1
|
Awasthi S, Dobrolecki LE, Sallas C, Zhang X, Li Y, Khazaei S, Ghosh S, Jeter CR, Liu J, Mills GB, Westin SN, Lewis MT, Peng W, Sood AK, Yap TA, Yi SS, McGrail DJ, Sahni N. UBA1 inhibition sensitizes cancer cells to PARP inhibitors. Cell Rep Med 2024; 5:101834. [PMID: 39626673 PMCID: PMC11722100 DOI: 10.1016/j.xcrm.2024.101834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/31/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024]
Abstract
Therapeutic strategies targeting the DNA damage response, such as poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi), have revolutionized cancer treatment in tumors deficient in homologous recombination (HR). However, overcoming innate and acquired resistance to PARPi remains a significant challenge. Here, we employ a genome-wide CRISPR knockout screen and discover that the depletion of ubiquitin-activating enzyme E1 (UBA1) enhances sensitivity to PARPi in HR-proficient ovarian cancer cells. We show that silencing or pharmacological inhibition of UBA1 sensitizes multiple cell lines and organoid models to PARPi. Mechanistic studies uncover that UBA1 inhibition not only impedes HR repair to sensitize cells to PARP inhibition but also increases PARylation, which may subsequently be targeted by PARP inhibition. In vivo experiments using patient-derived xenografts demonstrate that combining PARP and UBA1 inhibition provided significant survival benefit compared to individual therapies with no detectable signs of toxicity, establishing this combination approach as a promising strategy to extend PARPi benefit.
Collapse
Affiliation(s)
- Sharad Awasthi
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Lacey E Dobrolecki
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Christina Sallas
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Xudong Zhang
- Department of Anatomic Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yang Li
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sima Khazaei
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sumanta Ghosh
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Collene R Jeter
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jinsong Liu
- Department of Anatomic Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gordon B Mills
- Division of Oncological Science, Knight Cancer Institute, Oregon Health and Sciences University, Portland, OR 97201, USA
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael T Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Weiyi Peng
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S Stephen Yi
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA; Interdisciplinary Life Sciences Graduate Programs (ILSGP), College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA; Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX, USA; Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Daniel J McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
2
|
de Souza ID, G S Fernandes V, Vitor F Cavalcante J, Carolina M F Coelho A, A A Morais D, Cabral-Marques O, A B Pasquali M, J S Dalmolin R. Sex-specific gene expression differences in the prefrontal cortex of major depressive disorder individuals. Neuroscience 2024; 559:272-282. [PMID: 39265803 DOI: 10.1016/j.neuroscience.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/16/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
Major depressive disorder (MDD) is a leading global cause of disability, being more prevalent in females, possibly due to molecular and neuronal pathway differences between females and males. However, the connection between transcriptional changes and MDD remains unclear. We identified transcriptionally altered genes (TAGs) in MDD through gene and transcript expression analyses, focusing on sex-specific differences. Analyzing 263 brain samples from both sexes, we conducted differential gene expression, differential transcript expression, and differential transcript usage analyses, revealing 1169 unique TAGs, primarily in the prefrontal areas, with nearly half exhibiting transcript-level alterations. Females showed notable RNA splicing and export process disruptions in the orbitofrontal cortex, alongside altered DDX39B gene expression in five of the six brain regions in both sexes. Our findings suggest that disruptions in RNA processing pathways may play a vital role in MDD.
Collapse
Affiliation(s)
- Iara D de Souza
- Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte Brazil.
| | - Vítor G S Fernandes
- Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte Brazil
| | - João Vitor F Cavalcante
- Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte Brazil
| | - Ana Carolina M F Coelho
- Department of Community Medicine, The Arctic University of Tromsø Norway; Department of Immunology, Institute of Biomedical Sciences, University of São Paulo Brazil
| | - Diego A A Morais
- Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte Brazil
| | - Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo Brazil; DO'R Institute for Research, São Paulo, Brazil
| | | | - Rodrigo J S Dalmolin
- Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte Brazil; Department of Biochemistry, Federal University of Rio Grande do Norte Brazil.
| |
Collapse
|
3
|
Lederbauer J, Das S, Piton A, Lessel D, Kreienkamp HJ. The role of DEAD- and DExH-box RNA helicases in neurodevelopmental disorders. Front Mol Neurosci 2024; 17:1414949. [PMID: 39149612 PMCID: PMC11324592 DOI: 10.3389/fnmol.2024.1414949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
Neurodevelopmental disorders (NDDs) represent a large group of disorders with an onset in the neonatal or early childhood period; NDDs include intellectual disability (ID), autism spectrum disorders (ASD), attention deficit hyperactivity disorders (ADHD), seizures, various motor disabilities and abnormal muscle tone. Among the many underlying Mendelian genetic causes for these conditions, genes coding for proteins involved in all aspects of the gene expression pathway, ranging from transcription, splicing, translation to the eventual RNA decay, feature rather prominently. Here we focus on two large families of RNA helicases (DEAD- and DExH-box helicases). Genetic variants in the coding genes for several helicases have recently been shown to be associated with NDD. We address genetic constraints for helicases, types of pathological variants which have been discovered and discuss the biological pathways in which the affected helicase proteins are involved.
