1
|
Muñoz-González M, Aguilar R, Moreno AA, Cepeda-Plaza M. Influence of LNA modifications on the activity of the 10-23 DNAzyme. RSC Adv 2025; 15:13031-13040. [PMID: 40271416 PMCID: PMC12016023 DOI: 10.1039/d5ra00161g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
The 10-23 DNAzyme is a catalytic DNA molecule that efficiently cleaves RNA in the presence of divalent cations such as Mg2+ or Ca2+. Following their discovery, the 10-23 DNAzymes demonstrated numerous advantages that quickly led them to be considered powerful molecular tools for the development of gene-silencing tools. In this study, we evaluate the efficiency of the 10-23 DNAzyme and an LNA-modified analog in cleaving human MALAT1, an RNA overexpressed in cancer cells. First, we perform in vitro assays using a 20 nt RNA fragment from the MALAT1 sequence, with 2 mM and 10 mM Mg2+ and Ca2+ as cofactors, to evaluate how LNA modifications influence catalytic activity. We found that the activity is increased in the LNA-modified DNAzyme compared to the unmodified version with both cofactors, in a concentration-dependent manner. Finally, the RNA-cleaving activity of the LNA-modified, catalytically active 10-23 DNAzyme was tested in MCF7 human breast cancer cells. We found that the DNAzyme persists for up to 72 h in cells and effectively silences MALAT1 RNA in a concentration-dependent manner as early as 12 h post-transfection.
Collapse
Affiliation(s)
- Marcelo Muñoz-González
- Chemical Sciences Department, Universidad Andres Bello Santiago Chile
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello Santiago Chile
| | - Rodrigo Aguilar
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello Chile
| | - Adrian A Moreno
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello Santiago Chile
| | | |
Collapse
|
2
|
Mohamed SH, Kamal MM, Reda AM, Mesbah NM, Abo-Elmatty DM, Abdel-Hamed AR. MicroRNA-205-5p inhibits the growth and migration of breast cancer through targeting Wnt/β-catenin co-receptor LRP6 and interacting with lncRNAs. Mol Cell Biochem 2025; 480:2117-2129. [PMID: 39461917 DOI: 10.1007/s11010-024-05136-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024]
Abstract
Breast cancer is the most prevalent type of cancer among women worldwide. Non-coding RNAs play a fundamental role in regulating the expression of different genes. MicroRNAs (miRNAs) are known to bind to mRNA and either induce its degradation or repress its translation. Also, miRNA can modulate the expression of long non-coding RNAs (lncRNA) through different mechanisms. This study aims to determine the role of miRNA-205-5p in breast cancer cell lines. miR-205-5p was bioinformatically predicted to interact with LRP6 mRNA and lncRNAs MALAT1, NEAT1, SNHG5, and SNHG16. Then, the levels of miR-205-5p and its target genes and lncRNAs in breast cancer cell lines MCF-7 and MDA-MB-231 were determined. In addition, MCF-7 and MDA-MB-231 breast cancer cells were transfected with miR-205-5p mimic or miRNA mimic negative control using lipofectamine 3000, and the effect of miR-205-5p overexpression on cellular proliferation and migration was assessed. Moreover, we probed the impact of miR-205-5p overexpression on the expression levels of LRP6, Wnt/β-catenin pathway genes, lncRNAs, and apoptotic markers. miR-205-5p upregulation resulted in decreasing the growth and migration and induced apoptosis markers in the two tested breast cancer subtypes. Additionally, miR-205-5p overexpression resulted in decreasing the expression of LRP6 in MCF-7 and MDA-MB-231 cells leading to downregulation of Wnt/β-catenin target genes, c-Myc, cyclin D1, and PPARδ and had various regulatory effects on the expression of lncRNAs MALAT1, NEAT1, SNHG5, and SNHG16. miR-205-5p inhibits the proliferation and migration of breast cancer through diverse mechanisms including targeting LRP6, Wnt/β-catenin pathway, and its regulatory effects on lncRNAs.
Collapse
Affiliation(s)
- Sameh H Mohamed
- Biochemistry Department, Faculty of Pharmacy, The Egyptian Russian University, Cairo, Egypt
| | - Mohamed M Kamal
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Suez Desert Road, P.O. Box 43, Cairo, 11837, Egypt.
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
- Health Research Center of Excellence, Drug Research and Development Group, The British University in Egypt, Cairo, Egypt.
| | - Ahmed M Reda
- Biochemistry Department, Faculty of Pharmacy, The Egyptian Russian University, Cairo, Egypt
- Department of Pharmacy, Kut University College, Al Kut, Wasit, 52001, Iraq
| | - Noha M Mesbah
- Biochemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Dina M Abo-Elmatty
- Biochemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Asmaa R Abdel-Hamed
- Biochemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
3
|
Song B, An A, Gao B. Sentinel lymph node-related lncRNA typing affects breast cancer prognosis and treatment response through the immune cell microenvironment. Medicine (Baltimore) 2025; 104:e41374. [PMID: 39928812 PMCID: PMC11813062 DOI: 10.1097/md.0000000000041374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 02/12/2025] Open
Abstract
The sentinel lymph node (SLN) plays a crucial role in the early treatment of breast cancer. The present study aims to investigate the impact of SLN-associated long noncoding RNAs (lncRNAs) on breast cancer and the influence of molecular subtyping based on related genes on prognosis. To identify SLN-associated lncRNAs, we conducted differential expression analysis using 2 high-throughput sequencing techniques. In addition, ConsensusClusterPlus was employed to establish lncRNA molecular subtypes. Subsequently, comprehensive analysis using LASSO regression was performed to construct an optimal model for predicting breast cancer prognosis. Finally, various functional annotation databases were utilized to elucidate the potential functions of the predictive model. Through differential expression analysis, we identified 14 SLN-associated lncRNAs. These genes primarily influence TNF signaling pathways. Furthermore, we found that lncRNA H19 is a prominent regulatory factor among these 14 gene expressions. By utilizing ConsensusClusterPlus, we successfully stratified the IR samples into 2 distinct subtypes. Through LASSO regression, we established a prognosis model predominantly impacting various immune cells and drug resistance. After verifying 10 pairs of organizations through PCR, we found differences in 6 lncRNAs between the 2 groups of SNLs. At the same time, in the subsequent analysis of immune infiltration and drug targets, it was found that TRPC2 plays a very critical role in breast cancer. Our study highlights the significance of SLN-associated lncRNAs, unveiling the intricate mechanisms underlying the progression of breast cancer. These findings provide novel insights and potential targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Bo Song
- Gansu Tumor Hospital, Breast Department II, Lanzhou, China
| | - Aihu An
- Gansu Tumor Hospital, Breast Department II, Lanzhou, China
| | - Bo Gao
- Gansu Tumor Hospital, Breast Department II, Lanzhou, China
| |
Collapse
|
4
|
Alhajlah S, Jasim SA, Altalbawy FMA, Bansal P, Kaur H, Mohammed JS, Fenjan MN, Edan RT, Sharma MK, Zwamel AH. Exploring the role of exosomal lncRNA in cancer immunopathogenesis: Unraveling the immune response and EMT pathways. Exp Cell Res 2025; 445:114401. [PMID: 39740727 DOI: 10.1016/j.yexcr.2024.114401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/02/2025]
Abstract
Exosomes are membrane-bound vesicles secreted by diverse cell types, serving as crucial mediators in intercellular communication and significantly influencing cancer development. Exosomes facilitate complex signaling processes in the tumor microenvironment for immunomodulation, metastasis, angiogenesis, and treatment resistance. Notably, long non-coding RNAs (lncRNAs), a class of non-coding RNAs, engage with mRNA, DNA, proteins, and miRNAs to modulate gene expression through multiple mechanisms, including transcriptional, post-transcriptional, translational, and epigenetic pathways. The quantitative dynamics of exosomal lncRNAs show a consistent variation correlating with cancer progression and metastasis, suggesting their potential utility as biomarkers for cancer diagnosis and prognosis. Additionally, exosomal lncRNAs can yield critical insights into therapeutic responses in patients. The identification of exosomal lncRNAs as indicators for various cancer subtypes presents them not only as prognostic tools but also as promising therapeutic targets. Despite their potential, the precise functions of exosomal lncRNAs in the cancer biology landscape remain inadequately understood. This paper delves into the multifaceted roles of exosomal lncRNAs, particularly in the context of breast cancer, highlighting their promise for therapeutic applications. A thorough comprehension of exosomal lncRNAs is imperative for advancing our knowledge of the underlying mechanisms of breast cancer, ultimately paving the way for the development of more effective treatment strategies for patients.
Collapse
Affiliation(s)
- Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Saudi Arabia.
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-maarif, Anbar, Iraq.
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, 71911, Saudi Arabia; National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza, 12613, Egypt.
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India.
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India.
| | - Jaafaru Sani Mohammed
- Medical Analysis Department, Faculty of Applied Science, Tishk International University, Erbil, Iraq.
| | - Mohammed N Fenjan
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq.
| | - Reem Turki Edan
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq.
| | - M K Sharma
- Chaudhary Charan Singh University Meerut, Uttar Pradesh, India.
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq.
| |
Collapse
|
5
|
Lin L, Wang H, Chen Y, Wang Y, Xu Y, Chen Z, Yang Y, Liu K, Ma X. STMGraph: spatial-context-aware of transcriptomes via a dual-remasked dynamic graph attention model. Brief Bioinform 2024; 26:bbae685. [PMID: 39764614 PMCID: PMC11704419 DOI: 10.1093/bib/bbae685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/20/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Spatial transcriptomics (ST) technologies enable dissecting the tissue architecture in spatial context. To perceive the global contextual information of gene expression patterns in tissue, the spatial dependence of cells must be fully considered by integrating both local and non-local features by means of spatial-context-aware. However, the current ST integration algorithm ignores for ST dropouts, which impedes the spatial-aware of ST features, resulting in challenges in the accuracy and robustness of microenvironmental heterogeneity detecting, spatial domain clustering, and batch-effects correction. Here, we developed an STMGraph, a universal dual-view dynamic deep learning framework that combines dual-remask (MASK-REMASK) with dynamic graph attention model (DGAT) to exploit ST data outperforming pre-existing tools. The dual-remask mechanism masks the embeddings before encoding and decoding, establishing dual-decoding-view to share features mutually. DGAT leverages self-supervision to update graph linkage relationships from two distinct perspectives, thereby generating a comprehensive representation for each node. Systematic benchmarking against 10 state-of-the-art tools revealed that the STMGraph has the optimal performance with high accuracy and robustness on spatial domain clustering for the datasets of diverse ST platforms from multi- to sub-cellular resolutions. Furthermore, STMGraph aggregates ST information cross regions by dual-remask to realize the batch-effects correction implicitly, allowing for spatial domain clustering of ST multi-slices. STMGraph is platform independent and superior in spatial-context-aware to achieve microenvironmental heterogeneity detection, spatial domain clustering, batch-effects correction, and new biological discovery, and is therefore a desirable novel tool for diverse ST studies.
Collapse
Affiliation(s)
- Lixian Lin
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Haoyu Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Yuxiao Chen
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Yuanyuan Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Yujie Xu
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Zhenglin Chen
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Yuemin Yang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Kunpeng Liu
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Xiaokai Ma
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| |
Collapse
|
6
|
Li S, Gao R, Han X, Wang K, Kang B, Ma X. MALAT1/miR-582-5p/GALNT1/MUC1 axis modulates progression of AML leukemia stem cells by regulating JAK2/STAT3 pathway. Ann Hematol 2024:10.1007/s00277-024-06043-w. [PMID: 39428449 DOI: 10.1007/s00277-024-06043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Acute myeloid leukemia (AML) is characterized by uncontrolled clonal expansion and differentiation block of immature myeloid cells. Some studies have shown that leukemia stem cells (LSC) are thought to be responsible for the initiation and development of leukemia. Moreover, abnormal O-glycosylation is a key modification in the process of cancer malignancy. In this study, GALNT1 expression was significantly upregulated in LSCs, while knockdown of GALNT1 inhibited cell viability and promoted apoptosis. Importantly, GALNT1 was the direct target of miR-582-5P, and MALAT1 directly interacted with miR-582-5P. In addition, Our investigation corroborated that MALAT1 functioned as an endogenous sponge of miR-582-5P to regulate mucin1 (MUC1) expression, catalyzed by GALNT1, which modulated the activity of JAK2/STAT3 pathway. MALAT1 and MUC1 were targets of transcription factor STAT3 and were regulated by STAT3. In general, these new findings indicated that MALAT1/miR-582-5P/GALNT1 axis is involved in the progression of LSCs, illuminating the possible mechanism mediated by O-glycosylated MUC1 via JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Si Li
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Zhongshan Road 222, Dalian, Liaoning, 116011, China
| | - Rui Gao
- Department of Blood Transfusion, Dalian Municipal Central Hospital, Dalian, 116033, Liaoning, P.R. China
| | - Xu Han
- The Institute of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning, P.R. China
| | - Kai Wang
- The Institute of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning, P.R. China
| | - Bingyu Kang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Zhongshan Road 222, Dalian, Liaoning, 116011, China
| | - Xiaolu Ma
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Zhongshan Road 222, Dalian, Liaoning, 116011, China.
| |
Collapse
|
7
|
Henninger JE, Young RA. An RNA-centric view of transcription and genome organization. Mol Cell 2024; 84:3627-3643. [PMID: 39366351 PMCID: PMC11495847 DOI: 10.1016/j.molcel.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 10/06/2024]
Abstract
Foundational models of transcriptional regulation involve the assembly of protein complexes at DNA elements associated with specific genes. These assemblies, which can include transcription factors, cofactors, RNA polymerase, and various chromatin regulators, form dynamic spatial compartments that contribute to both gene regulation and local genome architecture. This DNA-protein-centric view has been modified with recent evidence that RNA molecules have important roles to play in gene regulation and genome structure. Here, we discuss evidence that gene regulation by RNA occurs at multiple levels that include assembly of transcriptional complexes and genome compartments, feedback regulation of active genes, silencing of genes, and control of protein kinases. We thus provide an RNA-centric view of transcriptional regulation that must reside alongside the more traditional DNA-protein-centric perspectives on gene regulation and genome architecture.
