1
|
Wang S, Fixman B, Chen XS. Fluorescent shift assay for APOBEC-mediated RNA editing. Methods Enzymol 2025; 713:1-14. [PMID: 40250949 DOI: 10.1016/bs.mie.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
Cytidine (C) to Uridine (U) RNA editing is a post-transcriptional modification that is involved in diverse biological processes. The APOBEC deaminase family acts in various cellular processes mostly through inducing C-to-U mutation in single-stranded RNA (or DNA). However, comparing the activity of different RNA editing enzymes to one another is difficult due to the limited number of systems that can provide direct and efficient readout. In this report, a system in which RNA editing directly prompts a change in the subcellular localization of a modified eGFP structure is described in detail. This approach allows us to compare relative fluorescence intensity based on the RNA editing level. When observed through a fluorescence detection system, like a scanning confocal microscope, the cellular nucleus can be readily identified using a DNA-binding stain, such as DAPI or Hoechst, so that the accurate calculation of the ratio of nuclear to cytosolic eGFP intensity can be applied for an individual cell. This method provides a useful and flexible tool to examine and quantify RNA editing activity within cells, and it is not only limited to APOBEC proteins, but can also be applied more generally to other RNA editing enzymatic assays.
Collapse
Affiliation(s)
- Shanshan Wang
- Molecular and Computational Biology, Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Benjamin Fixman
- Molecular and Computational Biology, Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
2
|
Kim K, Shi AB, Kelley K, Chen XS. Unraveling the Enzyme-Substrate Properties for APOBEC3A-Mediated RNA Editing. J Mol Biol 2023; 435:168198. [PMID: 37442413 PMCID: PMC10528890 DOI: 10.1016/j.jmb.2023.168198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
The APOBEC3 family of human cytidine deaminases is involved in various cellular processes, including the innate and acquired immune system, mostly through inducing C-to-U in single-stranded DNA and/or RNA mutations. Although recent studies have examined RNA editing by APOBEC3A (A3A), its intracellular target specificity are not fully characterized. To address this gap, we performed in-depth analysis of cellular RNA editing using our recently developed sensitive cell-based fluorescence assay. Our findings demonstrate that A3A and an A3A-loop1-containing APOBEC3B (A3B) chimera are capable of RNA editing. We observed that A3A prefers to edit specific RNA substrates which are not efficiently deaminated by other APOBEC members. The editing efficiency of A3A is influenced by the RNA sequence contexts and distinct stem-loop secondary structures. Based on the identified RNA specificity features, we predicted potential A3A-editing targets in the encoding region of cellular mRNAs and discovered novel RNA transcripts that are extensively edited by A3A. Furthermore, we found a trend of increased synonymous mutations at the sites for more efficient A3A-editing, indicating evolutionary adaptation to the higher editing rate by A3A. Our results shed light on the intracellular RNA editing properties of A3A and provide insights into new RNA targets and potential impact of A3A-mediated RNA editing.
Collapse
Affiliation(s)
- Kyumin Kim
- Molecular and Computational Biology Program, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA. https://twitter.com/KYUMINK1324
| | - Alan B Shi
- Molecular and Computational Biology Program, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Kori Kelley
- Molecular and Computational Biology Program, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology Program, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA; Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
3
|
Li Y, Hou F, Zhou M, Yang X, Yin B, Jiang W, Xu H. C-to-U RNA deamination is the driving force accelerating SARS-CoV-2 evolution. Life Sci Alliance 2023; 6:6/1/e202201688. [PMID: 36347544 PMCID: PMC9644418 DOI: 10.26508/lsa.202201688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
Understanding the molecular mechanism underlying the rampant mutation of SARS-CoV-2 would help us control the COVID-19 pandemic. The APOBEC-mediated C-to-U deamination is a major mutation type in the SARS-CoV-2 genome. However, it is unclear whether the novel mutation rate u is higher for C-to-U than for other mutation types, and what the detailed driving force is. By analyzing the time course SARS-CoV-2 global population data, we found that C-to-U has the highest novel mutation rate u among all mutation types and that this u is still increasing with time (du/dt > 0). Novel C-to-U events, rather than other mutation types, have a preference over particular genomic regions. A less local RNA structure is correlated with a high novel C-to-U mutation rate. A cascade model nicely explains the du/dt > 0 for C-to-U deamination. In SARS-CoV-2, the RNA structure serves as the molecular basis of the extremely high and continuously accelerating C-to-U deamination rate. This mechanism is the driving force of the mutation, adaptation, and evolution of SARS-CoV-2. Our findings help us understand the dynamic evolution of the virus mutation rate.
