1
|
Heiskanen M, Ndode‐Ekane XE, Ali I, Santana‐Gomez C, Puhakka N, Gupta SD, Andrade P, Immonen R, Casillas‐Espinosa P, Manninen E, Smith G, Brady RD, Silva J, Braine E, Hudson M, Yamakawa GR, Jones NC, Shultz SR, Harris NG, Wright DK, Gröhn O, Staba RJ, O'Brien TJ, Pitkänen A. Plasma microRNAs as prognostic biomarkers for development of severe epilepsy after experimental traumatic brain injury-EpiBioS4Rx Project 1 study. Epilepsia 2025; 66:870-885. [PMID: 39661396 PMCID: PMC11908664 DOI: 10.1111/epi.18219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Abstract
OBJECTIVE To test a hypothesis that acutely regulated plasma microRNAs (miRNAs) can serve as prognostic biomarkers for the development of post-traumatic epilepsy (PTE). METHODS Adult male Sprague-Dawley rats (n = 245) were randomized to lateral fluid-percussion-induced traumatic brain injury (TBI) or sham operation at three study sites (Finland, Australia, United States). Video-electroencephalography (vEEG) was performed on the seventh post-injury month to detect spontaneous seizures. Tail vein plasma collected 48 h after TBI for miRNA analysis was available from 209 vEEG monitored animals (45 sham, 164 TBI [32 with epilepsy]). Based on small RNA sequencing and previous data, the seven most promising brain enriched miRNAs (miR-183-5p, miR-323-3p, miR-434-3p, miR-9a-3p, miR-124-3p, miR-132-3p, and miR-212-3p) were validated by droplet digital polymerase chain reaction (ddPCR). RESULTS All seven plasma miRNAs differentiated between TBI and sham-operated rats. None of the seven miRNAs differentiated TBI rats that did and did not develop epilepsy (p > .05), or rats with ≥3 vs <3 seizures in a month (p > .05). However, miR-212-3p differentiated rats that developed epilepsy with seizure clusters (i.e., ≥3 seizures within 24 h) from those without seizure clusters (.34 ± .14 vs .60 ± .34, adj. p < .05) with an area under the curve (AUC) of .81 (95% confidence interval [CI] .65-.97, p < .01, 64% sensitivity, 95% specificity). Lack of elevation in miR-212-3p also differentiated rats that developed epilepsy with seizure clusters from all other TBI rats (n = 146, .34 ± .14 vs .55 ± .31, p < .01) with an AUC of .74 (95% CI .61-.87, p < .01, 82% sensitivity, 62% specificity). Glmnet analysis identified a combination of miR-212-3p and miR-132-3p as an optimal set to differentiate TBI rats with vs without seizure clusters (cross-validated AUC .75, 95% CI .47-.92, p < .05). SIGNIFICANCE miR-212-3p alone or in combination with miR-132-3p shows promise as a translational prognostic biomarker for the development of severe PTE with seizure clusters.
