1
|
Tang A, Yokota T. Is Duchenne gene therapy a suitable treatment despite its immunogenic class effect? Expert Opin Drug Saf 2025; 24:395-411. [PMID: 39720847 DOI: 10.1080/14740338.2024.2447072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/22/2024] [Accepted: 12/22/2024] [Indexed: 12/26/2024]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is a severe X-linked disorder characterized by progressive muscle weakness and eventual death due to cardiomyopathy or respiratory complications. Currently, there is no cure for DMD, with standard treatments primarily focusing on symptom management. Using immunosuppressive measures and optimized vector designs allows for gene therapies to better address the genetic cause of the disease. AREAS COVERED This review evaluates the efficacy and safety of emerging DMD gene therapies as of 2024. It also discusses the potential of utrophin upregulation, gene editing, and truncated dystrophin as therapeutic strategies. It highlights safety concerns associated with these therapies, including adverse events and patient deaths. A comprehensive overview of developments covers topics such as CRISPR-Cas9 therapies, micro-dystrophin, and the potential delivery of full-length dystrophin. EXPERT OPINION The FDA's recent approval of delandistrogene moxeparvovec (Elevidys) underscores the promise of gene replacement therapies for DMD patients. Understanding the mechanisms behind the adverse effects and excluding patients with specific pathogenic variants may enhance the safety profiles of these therapies. CRISPR/Cas9 therapies, while promising, face significant regulatory and safety challenges that hinder their clinical application. Optimal DMD therapies should target both skeletal and cardiac muscles to be effective.
Collapse
Affiliation(s)
- Annie Tang
- Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Toshifumi Yokota
- Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Niessen L, Silva JJ, Frisvad JC, Taniwaki MH. The application of omics tools in food mycology. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 113:423-474. [PMID: 40023565 DOI: 10.1016/bs.afnr.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
This chapter explores the application of omics technologies in food mycology, emphasizing the significant impact of filamentous fungi on agriculture, medicine, biotechnology and the food industry. The chapter delves into the importance of understanding fungal secondary metabolism due to its implications for human health and industrial use. Several omics technologies, including genomics, transcriptomics, proteomics, and metabolomics, are reviewed for their role in studying the genetic potential and metabolic capabilities of food-related fungi. The potential of CRISPR/Cas9 in fungal research is highlighted, showing its ability to unlock the full genetic potential of these organisms. The chapter also addresses the challenges posed by Big Data research in Omics and the need for advanced data processing methods. Through these discussions, the chapter highlights the future benefits and challenges of omics-based research in food mycology and its potential to revolutionize our understanding and utilization of fungi in various domains.
Collapse
Affiliation(s)
- Ludwig Niessen
- Technical University of Munich, TUM School of Life Sciences, Freising, Germany
| | | | - Jens C Frisvad
- Department of Biotechnology and Biomedicine, DTU-Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | | |
Collapse
|
3
|
Hussen BM, Najmadden ZB, Abdullah SR, Rasul MF, Mustafa SA, Ghafouri-Fard S, Taheri M. CRISPR/Cas9 gene editing: a novel strategy for fighting drug resistance in respiratory disorders. Cell Commun Signal 2024; 22:329. [PMID: 38877530 PMCID: PMC11179281 DOI: 10.1186/s12964-024-01713-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/12/2024] [Indexed: 06/16/2024] Open
Abstract
Respiratory disorders are among the conditions that affect the respiratory system. The healthcare sector faces challenges due to the emergence of drug resistance to prescribed medications for these illnesses. However, there is a technology called CRISPR/Cas9, which uses RNA to guide DNA targeting. This technology has revolutionized our ability to manipulate and visualize the genome, leading to advancements in research and treatment development. It can effectively reverse epigenetic alterations that contribute to drug resistance. Some studies focused on health have shown that targeting genes using CRISPR/Cas9 can be challenging when it comes to reducing drug resistance in patients with respiratory disorders. Nevertheless, it is important to acknowledge the limitations of this technology, such as off-target effects, immune system reactions to Cas9, and challenges associated with delivery methods. Despite these limitations, this review aims to provide knowledge about CRISPR/Cas9 genome editing tools and explore how they can help overcome resistance in patients with respiratory disorders. Additionally, this study discusses concerns related to applications of CRISPR and provides an overview of successful clinical trial studies.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Erbil, 44001, Kurdistan Region, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Zana Baqi Najmadden
- Research Center, University of Halabja, Halabja, 46018, Kurdistan region, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Tishk International University, Kurdistan Region, Iraq
| | - Suhad A Mustafa
- General Directorate of Scientific Research Center, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
4
|
Vlashi R, Zhang X, Li H, Chen G. Potential therapeutic strategies for osteoarthritis via CRISPR/Cas9 mediated gene editing. Rev Endocr Metab Disord 2024; 25:339-367. [PMID: 38055160 DOI: 10.1007/s11154-023-09860-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
Osteoarthritis (OA) is an incapacitating and one of the most common physically degenerative conditions with an assorted etiology and a highly complicated molecular mechanism that to date lacks an efficient treatment. The capacity to design biological networks and accurately modify existing genomic sites holds an apt potential for applications across medical and biotechnological sciences. One of these highly specific genomes editing technologies is the CRISPR/Cas9 mechanism, referred to as the clustered regularly interspaced short palindromic repeats, which is a defense mechanism constituted by CRISPR associated protein 9 (Cas9) directed by small non-coding RNAs (sncRNA) that bind to target DNA through Watson-Crick base pairing rules where subsequent repair of the target DNA is initiated. Up-to-date research has established the effectiveness of the CRISPR/Cas9 mechanism in targeting the genetic and epigenetic alterations in OA by suppressing or deleting gene expressions and eventually distributing distinctive anti-arthritic properties in both in vitro and in vivo osteoarthritic models. This review aims to epitomize the role of this high-throughput and multiplexed gene editing method as an analogous therapeutic strategy that could greatly facilitate the clinical development of OA-related treatments since it's reportedly an easy, minimally invasive technique, and a comparatively less painful method for osteoarthritic patients.
