression via yes-associated protein in tenocytes: A possible mechanism for hyperplasia in masticatory muscle tendon-aponeurosis hyperplasia. JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, MEDICINE, AND PATHOLOGY 2019. [DOI: 10.1016/j.ajoms.2018.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Fernández-Pérez J, Ahearne M. Influence of Biochemical Cues in Human Corneal Stromal Cell Phenotype. Curr Eye Res 2018; 44:135-146. [PMID: 30335528 DOI: 10.1080/02713683.2018.1536216] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE To identify biochemical cues that could promote a keratocyte-like phenotype in human corneal stromal cells that had become fibroblastic when expanded in serum-supplemented media while also examining the effect on cell proliferation and migration. METHODS Proliferation was assessed by PrestoBlue™, morphology was monitored by phase contrast microscopy, phenotype was analyzed by real-time polymerase chain reaction (qPCR), immunochemistry and flow cytometry, and migration was studied with a scratch assay. RESULTS Ascorbic Acid (AA), Retinoic Acid (RA), Insulin-Transferrin-Selenium (ITS), Insulin-like Growth Factor 1 (IGF-1) and 3-isobutyl-1-methylxanthine (IBMX) promoted a dendritic morphology, increased the expression of keratocyte markers, such as keratocan, aldehyde dehydrogenase 3 family member A1 (ALDH3A1) and CD34, and prevented myofibroblast differentiation, while in some cases increasing proliferation. Transforming Growth Factor beta 1 (TGF-β1) and 3 (TGF-β3) promoted the differentiation toward myofibroblasts, with increased expression of α-SMA. Fibroblast Growth Factor 2 (FGF-2) supported a fibroblastic phenotype while Platelet-Derived Growth Factor Homodimer B (PDGF-BB) induced a pro-migratory fibroblastic phenotype. A combination of all the pro-keratocyte factors was also compared to the serum-free only, which significantly increased CD34 and keratocan expression. CONCLUSIONS Partially recovery towards a quiescent keratocyte-like phenotype was achieved by the removal of serum and the addition of AA, IGF-1, RA, ITS and IBMX to a basal medium. These findings can be used to develop cell-based corneal therapies and to study corneal diseases in vitro.
Collapse
Affiliation(s)
- Julia Fernández-Pérez
- a Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin , University of Dublin , Dublin , Ireland.,b Trinity Centre for Bioengineering, Trinity Biomedical Science Institute, Trinity College Dublin , University of Dublin , Dublin , Ireland
| | - Mark Ahearne
- a Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin , University of Dublin , Dublin , Ireland.,b Trinity Centre for Bioengineering, Trinity Biomedical Science Institute, Trinity College Dublin , University of Dublin , Dublin , Ireland
| |
Collapse
|
9
|
Ma F, Wang F, Li R, Zhu J. Application of drug delivery systems for the controlled delivery of growth factors to treat nervous system injury. Organogenesis 2018; 14:123-128. [PMID: 30148412 DOI: 10.1080/15476278.2018.1491183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Nervous system injury represent the most common injury and was unique clinical challenge. Using of growth factors (GFs) for the treatment of nervous system injury showed effectiveness in halting its process. However, simple application of GFs could not achieve high efficacy because of its rapid diffusion into body fluids and lost from the lesion site. The drug delivery systems (DDSs) construction used to deliver GFs were investigated so that they could surmount its rapid diffusion and retain at the injury site. This study summarizes commonly used DDSs for sustained release of GFs that provide neuroprotection or restoration effects for nervous system injury.