Collapse
Affiliation(s)
- Jonathan E Henninger
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
8
|
Zhao W, Li B, Zhang M, Zhou P, Zhu Y. As a novel prognostic model for breast cancer, the identification and validation of telomere-related long noncoding RNA signatures. World J Surg Oncol 2024; 22:245. [PMID: 39261898 PMCID: PMC11389561 DOI: 10.1186/s12957-024-03514-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Telomeres are a critical component of chromosome integrity and are essential to the development of cancer and cellular senescence. The regulation of breast cancer by telomere-associated lncRNAs is not fully known, though. The goals of this study were to describe predictive telomere-related LncRNAs (TRL) in breast cancer and look into any possible biological roles for these RNAs. METHODS We obtained RNA-seq data, pertinent clinical data, and a list of telomere-associated genes from the cancer genome atlas and telomere gene database, respectively. We subjected differentially expressed TRLs to co-expression analysis and univariate Cox analysis to identify a prognostic TRL. Using LASSO regression analysis, we built a prognostic model with 14 TRLs. The accuracy of the model's prognostic predictions was evaluated through the utilization of Kaplan-Meier (K-M) analysis as well as receiver operating characteristic (ROC) curve analysis. Additionally, immunological infiltration and immune drug prediction were done using this model. Patients with breast cancer were divided into two subgroups using cluster analysis, with the latter analyzed further for variations in response to immunotherapy, immune infiltration, and overall survival, and finally, the expression of 14-LncRNAs was validated by RT-PCR. RESULTS We developed a risk model for the 14-TRL, and we used ROC curves to demonstrate how accurate the model is. The model may be a standalone prognostic predictor for patients with breast cancer, according to COX regression analysis. The immune infiltration and immunotherapy results indicated that the high-risk group had a low level of PD-1 sensitivity and a high number of macrophages infiltrating. In addition, we've discovered a number of small-molecule medicines with considerable for use in treating high-risk groups. The cluster 2 subtype showed the highest immune infiltration, the highest immune checkpoint expression, and the worst prognosis among the two subtypes defined by cluster analysis, which requires more attention and treatment. CONCLUSION As a possible biomarker, the proposed 14-TRL signature could be utilized to evaluate clinical outcomes and treatment efficacy in breast cancer patients.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Oncology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, 200135, China
| | - Beibei Li
- Department of Laboratory, Shanghai Pudong New Area Gongli Hospital, Shanghai, 200127, China
| | - Mingxiang Zhang
- Thyroid and Breast Surgery Department, Shanghai Pudong New Area People's Hospital, 490 Chuanhuan South Road, Chuansha New Town, Pudong New Area, Shanghai, 200000, China
| | - Peiyao Zhou
- Thyroid and Breast Surgery Department, Shanghai Pudong New Area People's Hospital, 490 Chuanhuan South Road, Chuansha New Town, Pudong New Area, Shanghai, 200000, China
| | - Yongyun Zhu
- Department of Oncology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, 200135, China.
- Thyroid and Breast Surgery Department, Shanghai Pudong New Area People's Hospital, 490 Chuanhuan South Road, Chuansha New Town, Pudong New Area, Shanghai, 200000, China.
| |
Collapse
|
9
|
Xie X, Sinha S. Quantitative estimates of the regulatory influence of long non-coding RNAs on global gene expression variation using TCGA breast cancer transcriptomic data. PLoS Comput Biol 2024; 20:e1012103. [PMID: 38838009 PMCID: PMC11198904 DOI: 10.1371/journal.pcbi.1012103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/25/2024] [Accepted: 04/24/2024] [Indexed: 06/07/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have received attention in recent years for their regulatory roles in diverse biological contexts including cancer, yet large gaps remain in our understanding of their mechanisms and global maps of their targets. In this work, we investigated a basic unanswered question of lncRNA systems biology: to what extent can gene expression variation across individuals be attributed to lncRNA-driven regulation? To answer this, we analyzed RNA-seq data from a cohort of breast cancer patients, explaining each gene's expression variation using a small set of automatically selected lncRNA regulators. A key aspect of this analysis is that it accounts for confounding effects of transcription factors (TFs) as common regulators of a lncRNA-mRNA pair, to enrich the explained gene expression for lncRNA-mediated regulation. We found that for 16% of analyzed genes, lncRNAs can explain more than 20% of expression variation. We observed 25-50% of the putative regulator lncRNAs to be in 'cis' to, i.e., overlapping or located proximally to the target gene. This led us to quantify the global regulatory impact of such cis-located lncRNAs, which was found to be substantially greater than that of trans-located lncRNAs. Additionally, by including statistical interaction terms involving lncRNA-protein pairs as predictors in our regression models, we identified cases where a lncRNA's regulatory effect depends on the presence of a TF or RNA-binding protein. Finally, we created a high-confidence lncRNA-gene regulatory network whose edges are supported by co-expression as well as a plausible mechanism such as cis-action, protein scaffolding or competing endogenous RNAs. Our work is a first attempt to quantify the extent of gene expression control exerted globally by lncRNAs, especially those located proximally to their regulatory targets, in a specific biological (breast cancer) context. It also marks a first step towards systematic reconstruction of lncRNA regulatory networks, going beyond the current paradigm of co-expression networks, and motivates future analyses assessing the generalizability of our findings to additional biological contexts.
Collapse
Affiliation(s)
- Xiaoman Xie
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Saurabh Sinha
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
10
|
Ray SK, Mukherjee S. Breast cancer stem cells as novel biomarkers. Clin Chim Acta 2024; 557:117855. [PMID: 38453050 DOI: 10.1016/j.cca.2024.117855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Breast cancer is the most common cancer and the leading cause of mortality worldwide. Despite advancements in detection and treatment, it remains a major cause of cancer-related deaths in women. Breast cancer stem cells (BCSCs) are a crucial group of cells responsible for carcinogenesis, metastasis, medication resistance, and tumor recurrence. Identifying and understanding their molecular pathways is essential for developing effective breast cancer therapy. BCSCs are responsible for tumor genesis, development, metastasis, treatment resistance, and recurrence. Biomarkers are essential tools for identifying high-risk patients, improving diagnostic accuracy, developing follow-up programs, assessing treatment susceptibility, and predicting prognostic outcomes. Stem cell intervention therapy can provide specialized tools for precision therapy. Biomarker analysis in cancer patients is crucial to identify cells associated with disease progression and post-therapeutic relapse. However, negative post-therapeutic impacts can enhance cancer stemness by boosting BCSCs plasticity phenotypes, activating stemness pathways in non-BCSCs, and promoting senescence escape, leading to tumor relapse and metastasis. Despite the advancements in precision medicine, challenges persist in identifying stem cell markers, limiting the number of eligible patients for treatment. The diversity of biomedical research hinders the development of individualization-based preventative, monitoring, and treatment strategies, especially in oncology. Integrating and interpreting clinical and scientific data remains challenging. The development of stem cell-related indicators could significantly improve disease precision, enabling stem cell-targeted therapy and personalized treatment plans, although BCSCs are promising for breast cancer treatment optimization, serving as biomarkers for current therapy modalities. This summary discusses recent advancements in breast cancer stem cell research, including biomarkers, identification methods, molecular mechanisms, and tools for studying their biological origin and lineage development for precision medicine.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Independent Researcher, Bhopal, Madhya Pradesh 462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh 462020, India.
| |
Collapse
|
11
|
Malagoli G, Valle F, Barillot E, Caselle M, Martignetti L. Identification of Interpretable Clusters and Associated Signatures in Breast Cancer Single-Cell Data: A Topic Modeling Approach. Cancers (Basel) 2024; 16:1350. [PMID: 38611028 PMCID: PMC11011054 DOI: 10.3390/cancers16071350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Topic modeling is a popular technique in machine learning and natural language processing, where a corpus of text documents is classified into themes or topics using word frequency analysis. This approach has proven successful in various biological data analysis applications, such as predicting cancer subtypes with high accuracy and identifying genes, enhancers, and stable cell types simultaneously from sparse single-cell epigenomics data. The advantage of using a topic model is that it not only serves as a clustering algorithm, but it can also explain clustering results by providing word probability distributions over topics. Our study proposes a novel topic modeling approach for clustering single cells and detecting topics (gene signatures) in single-cell datasets that measure multiple omics simultaneously. We applied this approach to examine the transcriptional heterogeneity of luminal and triple-negative breast cancer cells using patient-derived xenograft models with acquired resistance to chemotherapy and targeted therapy. Through this approach, we identified protein-coding genes and long non-coding RNAs (lncRNAs) that group thousands of cells into biologically similar clusters, accurately distinguishing drug-sensitive and -resistant breast cancer types. In comparison to standard state-of-the-art clustering analyses, our approach offers an optimal partitioning of genes into topics and cells into clusters simultaneously, producing easily interpretable clustering outcomes. Additionally, we demonstrate that an integrative clustering approach, which combines the information from mRNAs and lncRNAs treated as disjoint omics layers, enhances the accuracy of cell classification.
Collapse
Affiliation(s)
- Gabriele Malagoli
- Institut Curie, Inserm U900, Mines ParisTech, PSL Research University, 75248 Paris, France; (G.M.); (E.B.)
- Physics Department, University of Turin and INFN, 10125 Turin, Italy;
| | - Filippo Valle
- Physics Department, University of Turin and INFN, 10125 Turin, Italy;
| | - Emmanuel Barillot
- Institut Curie, Inserm U900, Mines ParisTech, PSL Research University, 75248 Paris, France; (G.M.); (E.B.)
| | - Michele Caselle
- Physics Department, University of Turin and INFN, 10125 Turin, Italy;
| | - Loredana Martignetti
- Institut Curie, Inserm U900, Mines ParisTech, PSL Research University, 75248 Paris, France; (G.M.); (E.B.)
| |
Collapse
|
12
|
Al-Hawary SIS, Rodrigues P, Bangali H, Hassan ZF, Elawady A. The role of long noncoding RNA DGCR5 in cancers: Focus on molecular targets. Cell Biochem Funct 2024; 42:e3949. [PMID: 38379219 DOI: 10.1002/cbf.3949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/22/2024]
Abstract
Long noncoding RNAs (lncRNAs) are major components of cellular transcripts that are emerging as important players in various biological pathways. Due to their specific expression and functional diversity in a variety of cancers, lncRNAs have promising applications in cancer diagnosis, prognosis, and therapy. Studies have shown that lncRNA DiGeorge syndrome critical region gene 5 (DGCR5) with high specificity and accuracy has the potential to become biomarkers in cancers. LncRNA DGCR5 can be noninvasively extracted from body fluids, tissues, and cells, and can be used as independent or auxiliary biomarkers to improve the accuracy of diagnosis or prognosis. Now, the underlying mechanisms of lncRNAs such as DGCR5 were explored as therapeutic targets, which have been investigated in clinical trials of several cancers. The DGCR5 lacks an appropriate animal model, which is necessary to gain greater knowledge of their functions. While some studies on the uses of DGCR5 have been carried out, the small sample size makes them unreliable. In this review, we presented a compilation of recent publications addressing the potential of lncRNA DGCR5 that could be considered as biomarkers or therapeutic targets, with the hopes of providing promised implications for future cancer therapy.
Collapse
Affiliation(s)
| | - Paul Rodrigues
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia
| | - Harun Bangali
- Department of Computer Engineering, College of Computer Science, King Khalid University, Al-Faraa, Saudi Arabia
| | | | - Ahmed Elawady
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
13
|
Usman M, Li A, Wu D, Qinyan Y, Yi LX, He G, Lu H. The functional role of lncRNAs as ceRNAs in both ovarian processes and associated diseases. Noncoding RNA Res 2024; 9:165-177. [PMID: 38075201 PMCID: PMC10709095 DOI: 10.1016/j.ncrna.2023.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 04/26/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) have attracted significant scientific attention due to their central role in regulating gene expression and their profound impact on the intricate mechanisms of ovarian function. These versatile molecules exert their influence through various mechanisms, including the coordination of transcription processes, modulation of post-transcriptional events, and the shaping of epigenetic landscapes. Furthermore, lncRNAs function as competitive endogenous RNAs (ceRNAs), engaging in intricate interactions with microRNAs (miRNAs) to finely adjust the expression of target genes. The intricate lncRNA-miRNA-mRNA network serves as a crucial determinant in governing the multifaceted physiological functions of the ovaries. It holds substantial potential in unraveling the causes and progression of reproductive disorders and, importantly, in identifying new therapeutic targets and diagnostic markers for these conditions. A comprehensive comprehension of lncRNAs and their ceRNA activities within the domain of ovarian biology could potentially lead to groundbreaking advancements in clinical interventions and management strategies. This exploration of lncRNAs and their intricate involvement in the regulatory framework provides an extensive platform for deciphering the complex nature of ovarian physiology and pathology. The ongoing progress in this field, which encompasses in-depth investigations into the functional roles of specific lncRNAs, the elucidation of their complex interactions with miRNAs, and the comprehensive profiling of their expression patterns, holds the promise of making significant contributions to our understanding of ovarian biology and reproductive disorders. Ultimately, these breakthroughs will have wide-ranging translational implications, paving the way for the development of precision therapies and personalized medicine strategies to address the myriad challenges in the realm of reproductive health.
