1
|
Kim HJ, Kim HJ, Kim SY, Roh J, Yun JH, Kim CH. TBK1 is a signaling hub in coordinating stress-adaptive mechanisms in head and neck cancer progression. Autophagy 2025:1-23. [PMID: 40114316 DOI: 10.1080/15548627.2025.2481661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025] Open
Abstract
Tumorigenesis is closely linked to the ability of cancer cells to activate stress-adaptive mechanisms in response to various cellular stressors. Stress granules (SGs) play a crucial role in promoting cancer cell survival, invasion, and treatment resistance, and influence tumor immune escape by protecting essential mRNAs involved in cell metabolism, signaling, and stress responses. TBK1 (TANK binding kinase 1) functions in antiviral innate immunity, cell survival, and proliferation in both the tumor microenvironment and tumor cells. Here, we report that MUL1 loss results in the hyperactivation of TBK1 in both HNC cells and tissues. Mechanistically, under proteotoxic stress induced by proteasomal inhibition, HSP90 inhibition, or Ub+ stress, MUL1 promotes the degradation of active TBK1 through K48-linked ubiquitination at lysine 584. Furthermore, TBK1 facilitates autophagosome-lysosome fusion and phosphorylates SQSTM1, regulating selective macroautophagic/autophagic clearance in HNC cells. TBK1 is required for SG formation and cellular protection. Moreover, we found that MAP1LC3B is partially localized within SGs. TBK1 depletion enhances the sensitivity of HNC cells to cisplatin-induced cell death. GSK8612, a novel TBK1 inhibitor, significantly inhibits HNC tumorigenesis in xenografts. In summary, our study reveals that TBK1 facilitates the rapid removal of ubiquitinated proteins within the cell through protective autophagy under stress conditions and assists SG formation through the use of the autophagy machinery. These findings highlight the potential of TBK1 as a therapeutic target in HNC treatment.Abbreviations: ALP: autophagy-lysosomal pathway; AMBRA1: autophagy and beclin 1 regulator 1; BaF: bafilomycin A1; CC: coiled-coil; CD274/PDL-1: CD274 molecule; CHX: cycloheximide; CQ: chloroquine; DNP: dinitrophenol; EGFR: epidermal growth factor receptor; ESCC: esophageal squamous cell carcinoma; G3BP1: G3BP stress granule assembly factor 1; HNC: head and neck cancer; HPV: human papillomavirus; IFN: interferon; IGFBP3: insulin like growth factor binding protein 3; IRF: interferon-regulatory factor 3; KO: knockout; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; NPC: nasopharyngeal carcinoma; PABP: poly(A) binding protein; PI: proteasome inhibitor; PQC: protein quality control; PROTAC: proteolysis-targeting chimera; PURA/PURα: purine rich element binding protein A; RIGI: RNA sensor RIG-I; SD: standard deviation; SG: stress granule; SQSTM1: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TBK1: TANK binding kinase 1; UPS: ubiquitin-proteasome system; USP10: ubiquitin specific peptidase 10; VCP: valosin containing protein; VHL: von Hippel-Lindau tumor suppressor; WT: wild type.
Collapse
Affiliation(s)
- Hyo Jeong Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Haeng-Jun Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sun-Yong Kim
- Department of New Business Development, Future Business Division, DaehanNupharm Co. Ltd, Seongnam, Republic of Korea
| | - Jin Roh
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Ju Hyun Yun
- Department of Otolaryngology, Ewha Womans University Seoul Hospital, Seoul, Republic of Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
2
|
Bai Y, Miao Y, Wang J, Gan J, Feng J. Predictive Value and Immunological Role of the HSPA5 Gene in Cervical Cancer. Biochem Genet 2025; 63:1566-1583. [PMID: 38584219 DOI: 10.1007/s10528-024-10782-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/11/2024] [Indexed: 04/08/2024]
Abstract
Cervical cancer (CC) ranks fourth among women's malignancies worldwide and seriously affects women's health. HSPA5 is a heat shock protein, also known as glucose regulatory protein 78 (GRP78). Upregulation of HSPA5 has been reported to be closely associated with multiple types of tumors. However, the specific role of HSPA5 in cervical cancer has not been discovered. In our study, we explored the prognostic value of HSPA5 in CC. Here, we analyzed the (TCGA) and (UCSC) databases, the analysis of HSPA5 in many tumors types was conducted with the "wilcox. test" method. A False Discovery Rate (FDR) value < 0.05 and Log2 | (fold change, FC) |> 1 were set as the cutoffs. "*", "**", and "***" indicate FDR < 0.05, < 0.01, and < 0.001, respectively, and further used human cervical cancer cells for q-PCR and western blotting detection. q-PCR and western blotting results showed that HSPA5 was highly expressed in cervical cancer cells, while it was expressed at low levels in normal cells (P < 0.05).We also analyzed the immunohistochemical data. immunohistochemical analysis results showed that HSPA5 was highly expressed in human cervical cancer, while it was expressed at low levels in normal tissues (P < 0.05). Analysis in TCGA-UCSC showed that the proportion of G3 in the group with high expression of HSPA5 was relatively high (P < 0.05). Enrichment analysis and survival analysis showed that the increased expression of HSPA5 in cervical cancer was related to the survival of CC and was involved in the regulation of biological behavior and molecular signaling pathways of cervical cancer. The correlation analysis of immune checkpoint and immune infiltration showed that HSPA5 was involved in the regulation of immune process of cervical cancer (P < 0.05). Drug sensitivity correlation analysis showed that HSPA5 was a sensitive target for tumor drugs (P < 0.05). In brief, those results suggest that HSPA5 can act as an oncogene of CC development and can serve as an effective predictive biomarker in cervical cancer.
Collapse
Affiliation(s)
- Yingying Bai
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, 569Xinsi Road, Baqiao District, Xian, 710038, Shanxi, China
| | - Yandong Miao
- Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai, 264100, China
| | - Jiangtao Wang
- Department of General Surgery, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, 264000, China
| | - Jian Gan
- Department of General Surgery, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, 264000, China
| | - Jiang Feng
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, 569Xinsi Road, Baqiao District, Xian, 710038, Shanxi, China.
| |
Collapse
|
3
|
Xu X, Song H, Zhang L, Chen C, Zhang X, Liu Y, Li C, Fu Q. Effects of Coatings on Antioxidant Enzyme Activities, Histopathology, and Transcriptome Profiles of Kidney Tissue in Larimichthys crocea. Genes (Basel) 2025; 16:392. [PMID: 40282352 PMCID: PMC12026950 DOI: 10.3390/genes16040392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/23/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
Background: As an innovative approach to deep-sea aquaculture, fish farm vessels offer a dual benefit by alleviating the pressure on offshore fishing resources while providing an additional high-quality protein source. However, the potential impacts of vessel coatings on farmed fish remain poorly understood. Methods: In this study, to investigate the effects of vessel coatings on the large yellow croaker (Larimichthys crocea), we established four experimental groups with coating concentrations at 1-fold, 10-fold, 20-fold, and 80-fold levels. Antioxidant enzyme activities in kidney tissues were measured across all groups, while histological and transcriptome analyses were specifically conducted for the 1-fold and 80-fold concentration groups. Results: Firstly, significant alterations in antioxidant enzyme activity were observed in the 80-fold concentration group. Moreover, histological analysis demonstrated more severe pathological changes in kidney tissue at the higher concentration, including interstitial hemorrhage and tubular epithelial cell fatty degeneration. In addition, we identified 11,902 differentially expressed genes (DEGs) by high-throughput sequencing. KEGG pathway enrichment analysis revealed that the DEGs were predominantly involved in critical biological processes, including endoplasmic reticulum protein processing, oxidative phosphorylation, cytokine-cytokine receptor interactions, cell cycle regulation, DNA replication, and PPAR signaling pathways. Finally, the validation of nine selected DEGs through quantitative real-time PCR (qRT-PCR) showed significant correlation with RNA-Seq data, confirming the reliability of our transcriptome analysis. Conclusions: This study provides preliminary insights into the antioxidant stress response mechanisms of L. crocea to coating exposure and establishes a theoretical foundation for optimizing healthy fish farming practices in aquaculture vessels.
Collapse
Affiliation(s)
- Xuan Xu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (X.X.); (C.C.); (X.Z.); (Y.L.); (C.L.)
- Qingdao Conson Oceantec Valley Development Co., Ltd., Qingdao 266237, China; (H.S.); (L.Z.)
| | - Huayu Song
- Qingdao Conson Oceantec Valley Development Co., Ltd., Qingdao 266237, China; (H.S.); (L.Z.)
| | - Lu Zhang
- Qingdao Conson Oceantec Valley Development Co., Ltd., Qingdao 266237, China; (H.S.); (L.Z.)
| | - Chonghui Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (X.X.); (C.C.); (X.Z.); (Y.L.); (C.L.)
| | - Xiaoxu Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (X.X.); (C.C.); (X.Z.); (Y.L.); (C.L.)
| | - Yiying Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (X.X.); (C.C.); (X.Z.); (Y.L.); (C.L.)
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (X.X.); (C.C.); (X.Z.); (Y.L.); (C.L.)
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (X.X.); (C.C.); (X.Z.); (Y.L.); (C.L.)
