1
|
Bashir T, Husaini AM. Role of non-coding RNAs in quality improvement of horticultural crops: computational tools, databases, and algorithms for identification and analysis. Funct Integr Genomics 2025; 25:80. [PMID: 40183947 DOI: 10.1007/s10142-025-01592-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
Horticultural crops, including fruits, vegetables, flowers, and herbs, are essential for food security and economic sustainability. Advances in biotechnology, including genetic modification and omics approaches, have significantly improved these crops'traits. While initial transgenic efforts focused on protein-coding genes, recent research highlights the crucial roles of non-coding RNAs (ncRNAs) in plant growth, development, and gene regulation. ncRNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), influence key biological processes through transcriptional and post-transcriptional regulation. This review explores the classification, functions, and regulatory mechanisms of ncRNAs, emphasizing their potential in enhancing horticultural crop quality. This growing understanding offers promising avenues for enhancing crop performance and developing new horticultural varieties with improved traits. Additionally, we elucidate the role of ncRNA databases and predictive bioinformatics tools into modern horticultural crop improvement strategies.
Collapse
Affiliation(s)
- Tanzeel Bashir
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Amjad M Husaini
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India.
| |
Collapse
|
2
|
Zhang A, Pi W, Wang Y, Li Y, Wang J, Liu S, Cui X, Liu H, Yao D, Zhao R. Update on functional analysis of long non-coding RNAs in common crops. FRONTIERS IN PLANT SCIENCE 2024; 15:1389154. [PMID: 38872885 PMCID: PMC11169716 DOI: 10.3389/fpls.2024.1389154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024]
Abstract
With the rapid advances in next-generation sequencing technology, numerous non-protein-coding transcripts have been identified, including long noncoding RNAs (lncRNAs), which are functional RNAs comprising more than 200 nucleotides. Although lncRNA-mediated regulatory processes have been extensively investigated in animals, there has been considerably less research on plant lncRNAs. Nevertheless, multiple studies on major crops showed lncRNAs are involved in crucial processes, including growth and development, reproduction, and stress responses. This review summarizes the progress in the research on lncRNA roles in several major crops, presents key strategies for exploring lncRNAs in crops, and discusses current challenges and future prospects. The insights provided in this review will enhance our comprehension of lncRNA functions in crops, with potential implications for improving crop genetics and breeding.
Collapse
Affiliation(s)
- Aijing Zhang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Wenxuan Pi
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Yashuo Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Yuxin Li
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Jiaxin Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Shuying Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Xiyan Cui
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Huijing Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Dan Yao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Rengui Zhao
- College of Agronomy, Jilin Agricultural University, Changchun, China
| |
Collapse
|
3
|
Zhao X, Li F, Ali M, Li X, Fu X, Zhang X. Emerging roles and mechanisms of lncRNAs in fruit and vegetables. HORTICULTURE RESEARCH 2024; 11:uhae046. [PMID: 38706580 PMCID: PMC11069430 DOI: 10.1093/hr/uhae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/07/2024] [Indexed: 05/07/2024]
Abstract
With the development of genome sequencing technologies, many long non-coding RNAs (lncRNAs) have been identified in fruit and vegetables. lncRNAs are primarily transcribed and spliced by RNA polymerase II (Pol II) or plant-specific Pol IV/V, and exhibit limited evolutionary conservation. lncRNAs intricately regulate various aspects of fruit and vegetables, including pigment accumulation, reproductive tissue development, fruit ripening, and responses to biotic and abiotic stresses, through diverse mechanisms such as gene expression modulation, interaction with hormones and transcription factors, microRNA regulation, and involvement in alternative splicing. This review presents a comprehensive overview of lncRNA classification, basic characteristics, and, most importantly, recent advances in understanding their functions and regulatory mechanisms.
Collapse
Affiliation(s)
- Xiuming Zhao
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Fujun Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Maratab Ali
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Xiaoan Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Xiaodong Fu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Xinhua Zhang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, Shandong, China
| |
Collapse
|
4
|
Xie YG, Xiao Y, Yu MY, Yang WC. Acyl-CoA synthetase 1 plays an important role on pollen development and male fertility in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108523. [PMID: 38492487 DOI: 10.1016/j.plaphy.2024.108523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/11/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
The development of pollen is critical to male reproduction in flowering plants. Acyl-CoA synthetase (ACOS) genes play conserved functions in regulating pollen development in various plants. Our previous work found that knockout of the SlACOS1 gene in tomato might decrease fruit setting. The current study further revealed that SlACOS1 was important to pollen development and male fertility. The SlACOS1 gene was preferentially expressed in the stamen of the flower with the highest expression at the tetrad stage of anther development. Mutation of the SlACOS1 gene by the CRISPR/Cas9-editing system reduced pollen number and viability as well as fruit setting. The tapetum layer exhibited premature degradation and the pollen showed abnormal development appearing irregular, shriveled, or anucleate in Slacos1 mutants at the tetrad stage. The fatty acid metabolism in anthers was significantly impacted by mutation of the SlACOS1 gene. Furthermore, targeted fatty acids profiling using GC-MS found that contents of most fatty acids except C18:1 and C18:2 were reduced. Yeast complementation assay demonstrated that the substrate preferences of SlACOS1 were C16:0 and C18:0 fatty acids. Male fertility of Slacos1 mutant could be slightly restored by applying exogenous palmitic acid, a type of C16:0 fatty acid. Taken together, SlACOS1 played important roles on pollen development and male fertility by regulating the fatty acid metabolism and the development of tapetum and tetrad. Our findings will facilitate unraveling the mechanism of pollen development and male fertility in tomato.