Collapse
Affiliation(s)
- Johannes Lederbauer
- Institute of Human Genetics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarada Das
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Amelie Piton
- Department of Translational Medicine and Neurogenetics, Institute of Genetics and Molecular and Cellular Biology, Strasbourg University, CNRS UMR7104, INSERM U1258, Illkirch, France
| | - Davor Lessel
- Institute of Human Genetics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Jürgen Kreienkamp
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
Zheng B, Chen X, Ling Q, Cheng Q, Ye S. Role and therapeutic potential of DEAD-box RNA helicase family in colorectal cancer. Front Oncol 2023; 13:1278282. [PMID: 38023215 PMCID: PMC10654640 DOI: 10.3389/fonc.2023.1278282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed and the second cancer-related death worldwide, leading to more than 0.9 million deaths every year. Unfortunately, this disease is changing rapidly to a younger age, and in a more advanced stage when diagnosed. The DEAD-box RNA helicase proteins are the largest family of RNA helicases so far. They regulate almost every aspect of RNA physiological processes, including RNA transcription, editing, splicing and transport. Aberrant expression and critical roles of the DEAD-box RNA helicase proteins have been found in CRC. In this review, we first summarize the protein structure, cellular distribution, and diverse biological functions of DEAD-box RNA helicases. Then, we discuss the distinct roles of DEAD-box RNA helicase family in CRC and describe the cellular mechanism of actions based on recent studies, with an aim to provide future strategies for the treatment of CRC.
Collapse
Affiliation(s)
- Bichun Zheng
- Department of Anorectal Surgery, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | | | | | | | | |
Collapse
|
5
|
Magalingam KB, Somanath SD, Ramdas P, Haleagrahara N, Radhakrishnan AK. 6-Hydroxydopamine Induces Neurodegeneration in Terminally Differentiated SH-SY5Y Neuroblastoma Cells via Enrichment of the Nucleosomal Degradation Pathway: a Global Proteomics Approach. J Mol Neurosci 2022; 72:1026-1046. [PMID: 35258800 PMCID: PMC9064865 DOI: 10.1007/s12031-021-01962-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 12/22/2021] [Indexed: 01/07/2023]
Abstract
The SH-SY5Y human neuroblastoma cells have been used for decades as a cell-based model of dopaminergic neurons to explore the underlying science of cellular and molecular mechanisms of neurodegeneration in Parkinson’s disease (PD). However, data revealing the protein expression changes in 6-OHDA induced cytotoxicity in differentiated SH-SY5Y cells remain void. Therefore, we investigated the differentially regulated proteins expressed in terminally differentiated SH-SY5Y cells (differ-SH-SY5Y neural cells) exposed to 6-hydroxydopamine (6-OHDA) using the LC–MS/MS technology and construed the data using the online bioinformatics databases such as PANTHER, STRING, and KEGG. Our studies demonstrated that the neuronal development in differ-SH-SY5Y neural cells was indicated by the overexpression of proteins responsible for neurite formations such as calnexin (CANX) and calreticulin (CALR) besides significant downregulation of ribosomal proteins. The enrichment of the KEGG ribosome pathway was detected with significant downregulation (p < 0.05) of all the 21 ribosomal proteins in differ-SH-SY5Y neural cells compared with undifferentiated cells. Whereas in the PD model, the pathological changes induced by 6-OHDA were indicated by the presence of unfolded and misfolded proteins, which triggered the response of 10 kDa heat shock proteins (HSP), namely HSPE1 and HSPA9. Moreover, the 6-OHDA-induced neurodegeneration in differ-SH-SY5Y neural cells also upregulated the voltage-dependent anion-selective channel protein 1 (VDAC1) protein and enriched the KEGG systemic lupus erythematosus (SLE) pathway that was regulated by 17 histone proteins (p < 0.05) in differ-SH-SY5Y neural cells. These results suggest that the nucleosomal degradation pathway may have regulated the 6-OHDA induced neurodegeneration in PD cell-based model, which is reflected by increased apoptosis and histone release in differ-SH-SY5Y neural cells.
Collapse
Affiliation(s)
- Kasthuri Bai Magalingam
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Malaysia, Bandar Sunway, Malaysia
| | - Sushela Devi Somanath
- Pathology Division, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Premdass Ramdas
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Nagaraja Haleagrahara
- College of Public Health, Medicine and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia
| | - Ammu Kutty Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Malaysia, Bandar Sunway, Malaysia.
- Monash-Industry Palm Oil Education and Research Platform (MIPO), Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
6
|
Zhang H, He C, Guo X, Fang Y, Lai Q, Wang X, Pan X, Li H, Qin K, Li A, Liu S, Li Q. DDX39B contributes to the proliferation of colorectal cancer through direct binding to CDK6/CCND1. Cell Death Dis 2022; 8:30. [PMID: 35046400 PMCID: PMC8770491 DOI: 10.1038/s41420-022-00827-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/01/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022]
Abstract
DDX39B (also called UAP56 or BAT1) which is a kind of DEAD-box family helicase plays pivotal roles in mRNA binding, splicing, and export. It has been found upregulated in many kinds of tumors as an oncogene. Nevertheless, the underlying molecular mechanisms of DDX39B in the proliferation of human colorectal cancer (CRC) remain fairly elusive. In our study, function experiments including the CCK8 and colony formation assay revealed that DDX39B facilitates CRC proliferation in vitro. DDX39B knockdown cells were administered for the orthotopic CRC tumor xenograft mouse model, after which tumor growth was monitored and immunohistochemistry (IHC) was performed to prove that DDX39B can also facilitates CRC proliferation in vivo. Flow cytometry demonstrated that DDX39B promotes the proliferation of CRC cells by driving the cell cycle from G0/G1 phase to the S phase. Mechanistically, RNA-binding protein immunoprecipitation-sequencing (RIP-seq) confirmed that DDX39B binds directly to the first exon of the CDK6/CCND1 pre-mRNA and upregulates their expression. Splicing experiments in vitro using a RT-PCR and gel electrophoresis assay confirmed that DDX39B promotes CDK6/CCND1 pre-mRNA splicing. Rescue experiments indicated that CDK6/CCND1 is a downstream effector of DDX39B-mediated CRC cell proliferation. Collectively, our results demonstrated that DDX39B and CDK6/CCND1 direct interactions serve as a CRC proliferation promoter, which can accelerate the G1/S phase transition to enhance CRC proliferation, and can offer novel and emerging treatment strategies targeting this cell proliferation-promoting gene.