- Qingdao Conson Oceantec Valley Development Co., Ltd., Qingdao 266237, China; (H.S.); (L.Z.)
| |
Collapse
|
4
|
He Y, Fan Y, Ahmadpoor X, Wang Y, Li ZA, Zhu W, Lin H. Targeting lysosomal quality control as a therapeutic strategy against aging and diseases. Med Res Rev 2024; 44:2472-2509. [PMID: 38711187 DOI: 10.1002/med.22047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 04/04/2024] [Accepted: 04/21/2024] [Indexed: 05/08/2024]
Abstract
Previously, lysosomes were primarily referred to as the digestive organelles and recycling centers within cells. Recent discoveries have expanded the lysosomal functional scope and revealed their critical roles in nutrient sensing, epigenetic regulation, plasma membrane repair, lipid transport, ion homeostasis, and cellular stress response. Lysosomal dysfunction is also found to be associated with aging and several diseases. Therefore, function of macroautophagy, a lysosome-dependent intracellular degradation system, has been identified as one of the updated twelve hallmarks of aging. In this review, we begin by introducing the concept of lysosomal quality control (LQC), which is a cellular machinery that maintains the number, morphology, and function of lysosomes through different processes such as lysosomal biogenesis, reformation, fission, fusion, turnover, lysophagy, exocytosis, and membrane permeabilization and repair. Next, we summarize the results from studies reporting the association between LQC dysregulation and aging/various disorders. Subsequently, we explore the emerging therapeutic strategies that target distinct aspects of LQC for treating diseases and combatting aging. Lastly, we underscore the existing knowledge gap and propose potential avenues for future research.
Collapse
Affiliation(s)
- Yuchen He
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yishu Fan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xenab Ahmadpoor
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yumin Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, China
| | - Weihong Zhu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Hang Lin
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Signal Transduct Target Ther 2024; 9:271. [PMID: 39396974 PMCID: PMC11486532 DOI: 10.1038/s41392-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Iron, an essential mineral in the body, is involved in numerous physiological processes, making the maintenance of iron homeostasis crucial for overall health. Both iron overload and deficiency can cause various disorders and human diseases. Ferroptosis, a form of cell death dependent on iron, is characterized by the extensive peroxidation of lipids. Unlike other kinds of classical unprogrammed cell death, ferroptosis is primarily linked to disruptions in iron metabolism, lipid peroxidation, and antioxidant system imbalance. Ferroptosis is regulated through transcription, translation, and post-translational modifications, which affect cellular sensitivity to ferroptosis. Over the past decade or so, numerous diseases have been linked to ferroptosis as part of their etiology, including cancers, metabolic disorders, autoimmune diseases, central nervous system diseases, cardiovascular diseases, and musculoskeletal diseases. Ferroptosis-related proteins have become attractive targets for many major human diseases that are currently incurable, and some ferroptosis regulators have shown therapeutic effects in clinical trials although further validation of their clinical potential is needed. Therefore, in-depth analysis of ferroptosis and its potential molecular mechanisms in human diseases may offer additional strategies for clinical prevention and treatment. In this review, we discuss the physiological significance of iron homeostasis in the body, the potential contribution of ferroptosis to the etiology and development of human diseases, along with the evidence supporting targeting ferroptosis as a therapeutic approach. Importantly, we evaluate recent potential therapeutic targets and promising interventions, providing guidance for future targeted treatment therapies against human diseases.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
6
|
Guo R, Liu H, Su R, Mao Q, Zhao M, Zhang H, Mu J, Zhao N, Wang Y, Hao Y. Tanreqing injection inhibits influenza virus replication by promoting the fusion of autophagosomes with lysosomes: An integrated pharmacological study. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118159. [PMID: 38677572 DOI: 10.1016/j.jep.2024.118159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tanreqing injection (TRQ) is widely used, traditional Chinese medicine (TCM) injection used in China to treat respiratory infections. Modern pharmacological studies have confirmed that TRQ can protect against influenza viruses. However, the mechanism by which TRQ inhibits influenza viruses remains unclear. AIM OF THE STUDY To explore the therapeutic effects and possible mechanisms of TRQ inhibition by the influenza virus. MATERIALS AND METHODS Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS) was used to determine the chemical composition of TRQ. Isobaric tags for relative and absolute quantification (iTRAQ) were used to define differential proteins related to TRQ inhibition of viruses. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed for functional annotation. For experimental validation, we established an in vitro model of the influenza virus infection by infecting A549 cells with the virus. The detection of the signaling pathway was carried out through qPCR, western blotting,and immunofluorescence. RESULTS Fifty one components were identified using UPLC/Q-TOF MS. We confirmed the inhibitory effect of TRQ on influenza virus replication in vitro. Ninety nine differentially expressed proteins related to the inhibitory effect of TRQ were identified using iTRAQ. KEGG functional enrichment analysis showed that the TRQ may inhibit influenza virus replication by affecting autophagy. Through network analysis, 29 targets were selected as major targets, and three key targets, HSPA5, PARP1, and GAPDH, may be the TRQ targets affecting autophagy. In vitro experiments showed that TRQ inhibits influenza virus replication by interfering with the expression and localization of STX17 and VAMP8 proteins, thereby promoting the fusion of autophagosomes with lysosomes. CONCLUSION TRQ inhibits influenza virus replication by promoting the fusion of autophagosomes with lysosomes. We additionally established potential gene and protein targets which are affected by TRQ. Therefore, our findings provide new therapeutic targets and a foundation further studies on influenza treatment with TRQ.
Collapse
Affiliation(s)
- Rui Guo
- Beijing University of Chinese Medicine, Beijing, PR China; Union Stem Cell & Gene Engineering Co., Ltd, Tianjin, PR China
| | - Hui Liu
- Beijing University of Chinese Medicine, Beijing, PR China
| | - Rina Su
- Beijing University of Chinese Medicine, Beijing, PR China
| | - Qin Mao
- Beijing University of Chinese Medicine, Beijing, PR China
| | - Mengfan Zhao
- Beijing University of Chinese Medicine, Beijing, PR China
| | - Haili Zhang
- Beijing University of Chinese Medicine, Beijing, PR China
| | - Jingwei Mu
- Shanghai Kaibao Pharmaceutical CO., LTD, Shanghai, PR China
| | - Ningbo Zhao
- Shanghai Kaibao Pharmaceutical CO., LTD, Shanghai, PR China
| | - Yi Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, PR China.
| | - Yu Hao
- Beijing University of Chinese Medicine, Beijing, PR China.
| |
Collapse
|
7
|
Cilenti L, Di Gregorio J, Mahar R, Liu F, Ambivero CT, Periasamy M, Merritt ME, Zervos AS. Inactivation of mitochondrial MUL1 E3 ubiquitin ligase deregulates mitophagy and prevents diet-induced obesity in mice. Front Mol Biosci 2024; 11:1397565. [PMID: 38725872 PMCID: PMC11079312 DOI: 10.3389/fmolb.2024.1397565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
Obesity is a growing epidemic affecting millions of people worldwide and a major risk factor for a multitude of chronic diseases and premature mortality. Accumulating evidence suggests that mitochondria have a profound role in diet-induced obesity and the associated metabolic changes, but the molecular mechanisms linking mitochondria to obesity remain poorly understood. Our studies have identified a new function for mitochondrial MUL1 E3 ubiquitin ligase, a protein known to regulate mitochondrial dynamics and mitophagy, in the control of energy metabolism and lipogenesis. Genetic deletion of Mul1 in mice impedes mitophagy and presents a metabolic phenotype that is resistant to high-fat diet (HFD)-induced obesity and metabolic syndrome. Several metabolic and lipidomic pathways are perturbed in the liver and white adipose tissue (WAT) of Mul1(-/-) animals on HFD, including the one driven by Stearoyl-CoA Desaturase 1 (SCD1), a pivotal regulator of lipid metabolism and obesity. In addition, key enzymes crucial for lipogenesis and fatty acid oxidation such as ACC1, FASN, AMPK, and CPT1 are also modulated in the absence of MUL1. The concerted action of these enzymes, in the absence of MUL1, results in diminished fat storage and heightened fatty acid oxidation. Our findings underscore the significance of MUL1-mediated mitophagy in regulating lipogenesis and adiposity, particularly in the context of HFD. Consequently, our data advocate the potential of MUL1 as a therapeutic target for drug development in the treatment of obesity, insulin resistance, NAFLD, and cardiometabolic diseases.