Collapse
Affiliation(s)
- Fukai Ma
- a Department of Neurosurgery , Fudan University Huashan Hospital and National Key Laboratory of Medical Neurobiology, the Institutes of Brain Science, Shanghai Medical College, Fudan University , Shanghai , China
| | - Fan Wang
- a Department of Neurosurgery , Fudan University Huashan Hospital and National Key Laboratory of Medical Neurobiology, the Institutes of Brain Science, Shanghai Medical College, Fudan University , Shanghai , China.,b Department of Neurology , Guizhou Provincial People's Hospital , Guiyang , China
| | - Ronggang Li
- a Department of Neurosurgery , Fudan University Huashan Hospital and National Key Laboratory of Medical Neurobiology, the Institutes of Brain Science, Shanghai Medical College, Fudan University , Shanghai , China.,c Department of Neurosurgery , Shanghai Public Health Clinical Center, Fudan University , Shanghai , China
| | - Jianhong Zhu
- a Department of Neurosurgery , Fudan University Huashan Hospital and National Key Laboratory of Medical Neurobiology, the Institutes of Brain Science, Shanghai Medical College, Fudan University , Shanghai , China
| |
Collapse
|
10
|
Fujihara M, Yamamizu K, Comizzoli P, Wildt DE, Songsasen N. Retinoic acid promotes in vitro follicle activation in the cat ovary by regulating expression of matrix metalloproteinase 9. PLoS One 2018; 13:e0202759. [PMID: 30142172 PMCID: PMC6108478 DOI: 10.1371/journal.pone.0202759] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 08/08/2018] [Indexed: 01/20/2023] Open
Abstract
Retinoic acid (RA) facilitates tissue morphogenesis by regulating matrix matalloproteinase (MMPs) expression. Our objective was to examine the influence of RA on in vitro development of follicles enclosed within domestic cat ovarian tissues. Ovarian cortices from 9 prepubertal and 13 adult cats were incubated for 7 d in medium containing 0 (control), 1 or 5 μM RA and then analyzed for viability. Cortices from additional three animals of each age group were cultured in the same condition and follicle morphology, stage and size were histologically evaluated. In a separate study, cortices from 14 donors (7 prepubertal; 7 adult cats) were incubated in 0 or 5 μM RA for 7 d and assessed for (1) MMP1, 2, 3, 7, 9 and TIMP1 expression by qPCR and (2) protein expression of MMP9 by immunohistochemistry. Donor age did not influence follicle response to RA. Collective data from both age groups revealed that percentages of primordial follicles in 5 μM RA treatment were lower (P < 0.05; 40.5 ± 4.5%) than in fresh cortices (66.7 ± 5.3%) or controls (60.1 ± 4.0%) with 1 μM-RA treatment producing intermediate (56.3 ± 4.0%) results. Proportion of primary follicles in 5 μM RA (21.7 ± 3.3%) was higher than in fresh cortices (4.9 ± 2.9%) and controls (9.0 ± 2.8%) with 1 μM-RA treatment producing an intermediate value (13.8 ± 2.0%). Furthermore, proportion of secondary follicles increased after 7 d in the presence of 5 μM RA (9.5 ± 2.7%) compared to other groups (fresh, 1.9 ± 0.8%; control, 2.6 ± 1.1%; 1 μM RA, 2.5 ± 0.2%). MMP9 transcript and protein were upregulated, whereas MMP7 mRNA was suppressed by 5 μM-RA treatment compared to fresh counterparts. RA did not impact MMP1, 2, 3, 13 or TIMP1 expression. In summary, RA activated cat primordial follicle growth likely via a mechanism related to upregulation of MMP9 and down-regulation of MMP7 transcripts.
Collapse
Affiliation(s)
- Mayako Fujihara
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, Virginia, United States of America
- Wildlife Research Center, Kyoto University, Kyoto, Japan
- * E-mail:
| | - Kohei Yamamizu
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Pierre Comizzoli
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, Virginia, United States of America
| | - David E. Wildt
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, Virginia, United States of America
| | - Nucharin Songsasen
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, Virginia, United States of America
| |
Collapse
|
11
|
Miotto M, Gouveia R, Abidin FZ, Figueiredo F, Connon CJ. Developing a Continuous Bioprocessing Approach to Stromal Cell Manufacture. ACS APPLIED MATERIALS & INTERFACES 2017; 9:41131-41142. [PMID: 29145726 DOI: 10.1021/acsami.7b09809] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To this day, the concept of continuous bioprocessing has been applied mostly to the manufacture of molecular biologics such as proteins, growth factors, and secondary metabolites with biopharmaceutical uses. The present work now sets to explore the potential application of continuous bioprocess methods to source large numbers of human adherent cells with potential therapeutic value. To this purpose, we developed a smart multifunctional surface coating capable of controlling the attachment, proliferation, and subsequent self-detachment of human corneal stromal cells. This system allowed the maintenance of cell cultures under steady-state growth conditions, where self-detaching cells were continuously replenished by the proliferation of those remaining attached. This facilitated a closed, continuous bioprocessing platform with recovery of approximately 1% of the total adherent cells per hour, a yield rate that was maintained for 1 month. Moreover, both attached and self-detached cells were shown to retain their original phenotype. Together, these results represent the proof-of-concept for a new high-throughput, high-standard, and low-cost biomanufacturing strategy with multiple potentials and important downstream applications.
