1
|
Warren JM, Ceriotti LF, Sanchez-Puerta MV, Sloan DB. Fungal-Derived tRNAs Are Expressed and Aminoacylated in Orchid Mitochondria. Mol Biol Evol 2025; 42:msaf025. [PMID: 39882964 PMCID: PMC11827590 DOI: 10.1093/molbev/msaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Abstract
Plant mitochondrial genomes (mitogenomes) experience remarkable levels of horizontal gene transfer, including the recent discovery that orchids anciently acquired DNA from fungal mitogenomes. Thus far, however, there is no evidence that any of the genes from this interkingdom horizontal gene transfer are functional in orchid mitogenomes. Here, we applied a specialized sequencing approach to the orchid Corallorhiza maculata and found that some fungal-derived tRNA genes in the transferred region are transcribed, post-transcriptionally modified, and aminoacylated. In contrast, all the transferred protein-coding sequences appear to be pseudogenes. These findings show that fungal horizontal gene transfer has altered the composition of the orchid mitochondrial tRNA pool and suggest that these foreign tRNAs function in translation. The exceptional capacity of tRNAs for horizontal gene transfer and functional replacement is further illustrated by the diversity of tRNA genes in the C. maculata mitogenome, which also include genes of plastid and bacterial origin in addition to their native mitochondrial counterparts.
Collapse
Affiliation(s)
- Jessica M Warren
- Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Luis F Ceriotti
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
2
|
Ceriotti LF, Warren JM, Sanchez-Puerta MV, Sloan DB. The landscape of Arabidopsis tRNA aminoacylation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2784-2802. [PMID: 39555621 DOI: 10.1111/tpj.17146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024]
Abstract
The function of transfer RNAs (tRNAs) depends on enzymes that cleave primary transcript ends, add a 3' CCA tail, introduce post-transcriptional base modifications, and charge (aminoacylate) mature tRNAs with the correct amino acid. Maintaining an available pool of the resulting aminoacylated tRNAs is essential for protein synthesis. High-throughput sequencing techniques have recently been developed to provide a comprehensive view of aminoacylation state in a tRNA-specific fashion. However, these methods have never been applied to plants. Here, we treated Arabidopsis thaliana RNA samples with periodate and then performed tRNA-seq to distinguish between aminoacylated and uncharged tRNAs. This approach successfully captured every tRNA isodecoder family and detected expression of additional tRNA-like transcripts. We found that estimated aminoacylation rates and CCA tail integrity were significantly higher on average for organellar (mitochondrial and plastid) tRNAs than for nuclear/cytosolic tRNAs. Reanalysis of previously published human cell line data showed a similar pattern. Base modifications result in nucleotide misincorporations and truncations during reverse transcription, which we quantified and used to test for relationships with aminoacylation levels. We also determined that the Arabidopsis tRNA-like sequences (t-elements) that are cleaved from the ends of some mitochondrial messenger RNAs have post-transcriptionally modified bases and CCA-tail addition. However, these t-elements are not aminoacylated, indicating that they are only recognized by a subset of tRNA-interacting enzymes and do not play a role in translation. Overall, this work provides a characterization of the baseline landscape of plant tRNA aminoacylation rates and demonstrates an approach for investigating environmental and genetic perturbations to plant translation machinery.
Collapse
Affiliation(s)
- Luis F Ceriotti
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Jessica M Warren
- Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
3
|
White LK, Radakovic A, Sajek MP, Dobson K, Riemondy KA, Del Pozo S, Szostak JW, Hesselberth JR. Nanopore sequencing of intact aminoacylated tRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.623114. [PMID: 39605391 PMCID: PMC11601438 DOI: 10.1101/2024.11.18.623114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Transfer RNAs (tRNA) are decorated during biogenesis with a variety of modifications that modulate their stability, aminoacylation, and decoding potential during translation. The complex landscape of tRNA modification presents significant analysis challenges and to date no single approach enables the simultaneous measurement of important but disparate chemical properties of individual, mature tRNA molecules. We developed a new, integrated approach to analyze the sequence, modification, and aminoacylation state of tRNA molecules in a high throughput nanopore sequencing experiment, leveraging a chemical ligation that embeds the charged amino acid in an adapted tRNA molecule. During nanopore sequencing, the embedded amino acid generates unique distortions in ionic current and translocation speed, enabling application of machine learning approaches to classify charging status and amino acid identity. Specific applications of the method indicate it will be broadly useful for examining relationships and dependencies between tRNA sequence, modification, and aminoacylation.