Collapse
Affiliation(s)
- Lucia Cilenti
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Jacopo Di Gregorio
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Rohit Mahar
- Department of Chemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, India
| | - Fei Liu
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Camilla T. Ambivero
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Muthu Periasamy
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Matthew E. Merritt
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States
| | - Antonis S. Zervos
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| |
Collapse
|
8
|
Boateng AK, Joseph R, Srivastava OP. Dysregulation of Autophagy Occurs During Congenital Cataract Development in βA3ΔG91 Mice. Invest Ophthalmol Vis Sci 2024; 65:4. [PMID: 38558092 PMCID: PMC10996937 DOI: 10.1167/iovs.65.4.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Purpose To examine lens phenotypic characteristics in βA3ΔG91 mice and determine if βA3ΔG91 affects autophagy in the lens. Methods We generated a βA3ΔG91 mouse model using CRISPR/Cas9 methodology. Comparative phenotypic and biochemical characterizations of lenses from postnatal day 0 (P0), P15, and 1-month-old βA3ΔG91 and wild-type (WT) mice were performed. The methodologies used included non-invasive slit-lamp examination, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blot, and immunohistochemical (IHC) analyses to determine the levels of autophagy-related genes and proteins. Transmission electron microscopy (TEM) analysis of lenses was performed to assess organelle degradation and the presence of autophagic vesicles. TUNEL staining was used to determine apoptosis in the lens. Results Relative to WT lenses, 1-month-old βA3ΔG91 mice developed congenital nuclear cataract and microphthalmia and showed an early loss of endoplasmic reticulum (ER) in the cortex and attenuation of nuclei degradation. This observation was confirmed by TEM analysis, as was the presence of autophagic vesicles in βA3ΔG91 lenses. Comparative IHC and RT-qPCR analyses showed relatively higher levels of autophagy markers (ubiquitinated proteins and p62, LC3, and LAMP2 proteins) in βA3ΔG91 lenses compared to WT lenses. Additionally, βA3ΔG91 lenses showed relatively greater numbers of apoptotic cells and higher levels of cleaved caspase-3 and caspase-9. Conclusions The deletion of G91 in βA3ΔG91 mice leads to higher levels of expression of autophagy-related proteins and their transcripts relative to WT lenses. Taken together, G91 deletion in βA3/A1-crystallin is associated with autophagy disruption, attenuation of nuclei degradation, and cellular apoptosis in the lens, which might be congenital cataract causative factors.
Collapse
Affiliation(s)
- Akosua K. Boateng
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Roy Joseph
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Om P. Srivastava
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
9
|
Sun W, Song J, Wu Q, Deng L, Zhang T, Zhang L, Hua Y, Cao Y, Hou L. Regulator of Ribosome Synthesis 1 (RRS1) Stabilizes GRP78 and Promotes Breast Cancer Progression. Molecules 2024; 29:1051. [PMID: 38474562 DOI: 10.3390/molecules29051051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Regulator of ribosome synthesis 1 (RRS1), a crucial regulatory factor in ribosome biogenesis, exerts a remarkable impact on the progression of breast cancer (BC). However, the exact mechanisms and pathways have not yet been fully elucidated. To investigate the impact of RRS1 on BC growth and metastasis, along with its underlying mechanisms. We discovered that RRS1 is overexpressed in BC tissues and cell lines. This study aims to regulate the level of RRS1 through lentiviral transfection technology to explore its potential function in BC cells. Knockdown of RRS1 resulted in the inhibition of cell proliferation, invasion, and migration, whereas overexpression had the opposite effects. We firstly identified the interaction between RRS1 and Glucose-Regulated Protein 78 (GRP78) using Co-immunoprecipitation (Co-IP) combined with mass spectrometry analysis, providing evidences of co-localization and positive regulation between RRS1 and GRP78. We observed that RRS1 inhibited the degradation of GRP78 through the ubiquitin-proteasome pathway, resulting in the stabilization of GRP78. In addition, our findings suggested that RRS1 promoted BC progression by activating the GRP78-mediated phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. In conclusion, this newly discovered RRS1/GRP78 signaling axis provides a molecular and theoretical basis for further exploring the mechanisms of breast cancer invasion and metastasis.
Collapse
Affiliation(s)
- Wenjing Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao 266011, China
| | - Junying Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao 266011, China
| | - Qinglan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao 266011, China
| | - Lin Deng
- Wanzhou District Center for Disease Control, Chongqing 404100, China
| | - Tenglong Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao 266011, China
| | - Li Zhang
- Experimental Center for Undergraduates of Pharmacy, School of Pharmacy, Qingdao University, Qingdao 266011, China
| | - Yanan Hua
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao 266011, China
| | - Lin Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao 266011, China
| |
Collapse
|
10
|
Di Gregorio J, Appignani M, Flati V. Role of the Mitochondrial E3 Ubiquitin Ligases as Possible Therapeutic Targets in Cancer Therapy. Int J Mol Sci 2023; 24:17176. [PMID: 38139010 PMCID: PMC10743160 DOI: 10.3390/ijms242417176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Ubiquitination is a post-translational modification that targets specific proteins on their lysine residues. Depending on the type of ubiquitination, this modification ultimately regulates the stability or degradation of the targeted proteins. Ubiquitination is mediated by three different classes of enzymes: the E1 ubiquitin-activating enzymes, the E2 ubiquitin-conjugating enzymes and, most importantly, the E3 ubiquitin ligases. E3 ligases are responsible for the final step of the ubiquitin cascade, interacting directly with the target proteins. E3 ligases can also be involved in DNA repair, cell cycle regulation and response to stress; alteration in their levels can be involved in oncogenic transformation and cancer progression. Of all the six hundred E3 ligases of the human genome, only three of them are specific to the mitochondrion: MARCH5, RNF185 and MUL1. Their alterations (that reflect on the alteration of the mitochondria functions) can be related to cancer progression, as underlined by the increasing research performed in recent years on these three mitochondrial enzymes. This review will focus on the function and mechanisms of the mitochondrial E3 ubiquitin ligases, as well as their important targets, in cancer development and progression, also highlighting their potential use for cancer therapy.
Collapse
Affiliation(s)
| | | | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (J.D.G.); (M.A.)
| |
Collapse
|
11
|
Shan Z, Tang W, Shi Z, Shan T. Ferroptosis: An Emerging Target for Bladder Cancer Therapy. Curr Issues Mol Biol 2023; 45:8201-8214. [PMID: 37886960 PMCID: PMC10605744 DOI: 10.3390/cimb45100517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Bladder cancer (BC), as one of the main urological cancers in the world, possesses the abilities of multiple-drug resistance and metastasis. However, there remains a significant gap in the understanding and advancement of prognosis and therapeutic strategies for BC. Ferroptosis, a novel type of iron-dependent regulated cell death, depends on lipid peroxidation, which has been proven to have a strong correlation with the development and treatment of BC. Its mechanism mainly includes three pathways, namely, lipid peroxidation, the antioxidant system, and the iron overload pathway. In this review, we reviewed the mechanism of ferroptosis, along with the related therapeutic targets and drugs for BC, as it might become a new anticancer treatment in the future.
Collapse
Affiliation(s)
- Zhengda Shan
- School of Medicine, Sun Yat-sen University, Shenzhen 518107, China;
| | - Wenbin Tang
- School of Medicine, Xiamen University, Xiamen 361102, China;
| | - Zhiyuan Shi
- School of Medicine, Xiamen University, Xiamen 361102, China;
| | - Tao Shan
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| |
Collapse
|
12
|
Akinyemi AO, Simpson KE, Oyelere SF, Nur M, Ngule CM, Owoyemi BCD, Ayarick VA, Oyelami FF, Obaleye O, Esoe DP, Liu X, Li Z. Unveiling the dark side of glucose-regulated protein 78 (GRP78) in cancers and other human pathology: a systematic review. Mol Med 2023; 29:112. [PMID: 37605113 PMCID: PMC10464436 DOI: 10.1186/s10020-023-00706-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/26/2023] [Indexed: 08/23/2023] Open
Abstract
Glucose-Regulated Protein 78 (GRP78) is a chaperone protein that is predominantly expressed in the lumen of the endoplasmic reticulum. GRP78 plays a crucial role in protein folding by assisting in the assembly of misfolded proteins. Under cellular stress conditions, GRP78 can translocate to the cell surface (csGRP78) were it interacts with different ligands to initiate various intracellular pathways. The expression of csGRP78 has been associated with tumor initiation and progression of multiple cancer types. This review provides a comprehensive analysis of the existing evidence on the roles of GRP78 in various types of cancer and other human pathology. Additionally, the review discusses the current understanding of the mechanisms underlying GRP78's involvement in tumorigenesis and cancer advancement. Furthermore, we highlight recent innovative approaches employed in downregulating GRP78 expression in cancers as a potential therapeutic target.
Collapse
Affiliation(s)
| | | | | | - Maria Nur
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA
| | | | | | | | - Felix Femi Oyelami
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA
| | | | - Dave-Preston Esoe
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, USA
| | - Zhiguo Li
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, USA.
| |
Collapse
|
13
|
Wu S, Lu D, Gajendran B, Hu Q, Zhang J, Wang S, Han M, Xu Y, Shen X. Tanshinone IIA ameliorates experimental diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress in cardiomyocytes via SIRT1. Phytother Res 2023; 37:3543-3558. [PMID: 37128721 DOI: 10.1002/ptr.7831] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a common complication in patients with diabetes, and ultimately leads to heart failure. Endoplasmic reticulum stress (ERS) induced by abnormal glycolipid metabolism is a critical factor that affects the occurrence and development of DCM. Additionally, the upregulation/activation of silent information regulation 2 homolog-1 (SIRT1) has been shown to protect against DCM. Tanshinone II A (Tan IIA), the main active component of Salviae miltiorrhizae radix et rhizome (a valuable Chinese medicine), has protective effects against cardiovascular disease and diabetes. However, its role and mechanisms in diabetes-induced cardiac dysfunction remain unclear. Therefore, we explored whether Tan IIA alleviates ERS-mediated DCM via SIRT1 and elucidated the underlying mechanism. The results suggested that Tan IIA alleviated the pathological changes in the hearts of diabetic mice, ameliorated the cytopathological morphology of cardiomyocytes, reduced the cell death rate, and inhibited the expression of ERS-related proteins and mRNA. The SIRT1 agonist inhibited the activities of glucose-regulated protein 78 (GRP78). Furthermore, the opposite results under the SIRT1 inhibitor. SIRT1 knockdown was induced by siRNA-SIRT1 transfection, and the degree of GRP78 acetylation was increased. Cumulatively, Tan IIA ameliorated DCM by inhibiting ERS and upregulating SIRT1 expression.