Collapse
Affiliation(s)
- Martina Miotto
- Institute of Genetic Medicine, Newcastle University , International Centre for Life, Central Parkway, Newcastle-upon-Tyne NE1 3BZ, United Kingdom
| | - Ricardo Gouveia
- Institute of Genetic Medicine, Newcastle University , International Centre for Life, Central Parkway, Newcastle-upon-Tyne NE1 3BZ, United Kingdom
| | - Fadhilah Zainal Abidin
- Institute of Genetic Medicine, Newcastle University , International Centre for Life, Central Parkway, Newcastle-upon-Tyne NE1 3BZ, United Kingdom
| | - Francisco Figueiredo
- Institute of Genetic Medicine, Newcastle University , International Centre for Life, Central Parkway, Newcastle-upon-Tyne NE1 3BZ, United Kingdom
- Department of Ophthalmology, Royal Victoria Infirmary , Newcastle-upon-Tyne NE1 4LP, United Kingdom
| | - Che J Connon
- Institute of Genetic Medicine, Newcastle University , International Centre for Life, Central Parkway, Newcastle-upon-Tyne NE1 3BZ, United Kingdom
| |
Collapse
|
12
|
Gouveia RM, Koudouna E, Jester J, Figueiredo F, Connon CJ. Template Curvature Influences Cell Alignment to Create Improved Human Corneal Tissue Equivalents. ACTA ACUST UNITED AC 2017; 1:e1700135. [DOI: 10.1002/adbi.201700135] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/30/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Ricardo M. Gouveia
- Institute of Genetic Medicine; Newcastle University; Newcastle upon Tyne NE1 3BZ UK
| | - Elena Koudouna
- Gavin Herbert Eye Institute; University of California Irvine; Irvine CA 92697 USA
- Structural Biophysics Research Group; School of Optometry and Vision Sciences; Cardiff University; Cardiff CF24 4HQ Wales UK
| | - James Jester
- Gavin Herbert Eye Institute; University of California Irvine; Irvine CA 92697 USA
| | - Francisco Figueiredo
- Institute of Genetic Medicine; Newcastle University; Newcastle upon Tyne NE1 3BZ UK
- Department of Ophthalmology; Royal Victoria Infirmary; Newcastle upon Tyne NE1 4LP UK
| | - Che J. Connon
- Institute of Genetic Medicine; Newcastle University; Newcastle upon Tyne NE1 3BZ UK
| |
Collapse
|
13
|
Tong J, Hu R, Zhao Y, Xu Y, Zhao X, Jin X. Serum Vitamin A Levels May Affect the Severity of Ocular Graft-versus-Host Disease. Front Med (Lausanne) 2017; 4:67. [PMID: 28691006 PMCID: PMC5479876 DOI: 10.3389/fmed.2017.00067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/11/2017] [Indexed: 11/27/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is a well-established therapeutic option for a range of inherited and acquired hematological disorders. However, graft-versus-host disease (GVHD) remains the leading cause of non-relapse mortality in allogeneic HSCT recipients. Ocular involvement occurs in up to 80% of chronic GVHD patients. In our cases, the diagnosis of vitamin A deficiency was suspected for GVHD patients. Serum vitamin A measurements were conducted to confirm clinical suspicions. Our study revealed significant decrease in serum levels of vitamin A in chronic liver GVHD patients. Although there have been many studies evaluating ocular manifestations in patients with GVHD, the present study is, to our knowledge, the first to study the relationship between vitamin A and ocular manifestations of GVHD in humans. Our data suggest that vitamin A deficiency affects the severity of ocular GVHD in adults.