Collapse
Affiliation(s)
- Yin-Ge Xie
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, China Agricultural University, Beijing, 100193, China
| | - Yao Xiao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, China Agricultural University, Beijing, 100193, China; Jiangxi Province Key Laboratory of Root and Tuber Crops Biology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Meng-Yi Yu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, China Agricultural University, Beijing, 100193, China
| | - Wen-Cai Yang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, China Agricultural University, Beijing, 100193, China; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education of the People's Republic of China, Beijing, 100193, China.
| |
Collapse
|
5
|
Zhang L, Lin T, Zhu G, Wu B, Zhang C, Zhu H. LncRNAs exert indispensable roles in orchestrating the interaction among diverse noncoding RNAs and enrich the regulatory network of plant growth and its adaptive environmental stress response. HORTICULTURE RESEARCH 2023; 10:uhad234. [PMID: 38156284 PMCID: PMC10753412 DOI: 10.1093/hr/uhad234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/01/2023] [Indexed: 12/30/2023]
Abstract
With the advent of advanced sequencing technologies, non-coding RNAs (ncRNAs) are increasingly pivotal and play highly regulated roles in the modulation of diverse aspects of plant growth and stress response. This includes a spectrum of ncRNA classes, ranging from small RNAs to long non-coding RNAs (lncRNAs). Notably, among these, lncRNAs emerge as significant and intricate components within the broader ncRNA regulatory networks. Here, we categorize ncRNAs based on their length and structure into small RNAs, medium-sized ncRNAs, lncRNAs, and circle RNAs. Furthermore, the review delves into the detailed biosynthesis and origin of these ncRNAs. Subsequently, we emphasize the diverse regulatory mechanisms employed by lncRNAs that are located at various gene regions of coding genes, embodying promoters, 5'UTRs, introns, exons, and 3'UTR regions. Furthermore, we elucidate these regulatory modes through one or two concrete examples. Besides, lncRNAs have emerged as novel central components that participate in phase separation processes. Moreover, we illustrate the coordinated regulatory mechanisms among lncRNAs, miRNAs, and siRNAs with a particular emphasis on the central role of lncRNAs in serving as sponges, precursors, spliceosome, stabilization, scaffolds, or interaction factors to bridge interactions with other ncRNAs. The review also sheds light on the intriguing possibility that some ncRNAs may encode functional micropeptides. Therefore, the review underscores the emergent roles of ncRNAs as potent regulatory factors that significantly enrich the regulatory network governing plant growth, development, and responses to environmental stimuli. There are yet-to-be-discovered roles of ncRNAs waiting for us to explore.
Collapse
Affiliation(s)
- Lingling Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Tao Lin
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Guoning Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Bin Wu
- Institute of Agro-products Storage and Processing, Xinjiang Academy of Agricultural Science, Urumqi, Xinjiang 830091, China
| | - Chunjiao Zhang
- Supervision, Inspection & Testing Center of Agricultural Products Quality, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Hongliang Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
6
|
Gullotta G, Korte A, Marquardt S. Functional variation in the non-coding genome: molecular implications for food security. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2338-2351. [PMID: 36316269 DOI: 10.1093/jxb/erac395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/06/2022] [Indexed: 06/06/2023]
Abstract
The growing world population, in combination with the anticipated effects of climate change, is pressuring food security. Plants display an impressive arsenal of cellular mechanisms conferring resilience to adverse environmental conditions, and humans rely on these mechanisms for stable food production. The elucidation of the molecular basis of the mechanisms used by plants to achieve resilience promises knowledge-based approaches to enhance food security. DNA sequence polymorphisms can reveal genomic regions that are linked to beneficial traits of plants. However, our ability to interpret how a given DNA sequence polymorphism confers a fitness advantage at the molecular level often remains poor. A key factor is that these polymorphisms largely localize to the enigmatic non-coding genome. Here, we review the functional impact of sequence variations in the non-coding genome on plant biology in the context of crop breeding and agricultural traits. We focus on examples of non-coding with particularly convincing functional support. Our survey combines findings that are consistent with the view that the non-coding genome contributes to cellular mechanisms assisting many plant traits. Understanding how DNA sequence polymorphisms in the non-coding genome shape plant traits at the molecular level offers a largely unexplored reservoir of solutions to address future challenges in plant growth and resilience.