Collapse
|
7
|
Tao S, Ye X, Pan L, Fu M, Huang P, Peng Z, Yang S. Construction and Clinical Translation of Causal Pan-Cancer Gene Score Across Cancer Types. Front Genet 2021; 12:784775. [PMID: 35003220 PMCID: PMC8733729 DOI: 10.3389/fgene.2021.784775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022] Open
Abstract
Pan-cancer strategy, an integrative analysis of different cancer types, can be used to explain oncogenesis and identify biomarkers using a larger statistical power and robustness. Fine-mapping defines the casual loci, whereas genome-wide association studies (GWASs) typically identify thousands of cancer-related loci and not necessarily have a fine-mapping component. In this study, we develop a novel strategy to identify the causal loci using a pan-cancer and fine-mapping assumption, constructing the CAusal Pan-cancER gene (CAPER) score and validating its performance using internal and external validation on 1,287 individuals and 985 cell lines. Summary statistics of 15 cancer types were used to define 54 causal loci in 15 potential genes. Using the Cancer Genome Atlas (TCGA) training set, we constructed the CAPER score and divided cancer patients into two groups. Using the three validation sets, we found that 19 cancer-related variables were statistically significant between the two CAPER score groups and that 81 drugs had significantly different drug sensitivity between the two CAPER score groups. We hope that our strategies for selecting causal genes and for constructing CAPER score would provide valuable clues for guiding the management of different types of cancers.
Collapse
Affiliation(s)
- Shiyue Tao
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiangyu Ye
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lulu Pan
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Minghan Fu
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Peng Huang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhihang Peng
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Sheng Yang
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Plasma-Derived Exosomal hsa-miR-4488 and hsa-miR-1228-5p: Novel Biomarkers for Dermatomyositis-Associated Interstitial Lung Disease with Anti-Melanoma Differentiation-Associated Protein 5 Antibody-Positive Subset. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6676107. [PMID: 34368354 PMCID: PMC8342150 DOI: 10.1155/2021/6676107] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 06/27/2021] [Indexed: 12/12/2022]
Abstract
The present study is aimed at profiling circulating exosome-derived microRNAs (miRNAs/miRs) from patients with dermatomyositis (DM), in particular those complicated with interstitial lung disease (ILD) with anti-melanoma differentiation-associated protein 5 (MDA5) antibody-positive. Fifteen participants were enrolled, including five patients with DM complicated with ILDs prior to treatment with circulating anti-MDA5 antibody-positive status [DM-ILD-MDA5 Ab(+)], five DM patients without ILDs who were negative for 16 detectable myositis-specific antibodies [DM-nonILD-MSA16(-)], and five age- and gender-matched healthy donor controls (HCs). The characteristics of the exosomes extracted by Ribo™ Exosome Isolation Reagent were identified using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and flow cytometry. Differentially expressed miRNAs, determined by next-generation deep sequencing, were identified through the criteria of ∣log2 fold change | ≥1 and P < 0.01. A total of 38 miRNAs were significantly upregulated in exosomes from patients with DM-ILD-MDA5 Ab(+) compared to those from HC, while 21 miRNAs were significantly downregulated. Compared to exosomes derived from patients with DM-nonILD-MSA16(-), 51 miRNAs were significantly upregulated and 33 miRNAs were significantly downregulated from patients with DM-ILD-MDA5 Ab(+). A total of 73 exosomal miRNAs were significantly differentially expressed between DM-nonILD-MSA16(-) and HC. In particular, two miRNAs, Homo sapiens- (hsa-) miR-4488 and hsa-miR-1228-5p, were common differentially expressed miRNAs among three comparisons. GO and KEGG analyses suggested that several pathways may contribute the pathogenesis of DM-ILD-MDA5 Ab(+) and DM-nonILD-MSA16(-), while PPI network analysis of hsa-miR-4488 and hsa-miR-1228-5p indicated that their predicted target genes, DExD-box helicase 39B and MDM2, may be involved in the mechanisms of DM-ILD-MDA5 Ab(+).
Collapse
|
9
|
Integrated Analysis of the Roles of RNA Binding Proteins and Their Prognostic Value in Clear Cell Renal Cell Carcinoma. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:5568411. [PMID: 34306592 PMCID: PMC8263288 DOI: 10.1155/2021/5568411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/02/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022]
Abstract
Methods We downloaded the RNA sequencing data of ccRCC from the Cancer Genome Atlas (TCGA) database and identified differently expressed RBPs in different tissues. In this study, we used bioinformatics to analyze the expression and prognostic value of RBPs; then, we performed functional analysis and constructed a protein interaction network for them. We also screened out some RBPs related to the prognosis of ccRCC. Finally, based on the identified RBPs, we constructed a prognostic model that can predict patients' risk of illness and survival time. Also, the data in the HPA database were used for verification. Results In our experiment, we obtained 539 ccRCC samples and 72 normal controls. In the subsequent analysis, 87 upregulated RBPs and 38 downregulated RBPs were obtained. In addition, 9 genes related to the prognosis of patients were selected, namely, RPL36A, THOC6, RNASE2, NOVA2, TLR3, PPARGC1A, DARS, LARS2, and U2AF1L4. We further constructed a prognostic model based on these genes and plotted the ROC curve. This ROC curve performed well in judgement and evaluation. A nomogram that can judge the patient's life span is also made. Conclusion In conclusion, we have identified differentially expressed RBPs in ccRCC and carried out a series of in-depth research studies, the results of which may provide ideas for the diagnosis of ccRCC and the research of new targeted drugs.