Collapse
Affiliation(s)
- Laura K White
- University of Colorado School of Medicine, Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, Aurora, Colorado
| | - Aleksandar Radakovic
- Harvard Medical School, Department of Genetics, Boston, Massachusetts
- Howard Hughes Medical Institute, The University of Chicago, Department of Chemistry, Chicago, Illinois
| | - Marcin P Sajek
- University of Colorado School of Medicine, Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, Aurora, Colorado
| | - Kezia Dobson
- University of Colorado School of Medicine, Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, Aurora, Colorado
| | - Kent A Riemondy
- University of Colorado School of Medicine, Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, Aurora, Colorado
| | - Samantha Del Pozo
- University of Colorado School of Medicine, Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, Aurora, Colorado
| | - Jack W Szostak
- Howard Hughes Medical Institute, The University of Chicago, Department of Chemistry, Chicago, Illinois
| | - Jay R Hesselberth
- University of Colorado School of Medicine, Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, Aurora, Colorado
| |
Collapse
|
4
|
Kwasniak-Owczarek M, Janska H. Experimental approaches to studying translation in plant semi-autonomous organelles. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5175-5187. [PMID: 38592734 PMCID: PMC11389837 DOI: 10.1093/jxb/erae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Plant mitochondria and chloroplasts are semi-autonomous organelles originated from free-living bacteria that have retained reduced genomes during evolution. As a consequence, relatively few of the mitochondrial and chloroplast proteins are encoded in the organellar genomes and synthesized by the organellar ribosomes. Since both organellar genomes encode mainly components of the energy transduction systems, oxidative phosphorylation in mitochondria and photosynthetic apparatus in chloroplasts, understanding organellar translation is critical for a thorough comprehension of key aspects of mitochondrial and chloroplast activity affecting plant growth and development. Recent studies have clearly shown that translation is a key regulatory node in the expression of plant organellar genes, underscoring the need for an adequate methodology to study this unique stage of gene expression. The organellar translatome can be analysed by studying newly synthesized proteins or the mRNA pool recruited to the organellar ribosomes. In this review, we present experimental approaches used for studying translation in plant bioenergetic organelles. Their benefits and limitations, as well as the critical steps, are discussed. Additionally, we briefly mention several recently developed strategies to study organellar translation that have not yet been applied to plants.
Collapse
Affiliation(s)
- Malgorzata Kwasniak-Owczarek
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, Wroclaw, 50-383, Poland
| | - Hanna Janska
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, Wroclaw, 50-383, Poland
| |
Collapse
|
5
|
Davidsen K, Sullivan LB. A robust method for measuring aminoacylation through tRNA-Seq. eLife 2024; 12:RP91554. [PMID: 39076160 PMCID: PMC11288633 DOI: 10.7554/elife.91554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
Current methods to quantify the fraction of aminoacylated tRNAs, also known as the tRNA charge, are limited by issues with either low throughput, precision, and/or accuracy. Here, we present an optimized charge transfer RNA sequencing (tRNA-Seq) method that combines previous developments with newly described approaches to establish a protocol for precise and accurate tRNA charge measurements. We verify that this protocol provides robust quantification of tRNA aminoacylation and we provide an end-to-end method that scales to hundreds of samples including software for data processing. Additionally, we show that this method supports measurements of relative tRNA expression levels and can be used to infer tRNA modifications through reverse transcription misincorporations, thereby supporting multipurpose applications in tRNA biology.
Collapse
Affiliation(s)
- Kristian Davidsen
- Human Biology Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Molecular and Cellular Biology Program, University of WashingtonSeattleUnited States
| | - Lucas B Sullivan
- Human Biology Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| |
Collapse
|
6
|
Khomarbaghi Z, Ngan WY, Ayan GB, Lim S, Dechow-Seligmann G, Nandy P, Gallie J. Large-scale duplication events underpin population-level flexibility in tRNA gene copy number in Pseudomonas fluorescens SBW25. Nucleic Acids Res 2024; 52:2446-2462. [PMID: 38296823 PMCID: PMC10954465 DOI: 10.1093/nar/gkae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/02/2024] Open
Abstract
The complement of tRNA genes within a genome is typically considered to be a (relatively) stable characteristic of an organism. Here, we demonstrate that bacterial tRNA gene set composition can be more flexible than previously appreciated, particularly regarding tRNA gene copy number. We report the high-rate occurrence of spontaneous, large-scale, tandem duplication events in laboratory populations of the bacterium Pseudomonas fluorescens SBW25. The identified duplications are up to ∼1 Mb in size (∼15% of the wildtype genome) and are predicted to change the copy number of up to 917 genes, including several tRNA genes. The observed duplications are inherently unstable: they occur, and are subsequently lost, at extremely high rates. We propose that this unusually plastic type of mutation provides a mechanism by which tRNA gene set diversity can be rapidly generated, while simultaneously preserving the underlying tRNA gene set in the absence of continued selection. That is, if a tRNA set variant provides no fitness advantage, then high-rate segregation of the duplication ensures the maintenance of the original tRNA gene set. However, if a tRNA gene set variant is beneficial, the underlying duplication fragment(s) may persist for longer and provide raw material for further, more stable, evolutionary change.