Collapse
Affiliation(s)
- Shun Wu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Dingchun Lu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology, College of Basic Medical Sciences of Guizhou Medical University, Guiyang, China
| | - Babu Gajendran
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Qilan Hu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Jian Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Shengquan Wang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Minzhen Han
- The Department of Pharmacy, The Second Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yini Xu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- The Department of Pharmacology, College of Basic Medical Sciences of Guizhou Medical University, Guiyang, China
- The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
14
|
Chen Z, Tian D, Chen X, Cheng M, Xie H, Zhao J, Liu J, Fang Z, Zhao B, Bian E. Super-enhancer-driven lncRNA LIMD1-AS1 activated by CDK7 promotes glioma progression. Cell Death Dis 2023; 14:383. [PMID: 37385987 PMCID: PMC10310775 DOI: 10.1038/s41419-023-05892-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/07/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023]
Abstract
Long non-coding RNAs (lncRNAs) are tissue-specific expression patterns and dysregulated in cancer. How they are regulated still needs to be determined. We aimed to investigate the functions of glioma-specific lncRNA LIMD1-AS1 activated by super-enhancer (SE) and identify the potential mechanisms. In this paper, we identified a SE-driven lncRNA, LIMD1-AS1, which is expressed at significantly higher levels in glioma than in normal brain tissue. High LIMD1-AS1 levels were significantly associated with a shorter survival time of glioma patients. LIMD1-AS1 overexpression significantly enhanced glioma cells proliferation, colony formation, migration, and invasion, whereas LIMD1-AS1 knockdown inhibited their proliferation, colony formation, migration, and invasion, and the xenograft tumor growth of glioma cells in vivo. Mechanically, inhibition of CDK7 significantly attenuates MED1 recruitment to the super-enhancer of LIMD1-AS1 and then decreases the expression of LIMD1-AS1. Most importantly, LIMD1-AS1 could directly bind to HSPA5, leading to the activation of interferon signaling. Our findings support the idea that CDK7 mediated-epigenetically activation of LIMD1-AS1 plays a crucial role in glioma progression and provides a promising therapeutic approach for patients with glioma.
Collapse
Affiliation(s)
- Zhigang Chen
- Department of Neurosurgery, the Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
| | - Dasheng Tian
- Department of Orthopaedics, the Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
| | - Xueran Chen
- Department of Laboratory Medicine, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230601, China
- Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230601, China
| | - Meng Cheng
- Department of Neurosurgery, the Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
| | - Han Xie
- Department of Neurosurgery, the Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
| | - JiaJia Zhao
- Department of Neurosurgery, the Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
| | - Jun Liu
- Department of Orthopaedics, the Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
| | - Zhiyou Fang
- Department of Laboratory Medicine, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230601, China.
- Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230601, China.
| | - Bing Zhao
- Department of Neurosurgery, the Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China.
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China.
| | - Erbao Bian
- Department of Neurosurgery, the Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China.
- Department of Orthopaedics, the Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China.
| |
Collapse
|
15
|
Divya S, Ravanan P. Cellular battle against endoplasmic reticulum stress and its adverse effect on health. Life Sci 2023; 323:121705. [PMID: 37075943 DOI: 10.1016/j.lfs.2023.121705] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
The endoplasmic reticulum (ER) is a dynamic organelle and a reliable performer for precisely folded proteins. To maintain its function and integrity, arrays of sensory and quality control systems enhance protein folding fidelity and resolve the highest error-prone areas. Yet numerous internal and external factors disrupt its homeostasis and trigger ER stress responses. Cells try to reduce the number of misfolded proteins via the UPR mechanism, and ER-related garbage disposals systems like ER-associated degradation (ERAD), ER-lysosome-associated degradation (ERLAD), ER-Associated RNA Silencing (ERAS), extracellular chaperoning, and autophagy systems, which activates and increase the cell survival rate by degrading misfolded proteins, prevent the aggregated proteins and remove the dysfunctional organelles. Throughout life, organisms must confront environmental stress to survive and develop. Communication between the ER & other organelles, signaling events mediated by calcium, reactive oxygen species, and inflammation are linked to diverse stress signaling pathways and regulate cell survival or cell death mechanisms. Unresolved cellular damages can cross the threshold limit of their survival, resulting in cell death or driving for various diseases. The multifaceted ability of unfolded protein response facilitates the therapeutic target and a biomarker for various diseases, helping with early diagnosis and detecting the severity of diseases.
Collapse
Affiliation(s)
- Subramaniyan Divya
- Functional Genomics Laboratory, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610005, Tamil Nadu, India
| | - Palaniyandi Ravanan
- Functional Genomics Laboratory, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610005, Tamil Nadu, India.
| |
Collapse
|
16
|
Wang Q, Ke S, Liu Z, Shao H, He M, Guo J. HSPA5 Promotes the Proliferation, Metastasis and Regulates Ferroptosis of Bladder Cancer. Int J Mol Sci 2023; 24:ijms24065144. [PMID: 36982218 PMCID: PMC10048805 DOI: 10.3390/ijms24065144] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
Heat shock protein family A (HSP70) member 5 (HSPA5) is aberrantly expressed in various tumors and closely associated with the progression and prognosis of cancer. Nevertheless, its role in bladder cancer (BCa) remains elusive. The results of our study demonstrated that HSPA5 was upregulated in BCa and correlated with patient prognosis. Cell lines with low expression level of HSPA5 were constructed to explore the role of this protein in BCa. HSPA5 knockdown promoted apoptosis and retarded the proliferation, migration and invasion of BCa cells by regulating the VEGFA/VEGFR2 signaling pathway. In addition, overexpression of VEGFA alleviated the negative effect of HSPA5 downregulation. Moreover, we found that HSPA5 could inhibit the process of ferroptosis through the P53/SLC7A11/GPX4 pathway. Hence, HSPA5 can facilitate the progression of BCa and may be used as a novel biomarker and latent therapeutic target in the clinic.
Collapse
Affiliation(s)
- Qinghua Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shuai Ke
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zelin Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Haoren Shao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Mu He
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jia Guo
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Correspondence:
| |
Collapse
|
17
|
Biochemical Characterization and Functional Analysis of Glucose Regulated Protein 78 from the Silkworm Bombyx mori. Int J Mol Sci 2023; 24:ijms24043964. [PMID: 36835371 PMCID: PMC9961775 DOI: 10.3390/ijms24043964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
The glucose regulated protein (GRP78) is an important chaperone for various environmental and physiological stimulations. Despite the importance of GRP78 in cell survival and tumor progression, the information regarding GRP78 in silkworm Bombyx mori L. is poorly explored. We previously identified that GRP78 expression was significantly upregulated in the silkworm Nd mutation proteome database. Herein, we characterized the GRP78 protein from silkworm B. mori (hereafter, BmGRP78). The identified BmGRP78 protein encoded a 658 amino acid residues protein with a predicted molecular weight of approximately 73 kDa and comprised of two structural domains, a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). BmGRP78 was ubiquitously expressed in all examined tissues and developmental stages by quantitative RT-PCR and Western blotting analysis. The purified recombinant BmGRP78 (rBmGRP78) exhibited ATPase activity and could inhibit the aggregating thermolabile model substrates. Heat-induction or Pb/Hg-exposure strongly stimulated the upregulation expression at the translation levels of BmGRP78 in BmN cells, whereas no significant change resulting from BmNPV infection was found. Additionally, heat, Pb, Hg, and BmNPV exposure resulted in the translocation of BmGRP78 into the nucleus. These results lay a foundation for the future identification of the molecular mechanisms related to GRP78 in silkworms.
Collapse
|
18
|
Zheng S, Wang X, Liu H, Zhao D, Lin Q, Jiang Q, Li L, Hu Y. iASPP suppression mediates terminal UPR and improves BRAF-inhibitor sensitivity of colon cancers. Cell Death Differ 2023; 30:327-340. [PMID: 36380064 PMCID: PMC9950372 DOI: 10.1038/s41418-022-01086-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
Unfolded protein response (UPR) signaling is activated under endoplasmic reticulum (ER) stress, an emerging cancer hallmark, leading to either adaptive survival or cell death, while the mechanisms underlying adaptation-death switch remain poorly understood. Here, we examined whether oncogene iASPP regulates the switch and how the mechanisms can be used in colon cancer treatment. iASPP is downregulated when cells undergo transition from adaptation to death during therapy-induced ER stress. Blocking iASPP's downregulation attenuates stress-induced cell death. Mechanistically, Hu-antigen R (HuR)-mediated stabilization of iASPP mRNA and subsequent iASPP protein production is significantly impaired with prolonged ER stress, which facilitates the degradation of GRP78, a key regulator of the UPR, in the cytosol. Because iASPP competes with GRP78 in binding the ER-resident E3 ligase RNF185, and tips the balance in favor of cell death. Positive correlation between the levels of HuR, iASPP, and GRP78 are detectable in colon cancer tissues in vivo. Genetic inhibition of iASPP/GRP78 or chemical inhibition of HuR not only inhibits tumor growth, but also sensitizes colon cancer cells' responses to BRAF inhibitor-induced ER stress and cell death. This study provides mechanistic insights into the switch between adaptation and death during ER stress, and also identifies a potential strategy to improve BRAF-inhibitor efficiency in colon cancers.
