1
|
Jin H, Jiang W, Zheng X, Li L, Fang Y, Yang Y, Hu X, Chu L. MiR-199a-5p enhances neuronal differentiation of neural stem cells and promotes neurogenesis by targeting Cav-1 after cerebral ischemia. CNS Neurosci Ther 2023; 29:3967-3979. [PMID: 37349971 PMCID: PMC10651989 DOI: 10.1111/cns.14323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/19/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
AIMS MicroRNAs (miRs) are involved in endogenous neurogenesis, enhancing of which has been regarded as a potential therapeutic strategy for ischemic stroke treatment; however, whether miR-199a-5p mediates postischemic neurogenesis remains unclear. This study aims to investigate the proneurogenesis effects of miR-199a-5p and its possible mechanism after ischemic stroke. METHODS Neural stem cells (NSCs) were transfected using Lipofectamine 3000 reagent, and the differentiation of NSCs was evaluated by immunofluorescence and Western blotting. Dual-luciferase reporter assay was performed to verify the target gene of miR-199a-5p. MiR-199a-5p agomir/antagomir were injected intracerebroventricularly. The sensorimotor functions were evaluated by neurobehavioral tests, infarct volume was measured by toluidine blue staining, neurogenesis was detected by immunofluorescence assay, and the protein levels of neuronal nuclei (NeuN), glial fibrillary acidic protein (GFAP), caveolin-1 (Cav-1), vascular endothelial growth factor (VEGF), and brain-derived neurotrophic factor (BDNF) were measured by Western blotting. RESULTS MiR-199a-5p mimic enhanced neuronal differentiation and inhibited astrocyte differentiation of NSCs, while a miR-199a-5p inhibitor induced the opposite effects, which can be reversed by Cav-1 siRNA. Cav-1 was through the dual-luciferase reporter assay confirmed as a target gene of miR-199a-5p. miR-199a-5p agomir in rat stroke models manifested multiple benefits, such as improving neurological deficits, reducing infarct volume, promoting neurogenesis, inhibiting Cav-1, and increasing VEGF and BDNF, which was reversed by the miR-199a-5p antagomir. CONCLUSION MiR-199a-5p may target and inhibit Cav-1 to enhance neurogenesis and thus promote functional recovery after cerebral ischemia. These findings indicate that miR-199a-5p is a promising target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Hua‐Qian Jin
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| | - Wei‐Feng Jiang
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| | - Xin‐Tian Zheng
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| | - Lin Li
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| | - Yan Fang
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| | - Yan Yang
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| | - Xiao‐Wei Hu
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| | - Li‐Sheng Chu
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
2
|
Fan B, Chopp M, Zhang Y, Wang X, Kemper A, Zhang ZG, Liu XS. Ablation of Argonaute 2 in Schwann cells accelerates the progression of diabetic peripheral neuropathy. Glia 2023; 71:2196-2209. [PMID: 37178056 PMCID: PMC11057225 DOI: 10.1002/glia.24387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Schwann cells (SCs) form myelin and provide metabolic support for axons, and are essential for normal nerve function. Identification of key molecules specific to SCs and nerve fibers may provide new therapeutic targets for diabetic peripheral neuropathy (DPN). Argonaute2 (Ago2) is a key molecular player that mediates the activity of miRNA-guided mRNA cleavage and miRNA stability. Our study found that Ago2 knockout (Ago2-KO) in proteolipid protein (PLP) lineage SCs in mice resulted in a significant reduction of nerve conduction velocities and impairments of thermal and mechanical sensitivities. Histopathological data revealed that Ago2-KO significantly induced demyelination and neurodegeneration. When DPN was induced in both wild-type and Ago2-KO mice, Ago2-KO mice exhibited further decreased myelin thickness and exacerbated neurological outcomes compared with wild-type mice. Deep sequencing analysis of Ago2 immunoprecipitated complexes showed that deregulated miR-206 in Ago2-KO mice is highly related to mitochondrial function. In vitro data showed that knockdown of miR-200 induced mitochondrial dysfunction and apoptosis in SCs. Together, our data suggest that Ago2 in SCs is essential to maintain peripheral nerve function while ablation of Ago2 in SCs exacerbates SC dysfunction and neuronal degeneration in DPN. These findings provide new insight into the molecular mechanisms of DPN.
Collapse
Affiliation(s)
- Baoyan Fan
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
- Department of Physics, Oakland University, Rochester, Michigan, USA
| | - Yi Zhang
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
| | - Xinli Wang
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
| | - Amy Kemper
- Department of Pathology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
| | - Xian Shuang Liu
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
| |
Collapse
|
3
|
Wang X, Zhang M, Long C, Yao L, Zhu M. Self-Attention Based Neural Network for Predicting RNA-Protein Binding Sites. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:1469-1479. [PMID: 36067103 DOI: 10.1109/tcbb.2022.3204661] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Proteins binding to Ribonucleic Acid (RNA) inside cells are called RNA-binding proteins (RBP), which play a crucial role in gene regulation. The identification of RNA-protein binding sites helps to understand the function of RBP better. Although many computational methods have been developed to predict RNA-protein binding sites, their prediction accuracy on small sample datasets needs improvement. To overcome this limitation, we propose a novel model called SA-Net, which utilizes k-mer embedding to encode RNA sequences and a self-attention-based neural network to extract sequence features. K-mer embedding assists the model to discover significant subsequence fragments associated with binding sites. The self-attention mechanism captures contextual information from the entire input sequence globally, performing well in small sample sequence learning. Experimental results demonstrate that SA-Net attains state-of-the-art results on the RBP-24 dataset. We find that 4-mer embedding aids the model to achieve optimal performance. We also show that the self-attention network outperforms the commonly used CNN and CNN-BLSTM models in sequence feature extraction.
Collapse
|
4
|
Chen W, Chang Y, Sun C, Xu M, Dong M, Zhao N, Wang Y, Zhang J, Xu N, Liu W. A novel circular RNA circNLRP3 alleviated ricin toxin-induced TNF-α production through sponging miR-221-5p. Toxicon 2023; 224:107046. [PMID: 36702354 DOI: 10.1016/j.toxicon.2023.107046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/22/2023] [Accepted: 01/22/2023] [Indexed: 01/24/2023]
Abstract
Acting as microRNA (miRNA) sponges, circular RNAs (circRNAs) have been discovered to be critical modulators of inflammatory processes. Ricin Toxin (RT) is highly toxic to mammalian cells and low doses of RT can induce acute inflammation. However, current researches on the underlying mechanism and function of circRNA/miRNA network in RT-induced inflammation are limited. Previously, we found miR-221-5p was aberrant and associated with the inflammation of RT induction. In this study, based on the circRNA high-throughput sequencing (circRNA-seq), we obtained a novel circRNA termed circNLRP3 and revealed that circNLRP3 can sponge miR-221-5p, release its target mRNA A20, and further suppress NF-κB signaling pathway to alleviated RT-induced TNF-α production. Our findings elucidated a possible mechanistic link between the circNLRP3/miR-221-5p/A20 axis and RT-induced inflammatory response, which may broaden our understanding of RT poisoning.