Collapse
Affiliation(s)
- Zahra Khomarbaghi
- Microbial Evolutionary Dynamics Research Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Wing Y Ngan
- Microbial Evolutionary Dynamics Research Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Gökçe B Ayan
- Microbial Evolutionary Dynamics Research Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Sungbin Lim
- Microbial Evolutionary Dynamics Research Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Gunda Dechow-Seligmann
- Microbial Evolutionary Dynamics Research Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Pabitra Nandy
- Microbial Evolutionary Dynamics Research Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| | - Jenna Gallie
- Microbial Evolutionary Dynamics Research Group, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| |
Collapse
|
7
|
Davidsen K, Sullivan LB. A robust method for measuring aminoacylation through tRNA-Seq. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.31.551363. [PMID: 37577502 PMCID: PMC10418082 DOI: 10.1101/2023.07.31.551363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Current methods to quantify the fraction of aminoacylated tRNAs, also known as the tRNA charge, are limited by issues with either low throughput, precision, and/or accuracy. Here, we present an optimized charge tRNA-Seq method that combines previous developments with newly described approaches to establish a protocol for precise and accurate tRNA charge measurements. We verify that this protocol provides robust quantification of tRNA aminoacylation and we provide an end-to-end method that scales to hundreds of samples including software for data processing. Additionally, we show that this method supports measurements of relative tRNA expression levels and can be used to infer tRNA modifications through reverse transcription misincorporations, thereby supporting multipurpose applications in tRNA biology.
Collapse
Affiliation(s)
- Kristian Davidsen
- Human Biology Division, Fred Hutchinson Cancer Center, United States
- Molecular and Cellular Biology Program, University of Washington, United States
| | - Lucas B Sullivan
- Human Biology Division, Fred Hutchinson Cancer Center, United States
| |
Collapse
|
8
|
Padhiar NH, Katneni U, Komar AA, Motorin Y, Kimchi-Sarfaty C. Advances in methods for tRNA sequencing and quantification. Trends Genet 2024; 40:276-290. [PMID: 38123442 DOI: 10.1016/j.tig.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023]
Abstract
In the past decade tRNA sequencing (tRNA-seq) has attracted considerable attention as an important tool for the development of novel approaches to quantify highly modified tRNA species and to propel tRNA research aimed at understanding the cellular physiology and disease and development of tRNA-based therapeutics. Many methods are available to quantify tRNA abundance while accounting for modifications and tRNA charging/acylation. Advances in both library preparation methods and bioinformatic workflows have enabled developments in next-generation sequencing (NGS) workflows. Other approaches forgo NGS applications in favor of hybridization-based approaches. In this review we provide a brief comparative overview of various tRNA quantification approaches, focusing on the advantages and disadvantages of these methods, which together facilitate reliable tRNA quantification.
Collapse
Affiliation(s)
- Nigam H Padhiar
- Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics, Office of Therapeutic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Upendra Katneni
- Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics, Office of Therapeutic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Anton A Komar
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA
| | - Yuri Motorin
- CNRS-Université de Lorraine, UAR 2008, IBSLor UMR 7365 IMoPA, Nancy, France.
| | - Chava Kimchi-Sarfaty
- Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics, Office of Therapeutic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
9
|
Chu M, Qin Y, Lin X, Ma L, Deng D, Lv D, Fu P, Lin H. A Preliminary Survey of Transfer RNA Modifications and Modifying Enzymes of the Tropical Plant Cocos nucifera L. Genes (Basel) 2023; 14:1287. [PMID: 37372467 PMCID: PMC10298058 DOI: 10.3390/genes14061287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
The coconut (Cocos nucifera L.) is a commercial crop widely distributed among coastal tropical regions. It provides millions of farmers with food, fuel, cosmetics, folk medicine, and building materials. Among these, oil and palm sugar are representative extracts. However, this unique living species of Cocos has only been preliminarily studied at molecular levels. Benefiting from the genomic sequence data published in 2017 and 2021, we investigated the transfer RNA (tRNA) modifications and modifying enzymes of the coconut in this survey. An extraction method for the tRNA pool from coconut flesh was built. In total, 33 species of modified nucleosides and 66 homologous genes of modifying enzymes were confirmed using a nucleoside analysis using high-performance liquid chromatography combined with high-resolution mass spectrometry (HPLC-HRMS) and homologous protein sequence alignment. The positions of tRNA modifications, including pseudouridines, were preliminarily mapped using a oligonucleotide analysis, and the features of their modifying enzymes were summarized. Interestingly, we found that the gene encoding the modifying enzyme of 2'-O-ribosyladenosine at the 64th position of tRNA (Ar(p)64) was uniquely overexpressed under high-salinity stress. In contrast, most other tRNA-modifying enzymes were downregulated with mining transcriptomic sequencing data. According to previous physiological studies of Ar(p)64, the coconut appears to enhance the quality control of the translation process when subjected to high-salinity stress. We hope this survey can help advance research on tRNA modification and scientific studies of the coconut, as well as thinking of the safety and nutritional value of naturally modified nucleosides.