Collapse
Affiliation(s)
- Muhammad Usman
- Department of Plastic and Reconstructive Surgery, Central Hospital Affiliated to Chongqing University of Technology, Gonglian yicun No.1 street lijiatuo, Banan district, Chongqing, 400054, PR China
| | - Ai Li
- Department of Postdoctoral Research Workstation, The Seventh People's Hospital of Chongqing, Chongqing, PR China
| | - Dan Wu
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yang Qinyan
- Department of Anesthesia, Central Hospital Affiliated to Chongqing University of Technology, Gonglian yicun No.1 street lijiatuo, Banan district, Chongqing, 400054, PR China
| | - Lin Xiao Yi
- Department of Radiology, The Chenjiaqiao Hospital of Shapingba District of Chongqing, PR China
| | - Guiqiong He
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, 400016, PR China
| | - Hong Lu
- Department of Medical Imaging, Central Hospital Affiliated to Chongqing University of Technology, Gonglian yicun No.1 street lijiatuo, Banan district, Chongqing, 400054, PR China
| |
Collapse
|
14
|
Yum J, Aulia F, Kamiya K, Hori M, Qiao N, Kim BS, Naito M, Ogura S, Nagata T, Yokota T, Uchida S, Obika S, Kim HJ, Miyata K. Hydrophobicity Tuning of Cationic Polyaspartamide Derivatives for Enhanced Antisense Oligonucleotide Delivery. Bioconjug Chem 2024; 35:125-131. [PMID: 38290165 DOI: 10.1021/acs.bioconjchem.3c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Various cationic polymers are used to deliver polyplex-mediated antisense oligonucleotides (ASOs). However, few studies have investigated the structural determinants of polyplex functionalities in polymers. This study focused on the polymer hydrophobicity. A series of amphiphilic polyaspartamide derivatives possessing various hydrophobic (R) moieties together with cationic diethylenetriamine (DET) moieties in the side chain (PAsp(DET/R)s) were synthesized to optimize the R moieties (or hydrophobicity) for locked nucleic acid (LNA) gapmer ASO delivery. The gene knockdown efficiencies of PAsp(DET/R) polyplexes were plotted against a hydrophobicity parameter, logD7.3, of PAsp(DET/R), revealing that the gene knockdown efficiency was substantially improved by PAsp(DET/R) with logD7.3 higher than -2.4. This was explained by the increased polyplex stability and improved cellular uptake of ASO payloads. After intratracheal administration, the polyplex samples with a higher logD7.3 than -2.4 induced a significantly higher gene knockdown in the lung tissue compared with counterparts with lower hydrophobicity and naked ASO. These results demonstrate that the hydrophobicity of PAsp(DET/R) is crucial for efficient ASO delivery in vitro and in vivo.
Collapse
Affiliation(s)
- Jongmin Yum
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Nucleotide and Peptide Drug Discovery Center (TIDE Center), Institute of Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-0034, Japan
| | - Fadlina Aulia
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Keisuke Kamiya
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mao Hori
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Nan Qiao
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Beob Soo Kim
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mitsuru Naito
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Satomi Ogura
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tetsuya Nagata
- Nucleotide and Peptide Drug Discovery Center (TIDE Center), Institute of Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-0034, Japan
| | - Takanori Yokota
- Nucleotide and Peptide Drug Discovery Center (TIDE Center), Institute of Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-0034, Japan
| | - Satoshi Uchida
- Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
15
|
Kumar D, Gurrapu S, Wang Y, Bae SY, Pandey PR, Chen H, Mondal J, Han H, Wu CJ, Karaiskos S, Yang F, Sahin A, Wistuba II, Gao J, Tripathy D, Gao H, Izar B, Giancotti FG. LncRNA Malat1 suppresses pyroptosis and T cell-mediated killing of incipient metastatic cells. NATURE CANCER 2024; 5:262-282. [PMID: 38195932 DOI: 10.1038/s43018-023-00695-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/22/2023] [Indexed: 01/11/2024]
Abstract
The contribution of antitumor immunity to metastatic dormancy is poorly understood. Here we show that the long noncoding RNA Malat1 is required for tumor initiation and metastatic reactivation in mouse models of breast cancer and other tumor types. Malat1 localizes to nuclear speckles to couple transcription, splicing and mRNA maturation. In metastatic cells, Malat1 induces WNT ligands, autocrine loops to promote self-renewal and the expression of Serpin protease inhibitors. Through inhibition of caspase-1 and cathepsin G, SERPINB6B prevents gasdermin D-mediated induction of pyroptosis. In this way, SERPINB6B suppresses immunogenic cell death and confers evasion of T cell-mediated tumor lysis of incipient metastatic cells. On-target inhibition of Malat1 using therapeutic antisense nucleotides suppresses metastasis in a SERPINB6B-dependent manner. These results suggest that Malat1-induced expression of SERPINB6B can titrate pyroptosis and immune recognition at metastatic sites. Thus, Malat1 is at the nexus of tumor initiation, reactivation and immune evasion and represents a tractable and clinically relevant drug target.
Collapse
Affiliation(s)
- Dhiraj Kumar
- Cancer Metastasis Initiative, Herbert Irving Comprehensive Cancer Center and Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| | - Sreeharsha Gurrapu
- Cancer Metastasis Initiative, Herbert Irving Comprehensive Cancer Center and Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Yan Wang
- Cancer Metastasis Initiative, Herbert Irving Comprehensive Cancer Center and Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Seong-Yeon Bae
- Cancer Metastasis Initiative, Herbert Irving Comprehensive Cancer Center and Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Poonam R Pandey
- Cancer Metastasis Initiative, Herbert Irving Comprehensive Cancer Center and Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Hong Chen
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jayanta Mondal
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Hyunho Han
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chang-Jiun Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Spyros Karaiskos
- Department of Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Fei Yang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aysegul Sahin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Debasish Tripathy
- Department of Breast Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hua Gao
- Shanghai Tenth People's Hospital, Advanced Institute of Translational Medicine, School of Medicine and Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Benjamin Izar
- Department of Medicine, Division of Hematology and Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Systems Biology, Program for Mathematical Genomics, Columbia University Irving Medical Center, New York, NY, USA.
| | - Filippo G Giancotti
- Cancer Metastasis Initiative, Herbert Irving Comprehensive Cancer Center and Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
16
|
Anbiyaee O, Moalemnia A, Ghaedrahmati F, Shooshtari MK, Khoshnam SE, Kempisty B, Halili SA, Farzaneh M, Morenikeji OB. The functions of long non-coding RNA (lncRNA)-MALAT-1 in the pathogenesis of renal cell carcinoma. BMC Nephrol 2023; 24:380. [PMID: 38124072 PMCID: PMC10731893 DOI: 10.1186/s12882-023-03438-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Renal cell carcinoma (RCC), a prevalent form of renal malignancy, is distinguished by its proclivity for robust tumor proliferation and metastatic dissemination. Long non-coding RNAs (lncRNAs) have emerged as pivotal modulators of gene expression, exerting substantial influence over diverse biological processes, encompassing the intricate landscape of cancer development. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1), an exemplar among lncRNAs, has been discovered to assume functional responsibilities within the context of RCC. The conspicuous expression of MALAT-1 in RCC cells has been closely linked to the advancement of tumors and an unfavorable prognosis. Experimental evidence has demonstrated the pronounced ability of MALAT-1 to stimulate RCC cell proliferation, migration, and invasion, thereby underscoring its active participation in facilitating the metastatic cascade. Furthermore, MALAT-1 has been implicated in orchestrating angiogenesis, an indispensable process for tumor expansion and metastatic dissemination, through its regulatory influence on pro-angiogenic factor expression. MALAT-1 has also been linked to the evasion of immune surveillance in RCC, as it can regulate the expression of immune checkpoint molecules and modulate the tumor microenvironment. Hence, the potential utility of MALAT-1 as a diagnostic and prognostic biomarker in RCC emerges, warranting further investigation and validation of its clinical significance. This comprehensive review provides an overview of the diverse functional roles exhibited by MALAT-1 in RCC.
Collapse
Affiliation(s)
- Omid Anbiyaee
- Cardiovascular Research Center, School of Medicine, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arash Moalemnia
- Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Khombi Shooshtari
- Chronic Renal Failure Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bartosz Kempisty
- Department of Human Morphology and Embryology Division of Anatomy, Wrocław Medical University, Wrocław, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, Poland
- Physiology Graduate Faculty North, Carolina State University, Raleigh, NC, 27695, US
- Center of Assisted Reproduction Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czech Republic
| | - Shahla Ahmadi Halili
- Department of Internal Medicine, School of Science, Chronic Renal Failure Research Center, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Olanrewaju B Morenikeji
- Division of Biological and Health Sciences, University of Pittsburgh at Bradford, Bradford, PA, USA.
| |
Collapse
|
17
|
Moallemi Rad L, Safarzadeh A, Taheri M, Ghafouri-Fard S, Eghbali A. Construction of ceRNA network and identification of hub differentially expressed genes associated with breast cancer using reanalysis of microarray dataset: A systems biology approach. Pathol Res Pract 2023; 251:154838. [PMID: 37804544 DOI: 10.1016/j.prp.2023.154838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/30/2023] [Accepted: 09/30/2023] [Indexed: 10/09/2023]
Abstract
The interaction between long non-coding RNAs (lncRNAs), miRNAs and mRNAs has implications in the pathogenesis of different cancer, including breast cancer. In the current study, we developed an in-silico approach to ascertain the competing endogenous RNA (ceRNA) network in breast cancer. Our approach led to identification of 1816 differentially expressed (DE) mRNAs, including 1039 downregulated DEmRNAs (such as LEP and ADIPOQ) and 777 upregulated DEmRNAs (such as COL11A1 and COL10A1), 19 DElncRNAs, including 15 downregulated DElncRNAs (such as CARMN and COPG2IT1) and 4 upregulated DElncRNAs (such as MALAT1 and NRAV) and 27 DEmiRNAs, including 15 downregulated DEmiRNAs (such as MIR452 and MIR224) and 12 upregulated DEmiRNAs (such as MIR6787 and MIR21). Pathway analysis revealed down-regulation of PPAR, Fatty acid metabolism, Adipocytokine, Vascular smooth muscle contraction and Metabolism of xenobiotics by cytochrome P450, while up-regulation of Pyrimidine metabolism, p53 signaling pathway, Cell cycle, Oocyte meiosis and RNA transport pathways in breast cancer. Finally, we constructed an lncRNA/miRNA/mRNA ceRNA network consisted of 2 lncRNAs, 15 mRNAs, and 4 miRNAs. This network represents an appropriate target for design of anti-cancer modalities and documentation of novel markers for breast cancer.
Collapse
Affiliation(s)
- Lina Moallemi Rad
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Arash Safarzadeh
- Photochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ahmad Eghbali
- Anesthesiology Research Center, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Eldash S, Sanad EF, Nada D, Hamdy NM. The Intergenic Type LncRNA (LINC RNA) Faces in Cancer with In Silico Scope and a Directed Lens to LINC00511: A Step toward ncRNA Precision. Noncoding RNA 2023; 9:58. [PMID: 37888204 PMCID: PMC10610215 DOI: 10.3390/ncrna9050058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/09/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Long intergenic non-coding RNA, is one type of lncRNA, exerting various cellular activities, as does ncRNA, including the regulation of gene expression and chromatin remodeling. The abnormal expression of lincRNAs can induce or suppress carcinogenesis. MAIN BODY LincRNAs can regulate cancer progression through different mechanisms and are considered as potential drug targets. Genetic variations such as single nucleotide polymorphisms (SNPs) in lincRNAs may affect gene expression and messenger ribonucleic acid (mRNA) stability. SNPs in lincRNAs have been found to be associated with different types of cancer, as well. Specifically, LINC00511 has been known to promote the progression of multiple malignancies such as breast cancer, colorectal cancer, lung cancer, hepatocellular carcinoma, and others, making it a promising cancer prognostic molecular marker. CONCLUSION LincRNAs have been proved to be associated with different cancer types through various pathways. Herein, we performed a comprehensive literature and in silico databases search listing lncRNAs, lincRNAs including LINC00511, lncRNAs' SNPs, as well as LINC00511 SNPs in different cancer types, focusing on their role in various cancer types and mechanism(s) of action.
