1
|
Shao B, Wang Z, Luo P, Du P, Zhang X, Zhang H, Si X, Ma S, Chen W, Huang Y. Identifying insulin-responsive circRNAs in chicken pectoralis. BMC Genomics 2025; 26:148. [PMID: 39955508 PMCID: PMC11830218 DOI: 10.1186/s12864-025-11347-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are stable, covalently closed non-coding RNAs formed by reverse splicing of precursor mRNA. They play critical roles in various biological processes, including insulin secretion and metabolism. However, their function in avian skeletal muscle's response to insulin remains poorly understood. This study aimed to comprehensively identify insulin-responsive circRNAs and explore their temporal and breed-specific regulation in poultry. RESULTS Using strand-specific RNA sequencing (ssRNA-Seq) on the pectoralis muscles of both Arbor Acres (AA) broilers and Silky fowls following insulin administration (5 IU/kg.BW, PBS as control). We identified 2,027 muscle circRNAs. Insulin-responsive circRNAs were detected in Silky fowls (29) and broilers (45) at 120 min, and in broilers (20) at 15 min post-injection. These circRNAs are enriched in processes such as exocrine pancreas development, response to exogenous stimuli, and regulation of intracellular signal transduction, likely mediated through a circRNA-miRNA network. Fewer insulin-responsive circRNAs were shared between time points in broilers (1) or between breeds (3) at 120 min. We further characterized a conserved insulin-responsive circRNA (circINSR), formed by exon 2 of the Insulin Receptor (INSR). The circINSR showed a similar spatiotemporal expression pattern to INSR, but exhibited distinct changes post-insulin administration. In broilers, INSR expression was dynamically modulated, while circINSR was downregulated only at 15 min (P < 0.01). Conversely, glucose did not change muscle circINSR but increased INSR at 10 min (P < 0.01). Energy restriction significantly downregulated circINSR (P < 0.01) without affecting INSR levels, and pyruvate had no effect on either circINSR or INSR levels. CONCLUSION This study reveals the dynamic and breed-specific roles of circRNAs, particularly circINSR, in avian skeletal muscle's response to insulin. The distinct regulation of circINSR and INSR under various metabolic conditions suggests a complex regulatory mechanism. These findings provide novel insights into the molecular basis of insulin signaling in avian species and highlight the potential of circRNAs as biomarkers for metabolic regulation.
Collapse
Affiliation(s)
- Binghao Shao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ziyang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Pengna Luo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Pengfei Du
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiangli Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huaiyong Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xuemeng Si
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Sen Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wen Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Yanqun Huang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
2
|
You G, Long H, Shen X, Yin H, Zhang S. Emerging roles of circular RNAs on the regulation of production traits in chicken. Poult Sci 2025; 104:104612. [PMID: 39647355 PMCID: PMC11667694 DOI: 10.1016/j.psj.2024.104612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024] Open
Abstract
Chickens are vital agricultural animals that supply a significant portion of the protein consumed by humans. In society today, enhancing the productive performance of chickens in a safe and efficient manner has become a central focus of research. This performance is determined by various production traits that are primarily influenced by multiple factors, including epigenetics-a critical aspect of gene regulation. Circular RNAs (circRNAs), a unique class of non-coding RNAs, have emerged as key epigenetic regulators. Recent studies have demonstrated that circRNAs are extensively engaged in numerous production traits, which include skeletal muscle formation, fat deposition, ovarian follicle development, liver function, bone development, immunity, and resistance to environmental stress. These processes play crucial roles in determining the overall productivity of chickens. Given the significance of circRNAs in these various traits, this article provides a comprehensive review of the functional circRNAs associated with different traits in chickens, serving as a valuable theoretical reference for future research. Further investigation into the role of circRNAs may reveal novel insights into the molecular mechanisms underlying key economic traits in chickens and pave the way for innovative strategies in molecular breeding aimed at enhancing chicken productive performance.
Collapse
Affiliation(s)
- Guishuang You
- Laboratory Animal Center, Zunyi Medical University, Zunyi, 563000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hong Long
- Laboratory Animal Center, Zunyi Medical University, Zunyi, 563000, China
| | - Xiaoxu Shen
- Department of Histology and Embryology, School of Preclinical Medicine, Zunyi Medical University, Zunyi, 563000, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shibin Zhang
- Laboratory Animal Center, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
3
|
Wang L, Zheng G, Yang Y, Wu J, Du Y, Chen J, Liu C, Liu Y, Zhang B, Zhang H, Deng X, Lian L. Rolling-Translated circRUNX2.2 Promotes Lymphoma Cell Proliferation and Cycle Transition in Marek's Disease Model. Int J Mol Sci 2024; 25:11486. [PMID: 39519039 PMCID: PMC11545863 DOI: 10.3390/ijms252111486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Marek's disease (MD), an immunosuppressive disease induced by the Marek's disease virus (MDV), is regarded as an ideal model for lymphoma research to elucidate oncogenic and anti-oncogene genes. Using this model, we found that circRUNX2.2, derived from exon 6 of RUNX2, was significantly upregulated in MDV-infected tumorous spleens. In this study, we deeply analyzed the potential role of circRUNX2.2 in lymphoma cells. An open reading frame (ORF) in circRUNX2.2 with no stop codon was predicted, and small peptides (named circRUNX2.2-rt) presenting multiple ladder-like bands with different molecular weights encoded by circRUNX2.2 were detected via Western blotting assay. The polysome fraction assay reconfirmed the translation ability of circRUNX2.2, which could be detected in polysome fractions. Subsequent analysis verified that it translated in a rolling circle manner, rather than being assisted by the internal ribosome entry site (IRES) or m6A-mediated mechanism. Furthermore, we found that circRUNX2.2-rt was potently induced in MSB1 cells treated with sodium butyrate (NaB), which reactivated MDV and forced the MDV transition from the latent to reactivation phase. During this phase, MDV particles were clearly observed by electron microscopy, and the viral gene pp38 was also significantly upregulated. A biological function study showed that circRUNX2.2-rt promoted cell proliferation and cell cycle transition from the S to G2 phase and inhibited the apoptosis of MSB1. Further immunoprecipitation and mass spectrometry assays showed that 168 proteins potentially interacting with circRUNX2.2-rt were involved in multiple pathways related to cell cycle regulation, which proved that circRUNX2.2-rt could bind or recruit proteins to mediate the cell cycle.