Collapse
Affiliation(s)
- Meng Chu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- School of Life Sciences, Hainan University, Haikou 570228, China
| | - Yichao Qin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Xiuying Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- School of Life Sciences, Hainan University, Haikou 570228, China
| | - Li Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Dehai Deng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Daizhu Lv
- Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Huan Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| |
Collapse
|
10
|
Scheepbouwer C, Aparicio-Puerta E, Gomez-Martin C, Verschueren H, van Eijndhoven M, Wedekind LE, Giannoukakos S, Hijmering N, Gasparotto L, van der Galien HT, van Rijn RS, Aronica E, Kibbelaar R, Heine VM, Wesseling P, Noske DP, Vandertop WP, de Jong D, Pegtel DM, Hackenberg M, Wurdinger T, Gerber A, Koppers-Lalic D. ALL-tRNAseq enables robust tRNA profiling in tissue samples. Genes Dev 2023; 37:243-257. [PMID: 36810209 PMCID: PMC10111867 DOI: 10.1101/gad.350233.122] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/26/2023] [Indexed: 02/23/2023]
Abstract
Transfer RNAs (tRNAs) are small adaptor RNAs essential for mRNA translation. Alterations in the cellular tRNA population can directly affect mRNA decoding rates and translational efficiency during cancer development and progression. To evaluate changes in the composition of the tRNA pool, multiple sequencing approaches have been developed to overcome reverse transcription blocks caused by the stable structures of these molecules and their numerous base modifications. However, it remains unclear whether current sequencing protocols faithfully capture tRNAs existing in cells or tissues. This is specifically challenging for clinical tissue samples that often present variable RNA qualities. For this reason, we developed ALL-tRNAseq, which combines the highly processive MarathonRT and RNA demethylation for the robust assessment of tRNA expression, together with a randomized adapter ligation strategy prior to reverse transcription to assess tRNA fragmentation levels in both cell lines and tissues. Incorporation of tRNA fragments not only informed on sample integrity but also significantly improved tRNA profiling of tissue samples. Our data showed that our profiling strategy effectively improves classification of oncogenic signatures in glioblastoma and diffuse large B-cell lymphoma tissues, particularly for samples presenting higher levels of RNA fragmentation, further highlighting the utility of ALL-tRNAseq for translational research.
Collapse
Affiliation(s)
- Chantal Scheepbouwer
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Center (UMC) location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands;
- Brain Tumor Center Amsterdam, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | | | - Cristina Gomez-Martin
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Heleen Verschueren
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Center (UMC) location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
- Brain Tumor Center Amsterdam, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Monique van Eijndhoven
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Laurine E Wedekind
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Center (UMC) location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
- Brain Tumor Center Amsterdam, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Stavros Giannoukakos
- Genetics Department, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Nathalie Hijmering
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Lisa Gasparotto
- Department of Child and Adolescent Psychiatry, Emma Children's Hospital, Amsterdam UMC, Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Hilde T van der Galien
- Department of Hematology, Medical Center Leeuwarden, 8934 AD Leeuwarden, the Netherlands
- HemoBase Population Registry Consortium, 8934 AD Leeuwarden, the Netherlands
| | - Roos S van Rijn
- Department of Hematology, Medical Center Leeuwarden, 8934 AD Leeuwarden, the Netherlands
- HemoBase Population Registry Consortium, 8934 AD Leeuwarden, the Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology Amsterdam Neuroscience, Amsterdam UMC location University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Robby Kibbelaar
- HemoBase Population Registry Consortium, 8934 AD Leeuwarden, the Netherlands
- Department of Pathology, Pathology Friesland, 8917 EN Leeuwarden, the Netherlands
| | - Vivi M Heine
- Department of Child and Adolescent Psychiatry, Emma Children's Hospital, Amsterdam UMC, Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Pieter Wesseling
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
- Laboratory for Childhood Cancer Pathology, Princess Máxima Center for Pediatric Oncology, University Medical Center Utrecht, 3584 CS Utrecht, the Netherlands
| | - David P Noske
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Center (UMC) location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
- Brain Tumor Center Amsterdam, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - W Peter Vandertop
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Center (UMC) location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
- Brain Tumor Center Amsterdam, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Daphne de Jong
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - D Michiel Pegtel
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Michael Hackenberg
- Genetics Department, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Tom Wurdinger
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Center (UMC) location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
- Brain Tumor Center Amsterdam, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Alan Gerber
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Center (UMC) location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
- Brain Tumor Center Amsterdam, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Danijela Koppers-Lalic
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Center (UMC) location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands;
- Brain Tumor Center Amsterdam, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
11
|
Ren F, Cao KY, Gong RZ, Yu ML, Tao P, Xiao Y, Jiang ZH. The role of post-transcriptional modification on a new tRNA Ile(GAU) identified from Ganoderma lucidum in its fragments' cytotoxicity on cancer cells. Int J Biol Macromol 2023; 229:885-895. [PMID: 36603719 DOI: 10.1016/j.ijbiomac.2022.12.327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023]
Abstract
Ganoderma lucidum (Ganoderma) is a famous Chinese herbal medicine which has been used clinically for thousands of years in China. Despite numerous studies on triterpenes and polysaccharides, the bioactivity of RNAs abundant in Ganoderma remains unknown. Here, based on LC-MS techniques, dihydrouracil, 5-methyluridine (m5U) and pseudouridine were identified at position 19, 52 and 53 of a new tRNAIle(GAU) which was isolated as the most abundant tRNA species in Ganoderma, and is the first purified tRNA from fungus. Cytotoxic screening of tRNA-half (t-half) and tRNA fragment (tRF) derived from this tRNA, as well as their mimics (t-half or tRF as antisense strand), demonstrated that the double-stranded form, i.e., tRF and t-halve mimics, exhibited stronger cytotoxicity than their single-stranded form, and the cytotoxicity of t-half mimic is significantly stronger than that of tRF mimic. Notably, the cytotoxicity of 3'-t-half mimic is not only much more potent than that of taxol, but also is much more potent than that of ganoderic acids, the major bioactive components in Ganoderma. Furthermore, 3'-t-half mimic_M2 (m5U modified) exhibited significantly stronger cytotoxicity than unmodified 3'-t-half mimic, which is consistent with the computational simulation showing that m5U modification enhances the stability of the tertiary structure of 3'-t-half mimic. Overall, the present study not only indicates t-halves are bioactive components in Ganoderma which should not be neglected, but also reveals an important role of post-transcriptional modification on tRNA in its fragments' cytotoxicity against cancer cells, which benefits the design and development of RNAi drugs from natural resource.