Collapse
Affiliation(s)
- Shorouk Eldash
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt (BUE), El Sherouk, Cairo 11837, Egypt; (S.E.)
| | - Eman F. Sanad
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Dina Nada
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt (BUE), El Sherouk, Cairo 11837, Egypt; (S.E.)
| | - Nadia M. Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| |
Collapse
|
19
|
Tufail M. The MALAT1-breast cancer interplay: insights and implications. Expert Rev Mol Diagn 2023; 23:665-678. [PMID: 37405385 DOI: 10.1080/14737159.2023.2233902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/04/2023] [Indexed: 07/06/2023]
Abstract
INTRODUCTION Breast cancer (BC) is a major public health concern, and identifying new biomarkers and therapeutic targets is critical to improving patient outcomes. MALAT1, a long noncoding RNA, has emerged as a promising candidate due to its overexpression in BC and the associated poor prognosis. Understanding the role of MALAT1 in BC progression is paramount for the development of effective therapeutic strategies. COVERED AREA This review delves into the structure and function of MALAT1, and examines its expression pattern in breast cancer (BC) and its association with different BC subtypes. This review focuses on the interactions between MALAT1 and microRNAs (miRNAs) and the various signaling pathways involved in BC. Furthermore, this study investigates the influence of MALAT1 on the BC tumor microenvironment and the possible influence of MALAT1 on immune checkpoint regulation. This study also sheds light the role of MALAT1 in breast cancer resistance. EXPERT OPINION MALAT1 has been shown to play a key role in the progression of BC, highlighting its importance as a potential therapeutic target. Further studies are needed to elucidate the underlying molecular mechanisms by which MALAT1 contributes to the development of BC. In combination with standard therapy, there is a need to evaluates the potential of treatments targeting MALAT1, which may lead to improved treatment outcomes. Moreover, study of MALAT1 as a diagnostic and prognostic marker promises improved BC management. Continued efforts to decipher the functional role of MALAT1 and explore its clinical utility are critical to advancing the BC research field.
Collapse
Affiliation(s)
- Muhammad Tufail
- Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
| |
Collapse
|
20
|
Hajibabaei S, Nafissi N, Azimi Y, Mahdian R, Rahimi-Jamnani F, Valizadeh V, Rafiee MH, Azizi M. Targeting long non-coding RNA MALAT1 reverses cancerous phenotypes of breast cancer cells through microRNA-561-3p/TOP2A axis. Sci Rep 2023; 13:8652. [PMID: 37244966 DOI: 10.1038/s41598-023-35639-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/21/2023] [Indexed: 05/29/2023] Open
Abstract
Non-coding RNAs, including Inc-RNA and miRNA, have been reported to regulate gene expression and are associated with cancer progression. MicroRNA-561-3p (miR-561-3p), as a tumor suppressor, has been reported to play a role in preventing cancer cell progression, and MALAT1 (Lnc-RNA) have also been demonstrated to promote malignancy in various cancers, such as breast cancer (BC). In this study, we aimed to determine the correlation between miR-561-3p and MALAT1 and their roles in breast cancer progression. The expression of MALAT1, mir-561-3p, and topoisomerase alpha 2 (TOP2A) as a target of miR-561-3p was determined in BC clinical samples and cell lines via qRT-PCR. The binding site between MALAT1, miR-561-3p, and TOP2A was investigated by performing the dual luciferase reporter assay. MALAT1 was knocked down by siRNA, and cell proliferation, apoptotic assays, and cell cycle arrest were evaluated. MALAT1 and TOP2A were significantly upregulated, while mir-561-3p expression was downregulated in BC samples and cell lines. MALAT1 knockdown significantly increased miR-561-3p expression, which was meaningfully inverted by co-transfection with the miR 561-3p inhibitor. Furthermore, the knockdown of MALAT1 by siRNA inhibited proliferation, induced apoptosis, and arrested the cell cycle at the G1 phase in BC cells. Notably, the mechanistic investigation revealed that MALAT1 predominantly acted as a competing endogenous RNA in BC by regulating the miR-561-3p/TOP2A axis. Based on our results, MALAT1 upregulation in BC may function as a tumor promoter in BC via directly sponging miRNA 561-3p, and MALAT1 knockdown serves a vital antitumor role in BC cell progression through the miR-561-3p/TOP2A axis.
Collapse
Affiliation(s)
- Sara Hajibabaei
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69th Pasteur Street, Kargar Avenue, Tehran, Iran
| | - Nahid Nafissi
- Breast Surgery Department, Iran University of Medical Sciences, Tehran, Iran
| | - Yasamin Azimi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69th Pasteur Street, Kargar Avenue, Tehran, Iran
| | - Reza Mahdian
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69th Pasteur Street, Kargar Avenue, Tehran, Iran
| | - Fatemeh Rahimi-Jamnani
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Vahideh Valizadeh
- Department of Nano-Biotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Hessam Rafiee
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Masoumeh Azizi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69th Pasteur Street, Kargar Avenue, Tehran, Iran.
| |
Collapse
|
21
|
Shi C, Ren S, Zhao X, Li Q. lncRNA MALAT1 regulates the resistance of breast cancer cells to paclitaxel via the miR-497-5p/ SHOC2 axis. Pharmacogenomics 2022; 23:973-985. [PMID: 36420706 DOI: 10.2217/pgs-2022-0077] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aim: To explore the roles of lncRNA MALAT1 and SHOC2 in breast cancer, and the potential connections to chemotherapy resistance in breast cancer. Materials & methods: Paclitaxel-resistant breast cancer cells were induced by gradually increasing intermittent doses. Bioinformatic analyses were performed to predict the regulated miRNAs of MALAT1. Results: High expressions of MALAT1 and SHOC2 contribute to paclitaxel resistance in breast cancer cells. MALAT1 sponges miR-497-5p enhance SHOC2 expression in paclitaxel-resistant breast cancer cells and contribute to paclitaxel resistance in breast cancer cells. Conclusion: Patients with high expression of MALAT1 and SHOC2 have a poorer response to paclitaxel. Upregulation of miR-497-5p could improve the treatment response to paclitaxel in patients with breast cancer by inhibiting MALAT1 and SHOC2.
Collapse
Affiliation(s)
- Chang Shi
- The Fourth Department of General Surgery, the Second Hospital of Hebei Medical University
| | - Shuangjie Ren
- Department of Traditional Chinese Medicine Surgery, the Second Hospital of Hebei Medical University
| | - Xiaodong Zhao
- The Fourth Department of General Surgery, the Second Hospital of Hebei Medical University
| | - Qinghuai Li
- The Sixth Department of General Surgery, the Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050000, China
| |
Collapse
|
22
|
El-Helkan B, Emam M, Mohanad M, Fathy S, Zekri AR, Ahmed OS. Long non-coding RNAs as novel prognostic biomarkers for breast cancer in Egyptian women. Sci Rep 2022; 12:19498. [PMID: 36376369 PMCID: PMC9663553 DOI: 10.1038/s41598-022-23938-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer (BC), the most common type of malignant tumor, is the leading cause of death, having the highest incidence rate among women. The lack of early diagnostic tools is one of the clinical obstacles for BC treatment. The current study was designed to evaluate a panel of long non-coding RNAs (lncRNAs) BC040587, HOTAIR, MALAT1, CCAT1, CCAT2, PVT1, UCA1, SPRY4-IT1, PANDAR, and AK058003-and two mRNAs (SNCG, BDNF) as novel prognostic biomarkers for BC. This study was ethically approved by the Institutional Review Board of the National Cancer Institute, Cairo University. Our study included 75 women recently diagnosed with BC and 25 healthy women as normal controls. Patients were divided into three groups: 24 with benign breast diseases, 28 with metastatic breast cancer (MBC, stage IV), and 23 with non-metastatic breast cancer (NMBC, stage III). LncRNA and mRNA expression levels were measured in patient plasma using quantitative real-time PCR. We found that 10 lncRNAs (BCO40587, HOTAIR, PVT1, CCAT2, PANDAR, CCAT1, UCA1, SPRY4-IT1, AK058003, and MALAT1) and both mRNAs demonstrated at least a 2-fold change in expression with a more than 95% probability of significance. BCO40587 and SNCG were significantly up-regulated in MBC and NMBC patients (3.2- and 4-fold, respectively) compared with normal controls. The expression of UCA1 was repressed by 1.78-fold in MBC and NMBC patients compared with those with benign diseases. SPRY4-IT1 was down-regulated by 1.45-fold in MBC patients compared with NMBC and benign disease patients. Up-regulation of lncRNAs plays an important role in BC development. SNCG and BCO40587 may be potential prognostic markers for BC.The organization number is IORG0003381 (IRB No: IRB00004025).
Collapse
Affiliation(s)
- Basma El-Helkan
- grid.7269.a0000 0004 0621 1570Department of Biochemistry, Faculty of Science-Ain Shams University, Cairo, Egypt
| | - Manal Emam
- grid.7269.a0000 0004 0621 1570Department of Biochemistry, Faculty of Science-Ain Shams University, Cairo, Egypt
| | - Marwa Mohanad
- grid.440875.a0000 0004 1765 2064College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October ,Giza, Egypt
| | - Shadia Fathy
- grid.7269.a0000 0004 0621 1570Department of Biochemistry, Faculty of Science-Ain Shams University, Cairo, Egypt
| | - Abdel Rahman Zekri
- grid.7776.10000 0004 0639 9286Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ola S. Ahmed
- grid.7776.10000 0004 0639 9286Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
23
|
Liu R, Gao X, Shi H. Impact of Long Non-Coding RNA Metastasis-Associated Lung Adenocarcinoma Transcript 1 on the Susceptibility of High Glucose-Treated Cardiomyocytes to Hypoxia/Reoxygenation. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To estimate the effect of lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) on susceptibility of high glucose (HG)-treated cardiomyocytes (CMs) to hypoxia/reoxygenation (H/R). Forty healthy rats were assigned to the control, diabetes mellitus (DM), DM + ischemia/reperfusion
injury (IRI) control, and DM IRI groups (n = 10 for each group). Rat CMs (H9C2) were subjected to HG and H/R treatments. LncRNA MALAT1 and cyclic-AMP responsive element modulator (CREM) mRNA levels were measured using quantitative polymerase chain reaction, and protein levels of CREM,
myeloid differentiation primary response protein 88 (MyD88), interleukin-1 receptor-associated kinase 1 (IRAK1), tumor necrosis factor receptor associated factor 6 (TRAF6), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) were quantified using western blotting.
Flow cytometry was applied for detection of apoptosis, and a cell viability analyzer determined the number of living cells. IRI induced myocardial apoptosis and elevated lncRNA MALAT1, CREM, and MyD88/IRAK1/TRAF6 levels in DM group mice. In H9C2 cells, HG treatment downregulated CREM expression,
which resulted in the downregulation of lncRNA MALAT1 expression, reducing the susceptibility to H/R, increasing cell viability and apoptosis, decreasing the activity of the MyD88/IRAK1/TRAF6 signaling pathway, and suppressing TNF-α and IL-6 expression. LncRNA MALAT1 regulates
the susceptibility of HG-treated CMs to H/R through the MyD88 signaling pathway.
Collapse
Affiliation(s)
- Rongchen Liu
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiufang Gao
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Haiming Shi
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| |
Collapse
|
24
|
Mathur R, Jha NK, Saini G, Jha SK, Shukla SP, Filipejová Z, Kesari KK, Iqbal D, Nand P, Upadhye VJ, Jha AK, Roychoudhury S, Slama P. Epigenetic factors in breast cancer therapy. Front Genet 2022; 13:886487. [PMID: 36212140 PMCID: PMC9539821 DOI: 10.3389/fgene.2022.886487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Epigenetic modifications are inherited differences in cellular phenotypes, such as cell gene expression alterations, that occur during somatic cell divisions (also, in rare circumstances, in germ line transmission), but no alterations to the DNA sequence are involved. Histone alterations, polycomb/trithorax associated proteins, short non-coding or short RNAs, long non—coding RNAs (lncRNAs), & DNA methylation are just a few biological processes involved in epigenetic events. These various modifications are intricately linked. The transcriptional potential of genes is closely conditioned by epigenetic control, which is crucial in normal growth and development. Epigenetic mechanisms transmit genomic adaptation to an environment, resulting in a specific phenotype. The purpose of this systematic review is to glance at the roles of Estrogen signalling, polycomb/trithorax associated proteins, DNA methylation in breast cancer progression, as well as epigenetic mechanisms in breast cancer therapy, with an emphasis on functionality, regulatory factors, therapeutic value, and future challenges.