Collapse
Affiliation(s)
- Yan Li
- Cardiovasology Department I, Qingdao Center Hospital, Qingdao, China
| | - Fanghua Hou
- Cardiovasology Department I, Qingdao Center Hospital, Qingdao, China
| | - Meili Zhou
- Emergency Department, Qingdao Center Hospital, Qingdao, China
| | - Xiaoping Yang
- Department of Respiratory Diseases, Qingdao Haici Hospital, Qingdao, China
| | - Bin Yin
- Department of Respiratory Diseases, Qingdao Haici Hospital, Qingdao, China
| | - Wenqing Jiang
- Department of Respiratory Diseases, Qingdao Haici Hospital, Qingdao, China
| | - Huiqing Xu
- Department of Pathology, Qingdao Haici Hospital, Qingdao, China
| |
Collapse
|
4
|
Cai H, Liu X, Zheng X. RNA editing detection in SARS-CoV-2 transcriptome should be different from traditional SNV identification. J Appl Genet 2022; 63:587-594. [PMID: 35661108 PMCID: PMC9166928 DOI: 10.1007/s13353-022-00706-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 10/31/2022]
Affiliation(s)
- Houhao Cai
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Xiantao Liu
- Pulmonary and Critical Care Medicine, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Xin Zheng
- Department of Respiratory and Critical Care Medicine, The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| |
Collapse
|
5
|
Kluesner MG, Tasakis RN, Lerner T, Arnold A, Wüst S, Binder M, Webber BR, Moriarity BS, Pecori R. MultiEditR: The first tool for the detection and quantification of RNA editing from Sanger sequencing demonstrates comparable fidelity to RNA-seq. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:515-523. [PMID: 34589274 PMCID: PMC8463291 DOI: 10.1016/j.omtn.2021.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/13/2021] [Indexed: 11/20/2022]
Abstract
We present MultiEditR (Multiple Edit Deconvolution by Inference of Traces in R), the first algorithm specifically designed to detect and quantify RNA editing from Sanger sequencing (z.umn.edu/multieditr). Although RNA editing is routinely evaluated by measuring the heights of peaks from Sanger sequencing traces, the accuracy and precision of this approach has yet to be evaluated against gold standard next-generation sequencing methods. Through a comprehensive comparison to RNA sequencing (RNA-seq) and amplicon-based deep sequencing, we show that MultiEditR is accurate, precise, and reliable for detecting endogenous and programmable RNA editing.
Collapse
Affiliation(s)
- Mitchell G. Kluesner
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- University of Washington School of Medicine, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Rafail Nikolaos Tasakis
- Division of Immune Diversity, Program in Cancer Immunology, German Cancer Research Centre (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Taga Lerner
- Division of Immune Diversity, Program in Cancer Immunology, German Cancer Research Centre (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Annette Arnold
- Division of Immune Diversity, Program in Cancer Immunology, German Cancer Research Centre (DKFZ), 69120 Heidelberg, Germany
| | - Sandra Wüst
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response,” Division Virus Associated Carcinogenesis (F170), German Cancer Research Centre (DKFZ), 69120 Heidelberg, Germany
| | - Marco Binder
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response,” Division Virus Associated Carcinogenesis (F170), German Cancer Research Centre (DKFZ), 69120 Heidelberg, Germany
| | - Beau R. Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Branden S. Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Riccardo Pecori
- Division of Immune Diversity, Program in Cancer Immunology, German Cancer Research Centre (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Tang G, Xie B, Hong X, Qin H, Wang J, Huang H, Hao P, Li X. Creating RNA Specific C-to-U Editase from APOBEC3A by Separation of Its Activities on DNA and RNA Substrates. ACS Synth Biol 2021; 10:1106-1115. [PMID: 33938211 DOI: 10.1021/acssynbio.0c00627] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
APOBEC3A (A3A) is a cytidine deaminase involved in innate immune response and is able to catalyze deamination on both DNA and RNA substrates. It was used in creating the CRISPR-mediated base editor, but has since been held back due to its dual activities. On the other hand, it has been a challenge to separate A3A's dual activities in order to enable it for single-base RNA editors. Here we developed the reporter system for C-to-U RNA editing and employed rational design for mutagenesis to differentiate deaminase activities on RNA and DNA substrates to obtain an RNA-specific editase. Generation and examination of 23 previous A3A mutants showed their deamination activity on RNA was mostly abolished when their activity on DNA was impaired, with the exception of mutant N57Q that displayed an inverse change. We designed new mutations on Loops 1 and 7 based on A3A's crystal structure and found mutants H29R and Y132G had differential effects on catalytic activity on RNA and DNA substrates. In order to engineer an A3A with RNA-specific deaminase activity, we combined Y132G with mutations in Loop 1 or helix 6 by rational design. Two multipoint mutants, Y132G/K30R and Y132G/G188A/R189A/L190A, were successful in retaining high deaminase activity on RNA substrate while eliminating deaminase activity on DNA. We, for the first time, created novel human A3A variants with RNA-specific cytidine deaminase activity, providing insight into A3A's mechanism on substrate recognition and a new addition of a toolset to the creation of a RNA-specific C-to-U base editor.