Collapse
Affiliation(s)
- Wei Chen
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, 133002, Jilin, PR China
| | - Ying Chang
- Jilin Medical University, Jilin, 132013, Jilin, PR China
| | - Chengbiao Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, PR China
| | - Meng Xu
- College of Life Science, Jilin Agricultural University, Changchun, 130118, Jilin, PR China
| | - Mingxin Dong
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, PR China
| | - Na Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, PR China
| | - Yan Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, PR China
| | - Jianxu Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, PR China
| | - Na Xu
- Jilin Medical University, Jilin, 132013, Jilin, PR China.
| | - Wensen Liu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, 133002, Jilin, PR China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, PR China.
| |
Collapse
|
5
|
The multifaceted actions of the lncRNA H19 in cardiovascular biology and diseases. Clin Sci (Lond) 2022; 136:1157-1178. [PMID: 35946958 PMCID: PMC9366862 DOI: 10.1042/cs20210994] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 12/13/2022]
Abstract
Cardiovascular diseases are the leading cause of death and debility worldwide. Various molecular mechanisms have been studied to better understand the development and progression of cardiovascular pathologies with hope to eradicate these diseases. With the advancement of the sequencing technology, it is revealed that the majority of our genome is non-coding. A growing body of literature demonstrates the critical role of long non-coding RNAs (lncRNAs) as epigenetic regulators of gene expression. LncRNAs can regulate cellular biological processes through various distinct molecular mechanisms. The abundance of lncRNAs in the cardiovascular system indicates their significance in cardiovascular physiology and pathology. LncRNA H19, in particular, is a highly evolutionarily conserved lncRNA that is enriched in cardiac and vascular tissue, underlining its importance in maintaining homeostasis of the cardiovascular system. In this review, we discuss the versatile function of H19 in various types of cardiovascular diseases. We highlight the current literature on H19 in the cardiovascular system and demonstrate how dysregulation of H19 induces the development of cardiovascular pathophysiology.
Collapse
|
6
|
Can U, Marzioglu E, Akdu S. Some miRNA expressions and their targets in ischemic stroke. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:1224-1262. [PMID: 35876186 DOI: 10.1080/15257770.2022.2098974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/15/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Ischemic stroke (IS) is a global health challenge leading to life-long disabilities or the deaths of patients. IS is a complex disease where genetic and environmental factors are both concerned with the pathophysiology of the condition. Here, we aimed to investigate various microRNA (miRNA) expressions and their targets in IS. A rapid and accurate diagnosis of acute IS is important to perform appropriate treatment. Therefore, there is a need for a more rapid and simple tool to carry out an acute diagnosis of IS. miRNAs are small RNA molecules serving as precious biomarkers due to their easy detection and stability in blood samples. The present systematic review aimed to summarize previous studies investigating several miRNA expressions and their targets in IS.
Collapse
Affiliation(s)
- Ummugulsum Can
- Department of Biochemistry, Konya City Hospital, Konya, Türkiye
| | - Ebru Marzioglu
- Department of Genetics, Konya Training and Research Hospital, Konya, Türkiye
| | - Sadinaz Akdu
- Department of Biochemistry, Fethiye State Hospital, Muğla, Turkey
| |
Collapse
|
7
|
Yin G, Lin Y, Wang P, Zhou J, Lin H. Upregulated lncARAT in Schwann cells promotes axonal regeneration by recruiting and activating proregenerative macrophages. Mol Med 2022; 28:76. [PMID: 35768768 PMCID: PMC9245276 DOI: 10.1186/s10020-022-00501-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 06/15/2022] [Indexed: 11/29/2022] Open
Abstract
Background Axonal regeneration following peripheral nerve injury (PNI) depends on the complex interaction between Schwann cells (SCs) and macrophages, but the mechanisms underlying macrophage recruitment and activation in axonal regeneration remain unclear. Methods RNA sequencing (RNA-seq) was conducted to identify differentially expressed long noncoding RNAs (DElncRNAs) between crushed sciatic nerves and intact contralateral nerves. The putative role of lncRNAs in nerve regeneration was analyzed in vitro and in vivo. Results An lncRNA, called axon regeneration-associated transcript (lncARAT), was upregulated in SCs and SC-derived exosomes (SCs-Exo) after sciatic nerve injury. LncARAT contributed to axonal regeneration and improved motor function recovery. Mechanistically, lncARAT epigenetically activated C–C motif ligand 2 (CCL2) expression by recruiting KMT2A to CCL2 promoter, resulting in increased histone 3 lysine 4 trimethylation (H3K4me3) and CCL2 transcription in SCs. CCL2 facilitated the infiltration of macrophages into the injured nerves. Meanwhile, lncARAT-enriched exosomes were released from SCs and incorporated into macrophages. LncARAT functioned as an endogenous sponge to adsorb miRNA-329-5p in macrophages, resulting in increased suppressor of cytokine signaling (SOCS) 2 expression, which induced a proregenerative function of macrophages through a signal transducer and activator of transcription (STAT) 1/6-dependent pathway. Conclusions LncARAT may represent a promising therapeutic avenue for peripheral nerve repair. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00501-9.
Collapse
Affiliation(s)
- Gang Yin
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Road100, Shanghai, 200080, People's Republic of China
| | - Yaofa Lin
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Road100, Shanghai, 200080, People's Republic of China
| | - Peilin Wang
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Road100, Shanghai, 200080, People's Republic of China
| | - Jun Zhou
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Road100, Shanghai, 200080, People's Republic of China
| | - Haodong Lin
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Road100, Shanghai, 200080, People's Republic of China.
| |
Collapse
|
8
|
Arruri V, Vemuganti R. Role of autophagy and transcriptome regulation in acute brain injury. Exp Neurol 2022; 352:114032. [PMID: 35259350 PMCID: PMC9187300 DOI: 10.1016/j.expneurol.2022.114032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 01/18/2023]
Abstract
Autophagy is an evolutionarily conserved intracellular system that routes distinct cytoplasmic cargo to lysosomes for degradation and recycling. Accumulating evidence highlight the mechanisms of autophagy, such as clearance of proteins, carbohydrates, lipids and damaged organelles. The critical role of autophagy in selective degradation of the transcriptome is still emerging and could shape the total proteome of the cell, and thus can regulate the homeostasis under stressful conditions. Unregulated autophagy that potentiates secondary brain damage is a key pathological features of acute CNS injuries such as stroke and traumatic brain injury. This review discussed the mutual modulation of autophagy and RNA and its significance in mediating the functional consequences of acute CNS injuries.