Collapse
Affiliation(s)
- Lulu Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Gang Zheng
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Yuqin Yang
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Junfeng Wu
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Yushuang Du
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Jiahua Chen
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Changjun Liu
- Division of Avian Infectious Diseases, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yongzhen Liu
- Division of Avian Infectious Diseases, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Bo Zhang
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Hao Zhang
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Xuemei Deng
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Ling Lian
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Wang L, Zheng G, Yuan Y, Wang Z, Wang Q, Sun M, Wu J, Liu C, Liu Y, Zhang B, Zhang H, Yang N, Lian L. circRUNX2.2, highly expressed in Marek's disease tumor tissues, functions in cis to regulate parental gene RUNX2 expression. Poult Sci 2024; 103:104045. [PMID: 39094493 PMCID: PMC11345620 DOI: 10.1016/j.psj.2024.104045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Marek's disease (MD), an immunosuppression disease induced by Marek's disease virus (MDV), is one of the significant diseases affecting the health and productive performance of poultry. The roles of circular RNAs (circRNAs) in MD development were poorly understood. In this study, we found a circRNA derived from exon 6 of RUNX family transcription factor 2 (RUNX2) gene, named circRUNX2.2, was highly expressed in chicken tumorous spleens (TS) induced by MDV. Through fluorescence in situ hybridization and nuclear-cytoplasmic separation assay, we determined circRUNX2.2 was mainly located in the nucleus. Knockout experiments confirmed that the flanking complementary sequences (RCMs) mediated its circularization. Gain of function assay and dual luciferase reporter gene assay revealed that circRUNX2.2 could promote the expression of RUNX2 via binding with its promoter region. RNA antisense purification assay and mass spectrometry assay showed circRUNX2.2 could recruit proteins such as CHD9 protein. Knocking down CHD9 expression decreased the expression of RUNX2 gene, which confirmed the positive regulation that circRUNX2.2 on RUNX2 expression was probably facilitated via recruiting CHD9 protein. Functional experiments showed that circRUNX2.2 promoted the proliferation of the MD lymphoma-derived chicken cell line, MDCC-MSB1, which confirmed the potential oncogenic role of circRNX2.2 in tumor development. In conclusion, we found that the RUNX2-derived circRUNX2.2 can positively regulate the transcription of the parental gene RUNX2 in a cis-acting manner. The high expression of circRUNX2.2 in MD tumor tissues indicated that it might mediate MD lymphoma progression.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Gang Zheng
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yiming Yuan
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ziyi Wang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qinyuan Wang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Meng Sun
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junfeng Wu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Changjun Liu
- Division of Avian Infectious Diseases, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yongzhen Liu
- Division of Avian Infectious Diseases, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Bo Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hao Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ning Yang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ling Lian
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Yuan J, Li Q, Sun Y, Wang Y, Li Y, You Z, Ni A, Zong Y, Ma H, Chen J. Multi-tissue transcriptome profiling linked the association between tissue-specific circRNAs and the heterosis for feed intake and efficiency in chicken. Poult Sci 2024; 103:103783. [PMID: 38713987 PMCID: PMC11091503 DOI: 10.1016/j.psj.2024.103783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/09/2024] Open
Abstract
Heterosis has been widely utilized in chickens. The nonadditive inheritance of genes contributes to this biological phenomenon. However, the role of circRNAs played in the heterosis is poorly determined. In this study, we observed divergent heterosis for residual feed intake (RFI) between 2 crossbreds derived from a reciprocal cross between White Leghorns and Beijing You chickens. Then, circRNA landscape for 120 samples covering the hypothalamus, liver, duodenum mucosa and ovary were profiled to elucidate the regulatory mechanisms of heterosis. We detected that a small proportion of circRNAs (7.83-20.35%) were additively and non-additively expressed, in which non-additivity was a major inheritance of circRNAs in the crossbreds. Tissue-specific expression of circRNAs was prevalent across 4 tissues. Weighted gene co-expression network analysis revealed circRNA-mRNA co-expression modules associated with feed intake and RFI in the hypothalamus and liver, and the co-expressed genes were enriched in oxidative phosphorylation pathway. We further identified 8 nonadditive circRNAs highly correlated with 16 nonadditive genes regulating negative heterosis for RFI in the 2 tissues. Circ-ITSN2 was validated in the liver tissue for its significantly positive correlation with PGPEP1L. Moreover, the bioinformatic analysis indicated that candidate circRNAs might be functioned by binding the microRNAs and interacting with the RNA binding proteins. The integration of multi-tissue transcriptome firstly linked the association between tissue-specific circRNAs and the heterosis for feed intake and efficiency in chicken, which provide novel insights into the molecular mechanism underlying heterosis for feed efficiency. The validated circRNAs can act as potential biomarkers for predicting RFI and its heterosis.