Collapse
Affiliation(s)
- Guiyue Tang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Bingran Xie
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiangna Hong
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Hang Qin
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jingfang Wang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hai Huang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Pei Hao
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xuan Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
7
|
Biology of the mRNA Splicing Machinery and Its Dysregulation in Cancer Providing Therapeutic Opportunities. Int J Mol Sci 2021; 22:ijms22105110. [PMID: 34065983 PMCID: PMC8150589 DOI: 10.3390/ijms22105110] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Dysregulation of messenger RNA (mRNA) processing—in particular mRNA splicing—is a hallmark of cancer. Compared to normal cells, cancer cells frequently present aberrant mRNA splicing, which promotes cancer progression and treatment resistance. This hallmark provides opportunities for developing new targeted cancer treatments. Splicing of precursor mRNA into mature mRNA is executed by a dynamic complex of proteins and small RNAs called the spliceosome. Spliceosomes are part of the supraspliceosome, a macromolecular structure where all co-transcriptional mRNA processing activities in the cell nucleus are coordinated. Here we review the biology of the mRNA splicing machinery in the context of other mRNA processing activities in the supraspliceosome and present current knowledge of its dysregulation in lung cancer. In addition, we review investigations to discover therapeutic targets in the spliceosome and give an overview of inhibitors and modulators of the mRNA splicing process identified so far. Together, this provides insight into the value of targeting the spliceosome as a possible new treatment for lung cancer.
Collapse
|
8
|
Chieca M, Torrini S, Conticello SG. Live-Cell Quantification of APOBEC1-Mediated RNA Editing: A Comparison of RNA Editing Assays. Methods Mol Biol 2021; 2181:69-81. [PMID: 32729075 DOI: 10.1007/978-1-0716-0787-9_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
APOBEC1 is a member of the AID/APOBECs, a group of deaminases responsible for the editing of C>U in both DNA and RNA. APOBEC1 is physiologically involved in C>U RNA editing: while hundreds of targets have been discovered in mice, in humans the only well-characterized target of APOBEC1 is the apolipoprotein B (ApoB) transcript. APOBEC1 edits a CAA codon into a stop codon, which causes the translation of a truncated form of ApoB. A number of assays have been developed to investigate this process. Early assays, poisoned primer extension and Sanger sequencing, have focused on accuracy and sensitivity but rely on extraction of the RNA from tissues and cells. More recently, the need to visualize the RNA editing process directly in live cells have led to the development of fluorescence-based tools. These assays detect RNA editing through reporters whose editing causes a change in cellular localization or a change in fluorescent properties. Here we review the available assays to quantify RNA editing, and we present the protocol for cytofluorimetric analysis using a double-fluorescent reporter.
Collapse
Affiliation(s)
- Martina Chieca
- Core Research Laboratory, ISPRO-Institute for Cancer Research, Prevention and Clinical Network, Firenze, Italy.,Department of Medical Biotechnologies, Università di Siena, Siena, Italy
| | - Serena Torrini
- Core Research Laboratory, ISPRO-Institute for Cancer Research, Prevention and Clinical Network, Firenze, Italy.,Department of Medical Biotechnologies, Università di Siena, Siena, Italy
| | - Silvestro G Conticello
- Core Research Laboratory, ISPRO-Institute for Cancer Research, Prevention and Clinical Network, Firenze, Italy. .,Institute of Clinical Physiology, CNR, Pisa, Italy.