Collapse
|
10
|
He Q, Li Z, Lei X, Zou Q, Yu H, Ding Y, Xu G, Zhu W. The underlying molecular mechanisms and prognostic factors of RNA binding protein in colorectal cancer: a study based on multiple online databases. Cancer Cell Int 2021; 21:325. [PMID: 34193169 PMCID: PMC8244213 DOI: 10.1186/s12935-021-02031-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/19/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND RNA binding protein (RBP) is an active factor involved in the occurrence and development of colorectal cancer (CRC). Therefore, the potential mechanism of RBP in CRC needs to be clarified by dry-lab analyses or wet-lab experiments. METHODS The differential RBP gene obtained from the GEPIA 2 (Gene Expression Profiling Interactive Analysis 2) were performed functional enrichment analysis. Then, the alternative splicing (AS) events related to survival were acquired by univariate regression analysis, and the correlation between RBP and AS was analyzed by R software. The online databases were conducted to analyze the mutation and methylation of RBPs in CRC. Moreover, 5 key RBP signatures were obtained through univariate and multivariate Cox regression analysis and established as RBP prognosis model. Subsequently, the above model was verified through another randomized group of TCGA CRC cohorts. Finally, multiple online databases and qRT-PCR analysis were carried to further confirm the expression of the above 5 RBP signatures in CRC. RESULTS Through a comprehensive bioinformatics analysis, it was revealed that RBPs had genetic and epigenetic changes in CRC. We obtained 300 differentially expressed RBPs in CRC samples. The functional analysis suggested that they mainly participated in spliceosome. Then, a regulatory network for RBP was established to participate in AS and DDX39B was detected to act as a potentially essential factor in the regulation of AS in CRC. Our analysis discovered that 11 differentially expressed RBPs with a mutation frequency higher than 5%. Furthermore, we found that 10 differentially expressed RBPs had methylation sites related to the prognosis of CRC, and a prognostic model was constructed by the 5 RBP signatures. In another randomized group of TCGA CRC cohorts, the prognostic performance of the 5 RBP signatures was verified. CONCLUSION The potential mechanisms that regulate the aberrant expression of RBPs in the development of CRC was explored, a network that regulated AS was established, and the RBP-related prognosis model was constructed and verified, which could improve the individualized prognosis prediction of CRC.
Collapse
Affiliation(s)
- Qinglian He
- Department of Pathology, Guangdong Medical University, No.1 Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Ziqi Li
- Department of Pathology, Guangdong Medical University, No.1 Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Xue Lei
- Department of Pathology, Guangdong Medical University, No.1 Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Qian Zou
- Department of Pathology, Guangdong Medical University, No.1 Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Haibing Yu
- School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China
| | - Yuanlin Ding
- School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China
| | - Guangxian Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Institute of Clinical Laboratory, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China
| | - Wei Zhu
- Department of Pathology, Guangdong Medical University, No.1 Xincheng Road, Dongguan, 523808, Guangdong Province, China.
| |
Collapse
|
11
|
Multiple allelic associations from genes involved in energy metabolism were identified in celiac disease. J Biosci 2021. [DOI: 10.1007/s12038-021-00184-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Pinter S, Knodel F, Choudalakis M, Schnee P, Kroll C, Fuchs M, Broehm A, Weirich S, Roth M, Eisler SA, Zuber J, Jeltsch A, Rathert P. A functional LSD1 coregulator screen reveals a novel transcriptional regulatory cascade connecting R-loop homeostasis with epigenetic regulation. Nucleic Acids Res 2021; 49:4350-4370. [PMID: 33823549 PMCID: PMC8096265 DOI: 10.1093/nar/gkab180] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/04/2021] [Indexed: 12/30/2022] Open
Abstract
The lysine specific demethylase 1 (LSD1) plays a pivotal role in cellular differentiation by regulating the expression of key developmental genes in concert with different coregulatory proteins. This process is impaired in different cancer types and incompletely understood. To comprehensively identify functional coregulators of LSD1, we established a novel tractable fluorescent reporter system to monitor LSD1 activity in living cells. Combining this reporter system with a state-of-the-art multiplexed RNAi screen, we identify the DEAD-box helicase 19A (DDX19A) as a novel coregulator and demonstrate that suppression of Ddx19a results in an increase of R-loops and reduced LSD1-mediated gene silencing. We further show that DDX19A binds to tri-methylated lysine 27 of histone 3 (H3K27me3) and it regulates gene expression through the removal of transcription promoting R-loops. Our results uncover a novel transcriptional regulatory cascade where the downregulation of genes is dependent on the LSD1 mediated demethylation of histone H3 lysine 4 (H3K4). This allows the polycomb repressive complex 2 (PRC2) to methylate H3K27, which serves as a binding site for DDX19A. Finally, the binding of DDX19A leads to the efficient removal of R-loops at active promoters, which further de-represses LSD1 and PRC2, establishing a positive feedback loop leading to a robust repression of the target gene.