Collapse
Affiliation(s)
- Fei Ren
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Kai-Yue Cao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Rui-Ze Gong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Meng-Lan Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Peng Tao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yi Xiao
- School of Physics and Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau.
| |
Collapse
|
12
|
Abstract
Transfer RNAs (tRNAs) are intermediate-sized non-coding RNAs found in all organisms that help translate messenger RNA into protein. Recently, the number of sequenced plant genomes has increased dramatically. The availability of this extensive data greatly accelerates the study of tRNAs on a large scale. Here, 8,768,261 scaffolds/chromosomes containing 229,093 giga-base pairs representing whole-genome sequences of 256 plant species were analyzed to identify tRNA genes. As a result, 331,242 nuclear, 3,216 chloroplast, and 1,467 mitochondrial tRNA genes were identified. The nuclear tRNA genes include 275,134 tRNAs decoding 20 standard amino acids, 1,325 suppressor tRNAs, 6,273 tRNAs with unknown isotypes, 48,475 predicted pseudogenes, and 37,873 tRNAs with introns. Efforts also extended to the creation of PltRNAdb (https://bioinformatics.um6p.ma/PltRNAdb/index.php), a data source for tRNA genes from 256 plant species. PltRNAdb website allows researchers to search, browse, visualize, BLAST, and download predicted tRNA genes. PltRNAdb will help improve our understanding of plant tRNAs and open the door to discovering the unknown regulatory roles of tRNAs in plant genomes.
Collapse
Affiliation(s)
- Morad M. Mokhtar
- African Genome Center, University Mohammed VI Polytechnic, Benguerir, Morocco
| | - Achraf EL Allali
- African Genome Center, University Mohammed VI Polytechnic, Benguerir, Morocco
| |
Collapse
|
13
|
Janssen KA, Xie Y, Kramer MC, Gregory BD, Garcia BA. Data-Independent Acquisition for the Detection of Mononucleoside RNA Modifications by Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:885-893. [PMID: 35357823 PMCID: PMC9425428 DOI: 10.1021/jasms.2c00065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
RNA is dynamically modified in cells by a plethora of chemical moieties to modulate molecular functions and processes. Over 140 modifications have been identified across species and RNA types, with the highest density and diversity of modifications found in tRNA (tRNA). The methods used to identify and quantify these modifications have developed over recent years and continue to advance, primarily in the fields of next-generation sequencing (NGS) and mass spectrometry (MS). Most current NGS methods are limited to antibody-recognized or chemically derivatized modifications and have limitations in identifying multiple modifications simultaneously. Mass spectrometry can overcome both of these issues, accurately identifying a large number of modifications in a single run. Here, we present advances in MS data acquisition for the purpose of RNA modification identification and quantitation. Using this approach, we identified multiple tRNA wobble position modifications in Arabidopsis thaliana that are upregulated in salt-stressed growth conditions and may stabilize translation of salt stress induced proteins. This work presents improvements in methods for studying RNA modifications and introduces a possible regulatory role of wobble position modifications in A. thaliana translation.
Collapse
Affiliation(s)
- Kevin A. Janssen
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yixuan Xie
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Brian D. Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Corresponding Author: Correspondence to: Benjamin A. Garcia;
| |
Collapse
|
14
|
Das S, Zuko A, Thompson R, Storkebaum E, Ignatova Z. Immunoprecipation Assay to Quantify the Amount of tRNAs associated with Their Interacting Proteins in Tissue and Cell Culture. Bio Protoc 2022; 12:e4335. [PMID: 35340290 PMCID: PMC8899550 DOI: 10.21769/bioprotoc.4335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 10/26/2021] [Accepted: 01/13/2022] [Indexed: 09/10/2024] Open
Abstract
Transfer RNAs (tRNAs) are highly abundant species and, along their biosynthetic and functional path, they establish interactions with a plethora of proteins. The high number of nucleobase modifications in tRNAs renders conventional RNA quantification approaches unsuitable to study protein-tRNA interactions and their associated functional roles in the cell. We present an immunoprecipitation-based approach to quantify tRNA bound to its interacting protein partner(s). The tRNA-protein complexes are immunoprecipitated from cells or tissues and tRNAs are identified by northern blot and quantified by tRNA-specific fluorescent labeling. The tRNA interacting protein is quantified by an automated western blot and the tRNA amount is presented per unit of the interacting protein. We tested the approach to quantify tRNAGly associated with mutant glycyl-tRNA-synthetase implicated in Charcot-Marie-Tooth disease. This simple and versatile protocol can be easily adapted to any other tRNA binding proteins. Graphic abstract: Figure 1.Schematic of the tRNA-Immunoprecipitation approach.