Collapse
Affiliation(s)
- Vijay Arruri
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; William S. Middleton Memorial Veteran Administration Hospital, Madison, WI, USA.
| |
Collapse
|
9
|
Yang J, Hao J, Lin Y, Guo Y, Liao K, Yang M, Cheng H, Yang M, Chen K. Profile and Functional Prediction of Plasma Exosome-Derived CircRNAs From Acute Ischemic Stroke Patients. Front Genet 2022; 13:810974. [PMID: 35360855 PMCID: PMC8963851 DOI: 10.3389/fgene.2022.810974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/31/2022] [Indexed: 12/23/2022] Open
Abstract
Stroke is one of the major causes of death and long-term disability, of which acute ischemic stroke (AIS) is the most common type. Although circular RNA (circRNA) expression profiles of AIS patients have been reported to be significantly altered in blood and peripheral blood mononuclear cells, the role of exosome-containing circRNAs after AIS is still unknown. Plasma exosomes from 10 AIS patients and 10 controls were isolated, and through microarray and bioinformatics analysis, the profile and putative function of circRNAs in the plasma exosomes were studied. A total of 198 circRNAs were differentially quantified (|log2 fold change| ≥ 1.00, p < 0.05) between AIS patients and controls. The levels of 12 candidate circRNAs were verified by qRT-PCR, and the quantities of 10 of these circRNAs were consistent with the data of microarray. The functions of host genes of differentially quantified circRNAs, including RNA and protein process, focal adhesion, and leukocyte transendothelial migration, were associated with the development of AIS. As a miRNA sponge, differentially quantified circRNAs had the potential to regulate pathways related to AIS, like PI3K-Akt, AMPK, and chemokine pathways. Of 198 differentially quantified circRNAs, 96 circRNAs possessing a strong translational ability could affect cellular structure and activity, like focal adhesion, tight junction, and endocytosis. Most differentially quantified circRNAs were predicted to bind to EIF4A3 and AGO2—two RNA-binding proteins (RBPs)—and to play a role in AIS. Moreover, four of ten circRNAs with verified levels by qRT-PCR (hsa_circ_0112036, hsa_circ_0066867, hsa_circ_0093708, and hsa_circ_0041685) were predicted to participate in processes of AIS, including PI3K-Akt, AMPK, and chemokine pathways as well as endocytosis, and to be potentially useful as diagnostic biomarkers for AIS. In conclusion, plasma exosome-derived circRNAs were significantly differentially quantified between AIS patients and controls and participated in the occurrence and progression of AIS by sponging miRNA/RBPs or translating into proteins, indicating that circRNAs from plasma exosomes could be crucial molecules in the pathogenesis of AIS and promising candidates as diagnostic biomarkers and therapeutic targets for the condition.
Collapse
Affiliation(s)
- Jie Yang
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Neurology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Junli Hao
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Yapeng Lin
- Department of Neurology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yijia Guo
- International Clinical Research Center, Chengdu Medical College, Chengdu, China
| | - Ke Liao
- International Clinical Research Center, Chengdu Medical College, Chengdu, China
| | - Min Yang
- Department of Neurology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Hang Cheng
- Department of Neurology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ming Yang
- Department of Neurology, Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Kejie Chen
- School of Public Health, Chengdu Medical College, Chengdu, China
- *Correspondence: Kejie Chen,
| |
Collapse
|
10
|
Chavda V, Madhwani K. Coding and non-coding nucleotides': The future of stroke gene therapeutics. Genomics 2021; 113:1291-1307. [PMID: 33677059 DOI: 10.1016/j.ygeno.2021.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/01/2020] [Accepted: 03/02/2021] [Indexed: 01/05/2023]
Abstract
Stroke is the foremost cause of death ranked after heart disease and cancer. It is the fatal life-threatening event that requires immediate medical admissions to overcome following morbidity and mortality. The therapeutic advances in stroke therapy have been manipulated with diverse paths for last 5 years. Recent research and clinical trials have investigated a variety of anti-stroke agents including anti-coagulants, cerebro-protective agents, antiplatelet therapy, stem-cell therapy, and specified gene therapy. In recent advanced studies, genetic therapies including noncoding RNAs (ncRNAs), long non-coding RNAs (LncRNAs), small interfering RNAs (siRNAs), microRNAs (miRNAs), Piwi interacting RNAs (PiWi RNAs) have shown better potential as targeted future therapeutics with a better outcome than conventional stroke therapeutics. The potential of targeted gene therapy is much more advanced in not only the induction of neuroprotection but also safer non-toxic targeted therapeutics. In the current state of the art review, we have focused on the recent advancements made towards the stroke with RNA modifications and targeted gene therapeutics.
Collapse
Affiliation(s)
- Vishal Chavda
- Department of Pharmacology, Nirma University, Ahmadabad, Gujarat, India.
| | - Kajal Madhwani
- Department of Microbiology, Nirma University, Ahmadabad, Gujarat, India
| |
Collapse
|
11
|
Zhang Y, Li C, Qin Y, Cepparulo P, Millman M, Chopp M, Kemper A, Szalad A, Lu X, Wang L, Zhang ZG. Small extracellular vesicles ameliorate peripheral neuropathy and enhance chemotherapy of oxaliplatin on ovarian cancer. J Extracell Vesicles 2021; 10:e12073. [PMID: 33728031 PMCID: PMC7931803 DOI: 10.1002/jev2.12073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/07/2021] [Accepted: 02/13/2021] [Indexed: 12/17/2022] Open
Abstract
There are no effective treatments for chemotherapy induced peripheral neuropathy (CIPN). Small extracellular vesicles (sEVs) facilitate intercellular communication and mediate nerve function and tumour progression. We found that the treatment of mice bearing ovarian tumour with sEVs derived from cerebral endothelial cells (CEC-sEVs) in combination with a chemo-drug, oxaliplatin, robustly reduced oxaliplatin-induced CIPN by decreasing oxaliplatin-damaged myelination and nerve fibres of the sciatic nerve and significantly amplified chemotherapy of oxaliplatin by reducing tumour size. The combination therapy substantially increased a set of sEV cargo-enriched miRNAs, but significantly reduced oxaliplatin-increased proteins in the sciatic nerve and tumour tissues. Bioinformatics analysis revealed the altered miRNAs and proteins formed two distinct networks that regulate neuropathy and tumour growth, respectively. Intravenously administered CEC-sEVs were internalized by axons of the sciatic nerve and cancer cells. Reduction of CEC-sEV cargo miRNAs abolished the effects of CEC-sEVs on oxaliplatin-inhibited axonal growth and on amplification of the anti-cancer effect in ovarian cancer cells, suggesting that alterations in the networks of miRNAs and proteins in recipient cells contribute to the therapeutic effect of CEC-sEVs on CIPN. Together, the present study demonstrates that CEC-sEVs suppressed CIPN and enhanced chemotherapy of oxaliplatin in the mouse bearing ovarian tumour.