Collapse
Affiliation(s)
- Jingwei Yuan
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qin Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanyan Sun
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuanmei Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunlei Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhangjing You
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Aixin Ni
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunhe Zong
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hui Ma
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jilan Chen
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
6
|
Tian Y, Wen J, Zhang W, Zhang R, Xu X, Jiang Y, Wang X, Man C. CircMYO1B/miR-155 pathway is a common mechanism of stress-induced immunosuppression affecting immune response to three vaccines in chicken. Int Immunopharmacol 2024; 130:111719. [PMID: 38377854 DOI: 10.1016/j.intimp.2024.111719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
Stress-induced immunosuppression (SIIS) can weaken the immune response effect of poultry vaccination, and bring huge hidden dangers and economic losses to the poultry industry. However, the detailed molecular mechanisms are still not fully understood. Unveiling the common mechanism of SIIS affecting the immune response to different vaccines is critical for detecting and minimizing the losses caused by SIIS. This study used glucocorticoid dexamethasone (Dex) to simulate SIIS, and three classic avian vaccines (including avian influenza virus (AIV), Newcastle disease virus (NDV), and infectious bursal disease virus (IBDV)) were used to induce immune responses in chicken. Quantitative real-time PCR (qRT-PCR) revealed the expression characteristics and functions of circMYO1B and miR-155 in the processes of SIIS affecting the immune response to the aforementioned avian vaccines, as well as their targeted regulatory relationship. Subsequent bioinformatics analysis predicted FOS, one of the potential target genes of miR-155. The results showed that circMYO1B/miR-155 pathway served as a key common mechanism by which SIIS affected the immune response to the three vaccines. Both heart and proventriculus appeared to be the crucial tissues for this process, with five days post immunization (dpi) emerging as the primary time of interest. Moreover, mitogen-activated protein kinase (MAPK) signaling system played a key role in modulating the immune response subsequent to SIIS administration. Our findings provide new insights into the immune function of competitive endogenous RNA (ceRNA), which have important function in the detection and treatment of SIIS affecting vaccine immunity.
Collapse
Affiliation(s)
- Yufei Tian
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Jie Wen
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Wei Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Rui Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Xinxin Xu
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Yi Jiang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Xiangnan Wang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Chaolai Man
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China.
| |
Collapse
|
7
|
Wang S, Li X, Liu G, Qiu Z, Wang J, Yang D, Qiao Z, Ma Z, Liu Z, Yang X. Advances in the understanding of circRNAs that influence viral replication in host cells. Med Microbiol Immunol 2024; 213:1. [PMID: 38329596 DOI: 10.1007/s00430-023-00784-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/25/2023] [Indexed: 02/09/2024]
Abstract
Circular RNAs (circRNAs) are non-coding RNAs discovered in recent years, which are produced by back-splicing involving the 3' and 5' ends of RNA molecules. There is increasing evidence that circRNAs have important roles in cancer, neurological diseases, cardiovascular and cerebrovascular diseases, and other diseases. In addition, host circRNAs and virus-encoded circRNAs participate in the body's immune response, with antiviral roles. This review summarizes the mechanisms by which host and viral circRNAs interact during the host immune response. Comprehensive investigations have revealed that host circRNAs function as miRNA sponges in a particular manner, primarily by inhibiting viral replication. Viral circRNAs have more diverse functions, which generally involve promoting viral replication. In addition, in contrast to circRNAs from RNA viruses, circRNAs from DNA viruses can influence host cell migration, proliferation, and apoptosis, along with their effects on viral replication. In summary, circRNAs have potential as diagnostic and therapeutic targets, offering a foundation for the diagnosis and treatment of viral diseases.
Collapse
Affiliation(s)
- Siya Wang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Xiaoyun Li
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Geng Liu
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Zhenyu Qiu
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Jiamin Wang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Di Yang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Zilin Qiao
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Zhongren Ma
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Zhenbin Liu
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China.
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China.
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China.
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, 430207, China.
- China National Biotech Group Company Limited, Beijing, 100029, China.
| |
Collapse
|
8
|
Han S, Zhao S, Zhao Y, Liu M, Han L, Han L. The novel lncRNA-9802/miR-1646 axis affects cell proliferation of DF-1 by regulating Bax/Bcl-2 signaling pathway. Res Vet Sci 2023; 164:105047. [PMID: 37837750 DOI: 10.1016/j.rvsc.2023.105047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/16/2023]
Abstract
Marek's disease (MD) is a severe infectious and immunosuppressive neoplastic condition that significantly impacts the global poultry industry. Investigating the role of non-coding RNA in pathogenic mechanisms of MD virus (MDV) offers valuable insights for the effective prevention and management of MD. A higher expression of the novel lncRNA-9802 can be found in spleen tissues of MDV-infected chickens from our prior research, and there is a potential association between lncRNA-9802 and cell proliferation. In this study, we further demonstrated that over-expression of lncRNA-9802 could promote the proliferation of DF-1 cells. It has been established that lncRNA-9802 mediated its effects by binding to miR-1646, and further modulated the expression of the Bax and Bcl-2 genes. Deciphering the role of the recently discovered MD-associated lncRNA-9802/miR-1646 axis provides valuable theoretical basis for decoding the molecular mechanisms underlying MDV pathogenesis.