Collapse
Affiliation(s)
- Jiefeng Tong
- Hematology Department, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Renjian Hu
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yingying Zhao
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Xu
- Hematology Department, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoying Zhao
- Hematology Department, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiuming Jin
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Gouveia RM, González-Andrades E, Cardona JC, González-Gallardo C, Ionescu AM, Garzon I, Alaminos M, González-Andrades M, Connon CJ. Controlling the 3D architecture of Self-Lifting Auto-generated Tissue Equivalents (SLATEs) for optimized corneal graft composition and stability. Biomaterials 2017; 121:205-219. [PMID: 28092777 PMCID: PMC5267636 DOI: 10.1016/j.biomaterials.2016.12.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/02/2016] [Accepted: 12/21/2016] [Indexed: 12/26/2022]
Abstract
Ideally, biomaterials designed to play specific physical and physiological roles in vivo should comprise components and microarchitectures analogous to those of the native tissues they intend to replace. For that, implantable biomaterials need to be carefully designed to have the correct structural and compositional properties, which consequently impart their bio-function. In this study, we showed that the control of such properties can be defined from the bottom-up, using smart surface templates to modulate the structure, composition, and bio-mechanics of human transplantable tissues. Using multi-functional peptide amphiphile-coated surfaces with different anisotropies, we were able to control the phenotype of corneal stromal cells and instruct them to fabricate self-lifting tissues that closely emulated the native stromal lamellae of the human cornea. The type and arrangement of the extracellular matrix comprising these corneal stromal Self-Lifting Analogous Tissue Equivalents (SLATEs) were then evaluated in detail, and was shown to correlate with tissue function. Specifically, SLATEs comprising aligned collagen fibrils were shown to be significantly thicker, denser, and more resistant to proteolytic degradation compared to SLATEs formed with randomly-oriented constituents. In addition, SLATEs were highly transparent while providing increased absorption to near-UV radiation. Importantly, corneal stromal SLATEs were capable of constituting tissues with a higher-order complexity, either by creating thicker tissues through stacking or by serving as substrate to support a fully-differentiated, stratified corneal epithelium. SLATEs were also deemed safe as implants in a rabbit corneal model, being capable of integrating with the surrounding host tissue without provoking inflammation, neo-vascularization, or any other signs of rejection after a 9-months follow-up. This work thus paves the way for the de novo bio-fabrication of easy-retrievable, scaffold-free human tissues with controlled structural, compositional, and functional properties to replace corneal, as well as other, tissues.
Collapse
Affiliation(s)
- Ricardo M Gouveia
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle-upon-Tyne, UK
| | - Elena González-Andrades
- Tissue Engineering Group, Department of Histology, Faculty of Medicine and Dentistry, University of Granada, Granada, Spain
| | - Juan C Cardona
- Laboratory of Biomaterials and Optics, Optics Department, Faculty of Sciences, University of Granada, Granada, Spain
| | | | - Ana M Ionescu
- Laboratory of Biomaterials and Optics, Optics Department, Faculty of Sciences, University of Granada, Granada, Spain
| | - Ingrid Garzon
- Tissue Engineering Group, Department of Histology, Faculty of Medicine and Dentistry, University of Granada, Granada, Spain
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine and Dentistry, University of Granada, Granada, Spain
| | - Miguel González-Andrades
- Schepens Eye Research Institute and Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| | - Che J Connon
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle-upon-Tyne, UK.
| |
Collapse
|
15
|
Lynch AP, Ahearne M. Retinoic Acid Enhances the Differentiation of Adipose-Derived Stem Cells to Keratocytes In Vitro. Transl Vis Sci Technol 2017; 6:6. [PMID: 28138416 PMCID: PMC5270625 DOI: 10.1167/tvst.6.1.6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/05/2016] [Indexed: 12/13/2022] Open
Abstract
Purpose All-trans retinoic acid (RA) supplementation was investigated as a method of enhancing the differentiation of human adipose-derived stem cells (ASCs) to corneal keratocytes in vitro, in combination with a chemically defined serum-free medium. Methods Adipose-derived stem cells were cultured in monolayer and supplemented with 0.1, 1, or 10 μM RA for 14 days. The effects of RA on cell proliferation, migration, and extracellular matrix (ECM) accumulation were evaluated. In addition, the expression of phenotypic keratocyte markers was examined by reverse transcription polymerase chain reaction (PCR), immunocytochemistry, and Western blotting. Results Adipose-derived stem cells cultured with RA showed improved cell proliferation and ECM production. In addition, RA enhanced the expression of keratocyte-specific markers, keratocan, aldehyde dehydrogenase 3A1, lumican, and decorin, when compared to serum-free media alone. Furthermore, the presence of RA increased the amount of collagen type I while reducing the expression of fibrotic marker, α-smooth muscle actin. Conclusions These findings indicate that RA is a useful supplement for promoting a keratocyte phenotype in ASC. Translational Relevance This study is particularly important for the generation of biological corneal substitutes and next generation cell based therapies for corneal conditions.