Collapse
Affiliation(s)
- Mette Heiskanen
- A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | | | - Idrish Ali
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
- Department of NeurologyAlfred HealthMelbourneVictoriaAustralia
- Department of Medicine, the Royal Melbourne HospitalThe University of MelbourneParkvilleVictoriaAustralia
| | - Cesar Santana‐Gomez
- Department of NeurologyDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Noora Puhakka
- A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Shalini Das Gupta
- A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Pedro Andrade
- A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Riikka Immonen
- A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Pablo Casillas‐Espinosa
- Department of NeurologyAlfred HealthMelbourneVictoriaAustralia
- Department of Medicine, the Royal Melbourne HospitalThe University of MelbourneParkvilleVictoriaAustralia
| | - Eppu Manninen
- A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Gregory Smith
- UCLA Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine, & UCLA Intellectual and Developmental Disabilities Research CenterUniversity of California at Los AngelesLos AngelesCaliforniaUSA
| | - Rhys D. Brady
- Department of NeurologyAlfred HealthMelbourneVictoriaAustralia
- Department of Medicine, the Royal Melbourne HospitalThe University of MelbourneParkvilleVictoriaAustralia
| | - Juliana Silva
- Department of NeurologyAlfred HealthMelbourneVictoriaAustralia
- Department of Medicine, the Royal Melbourne HospitalThe University of MelbourneParkvilleVictoriaAustralia
| | - Emma Braine
- Department of NeurologyAlfred HealthMelbourneVictoriaAustralia
- Department of Medicine, the Royal Melbourne HospitalThe University of MelbourneParkvilleVictoriaAustralia
| | - Matt Hudson
- Department of NeurologyAlfred HealthMelbourneVictoriaAustralia
- Department of Medicine, the Royal Melbourne HospitalThe University of MelbourneParkvilleVictoriaAustralia
| | - Glen R. Yamakawa
- Department of NeurologyAlfred HealthMelbourneVictoriaAustralia
- Department of Medicine, the Royal Melbourne HospitalThe University of MelbourneParkvilleVictoriaAustralia
| | - Nigel C. Jones
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
- Department of NeurologyAlfred HealthMelbourneVictoriaAustralia
- Department of Medicine, the Royal Melbourne HospitalThe University of MelbourneParkvilleVictoriaAustralia
| | - Sandy R. Shultz
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
- Department of NeurologyAlfred HealthMelbourneVictoriaAustralia
| | - Neil G. Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine, & UCLA Intellectual and Developmental Disabilities Research CenterUniversity of California at Los AngelesLos AngelesCaliforniaUSA
| | - David K. Wright
- Department of NeurologyAlfred HealthMelbourneVictoriaAustralia
- Department of Medicine, the Royal Melbourne HospitalThe University of MelbourneParkvilleVictoriaAustralia
| | - Olli Gröhn
- A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Richard J. Staba
- Department of NeurologyDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Terence J. O'Brien
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
- Department of NeurologyAlfred HealthMelbourneVictoriaAustralia
- Department of Medicine, the Royal Melbourne HospitalThe University of MelbourneParkvilleVictoriaAustralia
| | - Asla Pitkänen
- A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| |
Collapse
|
2
|
Wang Z, Wang Y, Zhou T, Chen S, Morris D, Magalhães RDM, Li M, Wang S, Wang H, Xie Y, McSwiggin H, Oliver D, Yuan S, Zheng H, Mohammed J, Lai EC, McCarrey JR, Yan W. The rapidly evolving X-linked MIR-506 family fine-tunes spermatogenesis to enhance sperm competition. eLife 2024; 13:RP90203. [PMID: 38639482 PMCID: PMC11031087 DOI: 10.7554/elife.90203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Despite rapid evolution across eutherian mammals, the X-linked MIR-506 family miRNAs are located in a region flanked by two highly conserved protein-coding genes (SLITRK2 and FMR1) on the X chromosome. Intriguingly, these miRNAs are predominantly expressed in the testis, suggesting a potential role in spermatogenesis and male fertility. Here, we report that the X-linked MIR-506 family miRNAs were derived from the MER91C DNA transposons. Selective inactivation of individual miRNAs or clusters caused no discernible defects, but simultaneous ablation of five clusters containing 19 members of the MIR-506 family led to reduced male fertility in mice. Despite normal sperm counts, motility, and morphology, the KO sperm were less competitive than wild-type sperm when subjected to a polyandrous mating scheme. Transcriptomic and bioinformatic analyses revealed that these X-linked MIR-506 family miRNAs, in addition to targeting a set of conserved genes, have more targets that are critical for spermatogenesis and embryonic development during evolution. Our data suggest that the MIR-506 family miRNAs function to enhance sperm competitiveness and reproductive fitness of the male by finetuning gene expression during spermatogenesis.