Collapse
Affiliation(s)
- Shuo Han
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Shuang Zhao
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yaolu Zhao
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Mingchun Liu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Liping Han
- Department of Bioscience, Changchun Normal University, Changchun 130032, China.
| | - Limei Han
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
9
|
Tian Y, Ma X, Jiang Y, Han J, Zhang R, Xu X, Zhang W, Man C. Circular RNA circAKIRIN2 participates in the process of stress-induced immunosuppression affecting immune response to infectious bursal disease virus vaccine in chicken. Vet Microbiol 2023; 281:109746. [PMID: 37075663 DOI: 10.1016/j.vetmic.2023.109746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 04/21/2023]
Abstract
At present, stress-induced immunosuppression is still a hidden threat that leads to immunization failure and outbreaks of poultry diseases, and causes huge economic losses to the modern poultry industry. However, the molecular mechanisms of stress-induced immunosuppression affecting viral vaccine immunity are still poorly understood. Here, we identified circAKIRIN2 as a conserved circular transcript in chicken, and explored its expression patterns in different immune states by quantitative real-time PCR (qRT-PCR), then conducted bioinformatics analysis. The results showed that circAKIRIN2 actively participated in the process of stress-induced immunosuppression affecting the immune response to infectious bursal disease virus (IBDV) vaccine. The key time points for circAKIRIN2 involving in the process were 2 day post immunization (dpi), 5 dpi, and 28 dpi, especially at the acquired immune stage. The important tissues that responded to the process included the heart, liver, and lung, all of which changed significantly. In addition, circAKIRIN2 as a competing endogenous RNA (ceRNA) sponging zinc finger and BTB domain containing 20 (ZBTB20) was a potential molecular mechanism for regulating immune functions in the process. In conclusion, circAKIRIN2 is a key regulatory factor for stress-induced immunosuppression affecting the IBDV vaccine immune response, and this study can provide a new perspective for exploring the molecular regulatory mechanisms of stress-induced immunosuppression affecting immune response.
Collapse
Affiliation(s)
- Yufei Tian
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Xiaoli Ma
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Yi Jiang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Jianwei Han
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Rui Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Xinxin Xu
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Wei Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Chaolai Man
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China.
| |
Collapse
|
10
|
Teng M, Zhu ZJ, Yao Y, Nair V, Zhang GP, Luo J. Critical roles of non-coding RNAs in lifecycle and biology of Marek's disease herpesvirus. SCIENCE CHINA. LIFE SCIENCES 2023; 66:251-268. [PMID: 36617590 PMCID: PMC9838510 DOI: 10.1007/s11427-022-2258-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/05/2022] [Indexed: 01/10/2023]
Abstract
Over the past two decades, numerous non-coding RNAs (ncRNAs) have been identified in different biological systems including virology, especially in large DNA viruses such as herpesviruses. As a representative oncogenic alphaherpesvirus, Marek's disease virus (MDV) causes an important immunosuppressive and rapid-onset neoplastic disease of poultry, namely Marek's disease (MD). Vaccinations can efficiently prevent the onset of MD lymphomas and other clinical disease, often heralded as the first successful example of vaccination-based control of cancer. MDV infection is also an excellent model for research into virally-induced tumorigenesis. Recently, great progress has been made in understanding the functions of ncRNAs in MD biology. Herein, we give a review of the discovery and identification of MDV-encoded viral miRNAs, focusing on the genomics, expression profiles, and emerging critical roles of MDV-1 miRNAs as oncogenic miRNAs (oncomiRs) or tumor suppressor genes involved in the induction of MD lymphomas. We also described the involvements of host cellular miRNAs, lincRNAs, and circRNAs participating in MDV life cycle, pathogenesis, and/or tumorigenesis. The prospects, strategies, and new techniques such as the CRISPR/Cas9-based gene editing applicable for further investigation into the ncRNA-mediated regulatory mechanisms in MDV pathogenesis/oncogenesis were also discussed, together with the possibilities of future studies on antiviral therapy and the development of new efficient MD vaccines.