Collapse
Affiliation(s)
- Rexhina Vlashi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xingen Zhang
- Department of Orthopedics, Jiaxing Key Laboratory for Minimally Invasive Surgery in Orthopaedics & Skeletal Regenerative Medicine, Zhejiang Rongjun Hospital, Jiaxing, 314001, China
| | - Haibo Li
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, China.
- Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic Diseases, Ningbo Women and Children's Hospital, Ningbo, China.
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
5
|
Jung WJ, Park SJ, Cha S, Kim K. Factors affecting the cleavage efficiency of the CRISPR-Cas9 system. Anim Cells Syst (Seoul) 2024; 28:75-83. [PMID: 38440123 PMCID: PMC10911232 DOI: 10.1080/19768354.2024.2322054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/17/2024] [Indexed: 03/06/2024] Open
Abstract
The CRISPR-Cas system stands out as a promising genome editing tool due to its cost-effectiveness and time efficiency compared to other methods. This system has tremendous potential for treating various diseases, including genetic disorders and cancer, and promotes therapeutic research for a wide range of genetic diseases. Additionally, the CRISPR-Cas system simplifies the generation of animal models, offering a more accessible alternative to traditional methods. The CRISPR-Cas9 system can be used to cleave target DNA strands that need to be corrected, causing double-strand breaks (DSBs). DNA with DSBs can then be recovered by the DNA repair pathway that the CRISPR-Cas9 system uses to edit target gene sequences. High cleavage efficiency of the CRISPR-Cas9 system is thus imperative for effective gene editing. Herein, we explore several factors affecting the cleavage efficiency of the CRISPR-Cas9 system. These factors include the GC content of the protospacer-adjacent motif (PAM) proximal and distal regions, single-guide RNA (sgRNA) properties, and chromatin state. These considerations contribute to the efficiency of genome editing.
Collapse
Affiliation(s)
- Won Jun Jung
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Soo-Ji Park
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seongkwang Cha
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
- Neuroscience Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyoungmi Kim
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Baghini SS, Razeghian E, Malayer SK, Pecho RDC, Obaid M, Awfi ZS, Zainab HA, Shamsara M. Recent advances in the application of genetic and epigenetic modalities in the improvement of antibody-producing cell lines. Int Immunopharmacol 2023; 123:110724. [PMID: 37582312 DOI: 10.1016/j.intimp.2023.110724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023]
Abstract
There are numerous applications for recombinant antibodies (rAbs) in biological and toxicological research. Monoclonal antibodies are synthesized using genetic engineering and other related processes involved in the generation of rAbs. Because they can identify specific antigenic sites on practically any molecule, including medicines, hormones, microbial antigens, and cell receptors, rAbs are particularly useful in scientific research. The key benefits of rAbs are improved repeatability, control, and consistency, shorter manufacturing times than with hybridoma technology, an easier transition from one format of antibody to another, and an animal-free process. The engineering of the host cell has recently been developed method for enhancing the production efficiency and improving the quality of antibodies from mammalian cell lines. In this light, genetic engineering is mostly utilized to manage cellular chaperones, decrease cell death, increase cell viability, change the microRNAs (miRNAs) pattern in mammalian cells, and glycoengineered cell lines. Here, we shed light on how genetic engineering can be used therapeutically to produce antibodies at higher levels with greater potency and effectiveness.
Collapse
Affiliation(s)
- Sadegh Shojaei Baghini
- Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Ehsan Razeghian
- Human Genetics Division, Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Setare Kakavand Malayer
- Department of Biology, Faculty of Biological Science, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Zinah Salem Awfi
- Department of Dental Industry Techniques, Al-Noor University College, Nineveh, Iraq.
| | - H A Zainab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq.
| | - Mehdi Shamsara
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| |
Collapse
|
7
|
Liu C, Wang R, Li J, Cheng F, Shu X, Zhao H, Xue Q, Yu H, Wu A, Wang L, Hu S, Zhang Y, Yang J, Xiang H, Li M. Widespread RNA-based cas regulation monitors crRNA abundance and anti-CRISPR proteins. Cell Host Microbe 2023; 31:1481-1493.e6. [PMID: 37659410 DOI: 10.1016/j.chom.2023.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/04/2023] [Accepted: 08/09/2023] [Indexed: 09/04/2023]
Abstract
CRISPR RNAs (crRNAs) and Cas proteins work together to provide prokaryotes with adaptive immunity against genetic invaders like bacteriophages and plasmids. However, the coordination of crRNA production and cas expression remains poorly understood. Here, we demonstrate that widespread modulatory mini-CRISPRs encode cas-regulating RNAs (CreRs) that mediate autorepression of type I-B, I-E, and V-A Cas proteins, based on their limited complementarity to cas promoters. This autorepression not only reduces autoimmune risks but also responds to changes in the abundance of canonical crRNAs that compete with CreR for Cas proteins. Furthermore, the CreR-guided autorepression of Cas proteins can be alleviated or even subverted by diverse bacteriophage anti-CRISPR (Acr) proteins that inhibit Cas effectors, which, in turn, promotes the generation of new Cas proteins. Our findings reveal a general RNA-guided autorepression paradigm for diverse Cas effectors, shedding light on the intricate self-coordination of CRISPR-Cas and its transcriptional counterstrategy against Acr proteins.