Collapse
Affiliation(s)
- Runjhun Mathur
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- Dr. A.P.J Abdul Kalam Technical University, Lucknow, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
| | - Gaurav Saini
- Department of Civil Engineering, Netaji Subhas University of Technology, Delhi, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
| | - Sheo Prasad Shukla
- Department of Civil Engineering, Rajkiya Engineering College, Banda, India
| | - Zita Filipejová
- Small Animal Clinic, University of Veterinary Sciences Brno, Brno, Czechia
| | | | - Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Parma Nand
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Vijay Jagdish Upadhye
- Center of Research for Development (CR4D), Parul Institute of Applied Sciences (PIAS), Parul University, Vadodara, Gujarat
| | - Abhimanyu Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- *Correspondence: Abhimanyu Kumar Jha, ; Shubhadeep Roychoudhury,
| | - Shubhadeep Roychoudhury
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
- *Correspondence: Abhimanyu Kumar Jha, ; Shubhadeep Roychoudhury,
| | - Petr Slama
- Department of Animal Morphology, Physiology, and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
25
|
Najafi S, Khatami SH, Khorsand M, Jamali Z, Shabaninejad Z, Moazamfard M, Majidpoor J, Aghaei Zarch SM, Movahedpour A. Long non-coding RNAs (lncRNAs); roles in tumorigenesis and potentials as biomarkers in cancer diagnosis. Exp Cell Res 2022; 418:113294. [PMID: 35870535 DOI: 10.1016/j.yexcr.2022.113294] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/16/2022] [Indexed: 12/15/2022]
Abstract
New research has indicated that long non-coding RNAs (lncRNAs) play critical roles in a broad range of biological processes, including the pathogenesis of many complex human diseases, including cancer. The detailed regulation mechanisms of many lncRNAs in cancer initiation and progression have yet to be discovered, even though a few of lncRNAs' functions in cancer have been characterized. In the present study, we summarize recent advances in the mechanisms and functions of lncRNAs in cancer. We focused on the roles of newly-identified lncRNAs as oncogenes and tumor suppressors, as well as the potential pathways these molecules could play. The paper also discusses their potential uses as biomarkers for the diagnosis and prognosis of cancer.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Khorsand
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Jamali
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Seyed Mohsen Aghaei Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
26
|
Exosomes Derived from Tumor Cells Initiate Breast Cancer Cell Metastasis and Chemoresistance through a MALAT1-Dependent Mechanism. JOURNAL OF ONCOLOGY 2022; 2022:5483523. [PMID: 35813865 PMCID: PMC9262507 DOI: 10.1155/2022/5483523] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/16/2022] [Indexed: 11/17/2022]
Abstract
Background. Chemoresistance poses a great hindrance in the treatment of breast cancer (BC). Interestingly, exosome (Exo)-mediated transfer of long noncoding RNAs (lncRNAs) has been reported to regulate chemoresistance in diverse diseases. We herein investigate the potential role of lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) transferred by BC cell-derived Exo in chemoresistance of BC cells. Methods. BC-related lncRNAs were identified. Exosomes were isolated and verified from BC cells. The expression patterns of MALAT1 were then examined in the adriamycin (ADR)-sensitive and resistant cells and the isolated Exo, followed by the analysis of the downstream microRNA (miRNA) of MALAT1. The role and mechanism of MALAT1 transmitted by BC cell-derived Exo in BC cell metastasis and chemoresistance were assessed. Results. MALAT1 was highly expressed in BC cells and their Exo. In addition, MALAT1 delivered by BC cell-derived Exo augmented the malignant properties and chemoresistance of BC cells. Mechanistically, MALAT1 bound to miR-1-3p and limited the miR-1-3p expression, which sequentially targeted the vasodilator-stimulated phosphoprotein (VASP) protein. Moreover, silencing of VASP inhibited the activation of the RAP1 member of RAS oncogene family (Rap1) signaling pathway, which led to the attenuation of BC cell malignant properties and chemoresistance. In vivo assay further validated the tumor-promoting effect of Exo-MALAT1 via regulation of the miR-1-3p/VASP/Rap1 axis. Conclusion. Collectively, MALAT1 loaded by BC cell-derived Exo can accelerate BC cell metastasis and chemoresistance via disruption of miR-1-3p-mediated inhibition of the VASP/Rap1 signaling axis.
Collapse
|
27
|
Zhou D, Wang Y, Hu H, Liu H, Deng J, Li L, Zheng C. lncRNA MALAT1 promotes HCC metastasis through the peripheral vascular infiltration via miRNA-613: a primary study using contrast ultrasound. World J Surg Oncol 2022; 20:203. [PMID: 35706002 PMCID: PMC9202184 DOI: 10.1186/s12957-022-02655-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022] Open
Abstract
Background This study aimed to explore the specific pathogenesis of lncRNA MALAT1 promoting the invasion and metastasis of hepatocellular carcinoma (HCC) through peripheral blood vessels by regulating the expression of miRNA-613 molecule. Methods The data of 60 HCC metastatic patients and 60 HCC non-metastatic patients detected by the contrast-enhanced ultrasound (CEUS) in the Second Affiliated Hospital of Qiqihar Medical College from January 2020 to June 2021 were collected, as well as postoperatively retained HCC tissues and paired paracancer tissues (5 cm laterally from the edge of the cancer area), to study the changes of microangiogenesis in HCC tissues with CEUS. The correlation between CEUS grading and lncRNA MALAT1 in patients with HCC was analyzed through Pearson correlation analysis, lncRNA MALAT1 and miRNA-613 in HCC tissues of patients with HCC were detected by qRT-PCR, followed by the bioinformatic analysis for the relationship between lncRNA MALAT1 and miRNA-613. The Log-growing human HCC cell strain, HepG2, was selected for experiments. Adenovirus transfection knocked down lncRNA MALAT1 in HCC cells, which was divided into two groups (inhibitor-NC group and lncR-inhibitor group), followed by knocking down miRNA-613 on the basis of knocking down lncRNA MALAT1, which was divided into three groups (inhibitor-NC group, lncR-inhibitor groups, and lncR/miR613-inhibitor group). The expression of miRNA-613 and lncRNA MALAT1 in each group was detected by qRT-PCR. The migration and invasiveness of cells in each group were detected by Transwell assay. Results CEUS of HCC and Pearson correlation analysis showed that CEUS grading and lncRNA MALAT1 were positively correlated in patients with HCC. In HCC tissues of patients with HCC, lncRNA MALAT1 expressed high and miRNA-613 expressed low. The results of bioinformatic analysis showed the targeting of lncRNA MALAT1 and miRNA-613. Knocking down lncRNA MALAT1 could increase miRNA-613 expression significantly, and reduce the migration of HCC cells. Inhibiting miRNA-613 based on knocking down lncRNA MALAT1 could increase the survival and migration of HCC cells. Conclusions lncRNA MALAT1 can promote HCC metastasis through the peripheral vascular infiltration by inhibiting the level of MiRNA-613, which can, therefore, be used as a potential target for the treatment of HCC. 1. Contrast-enhanced ultrasound (CEUS) grading was positively correlated with lncRNA MALAT1 in patients with hepatocellular carcinoma (HCC). 2. lncRNA MALAT1 expressed high and miRNA-613 expressed low in HCC tissues of patients with HCC. 3. lncRNA MALAT1 was targeted with miRNA-613. 4. Knocking down lncRNA MALAT1 could significantly increase miRNA-613 expression. 5. Knocking down lncRNA MALAT1 could reduce the migration of HCC cells. 6. Inhibiting miRNA-613 on the basis of knocking down lncRNA MALAT1 could increase the survival and migration of HCC cells.
Collapse
Affiliation(s)
- Dandan Zhou
- Department of Ultrasound, the Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161006, China
| | - Ying Wang
- Department of Ultrasound, the Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161006, China.
| | - Haifeng Hu
- Department of Magnetic Resonance Imaging, the Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161006, China
| | - Huilin Liu
- Department of Ultrasound, the Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161006, China
| | - Jiajia Deng
- Department of Ultrasound, the Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161006, China
| | - Lu Li
- Department of Ultrasound, the Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161006, China
| | - Chunlei Zheng
- Department of Oncology, the Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, 161006, China
| |
Collapse
|
28
|
Turco C, Esposito G, Iaiza A, Goeman F, Benedetti A, Gallo E, Daralioti T, Perracchio L, Sacconi A, Pasanisi P, Muti P, Pulito C, Strano S, Ianniello Z, Fatica A, Forcato M, Fazi F, Blandino G, Fontemaggi G. MALAT1-dependent hsa_circ_0076611 regulates translation rate in triple-negative breast cancer. Commun Biol 2022; 5:598. [PMID: 35710947 PMCID: PMC9203778 DOI: 10.1038/s42003-022-03539-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 05/30/2022] [Indexed: 11/21/2022] Open
Abstract
Vascular Endothelial Growth Factor A (VEGFA) is the most commonly expressed angiogenic growth factor in solid tumors and is generated as multiple isoforms through alternative mRNA splicing. Here, we show that lncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) and ID4 (inhibitor of DNA-binding 4) protein, previously referred to as regulators of linear isoforms of VEGFA, induce back-splicing of VEGFA exon 7, producing circular RNA circ_0076611. Circ_0076611 is detectable in triple-negative breast cancer (TNBC) cells and tissues, in exosomes released from TNBC cells and in the serum of breast cancer patients. Circ_0076611 interacts with a variety of proliferation-related transcripts, included MYC and VEGFA mRNAs, and increases cell proliferation and migration of TNBC cells. Mechanistically, circ_0076611 favors the expression of its target mRNAs by facilitating their interaction with components of the translation initiation machinery. These results add further complexity to the multiple VEGFA isoforms expressed in cancer cells and highlight the relevance of post-transcriptional regulation of VEGFA expression in TNBC cells. The circular isoform of VEGFA mRNA (circ_0076611), associated with size and pathogenesis of triple-negative breast tumors, is produced via back splicing of exon-7 by a RNP complex comprising lncRNA-MALAT1, ID4 and SRSF1, and secreted through exosomes.
Collapse
Affiliation(s)
- Chiara Turco
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Gabriella Esposito
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Alessia Iaiza
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Frauke Goeman
- UOSD SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Benedetti
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Enzo Gallo
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Theodora Daralioti
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Letizia Perracchio
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Sacconi
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Patrizia Pasanisi
- Unit of Epidemiology and Prevention, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paola Muti
- Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.,Department of Biomedical, Surgical and Dental Sciences, "Università degli Studi di Milano", Milan, Italy
| | - Claudio Pulito
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sabrina Strano
- UOSD SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Zaira Ianniello
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Alessandro Fatica
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Mattia Forcato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy.
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| | - Giulia Fontemaggi
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
29
|
Li D, Lu L, Liu M, Sun J. Inhibition of long noncoding RNA cancer susceptibility candidate 7 attenuates hepatocellular carcinoma development by targeting microRNA-30a-5p. Bioengineered 2022; 13:11296-11308. [PMID: 35484972 PMCID: PMC9208517 DOI: 10.1080/21655979.2022.2068289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Long non-coding RNA (lncRNA) cancer susceptibility candidate 7 (CASC7) was reported to be participated in tumor development. This study was carried out to investigate the functions of CASC7 in hepatocellular carcinoma (HCC) progression. The expression of CASC7 and microRNA-30a-5p (miR-30a-5p) in HCC tissues and cells were detected by quantitative Real-time PCR (qRT-PCR). The expression of Krueppel-like factor 10 (KLF10), transforming growth factor-β (TGF-β), and SMAD3 were detected by Western Blot analysis. Transwell assay, flow cytometry, Cell Counting Kit-8 (CCK-8) assay and colony formation assay were performed to evaluate the effects of CASC7, KLF10 and miR-30a-5p on cell function. The relationship among CASC7, KLF10 and miR-30a-5p was evaluated by luciferase reporter assay and bioinformatics analyses. Tumor growth was detected in nude mice. The expression levels of CASC7 were increased and the expression levels of miR-30a-5p were reduced in HCC cells and tissues. Knockdown of CASC7 and overexpression of miR-30a-5p reduced tumor growth as well as HCC cell proliferation, invasion and migration. In HCC tumor tissues, the expression of miR-30a-5p was negatively correlated with the expression of CASC7. Moreover, as a target of miR-30a-5p, KLF10 was regulated by CASC7 and miR-30a-5p, and CASC7 regulated the KLF10/TGF-β/SMAD3 pathway via binding to miR-30a-5p, thereby promoting HCC cell progression.
Collapse
Affiliation(s)
- Dongsheng Li
- Hepatobiliary Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Lin Lu
- Hepatobiliary Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Miaomiao Liu
- Hepatobiliary Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jufeng Sun
- Hepatobiliary Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
30
|
Wang JP, Li C, Ding WC, Peng G, Xiao GL, Chen R, Cheng Q. Research Progress on the Inflammatory Effects of Long Non-coding RNA in Traumatic Brain Injury. Front Mol Neurosci 2022; 15:835012. [PMID: 35359568 PMCID: PMC8961287 DOI: 10.3389/fnmol.2022.835012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/08/2022] [Indexed: 11/29/2022] Open
Abstract
Globally, traumatic brain injury (TBI) is an acute clinical event and an important cause of death and long-term disability. However, the underlying mechanism of the pathophysiological has not been fully elucidated and the lack of effective treatment a huge burden to individuals, families, and society. Several studies have shown that long non-coding RNAs (lncRNAs) might play a crucial role in TBI; they are abundant in the central nervous system (CNS) and participate in a variety of pathophysiological processes, including oxidative stress, inflammation, apoptosis, blood-brain barrier protection, angiogenesis, and neurogenesis. Some lncRNAs modulate multiple therapeutic targets after TBI, including inflammation, thus, these lncRNAs have tremendous therapeutic potential for TBI, as they are promising biomarkers for TBI diagnosis, treatment, and prognosis prediction. This review discusses the differential expression of different lncRNAs in brain tissue during TBI, which is likely related to the physiological and pathological processes involved in TBI. These findings may provide new targets for further scientific research on the molecular mechanisms of TBI and potential therapeutic interventions.