Collapse
Affiliation(s)
- Shanliang Zheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Xingwen Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Hao Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Dong Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Qingyu Lin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Qinghua Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Li Li
- The third affiliated hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150040, China.
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China.
| |
Collapse
|
19
|
Yamamoto V, Wang B, Lee AS. Suppression of head and neck cancer cell survival and cisplatin resistance by GRP78 small molecule inhibitor YUM70. Front Oncol 2023; 12:1044699. [PMID: 36713577 PMCID: PMC9875086 DOI: 10.3389/fonc.2022.1044699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is one of the leading causes of cancer-related death worldwide. Surgical resection, radiation and chemotherapy are the mainstay of HNSCC treatment but are often unsatisfactory. Cisplatin is a commonly used chemotherapy in HNSCC; however, cisplatin resistance is a major cause of relapse and death. The 78-kD glucose-regulated protein (GRP78) is the master regulator of the unfolded protein response (UPR) and is implicated in therapeutic resistance in cancer. The role of GRP78 in cisplatin resistance in HNSCC remains unclear. YUM70 is a newly discovered hydroxyquinoline analogue and found to be an inhibitor of GRP78. The effect of YUM70 in HNSCC cell lines is unknown. Method Knockdown of GRP78 by siRNAs was performed to investigate the effect of GRP78 reduction in endoplasmic reticulum (ER)-stress induced and general apoptosis. Western blots examining apoptotic markers were performed on three HPV-negative HNSCC cell lines. WST-1 assay was performed to determine cell viability. In reverse, we utilized AA147, an ER proteostasis regulator to upregulate GRP78, and apoptotic markers and cell viability were determined. To test the ability of YUM70 to reverse cisplatin resistance, cisplatin-resistant HNSCC cell lines were generated by prolonged, repeated exposure to increasing concentrations of cisplatin. Colony formation assay using the cisplatin-resistant HNSCC cell line was performed to assess the in vitro reproductive cell survival. Furthermore, to test the ability of YUM70 to reverse cisplatin resistance in a physiologically relevant system, we subjected the 3D spheroids of the cisplatin-resistant HNSCC cell line to cisplatin treatment with or without YUM70 and monitored the onset of apoptosis. Results Reduction of GRP78 level induced HNSCC cell death while GRP78 upregulation conferred higher resistance to cisplatin. Combined cisplatin and YUM70 treatment increased apoptotic markers in the cisplatin-resistant HNSCC cell line, associating with reduced cell viability and clonogenicity. The combination treatment also increased apoptotic markers in the 3D spheroid model. Conclusion The GRP78 inhibitor YUM70 reduced HNSCC cell viability and re-sensitized cisplatin-resistant HNSCC cell line in both 2D and 3D spheroid models, suggesting the potential use of YUM70 in the treatment of HNSCC, including cisplatin-resistant HNSCC.
Collapse
Affiliation(s)
- Vicky Yamamoto
- Department of Biochemistry and Molecular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA, United States,USC Norris Comprehensive Cancer Center, Los Angeles, CA, United States
| | - Bintao Wang
- Department of Biochemistry and Molecular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA, United States
| | - Amy S. Lee
- Department of Biochemistry and Molecular Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA, United States,USC Norris Comprehensive Cancer Center, Los Angeles, CA, United States,*Correspondence: Amy S. Lee,
| |
Collapse
|
20
|
Wang Z, Cheng S, Liu Y, Zhao R, Zhang J, Zhou X, Shu W, Feng D, Wang H. Gene signature and prognostic value of ubiquitination-related genes in endometrial cancer. World J Surg Oncol 2023; 21:3. [PMID: 36611207 PMCID: PMC9824913 DOI: 10.1186/s12957-022-02875-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 12/09/2022] [Indexed: 01/08/2023] Open
Abstract
Protein ubiquitination is closely related to tumor occurrence and development. The specific role of ubiquitination in endometrial cancer remains largely unclear. Therefore, we constructed a novel endometrial cancer prognostic model based on ubiquitination-related genes. We extracted the expression matrices of ubiquitination-related genes from the Cancer Genome Atlas database, upon which we performed univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses to obtain 22 ubiquitination-related genes for the construction of the prognostic model. Survival, regression, clinical correlation, and principal component analyses were performed to assess the performance of the model. Drug sensitivity analysis was performed based on these ubiquitination-related genes. Finally, a prognostic nomogram was constructed based on the prognostic model to quantify patient outcomes. Survival, regression, clinical correlation, and principal component analyses revealed that the performance of the prognostic model was satisfactory. Drug sensitivity analysis provided a potential direction for the treatment of endometrial cancer. The prognostic nomogram could be used to effectively estimate the survival rate of patients with endometrial cancer. In summary, we constructed a new endometrial cancer prognostic model and identified 5 differentially expressed, prognosis-associated, ubiquitination-related genes. These 5 genes are potential diagnostic and treatment targets for endometrial cancer.
Collapse
Affiliation(s)
- Ziwei Wang
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022 People’s Republic of China
| | - Shuangshuang Cheng
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022 People’s Republic of China
| | - Yan Liu
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022 People’s Republic of China
| | - Rong Zhao
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022 People’s Republic of China
| | - Jun Zhang
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022 People’s Republic of China
| | - Xing Zhou
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022 People’s Republic of China
| | - Wan Shu
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022 People’s Republic of China
| | - Dilu Feng
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022 People’s Republic of China
| | - Hongbo Wang
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022 People’s Republic of China
| |
Collapse
|
21
|
Isola G. Prospective Advances in Genome Editing Investigation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:301-313. [DOI: 10.1007/978-981-19-5642-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
22
|
Chen Y, Lu Y, Huang C, Wu J, Shao Y, Wang Z, Zhang H, Fu Z. Subtypes analysis and prognostic model construction based on lysosome-related genes in colon adenocarcinoma. Front Genet 2023; 14:1149995. [PMID: 37168510 PMCID: PMC10166181 DOI: 10.3389/fgene.2023.1149995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/12/2023] [Indexed: 05/13/2023] Open
Abstract
Background: Lysosomes are essential for the development and recurrence of cancer. The relationship between a single lysosome-related gene and cancer has previously been studied, but the relationship between the lysosome-related genes (LRGs) and colon adenocarcinoma (COAD) remains unknown. This research examined the role of lysosome-related genes in colon adenocarcinoma. Methods: 28 lysosome-related genes associated with prognosis (PLRGs) were found by fusing the gene set that is differently expressed between tumor and non-tumor in colon adenocarcinoma with the gene set that is related to lysosomes. Using consensus unsupervised clustering of PLRGs, the colon adenocarcinoma cohort was divided into two subtypes. Prognostic and tumor microenvironment (TME) comparisons between the two subtypes were then made. The PLRGs_score was constructed using the least absolute shrinkage and selection operator regression (LASSO) method to quantify each patient's prognosis and provide advice for treatment. Lastly, Western Blot and immunohistochemistry (IHC) were used to identify MOGS expression at the protein level in colon adenocarcinoma tissues. Results: PLRGs had more somatic mutations and changes in genetic level, and the outcomes of the two subtypes differed significantly in terms of prognosis, tumor microenvironment, and enrichment pathways. Then, PLRGs_score was established based on two clusters of differential genes in the cancer genome atlas (TCGA) database, and external verification was performed using the gene expression omnibus (GEO) database. Then, we developed a highly accurate nomogram to enhance the clinical applicability of the PLRGs_score. Finally, a higher PLRGs_score was associated with a poorer overall survival (OS), a lower tumor mutation burden (TMB), a lower cancer stem cell (CSC) index, more microsatellite stability (MSS), and a higher clinical stage. MOGS was substantially elevated at the protein level in colon adenocarcinoma as additional confirmation. Conclusion: Overall, based on PLRGs, we identified two subtypes that varied significantly in terms of prognosis and tumor microenvironment. Then, in order to forecast patient prognosis and make treatment suggestions, we developed a diagnostic model with major significance for prognosis, clinical relevance, and immunotherapy. Moreover, we were the first to demonstrate that MOGS is highly expressed in colon adenocarcinoma.
Collapse
Affiliation(s)
- Yang Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yunfei Lu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Changzhi Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingyu Wu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Shao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhenling Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongqiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zan Fu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First College of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- *Correspondence: Zan Fu,
| |
Collapse
|
23
|
Wang L, Li D, Su X, Zhao Y, Huang A, Li H, Li J, Xia W, Jia T, Zhang H, Dong J, Liu X, Shao N. AGO4 suppresses tumor growth by modulating autophagy and apoptosis via enhancing TRIM21-mediated ubiquitination of GRP78 in a p53-independent manner. Oncogene 2023; 42:62-77. [PMID: 36371565 DOI: 10.1038/s41388-022-02526-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022]
Abstract
Argonaute proteins, which consist of AGO1, AGO2, AGO3 and AGO4, are key players in microRNA-mediated gene silencing. So far, few non-microRNA related biological roles of AGO4 have been reported. Here, we first found that AGO4 had low expression in non-small cell lung cancer (NSCLC) patient tumor tissues and could suppress NSCLC cell proliferation and metastasis. Subsequent studies on the mechanism showed that AGO4 could interact with the tripartite motif-containing protein 21 (TRIM21) and the glucose-regulated protein 78 (GRP78). AGO4 promoted ubiquitination of GRP78 by stabilizing TRIM21, a new specific ubiquitin E3 ligase for promoting K48-linked polyubiquitination of GRP78 confirmed in this paper, which resulted in induced cell apoptosis and inhibited autophagy by activating mTOR signal pathway. Further studies showed that p53 had dominant effects on TRIM21-GRP78 axis by directly increasing the expression of TRIM21 in p53 wild-type cells and AGO4 may alternatively regulate TRIM21-GRP78 axis in p53-deficient cells. We also found that overexpression of AGO4 results in suppression of multiple p53-deficient cell growth both in vivo and vitro. Together, we showed for the first time that the AGO4-TRIM21-GRP78 axis, as a new regulatory pathway, may be a novel potential therapeutic target for p53-deficient tumor treatment.