Collapse
Affiliation(s)
- Chao Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Rui Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Feiyue Cheng
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xian Shu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Huiwei Zhao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qiong Xue
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Haiying Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Aici Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lingyun Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; College of Plant Protection, Shandong Agricultural University, Taian, Shandong, China
| | - Sushu Hu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yihan Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; School of Life Sciences, Hebei University, Baoding, Hebei, China
| | - Jun Yang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China.
| | - Ming Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Shmakov SA, Barth ZK, Makarova KS, Wolf Y, Brover V, Peters J, Koonin E. Widespread CRISPR-derived RNA regulatory elements in CRISPR-Cas systems. Nucleic Acids Res 2023; 51:8150-8168. [PMID: 37283088 PMCID: PMC10450183 DOI: 10.1093/nar/gkad495] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
CRISPR-cas loci typically contain CRISPR arrays with unique spacers separating direct repeats. Spacers along with portions of adjacent repeats are transcribed and processed into CRISPR(cr) RNAs that target complementary sequences (protospacers) in mobile genetic elements, resulting in cleavage of the target DNA or RNA. Additional, standalone repeats in some CRISPR-cas loci produce distinct cr-like RNAs implicated in regulatory or other functions. We developed a computational pipeline to systematically predict crRNA-like elements by scanning for standalone repeat sequences that are conserved in closely related CRISPR-cas loci. Numerous crRNA-like elements were detected in diverse CRISPR-Cas systems, mostly, of type I, but also subtype V-A. Standalone repeats often form mini-arrays containing two repeat-like sequence separated by a spacer that is partially complementary to promoter regions of cas genes, in particular cas8, or cargo genes located within CRISPR-Cas loci, such as toxins-antitoxins. We show experimentally that a mini-array from a type I-F1 CRISPR-Cas system functions as a regulatory guide. We also identified mini-arrays in bacteriophages that could abrogate CRISPR immunity by inhibiting effector expression. Thus, recruitment of CRISPR effectors for regulatory functions via spacers with partial complementarity to the target is a common feature of diverse CRISPR-Cas systems.
Collapse
Affiliation(s)
- Sergey A Shmakov
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Zachary K Barth
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Vyacheslav Brover
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Joseph E Peters
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| |
Collapse
|
9
|
Forgham H, Liu L, Zhu J, Javed I, Cai W, Qiao R, Davis TP. Vector enabled CRISPR gene editing - A revolutionary strategy for targeting the diversity of brain pathologies. Coord Chem Rev 2023; 487:215172. [PMID: 37305445 PMCID: PMC10249757 DOI: 10.1016/j.ccr.2023.215172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Brain pathologies are considered one of the greatest contributors of death and disability worldwide. Neurodegenerative Alzheimer's disease is the second leading cause of death in adults, whilst brain cancers including glioblastoma multiforme in adults, and pediatric-type high-grade gliomas in children remain largely untreatable. A further compounding issue for patients with brain pathologies is that of long-term neuropsychiatric sequela - as a symptom or arising from high dose therapeutic intervention. The major challenge to effective, low dose treatment is finding therapeutics that successfully cross the blood-brain barrier and target aberrant cellular processes, while having minimum effect on essential cellular processes, and healthy bystander cells. Following over 30 years of research, CRISPR technology has emerged as a biomedical tour de force with the potential to revolutionise the treatment of both neurological and cancer related brain pathologies. The aim of this review is to take stock of the progress made in CRISPR technology in relation to treating brain pathologies. Specifically, we will describe studies which look beyond design, synthesis, and theoretical application; and focus instead on in vivo studies with translation potential. Along with discussing the latest breakthrough techniques being applied within the CRISPR field, we aim to provide a prospective on the knowledge gaps that exist and challenges that still lay ahead for CRISPR technology prior to successful application in the brain disease treatment field.
Collapse
Affiliation(s)
- Helen Forgham
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Liwei Liu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jiayuan Zhu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ibrahim Javed
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin – Madison, Madison, WI, USA
| | - Ruirui Qiao
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Thomas P. Davis
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
10
|
Urbaitis T, Gasiunas G, Young JK, Hou Z, Paulraj S, Godliauskaite E, Juskeviciene MM, Stitilyte M, Jasnauskaite M, Mabuchi M, Robb GB, Siksnys V. A new family of CRISPR-type V nucleases with C-rich PAM recognition. EMBO Rep 2022; 23:e55481. [PMID: 36268581 PMCID: PMC9724661 DOI: 10.15252/embr.202255481] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 12/12/2022] Open
Abstract
Most CRISPR-type V nucleases are stimulated to cleave double-stranded (ds) DNA targets by a T-rich PAM, which restricts their targeting range. Here, we identify and characterize a new family of type V RNA-guided nuclease, Cas12l, that exclusively recognizes a C-rich (5'-CCY-3') PAM. The organization of genes within its CRISPR locus is similar to type II-B CRISPR-Cas9 systems, but both sequence analysis and functional studies establish it as a new family of type V effector. Biochemical experiments show that Cas12l nucleases function optimally between 37 and 52°C, depending on the ortholog, and preferentially cut supercoiled DNA. Like other type V nucleases, it exhibits collateral nonspecific ssDNA and ssRNA cleavage activity that is triggered by ssDNA or dsDNA target recognition. Finally, we show that one family member, Asp2Cas12l, functions in a heterologous cellular environment, altogether, suggesting that this new group of CRISPR-associated nucleases may be harnessed as genome editing reagents.