Collapse
Affiliation(s)
- Sabine Pinter
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Franziska Knodel
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Michel Choudalakis
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Philipp Schnee
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Carolin Kroll
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Marina Fuchs
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Alexander Broehm
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Sara Weirich
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Mareike Roth
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Stephan A Eisler
- Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, 70569 Stuttgart, Germany
| | - Johannes Zuber
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Philipp Rathert
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
13
|
Systematic Identification of Survival-Associated Alternative Splicing Events in Kidney Renal Clear Cell Carcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:5576933. [PMID: 33959190 PMCID: PMC8075682 DOI: 10.1155/2021/5576933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/29/2021] [Accepted: 04/05/2021] [Indexed: 11/18/2022]
Abstract
There is growing evidence that aberrant alternative splicing (AS) is highly correlated with driving tumorigenesis, but its function in kidney renal clear cell carcinoma (KIRC) remains to be discovered. In this study, we obtained the level-3 RNA sequencing and clinical data of KIRC from The Cancer Genome Atlas (TGCA). Combining with the splicing event detail information from TGCA SpliceSeq database, we established the independent prognosis signatures for KIRC with the univariate and multivariate Cox regression analyses. Then, we used the Kaplan-Meier analysis and receiver operating characteristic curves (ROCs) to assess the accuracy of prognosis signatures. We also constructed the regulatory network of splicing factors (SFs) and AS events. Our results showed that a total of 12029 survival-associated AS events of 5761 genes were found in 524 KIRC patients. All types of prognosis signatures displayed a satisfactory ability to reliably predict, especially in exon skip model which the area under curve of ROC was 0.802. Moreover, 18 splicing factors (SFs) highly correlated to AS events were identified. With the construction of the SF-AS interactive network, we found that SF powerfully promotes the occurrence of abnormal AS and may have a profound role in KIRC. Collectively, we screened survival-associated AS events and established prognosis signatures for KIRC, coupling with the SF-AS interactive network, which might provide a key perspective to clarify the potential mechanism of AS in KIRC.
Collapse
|
14
|
Verma M, Khan MIK, Kadumuri RV, Chakrapani B, Awasthi S, Mahesh A, Govindaraju G, Chavali PL, Rajavelu A, Chavali S, Dhayalan A. PRMT3 interacts with ALDH1A1 and regulates gene-expression by inhibiting retinoic acid signaling. Commun Biol 2021; 4:109. [PMID: 33495566 PMCID: PMC7835222 DOI: 10.1038/s42003-020-01644-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 12/15/2020] [Indexed: 12/23/2022] Open
Abstract
Protein arginine methyltransferase 3 (PRMT3) regulates protein functions by introducing asymmetric dimethylation marks at the arginine residues in proteins. However, very little is known about the interaction partners of PRMT3 and their functional outcomes. Using yeast-two hybrid screening, we identified Retinal dehydrogenase 1 (ALDH1A1) as a potential interaction partner of PRMT3 and confirmed this interaction using different methods. ALDH1A1 regulates variety of cellular processes by catalyzing the conversion of retinaldehyde to retinoic acid. By molecular docking and site-directed mutagenesis, we identified the specific residues in the catalytic domain of PRMT3 that facilitate interaction with the C-terminal region of ALDH1A1. PRMT3 inhibits the enzymatic activity of ALDH1A1 and negatively regulates the expression of retinoic acid responsive genes in a methyltransferase activity independent manner. Our findings show that in addition to regulating protein functions by introducing methylation modifications, PRMT3 could also regulate global gene expression through protein-protein interactions. Here, the authors demonstrate that protein arginine methyltransferase 3 (PRMT3) interacts with and inhibits the retinal dehydrogenase ALDH1A1, negatively regulating the expression of retinoic acid responsive genes. This study shows that PRMT3 affects diverse biological processes not only by globally regulating protein function through methylation but also by regulating gene expression.
Collapse
Affiliation(s)
- Mamta Verma
- Department of Biotechnology, Pondicherry University, Puducherry, 605014, India
| | - Mohd Imran K Khan
- Department of Biotechnology, Pondicherry University, Puducherry, 605014, India
| | - Rajashekar Varma Kadumuri
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India
| | - Baskar Chakrapani
- Department of Biotechnology, Pondicherry University, Puducherry, 605014, India
| | - Sharad Awasthi
- Department of Biotechnology, Pondicherry University, Puducherry, 605014, India
| | - Arun Mahesh
- Department of Biotechnology, Pondicherry University, Puducherry, 605014, India
| | - Gayathri Govindaraju
- Interdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, 695014, India
| | - Pavithra L Chavali
- CSIR-Centre for Cellular & Molecular Biology, Hyderabad, Telangana, 500007, India
| | - Arumugam Rajavelu
- Interdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, 695014, India
| | - Sreenivas Chavali
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India.
| | - Arunkumar Dhayalan
- Department of Biotechnology, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
15
|
Ding Y, Feng G, Yang M. Prognostic role of alternative splicing events in head and neck squamous cell carcinoma. Cancer Cell Int 2020; 20:168. [PMID: 32467664 PMCID: PMC7227031 DOI: 10.1186/s12935-020-01249-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
Background Aberrant alternative splicing (AS) is implicated in biological processes of cancer. This study aims to reveal prognostic AS events and signatures that may serve as prognostic predictors for head and neck squamous cell carcinoma (HNSCC). Methods Prognostic AS events in HNSCC were identified by univariate COX analysis. Prognostic signatures comprising prognostic AS events were constructed for prognosis prediction in patients with HNSCC. The correlation between the percent spliced in (PSI) values of AS events and the expression of splicing factors (SFs) was analyzed by Pearson correlation analysis. Gene functional annotation analysis was performed to reveal pathways in which prognostic AS is enriched. Results A total of 27,611 AS events in 15,873 genes were observed, and there were 3433 AS events in 2624 genes significantly associated with overall survival (OS) for HNSCC. Moreover, we found that AS prognostic signatures could accurately predict HNSCC prognosis. SF-AS regulatory networks were constructed according to the correlation between PSI values of AS events and the expression levels of SFs. Conclusions Our study identified prognostic AS events and signatures. Furthermore, it established SF-AS networks in HNSCC that were valuable in predicting the prognosis of patients with HNSCC and elucidating the regulatory mechanisms underlying AS in HNSCC.