Collapse
Affiliation(s)
- Amy P Lynch
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland, ; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Mark Ahearne
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland, ; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Dublin, Ireland
| |
Collapse
|
16
|
Vanderburgh J, Sterling JA, Guelcher SA. 3D Printing of Tissue Engineered Constructs for In Vitro Modeling of Disease Progression and Drug Screening. Ann Biomed Eng 2017; 45:164-179. [PMID: 27169894 PMCID: PMC5106334 DOI: 10.1007/s10439-016-1640-4] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/04/2016] [Indexed: 12/23/2022]
Abstract
2D cell culture and preclinical animal models have traditionally been implemented for investigating the underlying cellular mechanisms of human disease progression. However, the increasing significance of 3D vs. 2D cell culture has initiated a new era in cell culture research in which 3D in vitro models are emerging as a bridge between traditional 2D cell culture and in vivo animal models. Additive manufacturing (AM, also known as 3D printing), defined as the layer-by-layer fabrication of parts directed by digital information from a 3D computer-aided design file, offers the advantages of simultaneous rapid prototyping and biofunctionalization as well as the precise placement of cells and extracellular matrix with high resolution. In this review, we highlight recent advances in 3D printing of tissue engineered constructs that recapitulate the physical and cellular properties of the tissue microenvironment for investigating mechanisms of disease progression and for screening drugs.
Collapse
Affiliation(s)
- Joseph Vanderburgh
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, PMB 351604, 2301 Vanderbilt Place, Nashville, TN, 37232, USA
| | - Julie A Sterling
- Department of Veterans Affairs, Tennessee Valley Healthcare System, 1235 MRB IV, 2222 Pierce Ave, Nashville, TN, 37232, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - Scott A Guelcher
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, PMB 351604, 2301 Vanderbilt Place, Nashville, TN, 37232, USA.
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
17
|
Pang K, Du L, Zhang K, Dai C, Ju C, Zhu J, Wu X. Three-Dimensional Construction of a Rabbit Anterior Corneal Replacement for Lamellar Keratoplasty. PLoS One 2016; 11:e0168084. [PMID: 27930708 PMCID: PMC5145227 DOI: 10.1371/journal.pone.0168084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/25/2016] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to construct a rabbit anterior corneal replacement for transplantation using acellular porcine corneal matrix (APCM) and rabbit epithelial or stromal cells. APCM was prepared from fresh porcine cornea treated with 0.5% (wt./vol.) sodium dodecyl sulfate (SDS) solution. The expanded stromal cells were first injected into APCM parallel to its surface and were cultured in a shaking culture system for 7 days to obtain the stromal construct. Next, corneal epithelial cells were cultured on the stromal construct surface for another 7 days to obtain rabbit anterior corneal lamella. The construct had a phenotype similar to that of normal cornea, with high expression of cytokeratin 3 in the epithelial cell layer and vimentin in the stromal cells. More importantly, the construct integrated well with the implanted host corneal tissue, and the implant cornea maintained transparency in the 6-month follow-up, although there was a slight haze in the central corneal area. The endothelium in the surgery cornea had a similar cell density and mosaic pattern with normal cornea as shown by confocal laser corneal microscopy, and the regenerated corneal epithelial cells on the implant surface showed a similar morphology to that of natural epithelial cells. These results demonstrate that the constructed anterior corneal replacement exhibits an excellent biological property for lamellar keratoplasty and might be a possible alternative to human corneal tissue in the future.
Collapse
Affiliation(s)
- Kunpeng Pang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Liqun Du
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Kai Zhang
- Department of Ophthalmology, the Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Chenyang Dai
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chengqun Ju
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jing Zhu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xinyi Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- * E-mail:
| |
Collapse
|