| |
Collapse
|
9
|
Wolfe AD, Arnold DB, Chen XS. Comparison of RNA Editing Activity of APOBEC1-A1CF and APOBEC1-RBM47 Complexes Reconstituted in HEK293T Cells. J Mol Biol 2019; 431:1506-1517. [PMID: 30844405 PMCID: PMC6443457 DOI: 10.1016/j.jmb.2019.02.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 12/15/2022]
Abstract
RNA editing is an important form of regulating gene expression and activity. APOBEC1 cytosine deaminase was initially characterized as pairing with a cofactor, A1CF, to form an active RNA editing complex that specifically targets APOB RNA in regulating lipid metabolism. Recent studies revealed that APOBEC1 may be involved in editing other potential RNA targets in a tissue-specific manner, and another protein, RBM47, appears to instead be the main cofactor of APOBEC1 for editing APOB RNA. In this report, by expressing APOBEC1 with either A1CF or RBM47 from human or mouse in an HEK293T cell line with no intrinsic APOBEC1/A1CF/RBM47 expression, we have compared direct RNA editing activity on several known cellular target RNAs. By using a sensitive cell-based fluorescence assay that enables comparative quantification of RNA editing through subcellular localization changes of eGFP, the two APOBEC1 cofactors, A1CF and RBM47, showed clear differences for editing activity on APOB and several other tested RNAs, and clear differences were observed when mouse versus human genes were tested. In addition, we have determined the minimal domain requirement of RBM47 needed for activity. These results provide useful functional characterization of RBM47 and direct biochemical evidence for the differential editing selectivity on a number of RNA targets.
Collapse
Affiliation(s)
- Aaron D Wolfe
- Molecular and Computational Biology, Department of Biological Sciences, Chemistry, University of Southern California, Los Angeles, CA 90089, USA; Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Don B Arnold
- Molecular and Computational Biology, Department of Biological Sciences, Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Department of Biological Sciences, Chemistry, University of Southern California, Los Angeles, CA 90089, USA; Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
10
|
Jiang QQ, Liu WB. miR-25 Promotes Melanoma Progression by regulating RNA binding motif protein 47. Med Sci (Paris) 2018; 34 Focus issue F1:59-65. [PMID: 30403177 DOI: 10.1051/medsci/201834f111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Melanoma is the most aggressive skin cancer, and accounts for the major part of skin cancer-related deaths in the world. In addition, the underlying mechanism of tumor progression in melanoma remains far from being elucidated. In this study, we have evaluated the function of miR-25 in melanoma. First, we examined the expression of miR-25 in four melanoma cell lines (A875, MV3, M14 and uacc-257) and in a normal melanocyte cell line (HEM-a). Then, we overexpressed miR-25 in M14 cells. Our results show that miR-25 promotes M14 cell proliferation and migration. We found that miR-25 up-regulates the PI3K/Akt/mTOR signaling pathway in these tumor cells. Furthermore, a luciferase-based reporter gene assay showed that miR-25 could directly target the RNA-binding motif protein 47 (RBM47). Taken together, our findings suggest that RBM47 is a promising target for the treatment of melanoma.
Collapse
Affiliation(s)
- Qun-Qun Jiang
- Department of Dermatology, 404 Hospital of People's Liberation Army, No.8 of Baoquan Street, Huancui District, Weihai, 264200, Shandong Province, China
| | - Wei-Bing Liu
- Department of Dermatology, 404 Hospital of People's Liberation Army, No.8 of Baoquan Street, Huancui District, Weihai, 264200, Shandong Province, China
| |
Collapse
|
11
|
Kankowski S, Förstera B, Winkelmann A, Knauff P, Wanker EE, You XA, Semtner M, Hetsch F, Meier JC. A Novel RNA Editing Sensor Tool and a Specific Agonist Determine Neuronal Protein Expression of RNA-Edited Glycine Receptors and Identify a Genomic APOBEC1 Dimorphism as a New Genetic Risk Factor of Epilepsy. Front Mol Neurosci 2018; 10:439. [PMID: 29375302 PMCID: PMC5768626 DOI: 10.3389/fnmol.2017.00439] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/18/2017] [Indexed: 01/30/2023] Open
Abstract