Collapse
Affiliation(s)
- Yanni Ding
- Department of Breast Surgery, Shaan Xi Provincial Tumor Hospital, Xi'an City, Shaan Xi Province 710000 China
| | - Guang Feng
- 2The Third Department of Burns and Plastic Surgery and Center of Wound Repair, The Fourth Medical Center of PLA General Hospital, Beijing, 100048 China
| | - Min Yang
- Department of Breast Surgery, Shaan Xi Provincial Tumor Hospital, Xi'an City, Shaan Xi Province 710000 China
| |
Collapse
|
16
|
Zhao X, Si S, Li X, Sun W, Cui L. Identification and validation of an alternative splicing-based prognostic signature for head and neck squamous cell carcinoma. J Cancer 2020; 11:4571-4580. [PMID: 32489474 PMCID: PMC7255372 DOI: 10.7150/jca.44746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/28/2020] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence has demonstrated that changes in alternative splicing (AS) events are closely associated with the initiation and progression of cancer. However, the concrete role of AS in tumorigenesis of head and neck squamous cell carcinoma (HNSCC) is poorly known. In this study, we aimed to investigate the AS profile in HNSCC, and build up a robust AS-based prognostic signature for HNSCC. Our results revealed a total of 4068 overall survival (OS) associated AS events in the TCGA HNSCC cohort. The whole TCGA HNSCC cohort was randomly divided into discovery cohort and validation cohort. A prognostic signature including five AS events was developed with the discovery cohort based on the most significant OS-associated AS events. Then it was further successfully validated in the validation cohort. The AS-based risk signature was an independent prognostic indicator in both discovery cohort and validation cohort. This prognostic signature-based nomogram model showed excellent performance for predicting the OS of HNSCC. Splicing network analysis have identified the most correlated splicing factor-AS network in HNSCC. Collectively, we have constructed a robust AS-based prognostic signature which might contribute to improve the clinical outcome of HNSCC.
Collapse
Affiliation(s)
- Xinyuan Zhao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shanshan Si
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiaona Li
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Wenjuan Sun
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Li Cui
- UCLA School of Dentistry, Los Angeles, CA 90095, USA
| |
Collapse
|
17
|
Pan YB, Wang S, Yang B, Jiang Z, Lenahan C, Wang J, Zhang J, Shao A. Transcriptome analyses reveal molecular mechanisms underlying phenotypic differences among transcriptional subtypes of glioblastoma. J Cell Mol Med 2020; 24:3901-3916. [PMID: 32091665 PMCID: PMC7171397 DOI: 10.1111/jcmm.14976] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/14/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Using molecular signatures, previous studies have defined glioblastoma (GBM) subtypes with different phenotypes, such as the proneural (PN), neural (NL), mesenchymal (MES) and classical (CL) subtypes. However, the gene programmes underlying the phenotypes of these subtypes were less known. We applied weighted gene co-expression network analysis to establish gene modules corresponding to various subtypes. RNA-seq and immunohistochemical data were used to validate the expression of identified genes. We identified seven molecular subtype-specific modules and several candidate signature genes for different subtypes. Next, we revealed, for the first time, that radioresistant/chemoresistant gene signatures exist only in the PN subtype, as described by Verhaak et al, but do not exist in the PN subtype described by Phillips et al PN subtype. Moreover, we revealed that the tumour cells in the MES subtype GBMs are under ER stress and that angiogenesis and the immune inflammatory response are both significantly elevated in this subtype. The molecular basis of these biological processes was also uncovered. Genes associated with alternative RNA splicing are up-regulated in the CL subtype GBMs, and genes pertaining to energy synthesis are elevated in the NL subtype GBMs. In addition, we identified several survival-associated genes that positively correlated with glioma grades. The identified intrinsic characteristics of different GBM subtypes can offer a potential clue to the pathogenesis and possible therapeutic targets for various subtypes.
Collapse
Affiliation(s)
- Yuan-Bo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Siqi Wang
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo University School of Medicine, Ningbo, China.,Department of Nuclear Medicine, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Biao Yang
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhenqi Jiang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM, USA.,Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Jianhua Wang
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo University School of Medicine, Ningbo, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Gu HY, Zhang C, Guo J, Yang M, Zhong HC, Jin W, Liu Y, Gao LP, Wei RX. Risk score based on expression of five novel genes predicts survival in soft tissue sarcoma. Aging (Albany NY) 2020; 12:3807-3827. [PMID: 32084007 PMCID: PMC7066896 DOI: 10.18632/aging.102847] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/04/2020] [Indexed: 12/15/2022]
Abstract
In this study, The Cancer Genome Atlas and Genotype-Tissue Expression databases were used to identify potential biomarkers of soft tissue sarcoma (STS) and construct a prognostic model. The model was used to calculate risk scores based on the expression of five key genes, among which MYBL2 and FBN2 were upregulated and TSPAN7, GCSH, and DDX39B were downregulated in STS patients. We also examined gene signatures associated with the key genes and evaluated the model’s clinical utility. The key genes were found to be involved in the cell cycle, DNA replication, and various cancer pathways, and gene alterations were associated with a poor prognosis. According to the prognostic model, risk scores negatively correlated with infiltration of six types of immune cells. Furthermore, age, margin status, presence of metastasis, and risk score were independent prognostic factors for STS patients. A nomogram that incorporated the risk score and other independent prognostic factors accurately predicted survival in STS patients. These findings may help to improve prognostic prediction and aid in the identification of effective treatments for STS patients.