Collapse
Affiliation(s)
- Yi Zhang
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Chao Li
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Yi Qin
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | | | | | - Michael Chopp
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
- Department of PhysicsOakland UniversityRochesterMichiganUSA
| | - Amy Kemper
- Department of PathologyHenry Ford Health SystemDetroitMichiganUSA
| | - Alexandra Szalad
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Xuerong Lu
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Lei Wang
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Zheng Gang Zhang
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| |
Collapse
|
12
|
ZHUGE L, FANG Y, JIN H, LI L, YANG Y, HU X, CHU L. [Chinese medicine Buyang Huanwu decoction promotes neurogenesis and angiogenesis in ischemic stroke rats by upregulating miR-199a-5p expression]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020; 49:687-696. [PMID: 33448171 PMCID: PMC10412415 DOI: 10.3785/j.issn.1008-9292.2020.12.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 11/22/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To investigate the mechanism of Chinese medicine Buyang Huanwu decoction (BYHWD) promoting neurogenesis and angiogenesis in ischemic stroke rats. METHODS Male SD rats were randomly divided into sham operation group, model group, BYHWD group, antagonist group and antagonist control group with 14 rats in each. Focal cerebral ischemia was induced by occlusion of the right middle cerebral artery for 90 min with intraluminal filament and reperfusion for 14 d in all groups except sham operation group. BYHWD (13 g/kg) was administrated by gastrogavage in BYHWD group, antagonist group and antagonist control group at 24 h after modeling respectively, and BrdU (50 mg/kg) was injected intraperitoneally in all groups once a day for 14 consecutive days. miR-199a-5p antagomir or NC (10 nmol) was injected into the lateral ventricle at d5 after ischemia in antagonist and antagonist control groups, respectively. The neurological deficits were evaluated by the modified neurological severity score (mNSS) and the corner test, and the infract volume was measured by toluidine blue staining. Neurogenesis and angiogenesis were detected by immunofluorescence double labeling method. The expression level of miR-199a-5p was tested by real-time RT-PCR, and the protein expressions of vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF) were determined by Western blotting. RESULTS BYHWD treatment significantly promoted the recovery of neurological function (P<0.05 or P<0.01), reduced the infarct volume (P<0.05), increased the number of BrdU+/DCX+, BrdU+/NeuN+ and BrdU+/vWF+ cells (all P<0.01), upregulated the expression of miR-199a-5p (P<0.01), and increased the protein expression of VEGF and BDNF at d14 after cerebral ischemia (all P<0.05). The above effects were reversed by intracerebroventricular injection of miR-199a-5p antagomir. CONCLUSIONS Buyang Huanwu decoction promotes neurogenesis and angiogenesis in rats with cerebral ischemia, which may be related to increased protein expression of VEGF and BDNF through upregulating miR-199a-5p.
Collapse
|
13
|
Liu X, Fan B, Chopp M, Zhang Z. Epigenetic Mechanisms Underlying Adult Post Stroke Neurogenesis. Int J Mol Sci 2020; 21:E6179. [PMID: 32867041 PMCID: PMC7504398 DOI: 10.3390/ijms21176179] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
Stroke remains the leading cause of adult disability. Post-stroke neurogenesis contributes to functional recovery. As an intrinsic neurorestorative process, it is important to elucidate the molecular mechanism underlying stroke-induced neurogenesis and to develop therapies designed specifically to augment neurogenesis. Epigenetic mechanisms include DNA methylation, histone modification and its mediation by microRNAs and long-non-coding RNAs. In this review, we highlight how epigenetic factors including DNA methylation, histone modification, microRNAs and long-non-coding RNAs mediate stroke-induced neurogenesis including neural stem cell self-renewal and cell fate determination. We also summarize therapies targeting these mechanisms in the treatment of stroke.
Collapse
Affiliation(s)
- Xianshuang Liu
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (B.F.); (M.C.); (Z.Z.)
| | - Baoyan Fan
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (B.F.); (M.C.); (Z.Z.)
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (B.F.); (M.C.); (Z.Z.)
- Department of Physics, Oakland University, Rochester, MI 48309, USA
| | - Zhenggang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (B.F.); (M.C.); (Z.Z.)
| |
Collapse
|
14
|
Fan B, Pan W, Wang X, Wei M, He A, Zhao A, Chopp M, Zhang ZG, Liu XS. Long noncoding RNA mediates stroke-induced neurogenesis. Stem Cells 2020; 38:973-985. [PMID: 32346940 PMCID: PMC11062764 DOI: 10.1002/stem.3189] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/18/2020] [Accepted: 04/01/2020] [Indexed: 01/11/2023]
Abstract
Neurogenesis contributes to poststroke recovery. Long noncoding RNAs (lncRNAs) participate in the regulation of stem cell self-renewal and differentiation. However, the role of lncRNAs in stroke-induced neurogenesis remains unknown. In this study, we found that H19 was the most highly upregulated lncRNA in neural stem cells (NSCs) of the subventricular zone (SVZ) of rats subjected to focal cerebral ischemia. Deletion of H19 suppressed cell proliferation, promoted cell death, and blocked NSC differentiation. RNA sequencing analysis revealed that genes deregulated by H19 knockdown were those that are involved in transcription, apoptosis, proliferation, cell cycle, and response to hypoxia. H19 knockdown significantly increased the transcription of cell cycle-related genes including p27, whereas overexpression of H19 substantially reduced expression of these genes through the interaction with chromatin remodeling proteins EZH2 and SUZ12. Moreover, H19 regulated neurogenesis-related miRNAs. Inactivation of H19 in NSCs of ischemic rats attenuated spontaneous functional recovery after stroke. Collectively, our data provide novel insights into the epigenetic regulation of lncRNAs in stroke-induced neurogenesis.
Collapse
Affiliation(s)
- Baoyan Fan
- Department of Neurology, Henry Ford Health System, Detroit, Michigan
| | - Wanlong Pan
- Department of Neurology, Henry Ford Health System, Detroit, Michigan
| | - Xinli Wang
- Department of Neurology, Henry Ford Health System, Detroit, Michigan
| | - Min Wei
- Department of Neurology, Henry Ford Health System, Detroit, Michigan
| | - Annie He
- Department of Neurology, Henry Ford Health System, Detroit, Michigan
| | - Anna Zhao
- Department of Neurology, Henry Ford Health System, Detroit, Michigan
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, Michigan
- Department of Physics, Oakland University, Rochester, Michigan
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, Michigan
| | - Xian Shuang Liu
- Department of Neurology, Henry Ford Health System, Detroit, Michigan
| |
Collapse
|
15
|
Venø MT, Reschke CR, Morris G, Connolly NMC, Su J, Yan Y, Engel T, Jimenez-Mateos EM, Harder LM, Pultz D, Haunsberger SJ, Pal A, Heller JP, Campbell A, Langa E, Brennan GP, Conboy K, Richardson A, Norwood BA, Costard LS, Neubert V, Del Gallo F, Salvetti B, Vangoor VR, Sanz-Rodriguez A, Muilu J, Fabene PF, Pasterkamp RJ, Prehn JHM, Schorge S, Andersen JS, Rosenow F, Bauer S, Kjems J, Henshall DC. A systems approach delivers a functional microRNA catalog and expanded targets for seizure suppression in temporal lobe epilepsy. Proc Natl Acad Sci U S A 2020; 117:15977-15988. [PMID: 32581127 PMCID: PMC7355001 DOI: 10.1073/pnas.1919313117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Temporal lobe epilepsy is the most common drug-resistant form of epilepsy in adults. The reorganization of neural networks and the gene expression landscape underlying pathophysiologic network behavior in brain structures such as the hippocampus has been suggested to be controlled, in part, by microRNAs. To systematically assess their significance, we sequenced Argonaute-loaded microRNAs to define functionally engaged microRNAs in the hippocampus of three different animal models in two species and at six time points between the initial precipitating insult through to the establishment of chronic epilepsy. We then selected commonly up-regulated microRNAs for a functional in vivo therapeutic screen using oligonucleotide inhibitors. Argonaute sequencing generated 1.44 billion small RNA reads of which up to 82% were microRNAs, with over 400 unique microRNAs detected per model. Approximately half of the detected microRNAs were dysregulated in each epilepsy model. We prioritized commonly up-regulated microRNAs that were fully conserved in humans and designed custom antisense oligonucleotides for these candidate targets. Antiseizure phenotypes were observed upon knockdown of miR-10a-5p, miR-21a-5p, and miR-142a-5p and electrophysiological analyses indicated broad safety of this approach. Combined inhibition of these three microRNAs reduced spontaneous seizures in epileptic mice. Proteomic data, RNA sequencing, and pathway analysis on predicted and validated targets of these microRNAs implicated derepressed TGF-β signaling as a shared seizure-modifying mechanism. Correspondingly, inhibition of TGF-β signaling occluded the antiseizure effects of the antagomirs. Together, these results identify shared, dysregulated, and functionally active microRNAs during the pathogenesis of epilepsy which represent therapeutic antiseizure targets.