Collapse
Affiliation(s)
- Sarada Das
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg. Germany
| | - Amila Zuko
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Robin Thompson
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg. Germany
| | - Erik Storkebaum
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Hamburg. Germany
| |
Collapse
|
15
|
Micheel J, Safrastyan A, Wollny D. Advances in Non-Coding RNA Sequencing. Noncoding RNA 2021; 7:70. [PMID: 34842804 PMCID: PMC8628893 DOI: 10.3390/ncrna7040070] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022] Open
Abstract
Non-coding RNAs (ncRNAs) comprise a set of abundant and functionally diverse RNA molecules. Since the discovery of the first ncRNA in the 1960s, ncRNAs have been shown to be involved in nearly all steps of the central dogma of molecular biology. In recent years, the pace of discovery of novel ncRNAs and their cellular roles has been greatly accelerated by high-throughput sequencing. Advances in sequencing technology, library preparation protocols as well as computational biology helped to greatly expand our knowledge of which ncRNAs exist throughout the kingdoms of life. Moreover, RNA sequencing revealed crucial roles of many ncRNAs in human health and disease. In this review, we discuss the most recent methodological advancements in the rapidly evolving field of high-throughput sequencing and how it has greatly expanded our understanding of ncRNA biology across a large number of different organisms.
Collapse
Affiliation(s)
| | | | - Damian Wollny
- RNA Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University, 07743 Jena, Germany; (J.M.); (A.S.)
| |
Collapse
|
16
|
Warren JM, Salinas-Giegé T, Triant DA, Taylor DR, Drouard L, Sloan DB. Rapid shifts in mitochondrial tRNA import in a plant lineage with extensive mitochondrial tRNA gene loss. Mol Biol Evol 2021; 38:5735-5751. [PMID: 34436590 PMCID: PMC8662596 DOI: 10.1093/molbev/msab255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In most eukaryotes, transfer RNAs (tRNAs) are one of the very few classes of genes remaining in the mitochondrial genome, but some mitochondria have lost these vestiges of their prokaryotic ancestry. Sequencing of mitogenomes from the flowering plant genus Silene previously revealed a large range in tRNA gene content, suggesting rapid and ongoing gene loss/replacement. Here, we use this system to test longstanding hypotheses about how mitochondrial tRNA genes are replaced by importing nuclear-encoded tRNAs. We traced the evolutionary history of these gene loss events by sequencing mitochondrial genomes from key outgroups (Agrostemma githago and Silene [=Lychnis] chalcedonica). We then performed the first global sequencing of purified plant mitochondrial tRNA populations to characterize the expression of mitochondrial-encoded tRNAs and the identity of imported nuclear-encoded tRNAs. We also confirmed the utility of high-throughput sequencing methods for the detection of tRNA import by sequencing mitochondrial tRNA populations in a species (Solanum tuberosum) with known tRNA trafficking patterns. Mitochondrial tRNA sequencing in Silene revealed substantial shifts in the abundance of some nuclear-encoded tRNAs in conjunction with their recent history of mt-tRNA gene loss and surprising cases where tRNAs with anticodons still encoded in the mitochondrial genome also appeared to be imported. These data suggest that nuclear-encoded counterparts are likely replacing mitochondrial tRNAs even in systems with recent mitochondrial tRNA gene loss, and the redundant import of a nuclear-encoded tRNA may provide a mechanism for functional replacement between translation systems separated by billions of years of evolutionary divergence.
Collapse
Affiliation(s)
- Jessica M Warren
- Department of Biology, Colorado State University, Fort Collins, CO, 80523-1878, USA
| | - Thalia Salinas-Giegé
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, Strasbourg, F-67084, France
| | - Deborah A Triant
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Douglas R Taylor
- Department of Biology, University of Virginia, Charlottesville, VA, 22904-4328, USA
| | - Laurence Drouard
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, Strasbourg, F-67084, France
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, 80523-1878, USA
| |
Collapse
|
17
|
Ma X, Liu C, Cao X. Plant transfer RNA-derived fragments: Biogenesis and functions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1399-1409. [PMID: 34114725 DOI: 10.1111/jipb.13143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/10/2021] [Indexed: 06/12/2023]
Abstract
Processing of mature transfer RNAs (tRNAs) produces complex populations of tRNA-derived fragments (tRFs). Emerging evidence shows that tRFs have important functions in bacteria, animals, and plants. Here, we review recent advances in understanding plant tRFs, focusing on their biological and cellular functions, such as regulating stress responses, mediating plant-pathogen interactions, and modulating post-transcriptional gene silencing and translation. We also review sequencing strategies and bioinformatics resources for studying tRFs in plants. Finally, we discuss future directions for plant tRF research, which will expand our knowledge of plant non-coding RNAs.