Collapse
Affiliation(s)
- Hui-Yun Gu
- Department of Spine and Orthopedic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chao Zhang
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jia Guo
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Min Yang
- Department of Spine and Orthopedic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hou-Cheng Zhong
- Department of Spine and Orthopedic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Jin
- Department of Spine and Orthopedic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yang Liu
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li-Ping Gao
- The Third Clinical School, Hubei University of Medicine, Shiyan, China
| | - Ren-Xiong Wei
- Department of Spine and Orthopedic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
19
|
Prognostic Value and Potential Regulatory Mechanism of Alternative Splicing in Geriatric Breast Cancer. Genes (Basel) 2020; 11:genes11020200. [PMID: 32079071 PMCID: PMC7074345 DOI: 10.3390/genes11020200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/01/2020] [Accepted: 02/12/2020] [Indexed: 11/24/2022] Open
Abstract
Breast cancer has the highest mortality and morbidity among women, especially in elderly women over 60 years old. Abnormal alternative splicing (AS) events are associated with the occurrence and development of geriatric breast cancer (GBC), yet strong evidence is lacking for the prognostic value of AS in GBC and the regulatory network of AS in GBC, which may highlight the mechanism through which AS contributes to GBC. In the present study, we obtained splicing event information (SpliceSeq) and clinical information for GBC from The Cancer Genome Atlas, and we constructed a GBC prognosis model based on AS events to predict the survival outcomes of GBC. Kaplan–Meier analysis was conducted to evaluate the predictive accuracy among different molecular subtypes of GBC. We conducted enrichment analysis and constructed a splicing network between AS and the splicing factor (SF) to examine the possible regulatory mechanisms of AS in GBC. We constructed eight prognostic signatures with very high statistical accuracy in predicting GBC survival outcomes from 45,421 AS events of 10,480 genes detected in 462 GBC patients; the prognostic model based on exon skip (ES) events had the highest accuracy, indicating its significant value in GBC prognosis. The constructed regulatory SF–AS network may explain the potential regulatory mechanism between SF and AS, which may be the mechanism through which AS events contribute to GBC survival outcomes. The findings confirm that AS events have a significant prognostic value in GBC, and we found a few effective prognostic signatures. We also hypothesized the mechanism underlying AS in GBC and discovered a potential regulatory mechanism between SF and AS.
Collapse
|
20
|
Meng T, Huang R, Zeng Z, Huang Z, Yin H, Jiao C, Yan P, Hu P, Zhu X, Li Z, Song D, Zhang J, Cheng L. Identification of Prognostic and Metastatic Alternative Splicing Signatures in Kidney Renal Clear Cell Carcinoma. Front Bioeng Biotechnol 2019; 7:270. [PMID: 31681747 PMCID: PMC6803439 DOI: 10.3389/fbioe.2019.00270] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Kidney renal clear cell carcinoma (KIRC) is the malignancy originated from the renal epithelium, with a high rate of distant metastasis. Aberrant alternative splicing (AS) of pre-mRNA are widely reported to be involved in the tumorigenesis and metastasis of multiple cancers. The aim of this study is to explore the mechanism of alternative splicing events (ASEs) underlying tumorigenesis and metastasis of KIRC. Methods: RNA-seq of 537 KIRC samples downloaded from the TCGA database and ASEs data from the TCGASpliceSeq database were used to identify ASEs in patients with KIRC. The univariate and Lasso regression analysis were used to screen the most significant overall survival-related ASEs (OS-SEs). Based on those, the OS-SEs model was proposed. The interaction network of OS-SEs and splicing factors (SFs) with absolute value of correlation coefficient value >0.750 was constructed by Pearson correlation analysis. The OS-SEs significantly related to distant metastasis and clinical stage were identified by non-parametric test, and those were also integrated into co-expression analysis with prognosis-related Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways identified by Gene Set Variation Analysis (GSVA). ASEs with significance were selected for multiple online database validation. Results: A total of prognostic 6,081 overall survival-related ASEs (OS-SEs) were identified by univariate Cox regression analysis and a prediction model was constructed based on 5 OS-SEs screened by Lasso regression with the Area Under Curve of 0.788. Its risk score was also illustrated to be an independent predictor, which the good reliability of the model. Among 390 identified candidate SFs, DExD-Box Helicase 39B (DDX39B) was significantly correlated with OS and metastasis. After external database validation, Retained Intron of Ras Homolog Family Member T2 (RHOT2) and T-Cell Immune Regulator 1 (TCIRG1) were identified. In the co-expression analysis, overlapped co-expression signal pathways for RHOT2 and TCIRG1 were sphingolipid metabolism and N-glycan biosynthesis. Conclusions: Based on the results of comprehensive bioinformatic analysis, we proposed that aberrant DDX39B regulated RHOT2-32938-RI and TCIRG1-17288-RI might be associated with the tumorigenesis, metastasis, and poor prognosis of KIRC via sphingolipid metabolism or N-glycan biosynthesis pathway.