Collapse
Affiliation(s)
- Tomas Urbaitis
- CasZymeVilniusLithuania,Institute of BiotechnologyVilnius UniversityVilniusLithuania
| | | | | | - Zhenglin Hou
- Farming Solutions & DigitalCorteva Agriscience™JohnstonIAUSA
| | | | | | | | - Migle Stitilyte
- CasZymeVilniusLithuania,Institute of BiotechnologyVilnius UniversityVilniusLithuania
| | - Monika Jasnauskaite
- CasZymeVilniusLithuania,Present address:
LSC‐EMBL Partnership Institute for Genome Technologies Editing, Life Sciences CenterVilnius UniversityVilniusLithuania
| | | | | | - Virginijus Siksnys
- CasZymeVilniusLithuania,Institute of BiotechnologyVilnius UniversityVilniusLithuania
| |
Collapse
|
11
|
Cheng F, Wu A, Liu C, Cao X, Wang R, Shu X, Wang L, Zhang Y, Xiang H, Li M. The toxin-antitoxin RNA guards of CRISPR-Cas evolved high specificity through repeat degeneration. Nucleic Acids Res 2022; 50:9442-9452. [PMID: 36018812 PMCID: PMC9458426 DOI: 10.1093/nar/gkac712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/30/2022] [Accepted: 08/10/2022] [Indexed: 12/24/2022] Open
Abstract
Recent discovery of ectopic repeats (outside CRISPR arrays) provided unprecedented insights into the nondefense roles of CRISPR-Cas. A striking example is the addiction module CreTA (CRISPR-regulated toxin-antitoxins), where one or two (in most cases) ectopic repeats produce CRISPR-resembling antitoxic (CreA) RNAs that direct the CRISPR effector Cascade to transcriptionally repress a toxic RNA (CreT). Here, we demonstrated that CreTA repeats are extensively degenerated in sequence, with the first repeat (ψR1) being more diverged than the second one (ψR2). As a result, such addiction modules become highly specific to their physically-linked CRISPR-Cas loci, and in most cases, CreA could not harness a heterologous CRISPR-Cas to suppress its cognate toxin. We further disclosed that this specificity primarily derives from the degeneration of ψR1, and could generally be altered by modifying this repeat element. We also showed that the degenerated repeats of CreTA were insusceptible to recombination and thus more stable compared to a typical CRISPR array, which could be exploited to develop highly stable CRISPR-based tools. These data illustrated that repeat degeneration (a common feature of ectopic repeats) improves the stability and specificity of CreTA in protecting CRISPR-Cas, which could have contributed to the widespread occurrence and deep diversification of CRISPR systems.
Collapse
Affiliation(s)
| | | | | | - Xifeng Cao
- School of life Sciences, Hebei University, Baoding, Hebei, China
| | - Rui Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xian Shu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lingyun Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China,College of Plant Protection, Shandong Agricultural University, Taian, Shandong, China
| | - Yihan Zhang
- School of life Sciences, Hebei University, Baoding, Hebei, China,CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hua Xiang
- Correspondence may also be addressed to Hua Xiang.
| | - Ming Li
- To whom correspondence should be addressed. Tel: +86 10 64807064; Fax: +86 10 64807064;
| |
Collapse
|
12
|
Shojaei Baghini S, Gardanova ZR, Abadi SAH, Zaman BA, İlhan A, Shomali N, Adili A, Moghaddar R, Yaseri AF. CRISPR/Cas9 application in cancer therapy: a pioneering genome editing tool. Cell Mol Biol Lett 2022; 27:35. [PMID: 35508982 PMCID: PMC9066929 DOI: 10.1186/s11658-022-00336-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/13/2022] [Indexed: 12/20/2022] Open
Abstract
The progress of genetic engineering in the 1970s brought about a paradigm shift in genome editing technology. The clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) system is a flexible means to target and modify particular DNA sequences in the genome. Several applications of CRISPR/Cas9 are presently being studied in cancer biology and oncology to provide vigorous site-specific gene editing to enhance its biological and clinical uses. CRISPR's flexibility and ease of use have enabled the prompt achievement of almost any preferred alteration with greater efficiency and lower cost than preceding modalities. Also, CRISPR/Cas9 technology has recently been applied to improve the safety and efficacy of chimeric antigen receptor (CAR)-T cell therapies and defeat tumor cell resistance to conventional treatments such as chemotherapy and radiotherapy. The current review summarizes the application of CRISPR/Cas9 in cancer therapy. We also discuss the present obstacles and contemplate future possibilities in this context.
Collapse
Affiliation(s)
- Sadegh Shojaei Baghini
- Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Zhanna R. Gardanova
- Department of Psychotherapy, Pirogov Russian National Research Medical University, 1 Ostrovityanova St., 117997 Moscow, Russia
| | - Saeme Azizi Hassan Abadi
- Department of Nursery and Midwifery, Faculty of Laboratory Science, Islamic Azad University of Chalous, Mazandaran, Iran
| | - Burhan Abdullah Zaman
- Basic Sciences Department, College of Pharmacy, University of Duhok, Kurdistan Region, Iraq
| | - Ahmet İlhan
- Department of Medical Biochemistry, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Navid Shomali
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Adili
- Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South Florida, Tampa, USA
| | - Roozbeh Moghaddar
- Department of Pediatric Hematology and Oncology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | |
Collapse
|
13
|
Kahraman Ilıkkan Ö. Analysis of Probiotic Bacteria Genomes: Comparison of CRISPR/Cas Systems and Spacer Acquisition Diversity. Indian J Microbiol 2022; 62:40-46. [PMID: 35068602 PMCID: PMC8758818 DOI: 10.1007/s12088-021-00971-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 08/04/2021] [Indexed: 11/25/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) genes constitute an adaptive (acquired) defense system of bacteria and archaea. Here 72 probiotic bacteria genomes were investigated in terms of the presence of CRISPR/Cas systems and phage/plasmid invaders through spacer analysis. 49 CRISPR/Cas systems were detected within probiotic strains, namely,17 type II-A, 10 type I-C, 8 type I-E, 5 Type I-U (I-G), 4 type III-A, 2 type I-B, 1 type I-A, 1 type IV-B, and 1 type II-C. The predicted target of spacers was determined in 25 strains and consequently, three different spacer and target patterns were revealed. The diversity of CRISPR spacers provides insight and understanding to determine strain-specific invaders of probiotic bacteria as well as their relationships between strains. CRISPR systems were clarified in many studies for genomic characterization. However, recently, endogenous genome editing with CRISPR has provided an approach for various genome editing projects. Thus, in the future, producing strain-specific phage-resistant starter cultures or probiotics by endogenous genome editing methods according to phage/plasmid survey can be utilized for industrial and pharmaceutical applications. Therefore, this study intended a comprehensive investigation of CRISPR systems of probiotic bacteria. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12088-021-00971-1.