Collapse
Affiliation(s)
- Xuan Ma
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Chunyan Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Molecular Plant Sciences, the Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
18
|
Buyel JF, Stöger E, Bortesi L. Targeted genome editing of plants and plant cells for biomanufacturing. Transgenic Res 2021; 30:401-426. [PMID: 33646510 PMCID: PMC8316201 DOI: 10.1007/s11248-021-00236-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Plants have provided humans with useful products since antiquity, but in the last 30 years they have also been developed as production platforms for small molecules and recombinant proteins. This initially niche area has blossomed with the growth of the global bioeconomy, and now includes chemical building blocks, polymers and renewable energy. All these applications can be described as "plant molecular farming" (PMF). Despite its potential to increase the sustainability of biologics manufacturing, PMF has yet to be embraced broadly by industry. This reflects a combination of regulatory uncertainty, limited information on process cost structures, and the absence of trained staff and suitable manufacturing capacity. However, the limited adaptation of plants and plant cells to the requirements of industry-scale manufacturing is an equally important hurdle. For example, the targeted genetic manipulation of yeast has been common practice since the 1980s, whereas reliable site-directed mutagenesis in most plants has only become available with the advent of CRISPR/Cas9 and similar genome editing technologies since around 2010. Here we summarize the applications of new genetic engineering technologies to improve plants as biomanufacturing platforms. We start by identifying current bottlenecks in manufacturing, then illustrate the progress that has already been made and discuss the potential for improvement at the molecular, cellular and organism levels. We discuss the effects of metabolic optimization, adaptation of the endomembrane system, modified glycosylation profiles, programmable growth and senescence, protease inactivation, and the expression of enzymes that promote biodegradation. We outline strategies to achieve these modifications by targeted gene modification, considering case-by-case examples of individual improvements and the combined modifications needed to generate a new general-purpose "chassis" for PMF.
Collapse
Affiliation(s)
- J F Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany.
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - E Stöger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - L Bortesi
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD, Geleen, The Netherlands
| |
Collapse
|
19
|
Fagan SG, Helm M, Prehn JHM. tRNA-derived fragments: A new class of non-coding RNA with key roles in nervous system function and dysfunction. Prog Neurobiol 2021; 205:102118. [PMID: 34245849 DOI: 10.1016/j.pneurobio.2021.102118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 01/12/2023]
Abstract
tRNA-derived small RNAs (tsRNA) are a recently identified family of non-coding RNA that have been associated with a variety of cellular functions including the regulation of protein translation and gene expression. Recent sequencing and bioinformatic studies have identified the broad spectrum of tsRNA in the nervous system and demonstrated that this new class of non-coding RNA is produced from tRNA by specific cleavage events catalysed by ribonucleases such as angiogenin and dicer. Evidence is also accumulating that production of tsRNA is increased during disease processes where they regulate stress responses, proteostasis, and neuronal survival. Mutations to tRNA cleaving and modifying enzymes have been implicated in several neurodegenerative disorders, and tsRNA levels in the blood are advancing as biomarkers for neurological disease. In this review we summarize the physiological importance of tsRNA in the central nervous system and their relevance to neurological disease.
Collapse
Affiliation(s)
- Steven G Fagan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, St. Stephen'S Green, Dublin 2, Ireland; SFI FutureNeuro Research Centre, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences - IPBS, Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, St. Stephen'S Green, Dublin 2, Ireland; SFI FutureNeuro Research Centre, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
20
|
Comparative Mitogenomic Analysis Reveals Gene and Intron Dynamics in Rubiaceae and Intra-Specific Diversification in Damnacanthus indicus. Int J Mol Sci 2021; 22:ijms22137237. [PMID: 34281291 PMCID: PMC8268409 DOI: 10.3390/ijms22137237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 12/20/2022] Open
Abstract
The dynamic evolution of mitochondrial gene and intron content has been reported across the angiosperms. However, a reference mitochondrial genome (mitogenome) is not available in Rubiaceae. The phylogenetic utility of mitogenome data at a species level is rarely assessed. Here, we assembled mitogenomes of six Damnacanthus indicus (Rubiaceae, Rubioideae) representing two varieties (var. indicus and var. microphyllus). The gene and intron content of D. indicus was compared with mitogenomes from representative angiosperm species and mitochondrial contigs from the other Rubiaceae species. Mitogenome structural rearrangement and sequence divergence in D. indicus were analyzed in six individuals. The size of the mitogenome in D. indicus varied from 417,661 to 419,435 bp. Comparing the number of intact mitochondrial protein-coding genes in other Gentianales taxa (38), D. indicus included 32 genes representing several losses. The intron analysis revealed a shift from cis to trans splicing of a nad1 intron (nad1i728) in D. indicus and it is a shared character with the other four Rubioideae taxa. Two distinct mitogenome structures (type A and B) were identified. Two-step direct repeat-mediated recombination was proposed to explain structural changes between type A and B mitogenomes. The five individuals from two varieties in D. indicus diverged well in the whole mitogenome-level comparison with one exception. Collectively, our study elucidated the mitogenome evolution in Rubiaceae along with D. indicus and showed the reliable phylogenetic utility of the whole mitogenome data at a species-level evolution.