Collapse
Affiliation(s)
- Lin Wang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Da Li
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.,Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xueting Su
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.,Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China
| | - Yuechao Zhao
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Aixue Huang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Hui Li
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Jie Li
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Wei Xia
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Tianqi Jia
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Hongwen Zhang
- Interventional Ward, Dongfang Hospital, Fuzhou, 350025, China
| | - Jie Dong
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| | - Xuemei Liu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| | - Ningsheng Shao
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
24
|
Wang Y, Liu X, Huang W, Liang J, Chen Y. The intricate interplay between HIFs, ROS, and the ubiquitin system in the tumor hypoxic microenvironment. Pharmacol Ther 2022; 240:108303. [PMID: 36328089 DOI: 10.1016/j.pharmthera.2022.108303] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/16/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Alterations in protein ubiquitination and hypoxia-inducible factor (HIF) signaling both contribute to tumorigenesis and tumor progression. Ubiquitination is a dynamic process that is coordinately regulated by E3 ligases and deubiquitinases (DUBs), which have emerged as attractive therapeutic targets. HIF expression and transcriptional activity are usually increased in tumors, leading to poor clinical outcomes. Reactive oxygen species (ROS) are upregulated in tumors and have multiple effects on HIF signaling and the ubiquitin system. A growing body of evidence has shown that multiple E3 ligases and UBDs function synergistically to control the expression and activity of HIF, thereby allowing cancer cells to cope with the hypoxic microenvironment. Conversely, several E3 ligases and DUBs are regulated by hypoxia and/or HIF signaling. Hypoxia also induces ROS production, which in turn modulates the stability or activity of HIF, E3 ligases, and DUBs. Understanding the complex networks between E3 ligase, DUBs, ROS, and HIF will provide insights into the fundamental mechanism of the cellular response to hypoxia and help identify novel molecular targets for cancer treatment. We review the current knowledge on the comprehensive relationship between E3 ligase, DUBs, ROS, and HIF signaling, with a particular focus on the use of E3 ligase or DUB inhibitors in cancer.
Collapse
Affiliation(s)
- Yijie Wang
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xiong Liu
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Weixiao Huang
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Junjie Liang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China.
| | - Yan Chen
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China; School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
25
|
Leveraging diverse cell-death patterns to predict the prognosis and drug sensitivity of triple-negative breast cancer patients after surgery. Int J Surg 2022; 107:106936. [PMID: 36341760 DOI: 10.1016/j.ijsu.2022.106936] [Citation(s) in RCA: 230] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/08/2022] [Accepted: 09/09/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Postoperative progression and chemotherapy resistance is the major cause of treatment failure in patients with triple-negative breast cancer (TNBC). Currently, there is a lack of an ideal predictive model for the progression and drug sensitivity of postoperative TNBC patients. Diverse programmed cell death (PCD) patterns play an important role in tumor progression, which has the potential to be a prognostic and drug sensitivity indicator for TNBC after surgery. MATERIALS AND METHODS Twelve PCD patterns (apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, entotic cell death, netotic cell death, parthanatos, lysosome-dependent cell death, autophagy-dependent cell death, alkaliptosis, and oxeiptosis) were analyzed for model construction. Bulk transcriptome, single-cell transcriptome, genomics, and clinical information were collected from TCGA-BRCA, METABRIC, GSE58812, GSE21653, GSE176078, GSE75688, and KM-plotter cohorts to validate the model. RESULTS The machine learning algorithm established a cell death index (CDI) with a 12-gene signature. Validated in five independent datasets, TNBC patients with high CDI had a worse prognosis after surgery. Two molecular subtypes of TNBC with distinct vital biological processes were identified by an unsupervised clustering model. A nomogram with high predictive performance was constructed by incorporating CDI with clinical features. Furthermore, CDI was associated with immune checkpoint genes and key tumor microenvironment components by integrated analysis of bulk and single-cell transcriptome. TNBC patients with high CDI are resistant to standard adjuvant chemotherapy regimens (docetaxel, oxaliplatin, etc.); however, they might be sensitive to palbociclib (an FDA-approved drug for luminal breast cancer). CONCLUSION Generally, we established a novel CDI model by comprehensively analyzing diverse cell death patterns, which can accurately predict clinical prognosis and drug sensitivity of TNBC after surgery. A user-friendly website was created to facilitate the application of this prediction model (https://tnbc.shinyapps.io/CDI_Model/).
Collapse
|
26
|
Liu Q, Zhang P, Yuan X, Ya O, Li Q, Li J, Long Q. Investigate the stemness of adult adipose-derived stromal cells based on single-cell RNA-sequencing. Cell Biol Int 2022; 46:2118-2131. [PMID: 36150081 DOI: 10.1002/cbin.11898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/15/2022] [Accepted: 08/20/2022] [Indexed: 11/06/2022]
Abstract
The cellular heterogeneity and genetic features of stemness of adipose-derived stromal cells (ADSCs) remain unclear. Using single-cell RNA sequencing (scRNA-seq), we investigated the genomic features of the stemness gene in ADSCs with genetic variability. We cultured the ADSCs isolated from the fat waste of a healthy adult volunteers undergoing cosmetic plastic surgery to the third generation, used the BD Rhapsody platform to perform scRNA-seq, then used Monocle2 to analyze the growth and development trajectory of ADSCs, Cellular Trajectory Reconstruction Analysis Using Gene Counts and Expression (CytoTRACE) to evaluate the stemness gene characteristics in ADSCs clusters, and Beam to analyze the expression change characteristics of the main stemness related genes of ADSCs. According to the scRNA-seq data of 5325 ADSCs, they could be classified into nine cell clusters. According to CytoTRACE analysis, Cluster 3 of ADSCs had the highest stemness, whereas Cluster 8 had the lowest stemness. Pseudotime analysis revealed that Cluster 3 of ADSCs was primarily dispersed in the middle part of the growth and development trajectory, whereas Cluster 8 was primarily distributed at the end. We summarized the stemness of Cluster 3 in ADSCs with high expression of TPM1 and CCND1 genes in the metaphase of growth and development is the strongest, whereas the stemness of Cluster 8 with high expression of FICD, CREBRF, SDF2L1, HERPUD1, and HYOU1 genes in the telophase of growth and development is the weakest, providing a theoretical basis for screening and improving the therapeutic effect of ADSCs in cell transplantation research.
Collapse
Affiliation(s)
- Qing Liu
- Department of Neurology, Kailuan General Hospital, Affiliated North China University of Science and Technology, Tangshan
| | - Pingshu Zhang
- Department of Neurology, Kailuan General Hospital, Affiliated North China University of Science and Technology, Tangshan
| | - Xiaodong Yuan
- Department of Neurology, Kailuan General Hospital, Affiliated North China University of Science and Technology, Tangshan
| | - Ou Ya
- Department of Neurology, Kailuan General Hospital, Affiliated North China University of Science and Technology, Tangshan
| | - Qi Li
- Hebei Provincial Key Laboratory of Neurobiological Function, Tangshan, China
| | - Jing Li
- Radiology Department, Tangshan Maternal and Child Health Hospital, Tangshan, China
| | - Qingxi Long
- Department of Neurology, Kailuan General Hospital, Affiliated North China University of Science and Technology, Tangshan
| |
Collapse
|
27
|
HSPA5 Could Be a Prognostic Biomarker Correlated with Immune Infiltration in Breast Cancer. DISEASE MARKERS 2022; 2022:7177192. [PMID: 36193502 PMCID: PMC9526594 DOI: 10.1155/2022/7177192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/17/2022] [Indexed: 11/22/2022]
Abstract
Background Breast cancer (BC) is a frequent disease in females. The heat shock 70 kDa protein 5 (HSPA5) has recently been discovered to have an important function in tumor growth. However, the biological significance of HSPA5 in BC is unknown. Material and Method. Firstly, The Cancer Genome Atlas (TCGA) database was applied to analyze the expressions of HSPA5 in different cancer types, especially in BC. Then, the LinkedOmics database was used to screen genes coexpressed with HSPA5 in BC, presented by protein-protein interaction (PPI) and analyzed by functional enrichment analyses. Next, the Kaplan-Meier plotter was adopted to study the prognostic significance of HSPA5 and the relation between HSPA5 expression and different clinical factors in BC. Finally, the Tumor Immune Estimation Resource (TIMER) method was adopted to explore the relation between immune infiltration and HSPA5 in BC. Result HSPA5 was highly expressed in most cancers, including BC. Genes coexpressed with HSPA5 were mainly related to endoplasmic reticulum unfolded protein response, melanosome, thyroid hormone synthesis, N-glycan biosynthesis, and so on. In the survival analysis, high HSPA5 expression indicated a poor prognosis in BC, and the expression of HSPA5 in BC was elevated after the incidence of BC, changing with different clinical factors. In the immune infiltration, HSPA5 was positively correlated with most immune cells. Conclusion HSPA5 is an oncogene in BC progression, and it is connected with the prognosis and the immune infiltration in BC. Our findings suggest that HSPA5 could be an immunotherapy target and a prognostic biomarker in BC.