Collapse
Affiliation(s)
- Özge Kahraman Ilıkkan
- Kahramankazan Vocational School, Başkent University, Food Quality Control and Analysis Program, Ankara, Turkey
| |
Collapse
|
14
|
Abstract
The principal biological function of bacterial and archaeal CRISPR systems is RNA-guided adaptive immunity against viruses and other mobile genetic elements (MGEs). These systems show remarkable evolutionary plasticity and functional versatility at multiple levels, including both the defense mechanisms that lead to direct, specific elimination of the target DNA or RNA and those that cause programmed cell death (PCD) or induction of dormancy. This flexibility is also evident in the recruitment of CRISPR systems for nondefense functions. Defective CRISPR systems or individual CRISPR components have been recruited by transposons for RNA-guided transposition, by plasmids for interplasmid competition, and by viruses for antidefense and interviral conflicts. Additionally, multiple highly derived CRISPR variants of yet unknown functions have been discovered. A major route of innovation in CRISPR evolution is the repurposing of diverged repeat variants encoded outside CRISPR arrays for various structural and regulatory functions. The evolutionary plasticity and functional versatility of CRISPR systems are striking manifestations of the ubiquitous interplay between defense and “normal” cellular functions. The CRISPR systems show remarkable functional versatility beyond their principal function as an adaptive immune mechanism. This Essay discusses how derived CRISPR systems have been recruited by transposons on multiple occasions and mediate RNA-guided transposition; derived CRISPR RNAs are frequently recruited for regulatory functions.
Collapse
Affiliation(s)
- Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
15
|
Chan KG, Ang GY, Yu CY, Yean CY. Harnessing CRISPR-Cas to Combat COVID-19: From Diagnostics to Therapeutics. Life (Basel) 2021; 11:1210. [PMID: 34833086 PMCID: PMC8623262 DOI: 10.3390/life11111210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a global threat with an ever-increasing death toll even after a year on. Hence, the rapid identification of infected individuals with diagnostic tests continues to be crucial in the on-going effort to combat the spread of COVID-19. Viral nucleic acid detection via real-time reverse transcription polymerase chain reaction (rRT-PCR) or sequencing is regarded as the gold standard for COVID-19 diagnosis, but these technically intricate molecular tests are limited to centralized laboratories due to the highly specialized instrument and skilled personnel requirements. Based on the current development in the field of diagnostics, the programmable clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) system appears to be a promising technology that can be further explored to create rapid, cost-effective, sensitive, and specific diagnostic tools for both laboratory and point-of-care (POC) testing. Other than diagnostics, the potential application of the CRISPR-Cas system as an antiviral agent has also been gaining attention. In this review, we highlight the recent advances in CRISPR-Cas-based nucleic acid detection strategies and the application of CRISPR-Cas as a potential antiviral agent in the context of COVID-19.
Collapse
Affiliation(s)
- Kok Gan Chan
- International Genome Centre, Jiangsu University, Zhenjiang 212013, China;
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Geik Yong Ang
- Faculty of Sports Science and Recreation, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| | - Choo Yee Yu
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Chan Yean Yean
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Malaysia
| |
Collapse
|
16
|
Ma S, Lv J, Feng Z, Rong Z, Lin Y. Get ready for the CRISPR/Cas system: A beginner's guide to the engineering and design of guide RNAs. J Gene Med 2021; 23:e3377. [PMID: 34270141 DOI: 10.1002/jgm.3377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) system is a state-of-the-art tool for versatile genome editing that has advanced basic research dramatically, with great potential for clinic applications. The system consists of two key molecules: a CRISPR-associated (Cas) effector nuclease and a single guide RNA. The simplicity of the system has enabled the development of a wide spectrum of derivative methods. Almost any laboratory can utilize these methods, although new users may initially be confused when faced with the potentially overwhelming abundance of choices. Cas nucleases and their engineering have been systematically reviewed previously. In the present review, we discuss single guide RNA engineering and design strategies that facilitate more efficient, more specific and safer gene editing.
Collapse
Affiliation(s)
- Shufeng Ma
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, China
- Department of Nephrology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jie Lv
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, China
| | - Zinan Feng
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, China
| | - Zhili Rong
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, China
- Dermatology Hospital, Southern Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Ying Lin
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Cheng F, Wang R, Yu H, Liu C, Yang J, Xiang H, Li M. Divergent degeneration of creA antitoxin genes from minimal CRISPRs and the convergent strategy of tRNA-sequestering CreT toxins. Nucleic Acids Res 2021; 49:10677-10688. [PMID: 34551428 PMCID: PMC8501985 DOI: 10.1093/nar/gkab821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
Aside from providing adaptive immunity, type I CRISPR-Cas was recently unearthed to employ a noncanonical RNA guide (CreA) to transcriptionally repress an RNA toxin (CreT). Here, we report that, for most archaeal and bacterial CreTA modules, the creA gene actually carries two flanking 'CRISPR repeats', which are, however, highly divergent and degenerated. By deep sequencing, we show that the two repeats give rise to an 8-nt 5' handle and a 22-nt 3' handle, respectively, i.e., the conserved elements of a canonical CRISPR RNA, indicating they both retained critical nucleotides for Cas6 processing during divergent degeneration. We also uncovered a minimal CreT toxin that sequesters the rare transfer RNA for isoleucine, tRNAIleCAU, with a six-codon open reading frame containing two consecutive AUA codons. To fully relieve its toxicity, both tRNAIleCAU overexpression and supply of extra agmatine (modifies the wobble base of tRNAIleCAU to decipher AUA codons) are required. By replacing AUA to AGA/AGG codons, we reprogrammed this toxin to sequester rare arginine tRNAs. These data provide essential information on CreTA origin and for future CreTA prediction, and enrich the knowledge of tRNA-sequestering small RNAs that are employed by CRISPR-Cas to get addictive to the host.