Collapse
Affiliation(s)
- Zhuqing Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
| | - Yue Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
| | - Sheng Chen
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
| | - Dayton Morris
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
| | | | - Musheng Li
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
| | - Shawn Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
| | - Hetan Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
| | - Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
| | - Hayden McSwiggin
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
| | - Daniel Oliver
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
| | - Shuiqiao Yuan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
| | - Jaaved Mohammed
- Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - John R McCarrey
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San AntonioSan AntonioUnited States
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of MedicineRenoUnited States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical CenterTorranceUnited States
- Department of Medicine, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
3
|
O’Shaughnessy KL, Sasser AL, Bell KS, Riutta C, Ford JL, Grindstaff R, Gilbert ME. Bypassing the brain barriers: upregulation of serum miR-495 and miR-543-3p reflects thyroid-mediated developmental neurotoxicity in the rat. Toxicol Sci 2024; 198:128-140. [PMID: 38070162 PMCID: PMC11697567 DOI: 10.1093/toxsci/kfad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
Evaluating the neurodevelopmental effects of thyroid-disrupting chemicals is challenging. Although some standardized developmental and reproductive toxicity studies recommend serum thyroxine (T4) measures in developing rats, extrapolating between a serum T4 reduction and neurodevelopmental outcomes is not straightforward. Previously, we showed that the blood-brain and blood-cerebrospinal fluid barriers may be affected by developmental hypothyroidism in newborn rats. Here, we hypothesized that if the brain barriers were functionally disturbed by abnormal thyroid action, then small molecules may escape from the brain tissue and into general circulation. These small molecules could then be identified in blood samples, serving as a direct readout of thyroid-mediated developmental neurotoxicity. To address these hypotheses, pregnant rats were exposed to propylthiouracil (PTU, 0 or 3 ppm) to induce thyroid hormone insufficiency, and dams were permitted to give birth. PTU significantly reduced serum T4 in postnatal offspring. Consistent with our hypothesis, we show that tight junctions of the brain barriers were abnormal in PTU-exposed pups, and the blood-brain barrier exhibited increased permeability. Next, we performed serum microRNA Sequencing (miRNA-Seq) to identify noncoding RNAs that may reflect these neurodevelopmental disturbances. Of the differentially expressed miRNAs identified, 7 were upregulated in PTU-exposed pups. Validation by qRT-PCR shows that miR-495 and miR-543-3p were similarly upregulated in males and females. Interestingly, these miRNAs have been linked to cell junction dysfunction in other models, paralleling the identified abnormalities in the rat brain. Taken together, these data show that miR-495 and miR-543-3p may be novel in vivo biomarkers of thyroid-mediated developmental neurotoxicity.
Collapse
Affiliation(s)
- Katherine L. O’Shaughnessy
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC, USA 27709
| | - Aubrey L. Sasser
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC, USA 27709
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA 37831
| | - Kiersten S. Bell
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC, USA 27709
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA 37831
| | - Cal Riutta
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC, USA 27709
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA 37831
| | - Jermaine L. Ford
- Chemical Characterization and Exposure Division, Center for Computational Toxicology and Exposure, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27709
| | - Rachel Grindstaff
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC, USA 27709
| | - Mary E. Gilbert
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC, USA 27709
| |
Collapse
|
4
|
Wang Z, Wang Y, Zhou T, Chen S, Morris D, Magalhães RDM, Li M, Wang S, Wang H, Xie Y, McSwiggin H, Oliver D, Yuan S, Zheng H, Mohammed J, Lai EC, McCarrey JR, Yan W. The Rapidly Evolving X-linked miR-506 Family Finetunes Spermatogenesis to Enhance Sperm Competition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.14.544876. [PMID: 37398484 PMCID: PMC10312769 DOI: 10.1101/2023.06.14.544876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Despite rapid evolution across eutherian mammals, the X-linked miR-506 family miRNAs are located in a region flanked by two highly conserved protein-coding genes (Slitrk2 and Fmr1) on the X chromosome. Intriguingly, these miRNAs are predominantly expressed in the testis, suggesting a potential role in spermatogenesis and male fertility. Here, we report that the X-linked miR-506 family miRNAs were derived from the MER91C DNA transposons. Selective inactivation of individual miRNAs or clusters caused no discernable defects, but simultaneous ablation of five clusters containing nineteen members of the miR-506 family led to reduced male fertility in mice. Despite normal sperm counts, motility and morphology, the KO sperm were less competitive than wild-type sperm when subjected to a polyandrous mating scheme. Transcriptomic and bioinformatic analyses revealed that these X-linked miR-506 family miRNAs, in addition to targeting a set of conserved genes, have more targets that are critical for spermatogenesis and embryonic development during evolution. Our data suggest that the miR-506 family miRNAs function to enhance sperm competitiveness and reproductive fitness of the male by finetuning gene expression during spermatogenesis.