Collapse
|
28
|
XAF1 drives apoptotic switch of endoplasmic reticulum stress response through destabilization of GRP78 and CHIP. Cell Death Dis 2022; 13:655. [PMID: 35902580 PMCID: PMC9334361 DOI: 10.1038/s41419-022-05112-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 01/21/2023]
Abstract
X-linked inhibitor of apoptosis-associated factor-1 (XAF1) is a stress-inducible tumor suppressor that is commonly inactivated in many human cancers. Despite accumulating evidence for the pro-apoptotic role for XAF1 under various stressful conditions, its involvement in endoplasmic reticulum (ER) stress response remains undefined. Here, we report that XAF1 increases cell sensitivity to ER stress and acts as a molecular switch in unfolded protein response (UPR)-mediated cell-fate decisions favoring apoptosis over adaptive autophagy. Mechanistically, XAF1 interacts with and destabilizes ER stress sensor GRP78 through the assembly of zinc finger protein 313 (ZNF313)-mediated destruction complex. Moreover, XAF1 expression is activated through PERK-Nrf2 signaling and destabilizes C-terminus of Hsc70-interacting protein (CHIP) ubiquitin E3 ligase, thereby blocking CHIP-mediated K63-linked ubiquitination and subsequent phosphorylation of inositol-required enzyme-1α (IRE1α) that is involved in in the adaptive ER stress response. In tumor xenograft assays, XAF1-/- tumors display substantially lower regression compared to XAF1+/+ tumors in response to cytotoxic dose of ER stress inducer. XAF1 and GRP78 expression show an inverse correlation in human cancer cell lines and primary breast carcinomas. Collectively this study uncovers an important role for XAF1 as a linchpin to govern the sensitivity to ER stress and the outcomes of UPR signaling, illuminating the mechanistic consequence of XAF1 inactivation in tumorigenesis.
Collapse
|
29
|
HSPA5 Inhibitor Meliorate DSS-Induced Colitis through HSPA1A/CHIP. DISEASE MARKERS 2022; 2022:7115181. [PMID: 35872700 PMCID: PMC9300310 DOI: 10.1155/2022/7115181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/27/2022] [Indexed: 12/01/2022]
Abstract
Objective Ulcerative colitis (UC) is closely related to immune response, in which Treg cells (Tregs) suppress the autoimmune response of effector T cells to maintain homeostasis. As a marker of endoplasmic reticulum stress (ERS), HSPA5 was highly expressed in the colon tissue of UC patients. This study is aimed at evaluating the therapeutic effect of HSPA5 inhibitor (HA15) on dextran sulfate sodium- (DSS-) induced ulcerative colitis in mice and explored the effect and related mechanism of HSPA5 inhibitor on the differentiation and function of Tregs. Methods Thirty-two C57BL/6 mice were randomly divided into four groups (8 mice per group): normal control group, DSS model group, HSPA5 inhibitor (HA15) group (intraperitoneal injection), and dexamethasone (DXM) group (intraperitoneal injection). Except for the blank control group, the other groups were induced with 3% DSS for 7 days and then given corresponding intervention therapy for 7 days. Results The disease activity index (DAI) score, colon length, histopathological changes, and scores of DSS-induced mice show that HA15 could significantly improve the degree of inflammation in ulcerative colitis. Moreover, HA15 can better inhibit the expression of HSPA5, HSPA1A, and CHIP in the colon and increase the level of FOXP3 mRNA. Finally, the content of Treg cells and the levels of IL-10 and TGF-β1 were significantly increased, and the levels of IL-6 were significantly reduced. Conclusions HA15 can improve the differentiation and function of Treg cells by inhibiting the HSPA1A/CHIP pathway, thereby improving ulcerative colitis. Therefore, inhibiting the expression of HSPA5 may serve as a new approach to treat ulcerative colitis.
Collapse
|
30
|
Cilenti L, Mahar R, Di Gregorio J, Ambivero CT, Merritt ME, Zervos AS. Regulation of Metabolism by Mitochondrial MUL1 E3 Ubiquitin Ligase. Front Cell Dev Biol 2022; 10:904728. [PMID: 35846359 PMCID: PMC9277447 DOI: 10.3389/fcell.2022.904728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
MUL1 is a multifunctional E3 ubiquitin ligase that is involved in various pathophysiological processes including apoptosis, mitophagy, mitochondrial dynamics, and innate immune response. We uncovered a new function for MUL1 in the regulation of mitochondrial metabolism. We characterized the metabolic phenotype of MUL1(-/-) cells using metabolomic, lipidomic, gene expression profiling, metabolic flux, and mitochondrial respiration analyses. In addition, the mechanism by which MUL1 regulates metabolism was investigated, and the transcription factor HIF-1α, as well as the serine/threonine kinase Akt2, were identified as the mediators of the MUL1 function. MUL1 ligase, through K48-specific polyubiquitination, regulates both Akt2 and HIF-1α protein level, and the absence of MUL1 leads to the accumulation and activation of both substrates. We used specific chemical inhibitors and activators of HIF-1α and Akt2 proteins, as well as Akt2(-/-) cells, to investigate the individual contribution of HIF-1α and Akt2 proteins to the MUL1-specific phenotype. This study describes a new function of MUL1 in the regulation of mitochondrial metabolism and reveals how its downregulation/inactivation can affect mitochondrial respiration and cause a shift to a new metabolic and lipidomic state.
Collapse
Affiliation(s)
- Lucia Cilenti
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Rohit Mahar
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States
| | - Jacopo Di Gregorio
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Camilla T. Ambivero
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Matthew E. Merritt
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States
| | - Antonis S. Zervos
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| |
Collapse
|
31
|
Calle X, Garrido-Moreno V, Lopez-Gallardo E, Norambuena-Soto I, Martínez D, Peñaloza-Otárola A, Troncossi A, Guerrero-Moncayo A, Ortega A, Maracaja-Coutinho V, Parra V, Chiong M, Lavandero S. Mitochondrial E3 ubiquitin ligase 1 (MUL1) as a novel therapeutic target for diseases associated with mitochondrial dysfunction. IUBMB Life 2022; 74:850-865. [PMID: 35638168 DOI: 10.1002/iub.2657] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/17/2022] [Indexed: 11/07/2022]
Abstract
Mitochondrial E3 ubiquitin ligase 1 (MUL1) is a mitochondrial outer membrane-anchored protein-containing transmembrane domain in its N- and C-terminal regions, where both are exposed to the cytosol. Interestingly the C-terminal region has a RING finger domain responsible for its E3 ligase activity, as ubiquitin or in SUMOylation, interacting with proteins related to mitochondrial fusion and fission, cell survival, and tumor suppressor process, such as Akt. Therefore, MUL1 is involved in various cellular processes, such as mitochondrial dynamics, inter-organelle communication, proliferation, mitophagy, immune response, inflammation and cell apoptosis. MUL1 is expressed at a higher basal level in the heart, immune system organs, and blood. Here, we discuss the role of MUL1 in mitochondrial dynamics and its function in various pathological models, both in vitro and in vivo. In this context, we describe the role of MUL1 in: (1) the inflammatory response, by regulating NF-κB activity; (2) cancer, by promoting cell death and regulating exonuclear function of proteins, such as p53; (3) neurological diseases, by maintaining communication with other organelles and interacting with proteins to eliminate damaged organelles and; (4) cardiovascular diseases, by maintaining mitochondrial fusion/fission homeostasis. In this review, we summarize the latest advances in the physiological and pathological functions of MUL1. We also describe the different substrates of MUL1, acting as a positive or negative regulator in various pathologies associated with mitochondrial dysfunction. In conclusion, MUL1 could be a potential key target for the development of therapies that focus on ensuring the functionality of the mitochondrial network and, furthermore, the quality control of intracellular components by synchronously modulating the activity of different cellular mechanisms involved in the aforementioned pathologies. This, in turn, will guide the development of targeted therapies.