Collapse
Affiliation(s)
- Giorgio Gullotta
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 21A, 1871 Frederiksberg, Denmark
| | - Arthur Korte
- Center for Computational and Theoretical Biology, University of Würzburg, Hubland Nord 32, 97074 Würzburg, Germany
| | - Sebastian Marquardt
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 21A, 1871 Frederiksberg, Denmark
| |
Collapse
|
7
|
Li M, Si X, Liu Y, Liu Y, Cheng X, Dai Z, Yu X, Ali M, Lu G. Transcriptomic analysis of ncRNA and mRNA interactions during leaf senescence in tomato. Int J Biol Macromol 2022; 222:2556-2570. [DOI: 10.1016/j.ijbiomac.2022.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022]
|
8
|
Li X, Yang Y, Zeng N, Qu G, Fu D, Zhu B, Luo Y, Ostersetzer-Biran O, Zhu H. Glycine-rich RNA-binding cofactor RZ1AL is associated with tomato ripening and development. HORTICULTURE RESEARCH 2022; 9:uhac134. [PMID: 35937858 PMCID: PMC9350831 DOI: 10.1093/hr/uhac134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Tomato ripening is a complex and dynamic process coordinated by many regulatory elements, including plant hormones, transcription factors, and numerous ripening-related RNAs and proteins. Although recent studies have shown that some RNA-binding proteins are involved in the regulation of the ripening process, understanding of how RNA-binding proteins affect fruit ripening is still limited. Here, we report the analysis of a glycine-rich RNA-binding protein, RZ1A-Like (RZ1AL), which plays an important role in tomato ripening, especially fruit coloring. To analyze the functions of RZ1AL in fruit development and ripening, we generated knockout cr-rz1al mutant lines via the CRISPR/Cas9 gene-editing system. Knockout of RZ1AL reduced fruit lycopene content and weight in the cr-rz1al mutant plants. RZ1AL encodes a nucleus-localized protein that is associated with Cajal-related bodies. RNA-seq data demonstrated that the expression levels of genes that encode several key enzymes associated with carotenoid biosynthesis and metabolism were notably downregulated in cr-rz1al fruits. Proteomic analysis revealed that the levels of various ribosomal subunit proteins were reduced. This could affect the translation of ripening-related proteins such as ZDS. Collectively, our findings demonstrate that RZ1AL may participate in the regulation of carotenoid biosynthesis and metabolism and affect tomato development and fruit ripening.
Collapse
Affiliation(s)
- Xindi Li
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77840, USA
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77840, USA
| | - Yongfang Yang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ni Zeng
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Guiqin Qu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Daqi Fu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Benzhong Zhu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yunbo Luo
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem 9190401, Israel
| | | |
Collapse
|
9
|
Choi HG, Park DY, Kang NJ. The Fruit Proteome Response to the Ripening Stages in Three Tomato Genotypes. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040553. [PMID: 35214885 PMCID: PMC8877657 DOI: 10.3390/plants11040553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 05/21/2023]
Abstract
The tomato is a horticultural crop that appears in various colors as it ripens. Differences in the proteome expression abundance of a tomato depend on its genotype and ripening stage. Thus, this study aimed to confirm the differences in changes in the proteome according to four ripening stages (green, breaker, turning, and mature) of three tomato genotypes, i.e., yellow, black, and red tomatoes, using a gel-based proteomic technique. The number of protein spots shown as two-dimensional electrophoresis (2-DE) gels differed according to tomato genotype and ripening stage. A total of 286 variant proteins were determined using matrix-assisted laser desorption-time of flight (MALDI-TOF) mass spectrometry (MS) analysis, confirming 233 identified protein functions. In three tomato genotypes in each ripening stage, grouping according to the Munich Information Center for Protein Sequences (MIPS) functional categories confirmed the variant proteins involved in the following: energy processes (21%); metabolism (20%); protein fate (15%); protein synthesis (10%); a protein with a binding function or cofactor requirement (8%); cell rescue, defense, and virulence (8%); cellular transport, transport facilitation, and transport routes (6%); the biogenesis of cellular components (5%); cell cycle and DNA processing (2%); others (5%). Among the identified protein spots in the function category, two proteins related to metabolism, four related to energy, four related to protein synthesis, and two related to interaction with the cellular environment showed significantly different changes according to the fruit color by the ripening stage. This study reveals the physiological changes in different types of tomatoes according to their ripening stage and provides information on the proteome for further improvement.