C-to-U RNA editing of glycine receptors (GlyR) can play an important role in disease progression of temporal lobe epilepsy (TLE) as it may contribute in a neuron type-specific way to neuropsychiatric symptoms of the disease. It is therefore necessary to develop tools that allow identification of neuron types that express RNA-edited GlyR protein. In this study, we identify NH4 as agonist of C-to-U RNA edited GlyRs. Furthermore, we generated a new molecular C-to-U RNA editing sensor tool that detects Apobec-1- dependent RNA editing in HEPG2 cells and rat primary hippocampal neurons. Using this sensor combined with NH4 application, we were able to identify C-to-U RNA editing-competent neurons and expression of C-to-U RNA-edited GlyR protein in neurons. Bioinformatic analysis of 1,000 Genome Project Phase 3 allele frequencies coding for human Apobec-1 80M and 80I variants showed differences between populations, and the results revealed a preference of the 80I variant to generate RNA-edited GlyR protein. Finally, we established a new PCR-based restriction fragment length polymorphism (RFLP) approach to profile mRNA expression with regard to the genetic APOBEC1 dimorphism of patients with intractable temporal lobe epilepsy (iTLE) and found that the patients fall into two groups. Patients with expression of the Apobec-1 80I variant mostly suffered from simple or complex partial seizures, whereas patients with 80M expression exhibited secondarily generalized seizure activity. Thus, our method allows the characterization of Apobec-1 80M and 80l variants in the brain and provides a new way to epidemiologically and semiologically classify iTLE according to the two different APOBEC1 alleles. Together, these results demonstrate Apobec-1-dependent expression of RNA-edited GlyR protein in neurons and identify the APOBEC1 80I/M-coding alleles as new genetic risk factors for iTLE patients.
Collapse
Affiliation(s)
- Svenja Kankowski
- Division Cell Physiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Benjamin Förstera
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilians University of Munich, Munich, Germany
| | - Aline Winkelmann
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Pina Knauff
- Institute of Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Erich E Wanker
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Xintian A You
- Bioinformatics in Medicine, Zuse Institute Berlin, Berlin, Germany
| | - Marcus Semtner
- Cellular Neurosciences, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Florian Hetsch
- Division Cell Physiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jochen C Meier
- Division Cell Physiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
12
|
Rayon-Estrada V, Harjanto D, Hamilton CE, Berchiche YA, Gantman EC, Sakmar TP, Bulloch K, Gagnidze K, Harroch S, McEwen BS, Papavasiliou FN. Epitranscriptomic profiling across cell types reveals associations between APOBEC1-mediated RNA editing, gene expression outcomes, and cellular function. Proc Natl Acad Sci U S A 2017; 114:13296-13301. [PMID: 29167373 PMCID: PMC5740640 DOI: 10.1073/pnas.1714227114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Epitranscriptomics refers to posttranscriptional alterations on an mRNA sequence that are dynamic and reproducible, and affect gene expression in a similar way to epigenetic modifications. However, the functional relevance of those modifications for the transcript, the cell, and the organism remain poorly understood. Here, we focus on RNA editing and show that Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-1 (APOBEC1), together with its cofactor RBM47, mediates robust editing in different tissues. The majority of editing events alter the sequence of the 3'UTR of targeted transcripts, and we focus on one cell type (monocytes) and on a small set of highly edited transcripts within it to show that editing alters gene expression by modulating translation (but not RNA stability or localization). We further show that specific cellular processes (phagocytosis and transendothelial migration) are enriched for transcripts that are targets of editing and that editing alters their function. Finally, we survey bone marrow progenitors and demonstrate that common monocyte progenitor cells express high levels of APOBEC1 and are susceptible to loss of the editing enzyme. Overall, APOBEC1-mediated transcriptome diversification is required for the fine-tuning of protein expression in monocytes, suggesting an epitranscriptomic mechanism for the proper maintenance of homeostasis in innate immune cells.