Collapse
Affiliation(s)
- Morten T Venø
- Interdisciplinary Nanoscience Centre, Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Cristina R Reschke
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Gareth Morris
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | - Niamh M C Connolly
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Junyi Su
- Interdisciplinary Nanoscience Centre, Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Yan Yan
- Interdisciplinary Nanoscience Centre, Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Eva M Jimenez-Mateos
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Lea M Harder
- Center for Experimental Bioinformatics, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Dennis Pultz
- Center for Experimental Bioinformatics, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Stefan J Haunsberger
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Ajay Pal
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Janosch P Heller
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | - Aoife Campbell
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Elena Langa
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Gary P Brennan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Karen Conboy
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Amy Richardson
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | - Braxton A Norwood
- Department of Neuroscience, Expesicor Inc, Kalispell, MT 59901
- Diagnostics Development, FYR Diagnostics, Missoula, MT 59801
| | - Lara S Costard
- Epilepsy Center, Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Epilepsy Center Frankfurt Rhine-Main, Neurocenter, University Hospital Frankfurt and Center for Personalized Translational Epilepsy Research, Goethe University Frankfurt, 60528, Frankfurt, Germany
| | - Valentin Neubert
- Epilepsy Center, Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, 18051, Germany
| | - Federico Del Gallo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 8 - 37134, Verona, Italy
| | - Beatrice Salvetti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 8 - 37134, Verona, Italy
| | - Vamshidhar R Vangoor
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Amaya Sanz-Rodriguez
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Juha Muilu
- Research and Development, BC Platforms, FI-02130, Espoo, Finland
| | - Paolo F Fabene
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 8 - 37134, Verona, Italy
| | - R Jeroen Pasterkamp
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Stephanie Schorge
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
- UCL School of Pharmacy, University College London, London, WC1N 1AX, United Kingdom
| | - Jens S Andersen
- Center for Experimental Bioinformatics, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Felix Rosenow
- Epilepsy Center, Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Epilepsy Center Frankfurt Rhine-Main, Neurocenter, University Hospital Frankfurt and Center for Personalized Translational Epilepsy Research, Goethe University Frankfurt, 60528, Frankfurt, Germany
| | - Sebastian Bauer
- Epilepsy Center, Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Epilepsy Center Frankfurt Rhine-Main, Neurocenter, University Hospital Frankfurt and Center for Personalized Translational Epilepsy Research, Goethe University Frankfurt, 60528, Frankfurt, Germany
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Centre, Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland;
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| |
Collapse
|
16
|
Ahkin Chin Tai JK, Freeman JL. Zebrafish as an integrative vertebrate model to identify miRNA mechanisms regulating toxicity. Toxicol Rep 2020; 7:559-570. [PMID: 32373477 PMCID: PMC7195498 DOI: 10.1016/j.toxrep.2020.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
Zebrafish are an established vertebrate model for toxicity studies. Zebrafish have a fully sequenced genome and the capability to create genetic models. Zebrafish have over 80 % homology for genes related to human disease. Functions of miRNAs in the zebrafish genome are being characterized. Zebrafish are ideal for mechanistic studies on how miRNAs regulate toxicity.
Zebrafish (Danio rerio) are an integrative vertebrate model ideal for toxicity studies. The zebrafish genome is sequenced with detailed characterization of all life stages. With their genetic similarity to humans, zebrafish models are established to study biological processes including development and disease mechanisms for translation to human health. The zebrafish genome, similar to other eukaryotic organisms, contains microRNAs (miRNAs) which function along with other epigenetic mechanisms to regulate gene expression. Studies have now established that exposure to toxins and xenobiotics can change miRNA expression profiles resulting in various physiological and behavioral alterations. In this review, we cover the intersection of miRNA alterations from toxin or xenobiotic exposure with a focus on studies using the zebrafish model system to identify miRNA mechanisms regulating toxicity. Studies to date have addressed exposures to toxins, particulate matter and nanoparticles, various environmental contaminants including pesticides, ethanol, and pharmaceuticals. Current limitations of the completed studies and future directions for this research area are discussed.
Collapse
Affiliation(s)
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
17
|
Ostolaza A, Blanco-Luquin I, Urdánoz-Casado A, Rubio I, Labarga A, Zandio B, Roldán M, Martínez-Cascales J, Mayor S, Herrera M, Aymerich N, Gallego J, Muñoz R, Mendioroz M. Circular RNA expression profile in blood according to ischemic stroke etiology. Cell Biosci 2020; 10:34. [PMID: 32175077 PMCID: PMC7063791 DOI: 10.1186/s13578-020-00394-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/24/2020] [Indexed: 02/03/2023] Open
Abstract
Background The discovery of novel biomarkers of stroke etiology would be most helpful in management of acute ischemic stroke patients. Recently, circular RNAs (circRNAs) have been proposed as candidate biomarkers of neurological conditions due to its high stability. circRNAs function as sponges, sequestering miRNAs and are involved in most relevant biological functions. Our aim was to identify differentially expressed circRNAs in acute ischemic stroke patients according to stroke etiology. Methods A comprehensive expression profile of blood circRNAs was conducted by Arraystar Human circRNA arrays (13,617 probes) on a discovery cohort of 30 stroke patients with different stroke etiologies by TOAST classification. Real-time quantitative PCR (RT-qPCR) was used to validate array results in a cohort of 50 stroke patients. Functional in silico analysis was performed to identify potential interactions with microRNAs (miRNAs) and pathways underlying deregulated circRNAs. Results A set of 60 circRNAs were found to be upregulated in atherotrombotic versus cardioembolic strokes (fold-change > = 1.5 and p-value ≤ 0.05). Differential expression of hsa_circRNA_102488, originated from UBA52 gene, was replicated in the validation cohort. RNA-binding proteins (RBPs) sites of hsa_circRNA_102488 clustered around AGO2 and FUS proteins. Further functional analysis revealed interactions between deregulated circRNAs and a set of miRNAs involved in stroke-related pathways, such as fatty acid biogenesis or lysine degradation. Conclusion Different stroke subtypes show specific profiles of circRNAs expression. circRNAs may serve as a new source of biomarkers of stroke etiology in acute ischemic stroke patients.