Collapse
|
21
|
Warren JM, Sloan DB. Hopeful monsters: unintended sequencing of famously malformed mite mitochondrial tRNAs reveals widespread expression and processing of sense-antisense pairs. NAR Genom Bioinform 2021; 3:lqaa111. [PMID: 33575653 PMCID: PMC7803006 DOI: 10.1093/nargab/lqaa111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
Although tRNA structure is one of the most conserved and recognizable shapes in molecular biology, aberrant tRNAs are frequently found in the mitochondrial genomes of metazoans. The extremely degenerate structures of several mitochondrial tRNAs (mt-tRNAs) have led to doubts about their expression and function. Mites from the arachnid superorder Acariformes are predicted to have some of the shortest mt-tRNAs, with a complete loss of cloverleaf-like shape. While performing mitochondrial isolations and recently developed tRNA-seq methods in plant tissue, we inadvertently sequenced the mt-tRNAs from a common plant pest, the acariform mite Tetranychus urticae, to a high enough coverage to detect all previously annotated T. urticae tRNA regions. The results not only confirm expression, CCA-tailing and post-transcriptional base modification of these highly divergent tRNAs, but also revealed paired sense and antisense expression of multiple T. urticae mt-tRNAs. Mirrored expression of mt-tRNA genes has been hypothesized but not previously demonstrated to be common in any system. We discuss the functional roles that these divergent tRNAs could have as both decoding molecules in translation and processing signals in transcript maturation pathways, as well as how sense–antisense pairs add another dimension to the bizarre tRNA biology of mitochondrial genomes.
Collapse
Affiliation(s)
- Jessica M Warren
- Department of Biology, Colorado State University, Fort Collins, CO, 80521 USA
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, 80521 USA
| |
Collapse
|
22
|
Non-Redundant tRNA Reference Sequences for Deep Sequencing Analysis of tRNA Abundance and Epitranscriptomic RNA Modifications. Genes (Basel) 2021; 12:genes12010081. [PMID: 33435213 PMCID: PMC7827920 DOI: 10.3390/genes12010081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/29/2022] Open
Abstract
Analysis of RNA by deep-sequencing approaches has found widespread application in modern biology. In addition to measurements of RNA abundance under various physiological conditions, such techniques are now widely used for mapping and quantification of RNA modifications. Transfer RNA (tRNA) molecules are among the frequent targets of such investigation, since they contain multiple modified residues. However, the major challenge in tRNA examination is related to a large number of duplicated and point-mutated genes encoding those RNA molecules. Moreover, the existence of multiple isoacceptors/isodecoders complicates both the analysis and read mapping. Existing databases for tRNA sequencing provide near exhaustive listings of tRNA genes, but the use of such highly redundant reference sequences in RNA-seq analyses leads to a large number of ambiguously mapped sequencing reads. Here we describe a relatively simple computational strategy for semi-automatic collapsing of highly redundant tRNA datasets into a non-redundant collection of reference tRNA sequences. The relevance of the approach was validated by analysis of experimentally obtained tRNA-sequencing datasets for different prokaryotic and eukaryotic model organisms. The data demonstrate that non-redundant tRNA reference sequences allow improving unambiguous mapping of deep sequencing data.
Collapse
|
23
|
Ayan GB, Park HJ, Gallie J. The birth of a bacterial tRNA gene by large-scale, tandem duplication events. eLife 2020; 9:57947. [PMID: 33124983 PMCID: PMC7661048 DOI: 10.7554/elife.57947] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
Organisms differ in the types and numbers of tRNA genes that they carry. While the evolutionary mechanisms behind tRNA gene set evolution have been investigated theoretically and computationally, direct observations of tRNA gene set evolution remain rare. Here, we report the evolution of a tRNA gene set in laboratory populations of the bacterium Pseudomonas fluorescens SBW25. The growth defect caused by deleting the single-copy tRNA gene, serCGA, is rapidly compensated by large-scale (45–290 kb) duplications in the chromosome. Each duplication encompasses a second, compensatory tRNA gene (serTGA) and is associated with a rise in tRNA-Ser(UGA) in the mature tRNA pool. We postulate that tRNA-Ser(CGA) elimination increases the translational demand for tRNA-Ser(UGA), a pressure relieved by increasing serTGA copy number. This work demonstrates that tRNA gene sets can evolve through duplication of existing tRNA genes, a phenomenon that may contribute to the presence of multiple, identical tRNA gene copies within genomes.
Collapse
Affiliation(s)
- Gökçe B Ayan
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Hye Jin Park
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Asia Pacific Center for Theoretical Physics, Pohang, Republic of Korea
| | - Jenna Gallie
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|