Collapse
Affiliation(s)
- Feiyue Cheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Rui Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| | - Haiying Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chao Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jun Yang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Abstract
Clustered regularly interspaced palindromic repeats (CRISPR)-associated (Cas)9 transactivating CRISPR RNAs (tracrRNAs) form distinct structures essential for target recognition and cleavage and dictate exchangeability between orthologous proteins. As noncoding RNAs that are often apart from the CRISPR array, their identification can be arduous. In this article, a new bioinformatic method for the detection of Cas9 tracrRNAs is presented. The approach utilizes a covariance model based on both sequence homology and predicted secondary structure to locate tracrRNAs. This method predicts a tracrRNA for 98% of CRISPR-Cas9 systems identified by us. To ensure accuracy, we also benchmark our approach against biochemically vetted tracrRNAs finding false-positive and false-negative rates of 5.5% and 7.1%, respectively. Finally, the association between Cas9 amino acid sequence-based phylogeny and tracrRNA secondary structure is evaluated, revealing strong evidence that secondary structure is evolutionarily conserved among Cas9 lineages. Altogether, our findings provide insight into Cas9 tracrRNA evolution and efforts to characterize the tracrRNA of Cas9 systems.
Collapse
Affiliation(s)
- Shane K. Dooley
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa, USA; Johnston, Iowa, USA
| | - Erica K. Baken
- Department of Science, Chatham University, Pittsburgh, Pennsylvania, USA; Johnston, Iowa, USA
| | - Walter N. Moss
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA; and Johnston, Iowa, USA
| | - Adina Howe
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa, USA; Johnston, Iowa, USA
| | - Joshua K. Young
- Department of Molecular Engineering, Corteva AgriscienceJohnston, , Johnston, Iowa, USA
| |
Collapse
|
19
|
Li M, Gong L, Cheng F, Yu H, Zhao D, Wang R, Wang T, Zhang S, Zhou J, Shmakov SA, Koonin EV, Xiang H. Toxin-antitoxin RNA pairs safeguard CRISPR-Cas systems. Science 2021; 372:372/6541/eabe5601. [PMID: 33926924 DOI: 10.1126/science.abe5601] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/29/2020] [Accepted: 03/10/2021] [Indexed: 12/18/2022]
Abstract
CRISPR-Cas systems provide RNA-guided adaptive immunity in prokaryotes. We report that the multisubunit CRISPR effector Cascade transcriptionally regulates a toxin-antitoxin RNA pair, CreTA. CreT (Cascade-repressed toxin) is a bacteriostatic RNA that sequesters the rare arginine tRNAUCU (transfer RNA with anticodon UCU). CreA is a CRISPR RNA-resembling antitoxin RNA, which requires Cas6 for maturation. The partial complementarity between CreA and the creT promoter directs Cascade to repress toxin transcription. Thus, CreA becomes antitoxic only in the presence of Cascade. In CreTA-deleted cells, cascade genes become susceptible to disruption by transposable elements. We uncover several CreTA analogs associated with diverse archaeal and bacterial CRISPR-cas loci. Thus, toxin-antitoxin RNA pairs can safeguard CRISPR immunity by making cells addicted to CRISPR-Cas, which highlights the multifunctionality of Cas proteins and the intricate mechanisms of CRISPR-Cas regulation.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China. .,CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Luyao Gong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Feiyue Cheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Haiying Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Dahe Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Rui Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Tian Wang
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Shengjie Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Sergey A Shmakov
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China. .,College of Life Science, University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
20
|
Workman RE, Pammi T, Nguyen BTK, Graeff LW, Smith E, Sebald SM, Stoltzfus MJ, Euler CW, Modell JW. A natural single-guide RNA repurposes Cas9 to autoregulate CRISPR-Cas expression. Cell 2021; 184:675-688.e19. [PMID: 33421369 DOI: 10.1016/j.cell.2020.12.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/24/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022]
Abstract
CRISPR-Cas systems provide prokaryotes with acquired immunity against viruses and plasmids, but how these systems are regulated to prevent autoimmunity is poorly understood. Here, we show that in the S. pyogenes CRISPR-Cas system, a long-form transactivating CRISPR RNA (tracr-L) folds into a natural single guide that directs Cas9 to transcriptionally repress its own promoter (Pcas). Further, we demonstrate that Pcas serves as a critical regulatory node. De-repression causes a dramatic 3,000-fold increase in immunization rates against viruses; however, heightened immunity comes at the cost of increased autoimmune toxicity. Using bioinformatic analyses, we provide evidence that tracrRNA-mediated autoregulation is widespread in type II-A CRISPR-Cas systems. Collectively, we unveil a new paradigm for the intrinsic regulation of CRISPR-Cas systems by natural single guides, which may facilitate the frequent horizontal transfer of these systems into new hosts that have not yet evolved their own regulatory strategies.
Collapse
Affiliation(s)
- Rachael E Workman
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Teja Pammi
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Binh T K Nguyen
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Leonardo W Graeff
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Erika Smith
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Suzanne M Sebald
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Marie J Stoltzfus
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chad W Euler
- Department of Medical Laboratory Sciences, Hunter College, CUNY, New York, NY 10065, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joshua W Modell
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
21
|
Yu L, Marchisio MA. Types I and V Anti-CRISPR Proteins: From Phage Defense to Eukaryotic Synthetic Gene Circuits. Front Bioeng Biotechnol 2020; 8:575393. [PMID: 33102460 PMCID: PMC7556299 DOI: 10.3389/fbioe.2020.575393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/31/2020] [Indexed: 12/26/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated proteins), a prokaryotic RNA-mediated adaptive immune system, has been repurposed for gene editing and synthetic gene circuit construction both in bacterial and eukaryotic cells. In the last years, the emergence of the anti-CRISPR proteins (Acrs), which are natural OFF-switches for CRISPR-Cas, has provided a new means to control CRISPR-Cas activity and promoted a further development of CRISPR-Cas-based biotechnological toolkits. In this review, we focus on type I and type V-A anti-CRISPR proteins. We first narrate Acrs discovery and analyze their inhibitory mechanisms from a structural perspective. Then, we describe their applications in gene editing and transcription regulation. Finally, we discuss the potential future usage-and corresponding possible challenges-of these two kinds of anti-CRISPR proteins in eukaryotic synthetic gene circuits.