Collapse
Affiliation(s)
- Jian-peng Wang
- Department of Neurosurgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Chong Li
- Department of Neurosurgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Wen-cong Ding
- Department of Neurosurgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Gang Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ge-lei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Rui Chen
- Department of Neurosurgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Rui Chen,
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Quan Cheng,
| |
Collapse
|
31
|
Hassani B, Mollanoori H, Pouresmaeili F, Asgari Y, Ghafouri-Fard S. Constructing mRNA, miRNA, circRNA and lncRNA regulatory network by Analysis of microarray data in breast cancer. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
32
|
Khawar MB, Hamid SE, Jan T, Abbasi MH, Idnan M, Sheikh N. Diagnostic, prognostic and therapeutic potential of long noncoding RNAs in cancer. Mol Biol Rep 2022; 49:2311-2319. [PMID: 35072835 DOI: 10.1007/s11033-022-07180-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/19/2022] [Indexed: 12/27/2022]
Abstract
Long noncoding RNAs (lncRNAs) are longer than 200 nucleotides in length and undergo splicing, capping, polyadenylation, and editing just like mRNA. Evidence is growing that they regulate transcription, splicing, RNA degradation, and translation of genes and that their expression has been linked to a variety of illnesses, including cancer. The advancement of next-generation and high-throughput sequencing has changed the way lncRNAs are identified and characterized, revealing a relationship between lncRNAs and several tumor types. Since then, they have gained a significant attraction as a promising candidate in cancer diagnosis, prognosis, and therapy. Furthermore, they are a good candidate for consideration as tumor biomarkers due to their high stability, better tissue/cell selectivity, aberrant expression in certain malignancies, and easy and noninvasive detection. In addition, lncRNAs are being examined as therapeutic targets in clinical trials for a variety of malignancies. This review highlights the potential of lncRNAs as biomarkers or therapeutic targets in light of the current progress, clinical investigations, and patents filed so far.
Collapse
Affiliation(s)
- Muhammad Babar Khawar
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan.
| | - Syeda Eisha Hamid
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Tayyba Jan
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | | | - Muhammad Idnan
- Department of Zoology, University of Okara, Okara, Pakistan
| | - Nadeem Sheikh
- Cell and Molecular Biology Lab, Institute of Zoology, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
33
|
Prognostic Implications of MALAT1 and BACH1 Expression and Their Correlation with CTCs and Mo-MDSCs in Triple Negative Breast Cancer and Surgical Management Options. Int J Breast Cancer 2022; 2022:8096764. [PMID: 35096427 PMCID: PMC8791720 DOI: 10.1155/2022/8096764] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023] Open
Abstract
Background. Triple negative breast cancer (TNBC) is a biologically separate entity of breast cancer that cannot get benefits from targeted or endocrine therapy. Objective. To assess the expression of MALAT1 and BACH1, as well as monocyte-myeloid-derived suppressor cell (Mo-MDSC) levels and circulating tumor cell (CTC) count in TNBC to correlate these markers with the clinic-pathological criteria of TNCB patients and to evaluate their roles as predictive markers for selection of the patients that can be operated by oncoplastic conserving breast surgery. Methods. Eighty-eight TNBC were managed by modified doughnut breast oncoplastic surgery in early stages and by modified radical mastectomy for patients with late stages unsuitable for breast-conserving. All were examined for MALAT1 and BACH1 expression by immunohistochemistry and RT-PCR as well as Mo-MDSC levels and CTCs. Results. MALAT1 and BACH1 expressions are correlated with the larger size, lymph node, distance metastasis, and TNM staging (
).
and high MO-MDSCs were significantly more in TNBC with MALAT1 and BACH1 overexpression. The survival study proved that DFS for patients with both positive expression of MALAT1 and BACH1 was shorter than that of one positive expression, and both negative expression
,
, and high Mo-MDSCs are associated with poor outcomes. No significant difference between modified round block and modified radical mastectomy techniques as regards recurrence. However, all postoperative management outcomes were significantly better in patients operated by oncoplastic conserving breast surgery. Conclusion. BACH1 and MALAT1 expressions are significantly upregulated in TNBC. They are correlated with CTCs and Mo-MDCs, and all are associated with poor outcomes. Not all TNBC patients have a bad prognosis, patients negative for one of MALAT1 and BACH1 or both, have a slightly good prognosis, and so can be managed by breast oncoplastic conserving surgery.
Collapse
|
34
|
Nuñez-Olvera SI, Puente-Rivera J, Ramos-Payán R, Pérez-Plasencia C, Salinas-Vera YM, Aguilar-Arnal L, López-Camarillo C. Three-Dimensional Genome Organization in Breast and Gynecological Cancers: How Chromatin Folding Influences Tumorigenic Transcriptional Programs. Cells 2021; 11:75. [PMID: 35011637 PMCID: PMC8750285 DOI: 10.3390/cells11010075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022] Open
Abstract
A growing body of research on the transcriptome and cancer genome has demonstrated that many gynecological tumor-specific gene mutations are located in cis-regulatory elements. Through chromosomal looping, cis-regulatory elements interact which each other to control gene expression by bringing distant regulatory elements, such as enhancers and insulators, into close proximity with promoters. It is well known that chromatin connections may be disrupted in cancer cells, promoting transcriptional dysregulation and the expression of abnormal tumor suppressor genes and oncogenes. In this review, we examine the roles of alterations in 3D chromatin interactions. This includes changes in CTCF protein function, cancer-risk single nucleotide polymorphisms, viral integration, and hormonal response as part of the mechanisms that lead to the acquisition of enhancers or super-enhancers. The translocation of existing enhancers, as well as enhancer loss or acquisition of insulator elements that interact with gene promoters, is also revised. Remarkably, similar processes that modify 3D chromatin contacts in gene promoters may also influence the expression of non-coding RNAs, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), which have emerged as key regulators of gene expression in a variety of cancers, including gynecological malignancies.
Collapse
Affiliation(s)
- Stephanie I. Nuñez-Olvera
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Jonathan Puente-Rivera
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City 03100, Mexico;
| | - Rosalio Ramos-Payán
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacan City 80030, Mexico;
| | | | - Yarely M. Salinas-Vera
- Departamento de Bioquímica, Centro de Investigación y Estudios Avanzados, Mexico City 07360, Mexico;
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City 03100, Mexico;
| |
Collapse
|
35
|
Selem NA, Youness RA, Gad MZ. What is beyond LncRNAs in breast cancer: A special focus on colon cancer-associated Transcript-1 (CCAT-1). Noncoding RNA Res 2021; 6:174-186. [PMID: 34938928 PMCID: PMC8666458 DOI: 10.1016/j.ncrna.2021.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (LncRNAs) play a vital role in the process of malignant transformation. In breast cancer (BC), lncRNAs field is currently under intensive investigations. Yet, the role of lncRNAs as promising diagnostic and/or prognostic biomarkers and as therapeutic target/tool among BC patients still needs a special focus from the biomedical scientists. In BC, triple negative breast cancer patients (TNBC) are the unlucky group as they are always represented with the worst prognosis and the highest mortality rates. For that reason, a special focus on TNBC and associated lncRNAs was addressed in this review. Colon cancer-associated transcript 1 (CCAT-1) is a newly discovered oncogenic lncRNA that has been emerged as a vital biomarker for diagnosis, prognosis and therapeutic interventions in multiple malignancies and showed differential expression among TNBC patients. In this review, the authors shed the light onto the general role of lncRNAs in BC and the specific functional activities, molecular mechanisms, competing endogenous ncRNA role of CCAT-1 in TNBC.
Collapse
Affiliation(s)
- Noha A. Selem
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, New Administrative Capital, 11586, Cairo, Egypt
| | - Mohamed Z. Gad
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
| |
Collapse
|
36
|
Huang DP, Liao MM, Tong JJ, Yuan WQ, Peng DT, Lai JP, Zeng YH, Qiu YJ, Tong GD. Construction of a genome instability-derived lncRNA-based risk scoring system for the prognosis of hepatocellular carcinoma. Aging (Albany NY) 2021. [PMID: 34799469 DOI: 10.1863/aging.203698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Emerging evidence revealed the critical roles of long non-coding RNAs (lncRNAs) in maintaining genomic instability. However, genome instability-associated lncRNAs (GILncRNAs) and their performance in clinical prognostic significance in hepatocellular carcinoma (HCC) are rarely reported. Our study constructed a computational framework integrating somatic mutation information and lncRNA expression profiles of HCC genome and we identified 88 GILncRNAs of HCC. Function enrichment analysis revealed that GILncRNAs were involved in various metabolism processes and genome instability of cancer. A genome instability-derived lncRNA-based gene signature (GILncSig) was constructed using training set data. The performance of GILncSig for outcome prediction was validated in testing set and The Cancer Genome Atlas (TCGA) set. The multivariate cox regression analysis and stratification analysis demonstrated GILncSig could serve as an independent prognostic factor for the overall survival of HCC patients. The time-dependent Receiver Operating Characteristic (ROC) curve illustrated GILncSig outperformed two recently published lncRNA signatures for overall survival prediction. The combination of GILncSig and tumor protein p53 (TP53) mutation status exhibited better prognostic performance in survival evaluation compared to TP53 mutation status alone. AC145343.1 was further validated to be a risk factor for HCC in vitro among GILncSig. Overall, our study provided a novel approach for identification of genome instability-associated lncRNAs and established an independent risk score system for outcome prediction of HCC patients, which provided a new insight for exploring in-depth mechanism and potential therapy strategy.
Collapse
Affiliation(s)
- Dan-Ping Huang
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
| | - Mian-Mian Liao
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China.,College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510403, Guangdong, China
| | - Jing-Jing Tong
- The Affiliated Chencun Hospital of Shunde Hospital, Southern Medical University, Shunde 528300, Guangdong Province, China
| | - Wei-Qu Yuan
- Department of Acupuncture, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
| | - De-Ti Peng
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
| | - Jian-Ping Lai
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
| | - Yi-Hao Zeng
- College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510403, Guangdong, China
| | - Yi-Jun Qiu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510403, Guangdong Province, China
| | - Guang-Dong Tong
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
| |
Collapse
|
37
|
Huang DP, Liao MM, Tong JJ, Yuan WQ, Peng DT, Lai JP, Zeng YH, Qiu YJ, Tong GD. Construction of a genome instability-derived lncRNA-based risk scoring system for the prognosis of hepatocellular carcinoma. Aging (Albany NY) 2021; 13:24621-24639. [PMID: 34799469 PMCID: PMC8660619 DOI: 10.18632/aging.203698] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022]
Abstract
Emerging evidence revealed the critical roles of long non-coding RNAs (lncRNAs) in maintaining genomic instability. However, genome instability-associated lncRNAs (GILncRNAs) and their performance in clinical prognostic significance in hepatocellular carcinoma (HCC) are rarely reported. Our study constructed a computational framework integrating somatic mutation information and lncRNA expression profiles of HCC genome and we identified 88 GILncRNAs of HCC. Function enrichment analysis revealed that GILncRNAs were involved in various metabolism processes and genome instability of cancer. A genome instability-derived lncRNA-based gene signature (GILncSig) was constructed using training set data. The performance of GILncSig for outcome prediction was validated in testing set and The Cancer Genome Atlas (TCGA) set. The multivariate cox regression analysis and stratification analysis demonstrated GILncSig could serve as an independent prognostic factor for the overall survival of HCC patients. The time-dependent Receiver Operating Characteristic (ROC) curve illustrated GILncSig outperformed two recently published lncRNA signatures for overall survival prediction. The combination of GILncSig and tumor protein p53 (TP53) mutation status exhibited better prognostic performance in survival evaluation compared to TP53 mutation status alone. AC145343.1 was further validated to be a risk factor for HCC in vitro among GILncSig. Overall, our study provided a novel approach for identification of genome instability-associated lncRNAs and established an independent risk score system for outcome prediction of HCC patients, which provided a new insight for exploring in-depth mechanism and potential therapy strategy.
Collapse
Affiliation(s)
- Dan-Ping Huang
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
| | - Mian-Mian Liao
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
- College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510403, Guangdong, China
| | - Jing-Jing Tong
- The Affiliated Chencun Hospital of Shunde Hospital, Southern Medical University, Shunde 528300, Guangdong Province, China
| | - Wei-Qu Yuan
- Department of Acupuncture, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
| | - De-Ti Peng
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
| | - Jian-Ping Lai
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
| | - Yi-Hao Zeng
- College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510403, Guangdong, China
| | - Yi-Jun Qiu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510403, Guangdong Province, China
| | - Guang-Dong Tong
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, Guangdong Province, China
| |
Collapse
|
38
|
Wang P, Bai C, Shen S, Jiang C, Deng J, Han D. MALAT1 promotes malignant pleural mesothelioma by sponging miR-141-3p. Open Med (Wars) 2021; 16:1653-1667. [PMID: 34761116 PMCID: PMC8569281 DOI: 10.1515/med-2021-0383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/18/2021] [Accepted: 10/01/2021] [Indexed: 01/16/2023] Open
Abstract
The aim of this study was to clarify the role of lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in proliferation, migration, and invasion of malignant pleural mesothelioma (MPM) cells. The quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to detect the expression of MALAT1 in MPM cell lines. The effects of MALAT1 and miR-141-3p on the proliferation, migration, and invasion of MPM cells were studied through a series of in vitro cellular experiments. The flow cytometry was utilized to detect the cell apoptosis. The dual‐luciferase reporter assay was employed to explore the binding relationship among MALAT1, miR-141-3p, and YES-associated protein 1 (YAP1). MALAT1 was overexpressed in MPM cell lines, while its knockdown significantly inhibited the cell proliferation, migration, and invasion, and increased the number of MPM cells in the G0/G1 phase. In addition, MALAT1 could directly bind to miR-141-3p and inhibit its expression. YAP1 has been identified as a downstream target of miR-141-3p, and its expression level was inhibited by miR-141-3p. MALAT1 can be used as a competitive endogenous RNA (ceRNA) to regulate the YAP1-Hippo signaling pathway through miR-141-3p, promote the proliferation, migration, and invasion of MPM cells, and provide a new target for the therapy of MPM.