Collapse
Affiliation(s)
- Hyo-Gil Choi
- Department of Horticulture, Kongju National University, Yesan 32439, Korea;
| | - Dong-Young Park
- Department of Horticulture, Gyeongsang National University, Jinju 52828, Korea;
| | - Nam-Jun Kang
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
- Correspondence:
| |
Collapse
|
10
|
Identification of Long Non-Coding RNAs Associated with Tomato Fruit Expansion and Ripening by Strand-Specific Paired-End RNA Sequencing. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7120522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As emerging essential regulators in plant development, long non-coding RNAs (lncRNAs) have been extensively investigated in multiple horticultural crops, as well as in different tissues of plants. Tomato fruits are an indispensable part of people’s diet and are consumed as fruits and vegetables. Meanwhile, tomato is widely used as a model to study the ripening mechanism in fleshy fruit. Although increasing evidence shows that lncRNAs are involved in lots of biological processes in tomato plants, the comprehensive identification of lncRNAs in tomato fruit during its expansion and ripening and their functions are partially known. Here, we performed strand-specific paired-end RNA sequencing (ssRNA-seq) of tomato Heinz1706 fruits at five different developmental stages, as well as flowers and leaves. We identified 17,674 putative lncRNAs by referencing the recently released SL4.0 and annotation ITAG4.0 in tomato plants. Many lncRNAs show different expression patterns in fleshy fruit at different developmental stages compared with leaves or flowers. Our results indicate that lncRNAs play an important role in the regulation of tomato fruit expansion and ripening, providing informative lncRNA candidates for further studies in tomato fruits. In addition, we also summarize the recent advanced progress in lncRNAs mediated regulation on horticultural fruits. Hence, our study updates the understanding of lncRNAs in horticultural plants and provides resources for future studies relating to the expansion and ripening of tomato fruits.
Collapse
|
11
|
Fruit Colour and Novel Mechanisms of Genetic Regulation of Pigment Production in Tomato Fruits. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7080259] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Fruit colour represents a genetic trait with ecological and nutritional value. Plants mainly use colour to attract animals and favour seed dispersion. Thus, in many species, fruit colour coevolved with frugivories and their preferences. Environmental factors, however, represented other adaptive forces and further diversification was driven by domestication. All these factors cooperated in the evolution of tomato fruit, one of the most important in human nutrition. Tomato phylogenetic history showed two main steps in colour evolution: the change from green-chlorophyll to red-carotenoid pericarp, and the loss of the anthocyanic pigmentation. These events likely occurred with the onset of domestication. Then spontaneous mutations repeatedly occurred in carotenoid and phenylpropanoid pathways, leading to colour variants which often were propagated. Introgression breeding further enriched the panel of pigmentation patterns. In recent decades, the genetic determinants underneath tomato colours were identified. Novel evidence indicates that key regulatory and biosynthetic genes undergo mechanisms of gene expression regulation that are much more complex than what was imagined before: post-transcriptional mechanisms, with RNA splicing among the most common, indeed play crucial roles to fine-tune the expression of this trait in fruits and offer new substrate for the rise of genetic variables, thus providing further evolutionary flexibility to the character.
Collapse
|
12
|
Genome editing in fruit, ornamental, and industrial crops. Transgenic Res 2021; 30:499-528. [PMID: 33825100 DOI: 10.1007/s11248-021-00240-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/25/2021] [Indexed: 01/24/2023]
Abstract
The advent of genome editing has opened new avenues for targeted trait enhancement in fruit, ornamental, industrial, and all specialty crops. In particular, CRISPR-based editing systems, derived from bacterial immune systems, have quickly become routinely used tools for research groups across the world seeking to edit plant genomes with a greater level of precision, higher efficiency, reduced off-target effects, and overall ease-of-use compared to ZFNs and TALENs. CRISPR systems have been applied successfully to a number of horticultural and industrial crops to enhance fruit ripening, increase stress tolerance, modify plant architecture, control the timing of flower development, and enhance the accumulation of desired metabolites, among other commercially-important traits. As editing technologies continue to advance, so too does the ability to generate improved crop varieties with non-transgenic modifications; in some crops, direct transgene-free edits have already been achieved, while in others, T-DNAs have successfully been segregated out through crossing. In addition to the potential to produce non-transgenic edited crops, and thereby circumvent regulatory impediments to the release of new, improved crop varieties, targeted gene editing can speed up trait improvement in crops with long juvenile phases, reducing inputs resulting in faster market introduction to the market. While many challenges remain regarding optimization of genome editing in ornamental, fruit, and industrial crops, the ongoing discovery of novel nucleases with niche specialties for engineering applications may form the basis for additional and potentially crop-specific editing strategies.
Collapse
|