Collapse
Affiliation(s)
- Man Teng
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of China & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Zhi-Jian Zhu
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, 463000, China
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey, GU24 0NF, UK
| | - Venugopal Nair
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey, GU24 0NF, UK
| | - Gai-Ping Zhang
- International Joint Research Center of National Animal Immunology & College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Jun Luo
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of China & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
- Key Laboratory of Animal Disease and Public Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
11
|
Wu Y, Li H, Zhao X, Baki G, Ma C, Yao Y, Li J, Yao Y, Wang L. Differential expression of circRNAs of testes with high and low sperm motility in Yili geese. Front Genet 2022; 13:970097. [PMID: 36226183 PMCID: PMC9548634 DOI: 10.3389/fgene.2022.970097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to explore the potential biological function of circular RNAs (circRNAs) in the sperm motility traits of Xinjiang Yili geese, and to provide a reference for analyzing the mechanism of regulation of Yili geese sperm motility. The 10 selected Xinjiang Yili Geese with high or low sperm motility (five for each group) were 3 years old, in good health, and were kept in the same feeding conditions. Yili geese were slaughtered for the collection of testicular tissue and high-throughput sequencing technology was used to screen differentially expressed circRNAs for bioinformatics analysis. Combined with the previously screened miRNAs related to the sperm motility of Yili geese, the circRNAs miRNAs regulatory network was constructed. The results showed that a total of 26,311 circRNAs were obtained from testicular tissues with high and low sperm motility, and 173 DECs were screened between the two groups (p < 0.05, |log2Foldchange|>0), of which 82 were up-regulated and 91 were down-regulated. Functional analysis of the source genes of these DECs showed that the source genes were mainly involved in biological processes. KEGG enrichment analysis showed that the source genes of DECs were mainly enriched in autophagy-animal, ubiquinone and other terpenoid-quinone biosynthesis, progesterone-mediated oocyte maturation, regulation of the actin cytoskeleton and other pathways. Furthermore, the visual regulatory network of differential circRNA-miRNA-mRNA was constructed, including 20 circRNAs, 18 miRNAs and 177 mRNAs, and nine core regulatory circRNAs were screened, including novell_circ_0045314, novel_circ_0019994 and novel_circ_0020422, etc., targeting ppy-mir-16, hsa-mir-221–3p, gga-mir-499–5p, etc. The results suggest that circRNAs may interact with miRNAs to further regulate mRNA to regulate sperm motility in Yili geese, so as to provide a reference for analyzing the molecular mechanism of sperm motility regulation.
Collapse
|
12
|
Abstract
Circular RNAs (circRNAs) are a recently rediscovered class of functional noncoding RNAs that are involved in gene regulation and cancer development. Next-generation sequencing approaches identified circRNA fragments and sequences underlying circularization events in virus-induced cancers. In the present study, we performed viral circRNA expression analysis and full-length sequencing in infections with Marek’s disease virus (MDV), which serves as a model for herpesvirus-induced tumorigenesis. We established inverse PCRs to identify and characterize circRNA expression from the repeat regions of the MDV genome during viral replication, latency, and reactivation. We identified a large variety of viral circRNAs through precise mapping of full-length circular transcripts and detected matching sequences with several viral genes. Hot spots of circRNA expression included the transcriptional unit of the major viral oncogene encoding the Meq protein and the latency-associated transcripts (LATs). Moreover, we performed genome-wide bioinformatic analyses to extract back-splice junctions from lymphoma-derived samples. Using this strategy, we found that circRNAs were abundantly expressed in vivo from the same key virulence genes. Strikingly, the observed back-splice junctions do not follow a unique canonical pattern, compatible with the U2-dependent splicing machinery. Numerous noncanonical junctions were observed in viral circRNA sequences characterized from in vitro and in vivo infections. Given the importance of the genes involved in the transcription of these circRNAs, our study contributes to our understanding and complexity of this deadly pathogen. IMPORTANCE Circular RNAs (circRNAs) were rediscovered in recent years both in physiological and pathological contexts, such as in cancer. Viral circRNAs are encoded by at least two human herpesviruses, the Epstein Barr virus and the Kaposi’s Sarcoma-associated herpesvirus, both associated with the development of lymphoma. Marek’s disease virus (MDV) is a well-established animal model to study virus-induced lymphoma but circRNA expression has not been reported for MDV yet. Our study provided the first evidence of viral circRNAs that were expressed at key steps of the MDV lifecycle using genome-wide analyses of circRNAs. These circRNAs were primarily found in transcriptional units that corresponded to the major MDV virulence factors. In addition, we established a bioinformatics pipeline that offers a new tool to identify circular RNAs in other herpesviruses. This study on the circRNAs provided important insights into major MDV virulence genes and herpesviruses-mediated gene dysregulation.
Collapse
|
13
|
Guo Y, Yu X, Su N, Shi N, Zhang S, Zhang L, Yang L, Zhao L, Guan Z, Zhang M, Duan M. Identification and characterization of circular RNAs in the A549 cells following Influenza A virus infection. Vet Microbiol 2022; 267:109390. [DOI: 10.1016/j.vetmic.2022.109390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 01/01/2023]
|
14
|
Chen W, Lv X, Zhang W, Hu T, Cao X, Ren Z, Getachew T, Mwacharo JM, Haile A, Sun W. Non-Coding Transcriptome Provides Novel Insights into the Escherichia coli F17 Susceptibility of Sheep Lamb. BIOLOGY 2022; 11:348. [PMID: 35336723 PMCID: PMC8945857 DOI: 10.3390/biology11030348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 01/16/2023]
Abstract
It has long been recognized that enterotoxigenic Escherichia coli (ETEC) is the major pathogen responsible for vomiting and diarrhea. E. coli F17, a main subtype of ETEC, is characterized by high morbidity and mortality in young livestock. However, the transcriptomic basis underlying E. coli F17 infection has not been fully understood. In this study, RNA sequencing was performed to explore the expression profiles of circRNAs and miRNAs in the jejunum of E. coli F17-antagonism (AN) and -sensitive (SE) lambs. A total of 16,534 circRNAs and 271 miRNAs (125 novel miRNAs and 146 annotated miRNAs) were screened, and 214 differentially expressed (DE) circRNAs and 53 DE miRNAs were detected between the AN and SE lambs (i.e., novel_circ_0025840, novel_circ_0022779, novel_miR_107, miR-10b). Functional enrichment analyses showed that source genes of DE circRNAs were mainly involved in metabolic-related pathways, while target genes of DE miRNAs were mainly enriched in the immune response pathways. Then, a two-step machine learning approach combining Random Forest (RF) and XGBoost (candidates were first selected by RF and further assessed by XGBoost) was performed, which identified 44 circRNAs and 39 miRNAs as potential biomarkers (i.e., novel_circ_0000180, novel_circ_0000365, novel_miR_192, oar-miR-496-3p) for E. coli infection. Furthermore, circRNA-related and lncRNA-related ceRNA networks were constructed, containing 46 circRNA-miRNA-mRNA competing triplets and 630 lncRNA-miRNA-mRNA competing triplets, respectively. By conducting a serious of bioinformatic analyses, our results revealed important circRNAs and miRNAs that could be potentially developed as candidate biomarkers for intestinal inflammatory response against E. coli F17 infection; our study can provide novel insights into the underlying mechanisms of intestinal immunity.