Collapse
Affiliation(s)
- Zhuqing Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Yue Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Sheng Chen
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Dayton Morris
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | | | - Musheng Li
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Shawn Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Hetan Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Hayden McSwiggin
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Daniel Oliver
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Shuiqiao Yuan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Jaaved Mohammed
- Department of Developmental Biology, Memorial Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Eric C. Lai
- Department of Developmental Biology, Memorial Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - John R. McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Jia M, Wang Z. MicroRNAs as Biomarkers for Ionizing Radiation Injury. Front Cell Dev Biol 2022; 10:861451. [PMID: 35309926 PMCID: PMC8927810 DOI: 10.3389/fcell.2022.861451] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/15/2022] [Indexed: 01/04/2023] Open
Abstract
Accidental radiation exposures such as industrial accidents and nuclear catastrophes pose a threat to human health, and the potential or substantial injury caused by ionizing radiation (IR) from medical treatment that cannot be ignored. Although the mechanisms of IR-induced damage to various organs have been gradually investigated, medical treatment of irradiated individuals is still based on clinical symptoms. Hence, minimally invasive biomarkers that can predict radiation damage are urgently needed for appropriate medical management after radiation exposure. In the field of radiation biomarker, finding molecular biomarkers to assess different levels of radiation damage is an important direction. In recent years, microRNAs have been widely reported as several diseases’ biomarkers, such as cancer and cardiovascular diseases, and microRNAs are also of interest to the ionizing radiation field as radiation response molecules, thus researchers are turning attention to the potential of microRNAs as biomarkers in tumor radiation response and the radiation toxicity prediction of normal tissues. In this review, we summarize the distribution of microRNAs, the progress on research of microRNAs as markers of IR, and make a hypothesis about the origin and destination of microRNAs in vivo after IR.
Collapse
|
6
|
Urinary MicroRNAs in Environmental Health: Biomarkers of Emergent Kidney Injury and Disease. Curr Environ Health Rep 2021; 7:101-108. [PMID: 32166731 DOI: 10.1007/s40572-020-00271-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW There is a critical need for sensitive biomarkers of renal disease and progression. Micro(mi)RNAs are attractive as next-generation biomarkers in kidney disease, particularly as urine miRNAs can inform kidney function and cellular integrity. This review summarizes recent epidemiologic and toxicologic advances using urinary miRNAs and exosomal miRNAs as novel biomarkers of chemical exposure and of kidney damage and disease. RECENT FINDINGS Urine miRNA biomarkers offer improved stability over protein in stored samples, relative ease of collection and quantitation, and conserved sequence homology across species. Particularly in the case of emergent environmental health threats such as chronic kidney disease of unknown origin, urinary miRNAs hold promise as biomarkers of disease and/or exposure. We present evidence to address scientific knowledge gaps, comment on the relevance of urine-derived miRNAs in environmental health research, and discuss limitations and recommendations for future directions needed to advance miRNA biomarker strategies.
Collapse
|