Collapse
|
22
|
Gholizadeh P, Köse Ş, Dao S, Ganbarov K, Tanomand A, Dal T, Aghazadeh M, Ghotaslou R, Ahangarzadeh Rezaee M, Yousefi B, Samadi Kafil H. How CRISPR-Cas System Could Be Used to Combat Antimicrobial Resistance. Infect Drug Resist 2020; 13:1111-1121. [PMID: 32368102 PMCID: PMC7182461 DOI: 10.2147/idr.s247271] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/31/2020] [Indexed: 12/26/2022] Open
Abstract
Rapid emergence of antibiotic-resistant bacteria has made it harder for us to combat infectious diseases and to develop new antibiotics. The clustered regularly interspaced short palindromic repeats - CRISPR-associated (CRISPR-Cas) system, as a bacterial adaptive immune system, is recognized as one of the new strategies for controlling antibiotic-resistant strains. The programmable Cas nuclease of this system used against bacterial genomic sequences could be lethal or could help reduce resistance of bacteria to antibiotics. Therefore, this study aims to review using the CRISPR-Cas system to promote sensitizing bacteria to antibiotics. We envision that CRISPR-Cas approaches may open novel ways for the development of smart antibiotics, which could eliminate multidrug-resistant (MDR) pathogens and differentiate between beneficial and pathogenic microorganisms. These systems can be exploited to quantitatively and selectively eliminate individual bacterial strains based on a sequence-specific manner, creating opportunities in the treatment of MDR infections, the study of microbial consortia, and the control of industrial fermentation.
Collapse
Affiliation(s)
- Pourya Gholizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Şükran Köse
- Department of Infectious Diseases and Clinical Microbiology, University of Health Sciences, Tepecik Training and Research Hospital, İzmir, Turkey
| | - Sounkalo Dao
- Faculté de Médecine, de Pharmacie et d’Odonto-Stomatologie (FMPOS), University of Bamako, Bamako, Mali
| | - Khudaverdi Ganbarov
- Department of Microbiology, Baku State University, Baku, Republic of Azerbaijan
| | - Asghar Tanomand
- Department of Basic Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Tuba Dal
- Department of Clinical Microbiology, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Mohammad Aghazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ghotaslou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
23
|
Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, Charpentier E, Cheng D, Haft DH, Horvath P, Moineau S, Mojica FJM, Scott D, Shah SA, Siksnys V, Terns MP, Venclovas Č, White MF, Yakunin AF, Yan W, Zhang F, Garrett RA, Backofen R, van der Oost J, Barrangou R, Koonin EV. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 2019; 18:67-83. [DOI: 10.1038/s41579-019-0299-x] [Citation(s) in RCA: 797] [Impact Index Per Article: 132.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2019] [Indexed: 12/16/2022]
|
24
|
Ipoutcha T, Tsarmpopoulos I, Talenton V, Gaspin C, Moisan A, Walker CA, Brownlie J, Blanchard A, Thebault P, Sirand-Pugnet P. Multiple Origins and Specific Evolution of CRISPR/Cas9 Systems in Minimal Bacteria ( Mollicutes). Front Microbiol 2019; 10:2701. [PMID: 31824468 PMCID: PMC6882279 DOI: 10.3389/fmicb.2019.02701] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022] Open
Abstract
CRISPR/Cas systems provide adaptive defense mechanisms against invading nucleic acids in prokaryotes. Because of its interest as a genetic tool, the Type II CRISPR/Cas9 system from Streptococcus pyogenes has been extensively studied. It includes the Cas9 endonuclease that is dependent on a dual-guide RNA made of a tracrRNA and a crRNA. Target recognition relies on crRNA annealing and the presence of a protospacer adjacent motif (PAM). Mollicutes are currently the bacteria with the smallest genome in which CRISPR/Cas systems have been reported. Many of them are pathogenic to humans and animals (mycoplasmas and ureaplasmas) or plants (phytoplasmas and some spiroplasmas). A global survey was conducted to identify and compare CRISPR/Cas systems found in the genome of these minimal bacteria. Complete or degraded systems classified as Type II-A and less frequently as Type II-C were found in the genome of 21 out of 52 representative mollicutes species. Phylogenetic reconstructions predicted a common origin of all CRISPR/Cas systems of mycoplasmas and at least two origins were suggested for spiroplasmas systems. Cas9 in mollicutes were structurally related to the S. aureus Cas9 except the PI domain involved in the interaction with the PAM, suggesting various PAM might be recognized by Cas9 of different mollicutes. Structure of the predicted crRNA/tracrRNA hybrids was conserved and showed typical stem-loop structures pairing the Direct Repeat part of crRNAs with the 5' region of tracrRNAs. Most mollicutes crRNA/tracrRNAs showed G + C% significantly higher than the genome, suggesting a selective pressure for maintaining stability of these secondary structures. Examples of CRISPR spacers matching with mollicutes phages were found, including the textbook case of Mycoplasma cynos strain C142 having no prophage sequence but a CRISPR/Cas system with spacers targeting prophage sequences that were found in the genome of another M. cynos strain that is devoid of a CRISPR system. Despite their small genome size, mollicutes have maintained protective means against invading DNAs, including restriction/modification and CRISPR/Cas systems. The apparent lack of CRISPR/Cas systems in several groups of species including main pathogens of humans, ruminants, and plants suggests different evolutionary routes or a lower risk of phage infection in specific ecological niches.