Collapse
Affiliation(s)
- Weihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.C.); (W.Z.); (T.H.); (Z.R.)
| | - Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.)
| | - Weibo Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.C.); (W.Z.); (T.H.); (Z.R.)
| | - Tingyan Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.C.); (W.Z.); (T.H.); (Z.R.)
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.)
| | - Ziming Ren
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.C.); (W.Z.); (T.H.); (Z.R.)
| | - Tesfaye Getachew
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Joram M. Mwacharo
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Aynalem Haile
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.C.); (W.Z.); (T.H.); (Z.R.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.L.); (X.C.)
| |
Collapse
|
15
|
Cao X, Xu X, Dong J, Xue Y, Sun L, Zhu Y, Liu T, Jin Q. Genome-wide identification and functional analysis of circRNAs in Trichophyton rubrum conidial and mycelial stages. BMC Genomics 2022; 23:21. [PMID: 34983376 PMCID: PMC8725419 DOI: 10.1186/s12864-021-08184-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 11/18/2021] [Indexed: 12/28/2022] Open
Abstract
Background Circular RNAs (circRNAs) are a group of noncoding RNAs that participate in gene expression regulation in various pathways. The essential roles of circRNAs have been revealed in many species. However, knowledge of circRNAs in fungi is still not comprehensive. Results Trichophyton rubrum (T. rubrum) is considered a model organism of human pathogenic filamentous fungi and dermatophytes. In this study, we performed a genome-wide investigation of circRNAs in T. rubrum based on high-throughput sequencing and ultimately identified 4254 circRNAs. Most of these circRNAs were specific to the conidial or mycelial stage, revealing a developmental stage-specific expression pattern. In addition, 940 circRNAs were significantly differentially expressed between the conidial and mycelial stages. PCR experiments conducted on seven randomly selected differentially expressed (DE-) circRNAs confirmed the circularized structures and relative expression levels of these circRNAs. Based on their genome locations, most circRNAs originated from intergenic regions, unlike those in plants and animals. Furthermore, we constructed circRNA-miRNA-mRNA regulatory networks that included 661 DE-circRNAs targeting 140 miRNAs and further regulating 2753 mRNAs. The relative expression levels of two randomly selected circRNA-miRNA-mRNA axes were investigated by qRT-PCR, and the competing endogenous RNA (ceRNA) network theory was validated. Functional enrichment analysis of the target genes suggested that they were significantly involved in posttranscriptional processes and protein synthesis as well as some small-molecule metabolism processes. CircRNAs are relatively more conserved in closely related dermatophytes but rarely conserved in distantly related species. Tru_circ07138_001 is a highly conserved circRNA that was conserved in all ten dermatophytes analyzed in our study and three distantly related species. Its host gene TERG_07138 was also highly conserved in two of these distantly related species Gallus gallus and Caenorhabditis elegans. The specific role of this circRNA deserves further exploration. Conclusions Our study is the first to provide a global profile of circRNAs in T. rubrum as well as dermatophytes. These results could serve as valuable resources for research on circRNA regulatory mechanisms in fungi and reveal new insights for further investigation of the physical characteristics of these significant human fungal pathogens. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08184-y.
Collapse
Affiliation(s)
- Xingwei Cao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Xingye Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Jie Dong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Ying Xue
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Lilian Sun
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Yafang Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Tao Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China.
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China.
| |
Collapse
|
16
|
Tian W, Zhang B, Zhong H, Nie R, Ling Y, Zhang H, Wu C. Dynamic Expression and Regulatory Network of Circular RNA for Abdominal Preadipocytes Differentiation in Chicken ( Gallus gallus). Front Cell Dev Biol 2021; 9:761638. [PMID: 34869349 PMCID: PMC8633312 DOI: 10.3389/fcell.2021.761638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022] Open
Abstract
Circular RNA (circRNA), as a novel endogenous biomolecule, has been emergingly demonstrated to play crucial roles in mammalian lipid metabolism and obesity. However, little is known about their genome-wide identification, expression profile, and function in chicken adipogenesis. In present study, the adipogenic differentiation of chicken abdominal preadipocyte was successfully induced, and the regulatory functional circRNAs in chicken adipogenesis were identified from abdominal adipocytes at different differentiation stages using Ribo-Zero RNA-seq. A total of 1,068 circRNA candidates were identified and mostly derived from exons. Of these, 111 differentially expressed circRNAs (DE-circRNAs) were detected, characterized by stage-specific expression, and enriched in several lipid-related pathways, such as Hippo signaling pathway, mTOR signaling pathway. Through weighted gene co-expression network analyses (WGCNA) and K-means clustering analyses, two DE-circRNAs, Z:35565770|35568133 and Z:54674624|54755962, were identified as candidate regulatory circRNAs in chicken adipogenic differentiation. Z:35565770|35568133 might compete splicing with its parental gene, ABHD17B, owing to its strictly negative co-expression. We also constructed competing endogenous RNA (ceRNA) network based on DE-circRNA, DE-miRNA, DE-mRNAs, revealing that Z:54674624|54755962 might function as a ceRNA to regulate chicken adipogenic differentiation through the gga-miR-1635-AHR2/IRF1/MGAT3/ABCA1/AADAC and/or the novel_miR_232-STAT5A axis. Translation activity analysis showed that Z:35565770|35568133 and Z:54674624|54755962 have no protein-coding potential. These findings provide valuable evidence for a better understanding of the specific functions and molecular mechanisms of circRNAs underlying avian adipogenesis.