Collapse
Affiliation(s)
- Pei Wang
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Cuiwei Bai
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Shasha Shen
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Chang Jiang
- Department of Obstetrics and Gynecology, Luoyang CITIC Central Hospital, Luoyang 471003, China
| | - Jie Deng
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Dan Han
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming 650032, China
| |
Collapse
|
39
|
Liu QL, Zhang Z, Wei X, Zhou ZG. Noncoding RNAs in tumor metastasis: molecular and clinical perspectives. Cell Mol Life Sci 2021; 78:6823-6850. [PMID: 34499209 PMCID: PMC11073083 DOI: 10.1007/s00018-021-03929-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023]
Abstract
Metastasis is the main culprit of cancer-associated mortality and involves a complex and multistage process termed the metastatic cascade, which requires tumor cells to detach from the primary site, intravasate, disseminate in the circulation, extravasate, adapt to the foreign microenvironment, and form organ-specific colonization. Each of these processes has been already studied extensively for molecular mechanisms focused mainly on protein-coding genes. Recently, increasing evidence is pointing towards RNAs without coding potential for proteins, referred to as non-coding RNAs, as regulators in shaping cellular activity. Since those first reports, the detection and characterization of non-coding RNA have explosively thrived and greatly enriched the understanding of the molecular regulatory networks in metastasis. Moreover, a comprehensive description of ncRNA dysregulation will provide new insights into novel tools for the early detection and treatment of metastatic cancer. In this review, we focus on discussion of the emerging role of ncRNAs in governing cancer metastasis and describe step by step how ncRNAs impinge on cancer metastasis. In particular, we highlight the diagnostic and therapeutic applications of ncRNAs in metastatic cancer.
Collapse
Affiliation(s)
- Qiu-Luo Liu
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhe Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Zong-Guang Zhou
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
40
|
Tian JH, Liu SH, Yu CY, Wu LG, Wang LB. The Role of Non-Coding RNAs in Breast Cancer Drug Resistance. Front Oncol 2021; 11:702082. [PMID: 34589423 PMCID: PMC8473733 DOI: 10.3389/fonc.2021.702082] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/17/2021] [Indexed: 12/21/2022] Open
Abstract
Breast cancer (BC) is one of the commonly occurring malignancies in females worldwide. Despite significant advances in therapeutics, the mortality and morbidity of BC still lead to low survival and poor prognosis due to the drug resistance. There are certain chemotherapeutic, endocrine, and target medicines often used for BC patients, including anthracyclines, taxanes, docetaxel, cisplatin, and fluorouracil. The drug resistance mechanisms of these medicines are complicated and have not been fully elucidated. It was reported that non-coding RNAs (ncRNAs), such as micro RNAs (miRNA), long-chain non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) performed key roles in regulating tumor development and mediating therapy resistance. However, the mechanism of these ncRNAs in BC chemotherapeutic, endocrine, and targeted drug resistance was different. This review aims to reveal the mechanism and potential functions of ncRNAs in BC drug resistance and to highlight the ncRNAs as a novel target for achieving improved treatment outcomes for BC patients.
Collapse
Affiliation(s)
- Jin-Hai Tian
- The Biochip Research Center, General Hospital of Ningxia Medical University, Yinchuan, China, Yinchuan, China.,The Clinical Medicine College of Ningxia Medical University, Yinchuan, China
| | - Shi-Hai Liu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuan-Yang Yu
- The Biochip Research Center, General Hospital of Ningxia Medical University, Yinchuan, China, Yinchuan, China.,The Clinical Medicine College of Ningxia Medical University, Yinchuan, China
| | - Li-Gang Wu
- Department of Oncology, General Hospital of Ningxia Medical University, Yingchuan, China
| | - Li-Bin Wang
- The Biochip Research Center, General Hospital of Ningxia Medical University, Yinchuan, China, Yinchuan, China.,The Clinical Medicine College of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
41
|
Pinkney HR, Black MA, Diermeier SD. Single-Cell RNA-Seq Reveals Heterogeneous lncRNA Expression in Xenografted Triple-Negative Breast Cancer Cells. BIOLOGY 2021; 10:987. [PMID: 34681087 PMCID: PMC8533545 DOI: 10.3390/biology10100987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/03/2022]
Abstract
Breast cancer is the most commonly diagnosed cancer in the world, with triple-negative breast cancer (TNBC) making up 12% of these diagnoses. TNBC tumours are highly heterogeneous in both inter-tumour and intra-tumour gene expression profiles, where they form subclonal populations of varying levels of aggressiveness. These aspects make it difficult to study and treat TNBC, requiring further research into tumour heterogeneity as well as potential therapeutic targets and biomarkers. Recently, it was discovered that the majority of the transcribed genome comprises non-coding RNAs, in particular long non-coding RNAs (lncRNAs). LncRNAs are transcripts of >200 nucleotides in length that do not encode a protein. They have been characterised as regulatory molecules and their expression can be associated with a malignant phenotype. We set out to explore TNBC tumour heterogeneity in vivo at a single cell level to investigate whether lncRNA expression varies across different cells within the tumour, even if cells are coming from the same cell line, and whether lncRNA expression is sufficient to define cellular subpopulations. We applied single-cell expression profiling due to its ability to capture expression signals of lncRNAs expressed in small subpopulations of cells. Overall, we observed most lncRNAs to be expressed at low, but detectable levels in TNBC xenografts, with a median of 25 lncRNAs detected per cell. LncRNA expression alone was insufficient to define a subpopulation of cells, and lncRNAs showed highly heterogeneous expression patterns, including ubiquitous expression, subpopulation-specific expression, and a hybrid pattern of lncRNAs expressed in several, but not all subpopulations. These findings reinforce that transcriptionally defined tumour cell subpopulations can be identified in cell-line derived xenografts, and uses single-cell RNA-seq (scRNA-seq) to detect and characterise lncRNA expression across these subpopulations in xenografted tumours. Future studies will aim to investigate the spatial distribution of lncRNAs within xenografts and patient tissues, and study the potential of subclone-specific lncRNAs as new therapeutic targets and/or biomarkers.
Collapse
Affiliation(s)
- Holly R. Pinkney
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand; (H.R.P.); (M.A.B.)
| | - Michael A. Black
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand; (H.R.P.); (M.A.B.)
| | - Sarah D. Diermeier
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand; (H.R.P.); (M.A.B.)
- Amaroq Therapeutics Ltd., Dunedin 9016, New Zealand
| |
Collapse
|
42
|
Wei M, Wang J, He Q, Liu L, Wang Z. AC016405.3 functions as an oncogenic long non-coding RNA by regulating ERBB3 via sponging miR-22-3p in breast cancer. J Clin Lab Anal 2021; 35:e23952. [PMID: 34403532 PMCID: PMC8418490 DOI: 10.1002/jcla.23952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/28/2021] [Accepted: 07/31/2021] [Indexed: 12/16/2022] Open
Abstract
Background Increasing studies reported that long non‐coding RNAs are involved in regulating breast cancer (BRCA) progression. However, the specific roles and mechanisms of lncRNAs in BRCA remain largely unknown. Here, we sought to explore the functions and mechanisms of AC016405.3 in BRCA progression. Methods Bioinformatic analysis for AC016405.3, miR‐22‐3p, and ERBB3 were performed on starBase. The expressions of AC016405.3, miR‐22‐3p, and ERBB3 were examined by RT‐qPCR. The functions of AC016405.3 on the proliferation, migration, and invasion of cells were evaluated by conducting CCK‐8, colony formation, wound‐healing, and Transwell assays. The subcellular distribution of AC016405.3 in BRCA cells was identified by performing fluorescence in situ hybridization (FISH) and subcellular fractionation techniques. Dual‐luciferase assay was applied to validate the interactions of miR‐22‐3p with AC016405.3 or ERBB3. The interaction between ERBB3 and miR‐22‐3p was also tested by Anti‐Ago2 RNA immunoprecipitation (RIP) assay. Results The results showed that AC016405.3 is highly expressed in BRCA tissues as well as cells and positively correlated with poor prognosis in BRCA patients. Silencing AC016405.3 obviously repressed the malignant behaviors of BRCA cells. Mechanistically, AC016405.3 functioned as a competing endogenous RNA (ceRNA) for miR‐22‐3p in the cytoplasm and sponged miR‐22‐3p to release its suppression of ERBB3. Rescue experiments revealed that the suppression role induced by AC016405.3 depletion on malignant behaviors of BRCA cells could be obviously counter by inhibiting miR‐22‐3p or overexpressing ERBB3. Conclusion AC016405.3 promotes BRCA progression by the derepression of ERBB3 via sponging miR‐22‐3p, which may represent a potential target for BRCA treatment.
Collapse
Affiliation(s)
- Min Wei
- Department of Breast, School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Jie Wang
- Department of Breast, School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Qi He
- Department of Breast, School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Lei Liu
- Department of Surgery, The Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Zhiwei Wang
- Department of Breast, School of Medicine, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| |
Collapse
|
43
|
Peng C, Wang Y, Ji L, Kuang L, Yu Z, Li H, Zhang J, Zhao J. LncRNA-MALAT1/miRNA-204-5p/Smad4 Axis Regulates Epithelial-Mesenchymal Transition, Proliferation and Migration of Lens Epithelial Cells. Curr Eye Res 2021; 46:1137-1147. [PMID: 33327804 DOI: 10.1080/02713683.2020.1857778] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
MATERIALS AND METHODS LECs were cultured and induced with TGF-β2 (10 ng/mL). SiRNA against MALAT1 (Si-MALAT1) was transfected into LECs to knockdown the expression of MALAT1. To overexpress or knockdown miR-204-5p, miR-204-5p mimics (miR-204-5p mimics) and anti-miR-204-5p (miR-204-5p inhibitor) were transfected into LECs. We used RNA FISH to identify the location of MALAT1. RNA levels of MALAT1 and miR-204-5p were analyzed by RT-qPCR. Additionally, target protein levels of Smad4, epithelial differentiation and mesenchymal markers were analyzed with Western blot. We employed EdU Labeling to measured cell proliferation and performed Transwell Assay to analyze the cell migration. Dual-luciferase reporter assays in LECs were conducted to verify whether miRNA-204-5p was negatively regulated by MALAT1 and Smad4 was a direct target of miR-204-5p. RESULTS The expression of MALAT1 was upregulated in PCO specimens. MALAT1 was overexpressed in TGF-β2 induced LECs, and the knockdown of MALAT1 could attenuate TGF-β2 induced EMT. Besides, the upregulation of MALAT1 was correlated with the downregulation of miR-204-5p and upregulation of Smad4. Importantly, MALAT1 was revealed to be located in the cytoplasm of LECs. Furthermore, luciferase reporter assays confirmed that MALAT1 could negatively regulate the expression of miR-204-5p and then regulate its direct target Smad4. Finally, the knockdown of MALAT1 could inhibit the EMT, proliferation, and migration of LECs; however, those can be reversed by anti-miR-204-5p. CONCLUSIONS Our findings reveal that MALAT1 may regulate EMT, proliferation, and migration of LECs as a ceRNA by "sponging" miR-204-5p and targeting Smad4, and serve as a promising therapeutic target in preventing PCO.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Department of Ophthalmology, Eye Hospital of China Medical University, Shenyang, China
- Key Laboratory of Lens Research of Liaoning Province, Shenyang, China
| | - Yuchi Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Department of Ophthalmology, Eye Hospital of China Medical University, Shenyang, China
- Key Laboratory of Lens Research of Liaoning Province, Shenyang, China
| | - Liyang Ji
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Department of Ophthalmology, Eye Hospital of China Medical University, Shenyang, China
- Key Laboratory of Lens Research of Liaoning Province, Shenyang, China
| | - Liangju Kuang
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Ziyan Yu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Department of Ophthalmology, Eye Hospital of China Medical University, Shenyang, China
- Key Laboratory of Lens Research of Liaoning Province, Shenyang, China
| | - Hanrong Li
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Department of Ophthalmology, Eye Hospital of China Medical University, Shenyang, China
- Key Laboratory of Lens Research of Liaoning Province, Shenyang, China
| | - Jinsong Zhang
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Department of Ophthalmology, Eye Hospital of China Medical University, Shenyang, China
- Key Laboratory of Lens Research of Liaoning Province, Shenyang, China
| | - Jiangyue Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Department of Ophthalmology, Eye Hospital of China Medical University, Shenyang, China
- Key Laboratory of Lens Research of Liaoning Province, Shenyang, China
| |
Collapse
|
44
|
Wang N, Cao S, Wang X, Zhang L, Yuan H, Ma X. lncRNA MALAT1/miR‑26a/26b/ST8SIA4 axis mediates cell invasion and migration in breast cancer cell lines. Oncol Rep 2021; 46:181. [PMID: 34278507 PMCID: PMC8273684 DOI: 10.3892/or.2021.8132] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/03/2021] [Indexed: 12/25/2022] Open
Abstract
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a long non-coding RNA that is overexpressed in various human cancers, including breast cancer. Evidence has associated the function of the α-2,8-sialyltransferase (ST8SIA) family with breast cancer. The present study aimed to investigate the potential roles of MALAT1 in breast cancer development and progression using analyses of both breast cancer tissues and cell lines. The mRNA levels of MALAT1, microRNA (miR)-26a/26b and ST8SIA4 were detected by reverse transcription-quantitative PCR (RT-qPCR) and the protein level of ST8SIA4 was assessed by western blot analysis. Cell proliferation, invasion and migration were detected by CCK-8, wound healing and Transwell assays, respectively. Interactions between MALAT1 and miR-26a/26b were assessed using fluorescence in situ hybridization, RNA immunoprecipitation and luciferase reporter assays. Herein, different levels of MALAT1 were primarily observed in human breast cancer samples and cells. Upregulated MALAT1 was a crucial predictor of poor breast cancer prognosis. Altered MALAT1 modulated cell progression in breast cancer. Moreover, miR-26a/26b was confirmed as a direct regulator of MALAT1, and ST8SIA4 was predicted as a target of miR-26a/26b. Functional analysis in human breast cancer cell lines demonstrated that MALAT1 modulated breast cancer cell tumorigenicity by acting as a competing endogenous lncRNA (ceRNA) to regulate ST8SIA4 levels by sponging miR-26a/26b. The identification of the MALAT1/miR-26a/26b/ST8SIA4 axis which contributes to breast cancer progression may constitute a potential new therapeutic target.