Collapse
Affiliation(s)
- Violeta Rayon-Estrada
- Laboratory of Lymphocyte Biology, The Rockefeller University, New York, NY 10065
- The Rockefeller Graduate Program, The Rockefeller University, New York, NY 10065
| | - Dewi Harjanto
- Laboratory of Lymphocyte Biology, The Rockefeller University, New York, NY 10065
| | - Claire E Hamilton
- Laboratory of Lymphocyte Biology, The Rockefeller University, New York, NY 10065
- The Rockefeller Graduate Program, The Rockefeller University, New York, NY 10065
- The Tri-Institutional MD-PhD Program, The Rockefeller University, New York, NY 10065
| | - Yamina A Berchiche
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY 10065
| | - Emily Conn Gantman
- The Rockefeller Graduate Program, The Rockefeller University, New York, NY 10065
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, NY 10065
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY 10065
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Karen Bulloch
- The Neuroimmunology and Inflammation Program, The Rockefeller University, New York, NY 10065
| | - Khatuna Gagnidze
- The Neuroimmunology and Inflammation Program, The Rockefeller University, New York, NY 10065
| | - Sheila Harroch
- Division of Immune Diversity, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065
| | - F Nina Papavasiliou
- Laboratory of Lymphocyte Biology, The Rockefeller University, New York, NY 10065;
- Division of Immune Diversity, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
13
|
Niccheri F, Pecori R, Conticello SG. An efficient method to enrich for knock-out and knock-in cellular clones using the CRISPR/Cas9 system. Cell Mol Life Sci 2017; 74:3413-3423. [PMID: 28421278 PMCID: PMC5544813 DOI: 10.1007/s00018-017-2524-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 12/21/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats-associated protein 9 nuclease (CRISPR/Cas9) and Transcription Activator-Like Effector Nucleases (TALENs) are versatile tools for genome editing. Here we report a method to increase the frequency of Cas9-targeted cellular clones. Our method is based on a chimeric construct with a Blasticidin S Resistance gene (bsr) placed out-of-frame by a surrogate target sequence. End joining of the CRISPR/Cas9-induced double-strand break on the surrogate target can place the bsr in frame, thus providing temporary resistance to Blasticidin S: this is used to enrich for cells where Cas9 is active. By this approach, in a real experimental setting, we disrupted the Aicda gene in ~70% of clones from CH12F3 lymphoma cells (>40% biallelically). With the same approach we knocked in a single nucleotide to reconstruct the frame of Aicda in these null cells, restoring the function in ~37% of the clones (less than 10% by the standard approach). Targeting of single nucleotide changes in other genes yielded analogous results. These results support our enrichment method as an efficient tool in genome editing.
Collapse
Affiliation(s)
- Francesca Niccheri
- Core Research Laboratory, Istituto Toscano Tumori, Florence, 50139, Italy
| | - Riccardo Pecori
- Core Research Laboratory, Istituto Toscano Tumori, Florence, 50139, Italy
| | - Silvestro G Conticello
- Core Research Laboratory, Istituto Toscano Tumori, Florence, 50139, Italy.
- Department of Oncology, Azienda Ospedaliero-Universitaria Careggi, Florence, 50139, Italy.
| |
Collapse
|
14
|
Snyder EM, McCarty C, Mehalow A, Svenson KL, Murray SA, Korstanje R, Braun RE. APOBEC1 complementation factor (A1CF) is dispensable for C-to-U RNA editing in vivo. RNA (NEW YORK, N.Y.) 2017; 23:457-465. [PMID: 28069890 PMCID: PMC5340909 DOI: 10.1261/rna.058818.116] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/14/2016] [Indexed: 05/20/2023]
Abstract
Editing of the human and murine ApoB mRNA by APOBEC1, the catalytic enzyme of the protein complex that catalyzes C-to-U RNA editing, creates an internal stop codon within the APOB coding sequence, generating two protein isoforms. It has been long held that APOBEC1-mediated editing activity is dependent on the RNA binding protein A1CF. The function of A1CF in adult tissues has not been reported because a previously reported null allele displays embryonic lethality. This work aimed to address the function of A1CF in adult mouse tissues using a conditional A1cf allele. Unexpectedly, A1cf-null mice were viable and fertile with modest defects in hematopoietic, immune, and metabolic parameters. C-to-U RNA editing was quantified for multiple targets, including ApoB, in the small intestine and liver. In all cases, no changes in RNA editing efficiency were observed. Blood plasma analysis demonstrated a male-specific increase in solute concentration and increased cellularity in the glomeruli of male A1cf-null mice. Urine analysis showed a reduction in solute concentration, suggesting abnormal water homeostasis and possible kidney abnormalities exclusive to the male. Computational identification of kidney C-to-U editing sites from polyadenylated RNA-sequencing identified a number of editing sites exclusive to the kidney. However, molecular analysis of kidney C-to-U editing showed no changes in editing efficiency with A1CF loss. Taken together, these observations demonstrate that A1CF does not act as the APOBEC1 complementation factor in vivo under normal physiological conditions and suggests new roles for A1CF, specifically within the male adult kidney.
Collapse
Affiliation(s)
| | | | | | | | | | - Ron Korstanje
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | |
Collapse
|