Collapse
Affiliation(s)
- Weihua Tian
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bo Zhang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Haian Zhong
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ruixue Nie
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yao Ling
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hao Zhang
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Changxin Wu
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Comprehensive profiling analysis of the N6-methyladenosine-modified circular RNA transcriptome in cultured cells infected with Marek's disease virus. Sci Rep 2021; 11:11084. [PMID: 34040106 PMCID: PMC8155085 DOI: 10.1038/s41598-021-90548-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/10/2021] [Indexed: 01/18/2023] Open
Abstract
Marek's disease virus (MDV) induces severe immunosuppression and lymphomagenesis in the chicken, its natural host, and results in a condition that investigated the pathogenesis of MDV and have begun to focus on the expression profiling of circular RNAs (circRNAs). However, little is known about how the expression of circRNAs is referred to as Marek's disease. Previous reports have is regulated during MDV replication. Here, we carried out a comprehensive profiling analysis of N6-methyladenosine (m6A) modification on the circRNA transcriptome in infected and uninfected chicken embryonic fibroblast (CEF) cells. Methylated RNA immunoprecipitation sequencing (MeRIP-Seq) revealed that m6A modification was highly conserved in circRNAs. Comparing to the uninfected group, the number of peaks and conserved motifs were not significantly different in cells that were infected with MDV, although reduced abundance of circRNA m6A modifications. However, gene ontology and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses revealed that the insulin signaling pathway was associated with the regulation of m6A modified circRNAs in MDV infection. This is the first report to describe alterations in the transcriptome-wide profiling of m6A modified circRNAs in MDV-infected CEF cells.
Collapse
|
18
|
Shi N, Zhang S, Guo Y, Yu X, Zhao W, Zhang M, Guan Z, Duan M. CircRNA_0050463 promotes influenza A virus replication by sponging miR-33b-5p to regulate EEF1A1. Vet Microbiol 2021; 254:108995. [PMID: 33517193 DOI: 10.1016/j.vetmic.2021.108995] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/16/2021] [Indexed: 12/19/2022]
Abstract
Circular RNAs (circRNAs), a new class of widely expressed endogenous regulatory RNAs, are characterized by a covalently closed loop structure without a 5' cap or 3' tail. Increasing numbers of studies have shown that circRNAs play important roles in diverse physiological and pathological processes, including the dynamic interactions between viruses and hosts. However, their multifaceted roles in cellular responses to influenza A virus (IAV) infection remain largely unknown. Here, we analyzed the expression of circ_0050463, which is predominantly localized in cytoplasm, in response to IAV infection. Knockdown of circ_0050463 with siRNA in A549 cells inhibited IAV replication. In addition, the activation of nuclear factor κB (NF-κB) was involved in IAV-induced circ_0050463 expression, as revealed by assay using a NF-Kb inhibitor (Bay 11-7082). By performing biotin-labeled RNA pull-down and luciferase reporter assay, we demonstrated that circ_0050463 functioned as an endogenous microRNA-33b-5p sponge to sequester and inhibit miR-33b-5p activity, resulting in increased eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) expression with subsequent facilitation of IAV replication. Taken together, the results of our study indicate that the circ_0050463 promotes IAV replication via miR-33b-5p/EEF1A1 axis, thus providing evidence for the host circRNAs utilized by viruses to support their replication.
Collapse
Affiliation(s)
- Ning Shi
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi, China
| | - Shu Zhang
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yidi Guo
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xiuhua Yu
- Pediatric Department, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Weizheng Zhao
- Clinical Medical College, Jilin University, Changchun, Jilin, China
| | - Maolin Zhang
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhenhong Guan
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Ming Duan
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
19
|
Role of microRNA and long non-coding RNA in Marek's disease tumorigenesis in chicken. Res Vet Sci 2021; 135:134-142. [PMID: 33485054 DOI: 10.1016/j.rvsc.2021.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Marek's disease virus (MDV), the causative agent of Marek's disease (MD), results in highly infectious phymatosis, lymphatic tissue hyperplasia, and neoplasia. MD is associated with high morbidity and mortality rate. Non-coding RNAs (ncRNAs) entails long non-coding RNA (lncRNA) and microRNA (miRNA). Numerous studies have reported that specific miRNAs and lncRNAs participate in multiple cellular processes, such as proliferation, migration, and tumor cell invasion. Specialized miRNAs and lncRNAs militate a similar role in MD tumor oncogenesis. Despite its growing popularity, only a few reviews are available on ncRNA in MDV tumor oncogenes. Herein, we summarized the role of the miRNAs and lncRNAs in MD tumorigenesis. Altogether, we brought forth the research issues, such as MD prevention, screening, regulatory network formation, novel miRNAs, and lncRNAs analysis in MD that needs to be explored further. This review provides a theoretical platform for the further analysis of miRNAs and lncRNAs functions and the prevention and control of MD and malignancies in domestic animals.