Collapse
Affiliation(s)
- Nan Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Shengji Cao
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xiaoxi Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Lina Zhang
- Department of Radiology Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Hong Yuan
- Department of Clinical Laboratory Medicine, Dalian Municipal Central Hospital, Dalian, Liaoning 116033, P.R. China
| | - Xiaolu Ma
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
45
|
Muluhngwi P, Klinge CM. Identification and Roles of miR-29b-1-3p and miR29a-3p-Regulated and Non-Regulated lncRNAs in Endocrine-Sensitive and Resistant Breast Cancer Cells. Cancers (Basel) 2021; 13:3530. [PMID: 34298743 PMCID: PMC8307416 DOI: 10.3390/cancers13143530] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 01/05/2023] Open
Abstract
Despite improvements in the treatment of endocrine-resistant metastatic disease using combination therapies in patients with estrogen receptor α (ERα) primary tumors, the mechanisms underlying endocrine resistance remain to be elucidated. Non-coding RNAs (ncRNAs), including microRNAs (miRNA) and long non-coding RNAs (lncRNA), are targets and regulators of cell signaling pathways and their exosomal transport may contribute to metastasis. Previous studies have shown that a low expression of miR-29a-3p and miR-29b-3p is associated with lower overall breast cancer survival before 150 mos. Transient, modest overexpression of miR-29b1-3p or miR-29a-3p inhibited MCF-7 tamoxifen-sensitive and LCC9 tamoxifen-resistant cell proliferation. Here, we identify miR-29b-1/a-regulated and non-regulated differentially expressed lncRNAs in MCF-7 and LCC9 cells using next-generation RNA seq. More lncRNAs were miR-29b-1/a-regulated in LCC9 cells than in MCF-7 cells, including DANCR, GAS5, DSCAM-AS1, SNHG5, and CRND. We examined the roles of miR-29-regulated and differentially expressed lncRNAs in endocrine-resistant breast cancer, including putative and proven targets and expression patterns in survival analysis using the KM Plotter and TCGA databases. This study provides new insights into lncRNAs in endocrine-resistant breast cancer.
Collapse
Affiliation(s)
- Penn Muluhngwi
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Carolyn M. Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| |
Collapse
|
46
|
Ye D, Deng Y, Shen Z. The Role and Mechanism of MALAT1 Long Non-Coding RNA in the Diagnosis and Treatment of Head and Neck Squamous Cell Carcinoma. Onco Targets Ther 2021; 14:4127-4136. [PMID: 34267526 PMCID: PMC8275198 DOI: 10.2147/ott.s317234] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/29/2021] [Indexed: 11/23/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the most common malignant tumor of the head and neck. HNSCC mainly affects the oral cavity and the laryngeal, laryngopharyngeal, and oropharyngeal tracts. The high incidence, hidden onset, low survival rate, and unsatisfactory effects of treatment effect underscore the importance of identify the mechanisms of HNSCC occurrence and development. Although there is a very urgent need for early diagnosis and treatment, there are currently no reliable early HNSCC diagnosis biomarkers or effective treatment targets. Long non-coding RNA (lncRNA) is widely involved in biological processes, especially as a key regulator of tumorigenesis and development. Lung adenocarcinoma metastasis-associated transcript 1 (MALAT1) is an important member of the lncRNA family that can regulate the occurrence and development of a variety of malignant tumors and is anticipated to be an ideal marker for early tumor diagnosis and an effective therapeutic target. Here, we review the research progress into the role of MALAT1 in the diagnosis and treatment of HNSCC and its regulatory mechanism.
Collapse
Affiliation(s)
- Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, People's Republic of China
| | - Yongqin Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, Ningbo University School of Medicine, Ningbo, 315211, People's Republic of China
| | - Zhisen Shen
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, People's Republic of China
| |
Collapse
|
47
|
Abstract
We have known for decades that long noncoding RNAs (lncRNAs) can play essential functions across most forms of life. The maintenance of chromosome length requires an lncRNA (e.g., hTERC) and two lncRNAs in the ribosome that are required for protein synthesis. Thus, lncRNAs can represent powerful RNA machines. More recently, it has become clear that mammalian genomes encode thousands more lncRNAs. Thus, we raise the question: Which, if any, of these lncRNAs could also represent RNA-based machines? Here we synthesize studies that are beginning to address this question by investigating fundamental properties of lncRNA genes, revealing new insights into the RNA structure-function relationship, determining cis- and trans-acting lncRNAs in vivo, and generating new developments in high-throughput screening used to identify functional lncRNAs. Overall, these findings provide a context toward understanding the molecular grammar underlying lncRNA biology.
Collapse
Affiliation(s)
- John L Rinn
- BioFrontiers Institute, Department of Biochemistry, University of Colorado, Boulder, Colorado 80303, USA;
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
48
|
Mansoori H, Darbeheshti F, Daraei A, Mokhtari M, Tabei MB, Abdollahzadeh R, Dastsooz H, Bastami M, Nariman-Saleh-Fam Z, Salmani H, Mansoori Y, Tahmasebi S. Expression signature of lncRNA APTR in clinicopathology of breast cancer: Its potential oncogenic function in dysregulation of ErbB signaling pathway. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Cruickshank BM, Wasson MCD, Brown JM, Fernando W, Venkatesh J, Walker OL, Morales-Quintanilla F, Dahn ML, Vidovic D, Dean CA, VanIderstine C, Dellaire G, Marcato P. LncRNA PART1 Promotes Proliferation and Migration, Is Associated with Cancer Stem Cells, and Alters the miRNA Landscape in Triple-Negative Breast Cancer. Cancers (Basel) 2021; 13:cancers13112644. [PMID: 34072264 PMCID: PMC8198907 DOI: 10.3390/cancers13112644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 01/03/2023] Open
Abstract
Triple-negative breast cancers (TNBCs) are aggressive, lack targeted therapies and are enriched in cancer stem cells (CSCs). Novel therapies which target CSCs within these tumors would likely lead to improved outcomes for TNBC patients. Long non-coding RNAs (lncRNAs) are potential therapeutic targets for TNBC and CSCs. We demonstrate that lncRNA prostate androgen regulated transcript 1 (PART1) is enriched in TNBCs and in Aldefluorhigh CSCs, and is associated with worse outcomes among basal-like breast cancer patients. Although PART1 is androgen inducible in breast cancer cells, analysis of patient tumors indicates its androgen regulation has minimal clinical impact. Knockdown of PART1 in TNBC cell lines and a patient-derived xenograft decreased cell proliferation, migration, tumor growth, and mammosphere formation potential. Transcriptome analyses revealed that the lncRNA affects expression of hundreds of genes (e.g., myosin-Va, MYO5A; zinc fingers and homeoboxes protein 2, ZHX2). MiRNA 4.0 GeneChip and TaqMan assays identified multiple miRNAs that are regulated by cytoplasmic PART1, including miR-190a-3p, miR-937-5p, miR-22-5p, miR-30b-3p, and miR-6870-5p. We confirmed the novel interaction between PART1 and miR-937-5p. In general, miRNAs altered by PART1 were less abundant than PART1, potentially leading to cell line-specific effects in terms miRNA-PART1 interactions and gene regulation. Together, the altered miRNA landscape induced by PART1 explains most of the protein-coding gene regulation changes (e.g., MYO5A) induced by PART1 in TNBC.
Collapse
Affiliation(s)
- Brianne M. Cruickshank
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.M.C.); (M.-C.D.W.); (J.M.B.); (W.F.); (J.V.); (O.L.W.); (M.L.D.); (D.V.); (C.A.D.); (C.V.); (G.D.)
| | - Marie-Claire D. Wasson
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.M.C.); (M.-C.D.W.); (J.M.B.); (W.F.); (J.V.); (O.L.W.); (M.L.D.); (D.V.); (C.A.D.); (C.V.); (G.D.)
| | - Justin M. Brown
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.M.C.); (M.-C.D.W.); (J.M.B.); (W.F.); (J.V.); (O.L.W.); (M.L.D.); (D.V.); (C.A.D.); (C.V.); (G.D.)
| | - Wasundara Fernando
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.M.C.); (M.-C.D.W.); (J.M.B.); (W.F.); (J.V.); (O.L.W.); (M.L.D.); (D.V.); (C.A.D.); (C.V.); (G.D.)
| | - Jaganathan Venkatesh
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.M.C.); (M.-C.D.W.); (J.M.B.); (W.F.); (J.V.); (O.L.W.); (M.L.D.); (D.V.); (C.A.D.); (C.V.); (G.D.)
| | - Olivia L. Walker
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.M.C.); (M.-C.D.W.); (J.M.B.); (W.F.); (J.V.); (O.L.W.); (M.L.D.); (D.V.); (C.A.D.); (C.V.); (G.D.)
| | | | - Margaret L. Dahn
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.M.C.); (M.-C.D.W.); (J.M.B.); (W.F.); (J.V.); (O.L.W.); (M.L.D.); (D.V.); (C.A.D.); (C.V.); (G.D.)
| | - Dejan Vidovic
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.M.C.); (M.-C.D.W.); (J.M.B.); (W.F.); (J.V.); (O.L.W.); (M.L.D.); (D.V.); (C.A.D.); (C.V.); (G.D.)
| | - Cheryl A. Dean
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.M.C.); (M.-C.D.W.); (J.M.B.); (W.F.); (J.V.); (O.L.W.); (M.L.D.); (D.V.); (C.A.D.); (C.V.); (G.D.)
| | - Carter VanIderstine
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.M.C.); (M.-C.D.W.); (J.M.B.); (W.F.); (J.V.); (O.L.W.); (M.L.D.); (D.V.); (C.A.D.); (C.V.); (G.D.)
| | - Graham Dellaire
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.M.C.); (M.-C.D.W.); (J.M.B.); (W.F.); (J.V.); (O.L.W.); (M.L.D.); (D.V.); (C.A.D.); (C.V.); (G.D.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Paola Marcato
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.M.C.); (M.-C.D.W.); (J.M.B.); (W.F.); (J.V.); (O.L.W.); (M.L.D.); (D.V.); (C.A.D.); (C.V.); (G.D.)
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Correspondence: ; Tel.: +1-(902)-494-4239
| |
Collapse
|
50
|
Sheng XF, Hong LL, Li H, Huang FY, Wen Q, Zhuang HF. Long non-coding RNA MALAT1 modulate cell migration, proliferation and apoptosis by sponging microRNA-146a to regulate CXCR4 expression in acute myeloid leukemia. ACTA ACUST UNITED AC 2021; 26:43-52. [PMID: 33382018 DOI: 10.1080/16078454.2020.1867781] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To investigate the role of Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in acute myeloid leukemia (AML) and analyze the potential regulatory network of MALAT1/miR-146a/ CXCR4. METHODS The expressions of MALAT1, miR-146a and CXCR4 were performed by qRT-PCR and Western Blot. We conducted trans-well assay, CCK-8 assay and flow cytometry to evaluate the migration, proliferation and apoptosis of AML cells. Also by using luciferase reporter assay, we investigated the interaction between miR-146a and MALAT1 or CXCR4. RESULTS Firstly, MALAT1 and CXCR4 were upregulated while miR-146a was downregulated in AML patients compared with healthy controls. We observed a negative correlation between miR-146a and MALAT1 or CXCR4, but a positive correlation between MALAT1 and CXCR4 in AML patients. MALAT1 knockdown inhibited migration and proliferation but induced apoptosis of HL-60 cells. MALAT1 restrained miR-146a expression by acting as a ceRNA. miR-146a regulated HL-60 cells migration, proliferation and apoptosis by directly targeting CXCR4 expression. Finally, we found that CXCR4 expression was downregulated by MALAT1 knockdown and partially restored by miR-146a abrogation. CONCLUSIONS Our results showed that MALAT1 regulates migration, proliferation and apoptosis by sponging miR-146a to regulate CXCR4 expression in AML cells, providing novel insights into the role of MALAT1 as a therapeutic target in AML.
Collapse
Affiliation(s)
- Xian-Fu Sheng
- The department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Li-Li Hong
- The department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Hui Li
- The department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Fei-Yan Huang
- The department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Qiang Wen
- The department of Cancer, Cancer Hospital of University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hai-Feng Zhuang
- The department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| |
Collapse
|