Collapse
Affiliation(s)
- Aiora Ostolaza
- 1Department of Neurology, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), 31008 Pamplona, Navarra Spain
| | - Idoia Blanco-Luquin
- Neuroepigenetics Laboratory-Navarrabiomed-IdiSNA, Complejo Hospitalario de Navarra, Universidad Pública de Navarra (UPNA), IdiSNA (Navarra Institute for Health Research), C/Irunlarrea, 3, 31008 Pamplona, Navarra Spain
| | - Amaya Urdánoz-Casado
- Neuroepigenetics Laboratory-Navarrabiomed-IdiSNA, Complejo Hospitalario de Navarra, Universidad Pública de Navarra (UPNA), IdiSNA (Navarra Institute for Health Research), C/Irunlarrea, 3, 31008 Pamplona, Navarra Spain
| | - Idoya Rubio
- 1Department of Neurology, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), 31008 Pamplona, Navarra Spain
| | - Alberto Labarga
- 4Bioinformatics Unit, Navarrabiomed, Public University of Navarre (UPNA), IdiSNA (Navarra Institute for Health Research), C/Irunlarrea, 3, 31008 Pamplona, Navarra Spain
| | - Beatriz Zandio
- 1Department of Neurology, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), 31008 Pamplona, Navarra Spain.,3Stroke Unit, Department of Neurology, Complejo Hospitalario de Navarra- IdiSNA (Navarra Institute for Health Research), 31008 Pamplona, Navarra Spain
| | - Miren Roldán
- Neuroepigenetics Laboratory-Navarrabiomed-IdiSNA, Complejo Hospitalario de Navarra, Universidad Pública de Navarra (UPNA), IdiSNA (Navarra Institute for Health Research), C/Irunlarrea, 3, 31008 Pamplona, Navarra Spain
| | - Judith Martínez-Cascales
- Neuroepigenetics Laboratory-Navarrabiomed-IdiSNA, Complejo Hospitalario de Navarra, Universidad Pública de Navarra (UPNA), IdiSNA (Navarra Institute for Health Research), C/Irunlarrea, 3, 31008 Pamplona, Navarra Spain
| | - Sergio Mayor
- 1Department of Neurology, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), 31008 Pamplona, Navarra Spain.,3Stroke Unit, Department of Neurology, Complejo Hospitalario de Navarra- IdiSNA (Navarra Institute for Health Research), 31008 Pamplona, Navarra Spain
| | - María Herrera
- 1Department of Neurology, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), 31008 Pamplona, Navarra Spain.,3Stroke Unit, Department of Neurology, Complejo Hospitalario de Navarra- IdiSNA (Navarra Institute for Health Research), 31008 Pamplona, Navarra Spain
| | - Nuria Aymerich
- 1Department of Neurology, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), 31008 Pamplona, Navarra Spain.,3Stroke Unit, Department of Neurology, Complejo Hospitalario de Navarra- IdiSNA (Navarra Institute for Health Research), 31008 Pamplona, Navarra Spain
| | - Jaime Gallego
- 1Department of Neurology, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), 31008 Pamplona, Navarra Spain.,3Stroke Unit, Department of Neurology, Complejo Hospitalario de Navarra- IdiSNA (Navarra Institute for Health Research), 31008 Pamplona, Navarra Spain
| | - Roberto Muñoz
- 1Department of Neurology, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), 31008 Pamplona, Navarra Spain.,3Stroke Unit, Department of Neurology, Complejo Hospitalario de Navarra- IdiSNA (Navarra Institute for Health Research), 31008 Pamplona, Navarra Spain
| | - Maite Mendioroz
- 1Department of Neurology, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), 31008 Pamplona, Navarra Spain.,Neuroepigenetics Laboratory-Navarrabiomed-IdiSNA, Complejo Hospitalario de Navarra, Universidad Pública de Navarra (UPNA), IdiSNA (Navarra Institute for Health Research), C/Irunlarrea, 3, 31008 Pamplona, Navarra Spain
| |
Collapse
|
18
|
Babicheva A, Ayon RJ, Zhao T, Ek Vitorin JF, Pohl NM, Yamamura A, Yamamura H, Quinton BA, Ba M, Wu L, Ravellette KS, Rahimi S, Balistrieri F, Harrington A, Vanderpool RR, Thistlethwaite PA, Makino A, Yuan JXJ. MicroRNA-mediated downregulation of K + channels in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2020; 318:L10-L26. [PMID: 31553627 PMCID: PMC6985878 DOI: 10.1152/ajplung.00010.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 08/19/2019] [Accepted: 09/06/2019] [Indexed: 12/22/2022] Open
Abstract
Downregulated expression of K+ channels and decreased K+ currents in pulmonary artery smooth muscle cells (PASMC) have been implicated in the development of sustained pulmonary vasoconstriction and vascular remodeling in patients with idiopathic pulmonary arterial hypertension (IPAH). However, it is unclear exactly how K+ channels are downregulated in IPAH-PASMC. MicroRNAs (miRNAs) are small non-coding RNAs that are capable of posttranscriptionally regulating gene expression by binding to the 3'-untranslated regions of their targeted mRNAs. Here, we report that specific miRNAs are responsible for the decreased K+ channel expression and function in IPAH-PASMC. We identified 3 miRNAs (miR-29b, miR-138, and miR-222) that were highly expressed in IPAH-PASMC in comparison to normal PASMC (>2.5-fold difference). Selectively upregulated miRNAs are correlated with the decreased expression and attenuated activity of K+ channels. Overexpression of miR-29b, miR-138, or miR-222 in normal PASMC significantly decreased whole cell K+ currents and downregulated voltage-gated K+ channel 1.5 (KV1.5/KCNA5) in normal PASMC. Inhibition of miR-29b in IPAH-PASMC completely recovered K+ channel function and KV1.5 expression, while miR-138 and miR-222 had a partial or no effect. Luciferase assays further revealed that KV1.5 is a direct target of miR-29b. Additionally, overexpression of miR-29b in normal PASMC decreased large-conductance Ca2+-activated K+ (BKCa) channel currents and downregulated BKCa channel β1 subunit (BKCaβ1 or KCNMB1) expression, while inhibition of miR-29b in IPAH-PASMC increased BKCa channel activity and BKCaβ1 levels. These data indicate upregulated miR-29b contributes at least partially to the attenuated function and expression of KV and BKCa channels in PASMC from patients with IPAH.