Collapse
|
20
|
Huang X, Zhang J, Liu Z, Wang M, Fan X, Wang L, Zhou H, Jiang Y, Cui W, Qiao X, Xu Y, Li Y, Tang L. Genome-wide analysis of differentially expressed mRNAs, lncRNAs, and circRNAs in chicken bursae of Fabricius during infection with very virulent infectious bursal disease virus. BMC Genomics 2020; 21:724. [PMID: 33076825 PMCID: PMC7574500 DOI: 10.1186/s12864-020-07129-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
Background Infectious bursal disease virus (IBDV) causes acute, highly contagious, immunosuppressive, and lethal infectious disease in young chickens and mainly infects the bursa of Fabricius (BF). To investigate interactions between IBDV and its host, RNA sequencing was applied to analyze the responses of the differentially expressed transcriptional profiles of BF infected by very virulent IBDV (vvIBDV). Results In total, 317 upregulated and 94 downregulated mRNAs were found to be significantly differentially expressed in infected chickens, compared to controls. Long non-coding RNA (lncRNA) and circular RNA (circRNA) alterations were identified in IBDV-infected chickens, and significantly different expression was observed in 272 lncRNAs and 143 circRNAs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed to assess the functions of significantly dysregulated genes, which showed that the JAK-STAT signaling pathway, the NOD-like receptor signaling pathway, and apoptosis may be activated by IBDV infection. We predicted interactions between differentially expressed genes and produced lncRNA-mRNA and circRNA-miRNA-mRNA regulator network. Conclusions The present study identified the expression profiles of mRNAs, lncRNAs, and circRNAs during vvIBDV infection and provides new insights into the pathogenesis of IBDV and antiviral immunity of the host.
Collapse
Affiliation(s)
- Xuewei Huang
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China
| | - Junyan Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China
| | - Zengsu Liu
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China
| | - Meng Wang
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China
| | - Xiaolong Fan
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, People's Republic of China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, People's Republic of China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, People's Republic of China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, People's Republic of China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, People's Republic of China
| | - Yigang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, People's Republic of China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, People's Republic of China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Changjiang Road No. 600, Xiang Fang District, Harbin, People's Republic of China. .,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, People's Republic of China.
| |
Collapse
|
21
|
Epigenetic Regulation by Non-Coding RNAs in the Avian Immune System. Life (Basel) 2020; 10:life10080148. [PMID: 32806547 PMCID: PMC7459779 DOI: 10.3390/life10080148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
The identified non-coding RNAs (ncRNAs) include circular RNAs, long non-coding RNAs, microRNAs, ribosomal RNAs, small interfering RNAs, small nuclear RNAs, piwi-interacting RNAs, and transfer RNAs, etc. Among them, long non-coding RNAs, circular RNAs, and microRNAs are regulatory RNAs that have different functional mechanisms and were extensively participated in various biological processes. Numerous research studies have found that circular RNAs, long non-coding RNAs, and microRNAs played their important roles in avian immune system during the infection of parasites, virus, or bacterium. Here, we specifically review and expand this knowledge with current advances of circular RNAs, long non-coding RNAs, and microRNAs in the regulation of different avian diseases and discuss their functional mechanisms in response to avian diseases.
Collapse
|
22
|
Robic A, Demars J, Kühn C. In-Depth Analysis Reveals Production of Circular RNAs from Non-Coding Sequences. Cells 2020; 9:cells9081806. [PMID: 32751504 PMCID: PMC7464727 DOI: 10.3390/cells9081806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/05/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
The sequencing of total RNA depleted for ribosomal sequences remains the method of choice for the study of circRNAs. Our objective was to characterize non-canonical circRNAs, namely not originating from back splicing and circRNA produced by non-coding genes. To this end, we analyzed a dataset from porcine testis known to contain about 100 intron-derived circRNAs. Labelling reads containing a circular junction and originating from back splicing provided information on the very small contribution of long non-coding genes to the production of canonical circRNAs. Analyses of the other reads revealed two origins for non-canonical circRNAs: (1) Intronic sequences for lariat-derived intronic circRNAs and intron circles, (2) Mono-exonic genes (mostly non-coding) for either a new type of circRNA (including only part of the exon: sub-exonic circRNAs) or, even more rarely, mono-exonic canonical circRNAs. The most complex set of sub-exonic circRNAs was produced by RNase_MRP (ribozyme RNA). We specifically investigated the intronic circRNA of ATXN2L, which is probably an independently transcribed sisRNA (stable intronic sequence RNA). We may be witnessing the emergence of a new non-coding gene in the porcine genome. Our results are evidence that most non-canonical circRNAs originate from non-coding sequences.
Collapse
Affiliation(s)
- Annie Robic
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326 Castanet Tolosan, France;
- Correspondence:
| | - Julie Demars
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326 Castanet Tolosan, France;
| | - Christa Kühn
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany;
- Faculty of Agricultural and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|