Collapse
Affiliation(s)
- Thomas Ipoutcha
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France.,Université de Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Iason Tsarmpopoulos
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France.,Université de Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Vincent Talenton
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France.,Université de Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Christine Gaspin
- INRA, Mathématiques et Informatique Appliquées de Toulouse, Université de Toulouse, Toulouse, France
| | - Annick Moisan
- INRA, Mathématiques et Informatique Appliquées de Toulouse, Université de Toulouse, Toulouse, France
| | - Caray A Walker
- School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Joe Brownlie
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - Alain Blanchard
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France.,Université de Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | | | - Pascal Sirand-Pugnet
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France.,Université de Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| |
Collapse
|
25
|
Faure G, Shmakov SA, Yan WX, Cheng DR, Scott DA, Peters JE, Makarova KS, Koonin EV. CRISPR-Cas in mobile genetic elements: counter-defence and beyond. Nat Rev Microbiol 2019; 17:513-525. [PMID: 31165781 PMCID: PMC11165670 DOI: 10.1038/s41579-019-0204-7] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The principal function of CRISPR-Cas systems in archaea and bacteria is defence against mobile genetic elements (MGEs), including viruses, plasmids and transposons. However, the relationships between CRISPR-Cas and MGEs are far more complex. Several classes of MGE contributed to the origin and evolution of CRISPR-Cas, and, conversely, CRISPR-Cas systems and their components were recruited by various MGEs for functions that remain largely uncharacterized. In this Analysis article, we investigate and substantially expand the range of CRISPR-Cas components carried by MGEs. Three groups of Tn7-like transposable elements encode 'minimal' type I CRISPR-Cas derivatives capable of target recognition but not cleavage, and another group encodes an inactivated type V variant. These partially inactivated CRISPR-Cas variants might mediate guide RNA-dependent integration of the respective transposons. Numerous plasmids and some prophages encode type IV systems, with similar predicted properties, that appear to contribute to competition among plasmids and between plasmids and viruses. Many prokaryotic viruses also carry CRISPR mini-arrays, some of which recognize other viruses and are implicated in inter-virus conflicts, and solitary repeat units, which could inhibit host CRISPR-Cas systems.
Collapse
Affiliation(s)
- Guilhem Faure
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sergey A Shmakov
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
- Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | | | | | | | - Joseph E Peters
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
26
|
Affiliation(s)
- Erik J Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
27
|
Koonin EV, Makarova KS. Origins and evolution of CRISPR-Cas systems. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180087. [PMID: 30905284 PMCID: PMC6452270 DOI: 10.1098/rstb.2018.0087] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2018] [Indexed: 12/11/2022] Open
Abstract
CRISPR-Cas, the bacterial and archaeal adaptive immunity systems, encompass a complex machinery that integrates fragments of foreign nucleic acids, mostly from mobile genetic elements (MGE), into CRISPR arrays embedded in microbial genomes. Transcripts of the inserted segments (spacers) are employed by CRISPR-Cas systems as guide (g)RNAs for recognition and inactivation of the cognate targets. The CRISPR-Cas systems consist of distinct adaptation and effector modules whose evolutionary trajectories appear to be at least partially independent. Comparative genome analysis reveals the origin of the adaptation module from casposons, a distinct type of transposons, which employ a homologue of Cas1 protein, the integrase responsible for the spacer incorporation into CRISPR arrays, as the transposase. The origin of the effector module(s) is far less clear. The CRISPR-Cas systems are partitioned into two classes, class 1 with multisubunit effectors, and class 2 in which the effector consists of a single, large protein. The class 2 effectors originate from nucleases encoded by different MGE, whereas the origin of the class 1 effector complexes remains murky. However, the recent discovery of a signalling pathway built into the type III systems of class 1 might offer a clue, suggesting that type III effector modules could have evolved from a signal transduction system involved in stress-induced programmed cell death. The subsequent evolution of the class 1 effector complexes through serial gene duplication and displacement, primarily of genes for proteins containing RNA recognition motif domains, can be hypothetically reconstructed. In addition to the multiple contributions of MGE to the evolution of CRISPR-Cas, the reverse flow of information is notable, namely, recruitment of minimalist variants of CRISPR-Cas systems by MGE for functions that remain to be elucidated. Here, we attempt a synthesis of the diverse threads that shed light on CRISPR-Cas origins and evolution. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'.
Collapse
Affiliation(s)
- Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | | |
Collapse
|
28
|
Charpentier E, Elsholz A, Marchfelder A. CRISPR-Cas: more than ten years and still full of mysteries. RNA Biol 2019; 16:377-379. [PMID: 31009325 PMCID: PMC6546415 DOI: 10.1080/15476286.2019.1591659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
| | - Alexander Elsholz
- Max Planck Unit for the Science of Pathogens, Charitéplatz 1, Berlin, Germany
| | | |
Collapse
|
29
|
Abstract
Pervasive application of CRISPR-Cas systems in genome editing has prompted an increase in both interest and necessity to further elucidate existing systems as well as discover putative novel systems. The ubiquity and power of current computational platforms have made in silico approaches to CRISPR-Cas identification and characterization accessible to a wider audience and increasingly amenable for processing extensive data sets. Here, we describe in silico methods for predicting and visualizing notable features of CRISPR-Cas systems, including Cas domain determination, CRISPR array visualization, and inference of the protospacer-adjacent motif. The efficiency of these tools enables rapid exploration of CRISPR-Cas diversity across prokaryotic genomes and supports scalable analysis of large genomic data sets.
Collapse
Affiliation(s)
- Matthew A Nethery
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC, United States; Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Rodolphe Barrangou
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC, United States; Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|