Collapse
Affiliation(s)
- Aleksandra Babicheva
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Ramon J Ayon
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Tengteng Zhao
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Jose F Ek Vitorin
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Nicole M Pohl
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Aya Yamamura
- Kinjo Gakuin University School of Pharmacy, Nagoya, Japan
| | - Hisao Yamamura
- Nagoya City University Graduate School of Pharmaceutical Sciences, Nagoya, Japan
| | - Brooke A Quinton
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Manqing Ba
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Linda Wu
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Keeley S Ravellette
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Shamin Rahimi
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
| | - Francesca Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
| | - Angela Harrington
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
| | - Rebecca R Vanderpool
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | | | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
19
|
Griffiths BB, Ouyang YB, Xu L, Sun X, Giffard RG, Stary CM. Postinjury Inhibition of miR-181a Promotes Restoration of Hippocampal CA1 Neurons after Transient Forebrain Ischemia in Rats. eNeuro 2019; 6:ENEURO.0002-19.2019. [PMID: 31427401 PMCID: PMC6727148 DOI: 10.1523/eneuro.0002-19.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/25/2022] Open
Abstract
The cellular and molecular mechanisms regulating postinjury neurogenesis in the adult hippocampus remain undefined. We have previously demonstrated that preinjury treatment with anti-microRNA (miR)-181a preserved neurons and prevented astrocyte dysfunction in the hippocampal cornu ammonis-1 (CA1) following transient forebrain ischemia. In the present study, we assessed postinjury treatment with anti-miR-181a on recovery of CA1 neurons following transient forebrain ischemia in rats. Stereotactic CA1 injection of miR-181a antagomir at either 2 h or 7 d postinjury resulted in improved restoration of CA1 measured at 28 d postinjury. Treatment with antagomir was associated with overexpression of the mir-181a target cell adhesion-associated, oncogene-related protein and enhanced expression of the neuroprogenitor cell marker doublecortin (DCX) in the CA1. Assessment of GFAP+ cell fate by Cre/Lox-mediated deletion demonstrated that some GFAP+ cells in CA1 exhibited de novo DCX expression in response to injury. In vitro experiments using primary neuronal stem cells confirmed that miR-181a inhibition augmented the expression of DCX and directed cellular differentiation toward a neuronal fate. These results suggest that miR-181a inhibition plays a central role in the restoration of CA1 neurons via augmentation of early latent neurogenic gene activation in neural progenitor cells, including some reactive astrocytes. Therapeutic interventions targeting this restorative process may represent a novel postinjury approach to improve clinical outcomes in survivors of forebrain ischemia.
Collapse
Affiliation(s)
- Brian B Griffiths
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305-5117
| | - Yi-Bing Ouyang
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305-5117
| | - Lijun Xu
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305-5117
| | - Xiaoyun Sun
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305-5117
| | - Rona G Giffard
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305-5117
| | - Creed M Stary
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305-5117
| |
Collapse
|
20
|
Puca F, Tosti N, Federico A, Kuzay Y, Pepe A, Morlando S, Savarese T, D’Alessio F, Colamaio M, Sarnataro D, Ziberi S, De Martino M, Fusco A, Battista S. HMGA1 negatively regulates NUMB expression at transcriptional and post transcriptional level in glioblastoma stem cells. Cell Cycle 2019; 18:1446-1457. [PMID: 31116627 PMCID: PMC6592240 DOI: 10.1080/15384101.2019.1618541] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is a lethal, fast-growing brain cancer, affecting 2-3 per 100,000 adults per year. It arises from multipotent neural stem cells which have reduced their ability to divide asymmetrically and hence divide symmetrically, generating increasing number of cancer stem cells, fostering tumor growth. We have previously demonstrated that the architectural transcription factor HMGA1 is highly expressed in brain tumor stem cells (BTSCs) and that its silencing increases stem cell quiescence, reduces self-renewal and sphere-forming efficiency in serial passages, suggesting a shift from symmetric to asymmetric division. Since NUMB expression is fundamental for the fulfillment of asymmetric division in stem cells, and is lost or reduced in many tumors, including GBM, we have investigated the ability of HMGA1 to regulate NUMB expression. Here, we show that HMGA1 negatively regulates NUMB expression at transcriptional level, by binding its promoter and counteracting c/EBP-β and at posttranscriptional level, by regulating the expression of MSI1 and of miR-146a. Finally, we report that HMGA1 knockdown-induced NUMB upregulation leads to the downregulation of the NOTCH1 pathway. Therefore, the data reported here indicate that HMGA1 negatively regulates NUMB expression in BTSCs, further supporting HMGA1 targeting as innovative and effective anti-cancer therapy.
Collapse
Affiliation(s)
- Francesca Puca
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Nadia Tosti
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Antonella Federico
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Yalçın Kuzay
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Anna Pepe
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Sonia Morlando
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Teresa Savarese
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Federica D’Alessio
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Marianna Colamaio
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Daniela Sarnataro
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
- Dynamic Imaging and Microscopy Facility, CEINGE, Biotecnologie Avanzate, Naples, Italy
| | - Sihana Ziberi
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche dell’Università “G. d’Annunzio” di Chieti, Chieti, Italy
| | - Marco De Martino
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Sabrina Battista
- Istituto di Endocrinologia ed Oncologia Sperimentale - CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| |
Collapse
|
21
|
Heterogeneity of Stem Cells in the Hippocampus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1169:31-53. [DOI: 10.1007/978-3-030-24108-7_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Oliver RJ, Mandyam CD. Regulation of Adult Neurogenesis by Non-coding RNAs: Implications for Substance Use Disorders. Front Neurosci 2018; 12:849. [PMID: 30524229 PMCID: PMC6261985 DOI: 10.3389/fnins.2018.00849] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/30/2018] [Indexed: 12/25/2022] Open
Abstract
The discovery of non-coding RNAs (ncRNAs)has been one of the central findings from early genomic sequencing studies. Not only was the presence of these genes unknown previously, it was the staggering disproportionate share of the genome that was predicted to be encoded by ncRNAs that was truly significant in genomic research. Over the years the function of various classes of these ncRNAs has been revealed. One of the first and enduring regulatory programs associated with these factors was development. In the neurosciences, the discovery of adult derived populations of dividing cells within the brain was equally substantial. The brain was hypothesized to be plastic only in its neuronal connectivity, but the discovery of the generation of new neurons was a novel mechanism of neuronal and behavioral plasticity. The process of adult neurogenesis resembles early neuronal development and has been found to share many parallels in the proper stages of specified genetic programs. Adult neurogenesis has also been found to play a role in learning and memory involved in particular hippocampal-dependent behaviors. Substance use disorders (SUDs) are an example of a behavioral condition that is associated with and possibly driven by hippocampal alterations. Our laboratory has determined that hippocampal adult neurogenesis is necessary for a rodent model of methamphetamine relapse. Due to the previous research on ncRNAs in development and in other brain regions involved in SUDs, we posit that ncRNAs may play a role in adult neurogenesis associated with this disorder. This review will cover the regulatory mechanisms of various classes of ncRNAs on the coordinated genetic program associated with adult neurogenesis with a special focus on how these programs could be dysregulated in SUDs.
Collapse
Affiliation(s)
- Robert J Oliver
- VA San Diego Healthcare System, San Diego, CA, United States
| | - Chitra D Mandyam
- VA San Diego Healthcare System, San Diego, CA, United States
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
23
|
Sagnelli E, Potenza N, Onorato L, Sagnelli C, Coppola N, Russo A. Micro-RNAs in hepatitis B virus-related chronic liver diseases and hepatocellular carcinoma. World J Hepatol 2018; 10:558-570. [PMID: 30310534 PMCID: PMC6177563 DOI: 10.4254/wjh.v10.i9.558] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 04/24/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that modulate gene expression at the post-transcriptional level by affecting both the stability and translation of complementary mRNAs. Several studies have shown that miRNAs are important regulators in the conflicting efforts between the virus (to manipulate the host for its successful propagation) and the host (to inhibit the virus), culminating in either the elimination of the virus or its persistence. An increasing number of studies report a role of miRNAs in hepatitis B virus (HBV) replication and pathogenesis. In fact, HBV is able to modulate different host miRNAs, particularly through the transcriptional transactivator HBx protein and, conversely, different cellular miRNAs can regulate HBV gene expression and replication by a direct binding to HBV transcripts or indirectly targeting host factors. The present review will discuss the role of miRNAs in the pathogenesis of HBV-related diseases and their role as a biomarker in the management of patients with HBV-related disease and as therapeutic targets.