Collapse
Affiliation(s)
- Tong Meng
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China.,Department of Orthopedics, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Runzhi Huang
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| | - Zhiwei Zeng
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huabin Yin
- Department of Orthopedics, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - ChenChen Jiao
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Penghui Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peng Hu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaolong Zhu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenyu Li
- Department of Prevention, Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Dianwen Song
- Department of Orthopedics, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jie Zhang
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China.,Department of Prevention, Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| |
Collapse
|
21
|
Werner CT, Mitra S, Martin JA, Stewart AF, Lepack AE, Ramakrishnan A, Gobira PH, Wang ZJ, Neve RL, Gancarz AM, Shen L, Maze I, Dietz DM. Ubiquitin-proteasomal regulation of chromatin remodeler INO80 in the nucleus accumbens mediates persistent cocaine craving. SCIENCE ADVANCES 2019; 5:eaay0351. [PMID: 31633032 PMCID: PMC6785264 DOI: 10.1126/sciadv.aay0351] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/14/2019] [Indexed: 05/07/2023]
Abstract
Neuroadaptations in the nucleus accumbens (NAc) underlie cue-induced cocaine craving that intensifies ("incubates") during abstinence and is believed to contribute to persistent relapse vulnerability. Changes in gene expression often govern perpetual behavioral abnormalities, but epigenetic plasticity during prolonged abstinence from drug exposure is poorly understood. We examined how E3 ubiquitin ligase TRIM3 dysregulates chromatin remodeler INO80 to mediate cocaine craving during prolonged abstinence. We found that INO80 expression increased in the NAc on abstinence day 30 (AD30) but not on AD1 following cocaine self-administration. Furthermore, TRIM3, which mediates degradation of INO80, was reduced on AD30, along with TRIM3-INO80 interaction. Viral-mediated gene transfer of INO80 or TRIM3 governed cocaine craving during prolonged abstinence. Lastly, chromatin immunoprecipitation followed by massively parallel DNA sequencing identified INO80-mediated transcriptional regulation of predicted pathways associated with cocaine plasticity. Together, these results demonstrate a novel ubiquitin-proteasomal-epigenetic mechanism by which TRIM3-INO80 mediates cocaine craving during prolonged abstinence.
Collapse
Affiliation(s)
- C. T. Werner
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - S. Mitra
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - J. A. Martin
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - A. F. Stewart
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - A. E. Lepack
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - A. Ramakrishnan
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - P. H. Gobira
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Z.-J. Wang
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - R. L. Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, Cambridge, MA, USA
| | - A. M. Gancarz
- Department of Psychology, California State University, Bakersfield, Bakersfield, CA, USA
| | - L. Shen
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - I. Maze
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - D. M. Dietz
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
- Department of Psychology, The State University of New York at Buffalo, Buffalo, NY, USA
- Corresponding author.
| |
Collapse
|
22
|
Plumel M, Dumont S, Maes P, Sandu C, Felder-Schmittbuhl MP, Challet E, Bertile F. Circadian Analysis of the Mouse Cerebellum Proteome. Int J Mol Sci 2019; 20:ijms20081852. [PMID: 30991638 PMCID: PMC6515515 DOI: 10.3390/ijms20081852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023] Open
Abstract
The cerebellum contains a circadian clock, generating internal temporal signals. The daily oscillations of cerebellar proteins were investigated in mice using a large-scale two-dimensional difference in gel electrophoresis (2D-DIGE). Analysis of 2D-DIGE gels highlighted the rhythmic variation in the intensity of 27/588 protein spots (5%) over 24 h based on cosinor regression. Notably, the rhythmic expression of most abundant cerebellar proteins was clustered in two main phases (i.e., midday and midnight), leading to bimodal distribution. Only six proteins identified here to be rhythmic in the cerebellum are also known to oscillate in the suprachiasmatic nuclei, including two proteins involved in the synapse activity (Synapsin 2 [SYN2] and vesicle-fusing ATPase [NSF]), two others participating in carbohydrate metabolism (triosephosphate isomerase (TPI1] and alpha-enolase [ENO1]), Glutamine synthetase (GLUL), as well as Tubulin alpha (TUBA4A). Most oscillating cerebellar proteins were not previously identified in circadian proteomic analyses of any tissue. Strikingly, the daily accumulation of mitochondrial proteins was clustered to the mid-resting phase, as previously observed for distinct mitochondrial proteins in the liver. Moreover, a number of rhythmic proteins, such as SYN2, NSF and TPI1, were associated with non-rhythmic mRNAs, indicating widespread post-transcriptional control in cerebellar oscillations. Thus, this study highlights extensive rhythmic aspects of the cerebellar proteome.
Collapse
Affiliation(s)
- Marine Plumel
- Institut Pluridisciplinaire Hubert Curien, LSMBO, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 67087 Strasbourg, France.
| | - Stéphanie Dumont
- Institute of Cellular and Integrative Neurosciences, CNRS, Université de Strasbourg, 67000 Strasbourg, France.
| | - Pauline Maes
- Institut Pluridisciplinaire Hubert Curien, LSMBO, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 67087 Strasbourg, France.
| | - Cristina Sandu
- Institute of Cellular and Integrative Neurosciences, CNRS, Université de Strasbourg, 67000 Strasbourg, France.
| | | | - Etienne Challet
- Institute of Cellular and Integrative Neurosciences, CNRS, Université de Strasbourg, 67000 Strasbourg, France.
| | - Fabrice Bertile
- Institut Pluridisciplinaire Hubert Curien, LSMBO, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 67087 Strasbourg, France.
| |
Collapse
|