Collapse
Affiliation(s)
- Evangelista Sagnelli
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania Luigi Vanvitelli, Naples 80135, Italy.
| | - Nicoletta Potenza
- DISTABIF, University of Campania "Luigi Vanvitelli", Naples 80100, Italy
| | - Lorenzo Onorato
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania Luigi Vanvitelli, Naples 80135, Italy
| | - Caterina Sagnelli
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania Luigi Vanvitelli, Naples 80135, Italy
| | - Nicola Coppola
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania Luigi Vanvitelli, Naples 80135, Italy
| | - Aniello Russo
- DISTABIF, University of Campania "Luigi Vanvitelli", Naples 80100, Italy
| |
Collapse
|
24
|
Affiliation(s)
- Andrea Barta
- a Max F. Perutz Laboratories, Department of Medical Biochemistry , Medical University of Vienna , Dr. Bohr Gasse 9/3, A-1030 Vienna , Austria
| | - Michael F Jantsch
- b Department of Cell- and Developmental Biology , Center for Anatomy and Cell Biology, Medical University of Vienna , Vienna , Austria
| |
Collapse
|
25
|
Gangras P, Dayeh DM, Mabin JW, Nakanishi K, Singh G. Cloning and Identification of Recombinant Argonaute-Bound Small RNAs Using Next-Generation Sequencing. Methods Mol Biol 2018; 1680:1-28. [PMID: 29030838 PMCID: PMC11328320 DOI: 10.1007/978-1-4939-7339-2_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Argonaute proteins (AGOs) are loaded with small RNAs as guides to recognize target mRNAs. Since the target specificity heavily depends on the base complementarity between two strands, it is important to identify small guide and long target RNAs bound to AGOs. For this purpose, next-generation sequencing (NGS) technologies have extended our appreciation truly to the nucleotide level. However, the identification of RNAs via NGS from scarce RNA samples remains a challenge. Further, most commercial and published methods are compatible with either small RNAs or long RNAs, but are not equally applicable to both. Therefore, a single method that yields quantitative, bias-free NGS libraries to identify small and long RNAs from low levels of input will be of wide interest. Here, we introduce such a procedure that is based on several modifications of two published protocols and allows robust, sensitive, and reproducible cloning and sequencing of small amounts of RNAs of variable lengths. The method was applied to the identification of small RNAs bound to a purified eukaryotic AGO. Following ligation of a DNA adapter to RNA 3'-end, the key feature of this method is to use the adapter for priming reverse transcription (RT) wherein biotinylated deoxyribonucleotides specifically incorporated into the extended complementary DNA. Such RT products are enriched on streptavidin beads, circularized while immobilized on beads and directly used for PCR amplification. We provide a stepwise guide to generate RNA-Seq libraries, their purification, quantification, validation, and preparation for next-generation sequencing. We also provide basic steps in post-NGS data analyses using Galaxy, an open-source, web-based platform.
Collapse
Affiliation(s)
- Pooja Gangras
- Department of Molecular Genetics, The Ohio State University, 276 Biological Science Bldg., 484 West 12th Ave., Columbus, OH, 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Daniel M Dayeh
- Ohio State Chemistry Program, The Ohio State University, Columbus, OH, 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Justin W Mabin
- Department of Molecular Genetics, The Ohio State University, 276 Biological Science Bldg., 484 West 12th Ave., Columbus, OH, 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Kotaro Nakanishi
- Ohio State Chemistry Program, The Ohio State University, Columbus, OH, 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Guramrit Singh
- Department of Molecular Genetics, The Ohio State University, 276 Biological Science Bldg., 484 West 12th Ave., Columbus, OH, 43210, USA.
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
26
|
Deep sequencing and analyses of miRNAs, isomiRs and miRNA induced silencing complex (miRISC)-associated miRNome in primary human chondrocytes. Sci Rep 2017; 7:15178. [PMID: 29123165 PMCID: PMC5680238 DOI: 10.1038/s41598-017-15388-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/13/2017] [Indexed: 01/17/2023] Open
Abstract
MicroRNAs, a group of small, noncoding RNAs that post-transcriptionally regulate gene expression, play important roles in chondrocyte function and in the development of osteoarthritis. We characterized the dynamic repertoire of the chondrocyte miRNome and miRISC-associated miRNome by deep sequencing analysis of primary human chondrocytes. IL-1β treatment showed a modest effect on the expression profile of miRNAs in normal and osteoarthritis (OA) chondrocytes. We found a number of miRNAs that showed a wide range of sequence modifications including nucleotide additions and deletions at 5′ and 3′ ends; and nucleotide substitutions. miR-27b-3p showed the highest expression and miR-140-3p showed the highest number of sequence variations. AGO2 RIP-Seq analysis revealed the differential recruitment of a subset of expressed miRNAs and isoforms of miRNAs (isomiRs) to the miRISC in response to IL-1β, including miR-146a-5p, miR-155-5p and miR-27b-3p. Together, these results reveal a complex repertoire of miRNAs and isomiRs in primary human chondrocytes. Here, we also show the changes in miRNA composition of the miRISC in primary human chondrocytes in response to IL-1β treatment. These findings will provide an insight to the miRNA-mediated control of gene expression in the pathogenesis of OA.
Collapse
|
27
|
Wang J, Chen T, Shan G. miR-148b Regulates Proliferation and Differentiation of Neural Stem Cells via Wnt/β-Catenin Signaling in Rat Ischemic Stroke Model. Front Cell Neurosci 2017; 11:329. [PMID: 29104534 PMCID: PMC5655035 DOI: 10.3389/fncel.2017.00329] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 10/05/2017] [Indexed: 01/07/2023] Open
Abstract
Stroke is the second leading cause of death worldwide. Stroke induced proliferation and differentiation of neural stem cells (NSCs) that have been proven to participate in ischemic brain repair. However, molecular mechanisms that regulate neurogenesis have not been fully investigated. MicroRNAs play an important role in the neurological repairing process and impact stroke recovery outcome. MiRNA-148b has been reported to regulate cell proliferation in tumor cells, but its role in NSCs after ischemic stroke remains unknown. Here, we found an overexpression of MiRNA-148b in subventricular zone (SVZ) of rat ischemic brain. In original cultured ischemic NSCs, transfection of MiRNA-148b mimic or inhibitor could suppress or enhance the expression of Wnt-1, β-catenin, and Cyclin D1, hence effected wnt/β-catenin signaling. MiRNA-148b inhibitor promoted NSCs proliferation and differentiation into newborn neural and astrocytes, and this action could be silenced with knockdown of Wnt-1. In middle cerebral artery occlusion (MCAo) rats, injection of MiRNA-148b inhibitor could reduce ischemic lesion volume and improve neurological function outcome. Collectively, our data suggest that MiRNA-148b suppressed wnt/β-catenin signaling attenuates proliferation and differentiation of neural stem cells, these findings shed new light on the role of MiRNA-148b in the recovery process during the stroke and contribute to the novel therapy strategy.
Collapse
Affiliation(s)
- Jingru Wang
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, China
| | - Tuanzhi Chen
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, China
| | - Guangzhen Shan
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|