Collapse
Affiliation(s)
- Ximena Calle
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Valeria Garrido-Moreno
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Erik Lopez-Gallardo
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Ignacio Norambuena-Soto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Daniela Martínez
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Allan Peñaloza-Otárola
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Angelo Troncossi
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Alejandra Guerrero-Moncayo
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Angélica Ortega
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Valentina Parra
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile.,Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Santiago, Chile.,Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
32
|
Boussadia Z, Gambardella AR, Mattei F, Parolini I. Acidic and Hypoxic Microenvironment in Melanoma: Impact of Tumour Exosomes on Disease Progression. Cells 2021; 10:3311. [PMID: 34943819 PMCID: PMC8699343 DOI: 10.3390/cells10123311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
The mechanisms of melanoma progression have been extensively studied in the last decade, and despite the diagnostic and therapeutic advancements pursued, malignant melanoma still accounts for 60% of skin cancer deaths. Therefore, research efforts are required to better define the intercellular molecular steps underlying the melanoma development. In an attempt to represent the complexity of the tumour microenvironment (TME), here we analysed the studies on melanoma in acidic and hypoxic microenvironments and the interactions with stromal and immune cells. Within TME, acidity and hypoxia force melanoma cells to adapt and to evolve into a malignant phenotype, through the cooperation of the tumour-surrounding stromal cells and the escape from the immune surveillance. The role of tumour exosomes in the intercellular crosstalk has been generally addressed, but less studied in acidic and hypoxic conditions. Thus, this review aims to summarize the role of acidic and hypoxic microenvironment in melanoma biology, as well as the role played by melanoma-derived exosomes (Mexo) under these conditions. We also present a perspective on the characteristics of acidic and hypoxic exosomes to disclose molecules, to be further considered as promising biomarkers for an early detection of the disease. An update on the use of exosomes in melanoma diagnosis, prognosis and response to treatment will be also provided and discussed.
Collapse
Affiliation(s)
- Zaira Boussadia
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Adriana Rosa Gambardella
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Isabella Parolini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| |
Collapse
|
33
|
Feng S, Liu H, Dong X, Du P, Guo H, Pang Q. Identification and validation of an autophagy-related signature for predicting survival in lower-grade glioma. Bioengineered 2021; 12:9692-9708. [PMID: 34696669 PMCID: PMC8810042 DOI: 10.1080/21655979.2021.1985818] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Abnormal levels of autophagy have been implicated in the pathogenesis of multiple diseases, including cancer. However, little is known about the role of autophagy-related genes (ARGs) in low-grade gliomas (LGG). Accordingly, the aims of this study were to assess the prognostic values of ARGs and to establish a genetic signature for LGG prognosis. Expression profile data from patients with and without primary LGG were obtained from The Cancer Genome Atlas (TCGA) and Genome Tissue Expression databases, respectively, and consensus clustering was used to identify clusters of patients with distinct prognoses. Nineteen differentially expressed ARGs were selected with threshold values of FDR < 0.05 and |log2 fold change (FC)| ≥ 2, and functional analysis revealed that these genes were associated with autophagy processes as expected. An autophagy-related signature was established using a Cox regression model of six ARGs that separated patients from TCGA training cohort into high- and low-risk groups. Univariate and multivariate Cox regression analysis indicated that the signature-based risk score was an independent prognostic factor. The signature was successfully validated using the TCGA testing, TCGA entire, and Chinese Glioma Genome Atlas cohorts. Stratified analyses demonstrated that the signature was associated with clinical features and prognosis, and gene set enrichment analysis revealed that autophagy- and cancer-related pathways were more enriched in high-risk patients than in low-risk patients. The prognostic value and expression of the six signature-related genes were also investigated. Thus, the present study constructed and validated an autophagy-related prognostic signature that could optimize individualized survival prediction in LGG patients.
Collapse
Affiliation(s)
- Shaobin Feng
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Huiling Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xushuai Dong
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Peng Du
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hua Guo
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qi Pang
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
34
|
Prognostic association of starvation-induced gene expression in head and neck cancer. Sci Rep 2021; 11:19130. [PMID: 34580365 PMCID: PMC8476550 DOI: 10.1038/s41598-021-98544-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023] Open
Abstract
Autophagy-related genes (ARGs) have been implicated in the initiation and progression of malignant tumor promotion. To investigate the dynamics of expression of genes, including ARGs, head and neck squamous cell carcinoma (HNSCC) cells were placed under serum-free conditions to induce growth retardation and autophagy, and these starved cells were subjected to transcriptome analysis. Among the 21 starvation-induced genes (SIGs) located in the autophagy, cell proliferation, and survival signaling pathways, we identified SIGs that showed prominent up-regulation or down-regulation in vitro. These included AGR2, BST2, CALR, CD22, DDIT3, FOXA2, HSPA5, PIWIL4, PYCR1, SGK3, and TRIB3. The Cancer Genome Atlas (TCGA) database of HNSCC patients was used to examine the expression of up-regulated genes, and CALR, HSPA5, and TRIB3 were found to be highly expressed relative to solid normal tissue in cancer and the survival rate was reduced in patients with high expression. Protein-protein interaction analysis demonstrated the formation of a dense network of these genes. Cox regression analysis revealed that high expression of CALR, HSPA5, and TRIB3 was associated with poor prognosis in patients with TCGA-HNSCC. Therefore, these SIGs up-regulated under serum starvation may be molecular prognostic markers in HNSCC patients.
Collapse
|
35
|
Kim H, Mun D, Kang JY, Lee SH, Yun N, Joung B. Improved cardiac-specific delivery of RAGE siRNA within small extracellular vesicles engineered to express intense cardiac targeting peptide attenuates myocarditis. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:1024-1032. [PMID: 34141457 PMCID: PMC8167198 DOI: 10.1016/j.omtn.2021.04.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/28/2021] [Indexed: 11/02/2022]
Abstract
Small extracellular vesicles (sEVs) are nanometer-sized membranous vesicles secreted by cells, with important roles in physiological and pathological processes. Recent research has established the application of sEVs as therapeutic vehicles in various conditions, including heart disease. However, the high risk of off-target effects is a major barrier for their introduction into the clinic. This study evaluated the use of modified sEVs expressing high levels of cardiac-targeting peptide (CTP) for therapeutic small interfering RNA (siRNA) delivery in myocarditis, an inflammatory disease of heart. sEVs were extracted from the cell culture medium of HEK293 cells stably expressing CTP-LAMP2b (referred to as C-sEVs). The cardiac targeting ability of C-sEVs with the highest CTP-LAMP2b expression was >2-fold greater than that of normal sEVs (N-sEVs). An siRNA targeting the receptor for advanced glycation end products (RAGE) (siRAGE) was selected as a therapeutic siRNA and loaded into C-sEVs. The efficiency of cardiac-specific siRNA delivery via C-sEVs was >2-fold higher than that via N-sEVs. Furthermore, siRAGE-loaded C-sEVs attenuated inflammation in both cell culture and an in vivo model of myocarditis. Taken together, C-sEVs may be a useful drug delivery vehicle for the treatment of heart disease.
Collapse
Affiliation(s)
- Hyoeun Kim
- Division of Cardiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 03722, Republic of Korea
| | - Dasom Mun
- Division of Cardiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 03722, Republic of Korea
| | - Ji-Young Kang
- Division of Cardiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seung-Hyun Lee
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Nuri Yun
- Institute of Life Science & Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.,Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 03722, Republic of Korea
| | - Boyoung Joung
- Division of Cardiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
36
|
DIM-C-pPhtBu induces lysosomal dysfunction and unfolded protein response - mediated cell death via excessive mitophagy. Cancer Lett 2021; 504:23-36. [PMID: 33556544 DOI: 10.1016/j.canlet.2021.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022]
Abstract
Despite technological advances in cancer treatment, the survival rate of patients with head and neck cancer (HNC) has not improved significantly. Many studies have shown that endoplasmic reticulum (ER) stress-related signals are associated with mitochondrial damage and that these signals determine whether cells maintain homeostasis or activate cell death programs. The unfolded protein response (UPR) is regulated by ER membrane proteins such as double-stranded RNA-activated protein kinase R(PKR)-like ER kinase (PERK), which directly activate transcription of chaperones or genes that function in redox homeostasis, protein secretion, or cell death programs. In this study, we focused on the role of mitophagy and ER stress-mediated cell death induced by DIM-C-pPhtBu in HNC cancer. We found that DIM-C-pPhtBu, a compound that activates ER stress in many cancers, induced lysosomal dysfunction, excessive mitophagy, and cell death in HNC cells. Moreover, DIM-C-pPhtBu strongly inhibited HNC progression in a xenograft model by altering mitophagy related protein expression. Taken together, the results demonstrate that DIM-C-pPhtBu induces excessive mitophagy and eventually UPR-mediated cell death in HNC cells, suggesting that new anti-cancer drugs could be developed based on the connection between mitophagy and cancer cell death.
Collapse
|
37
|
Kumar V, Maity S. ER Stress-Sensor Proteins and ER-Mitochondrial Crosstalk-Signaling Beyond (ER) Stress Response. Biomolecules 2021; 11:173. [PMID: 33525374 PMCID: PMC7911976 DOI: 10.3390/biom11020173] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Recent studies undoubtedly show the importance of inter organellar connections to maintain cellular homeostasis. In normal physiological conditions or in the presence of cellular and environmental stress, each organelle responds alone or in coordination to maintain cellular function. The Endoplasmic reticulum (ER) and mitochondria are two important organelles with very specialized structural and functional properties. These two organelles are physically connected through very specialized proteins in the region called the mitochondria-associated ER membrane (MAM). The molecular foundation of this relationship is complex and involves not only ion homeostasis through the shuttling of calcium but also many structural and apoptotic proteins. IRE1alpha and PERK are known for their canonical function as an ER stress sensor controlling unfolded protein response during ER stress. The presence of these transmembrane proteins at the MAM indicates its potential involvement in other biological functions beyond ER stress signaling. Many recent studies have now focused on the non-canonical function of these sensors. In this review, we will focus on ER mitochondrial interdependence with special emphasis on the non-canonical role of ER stress sensors beyond ER stress.
Collapse
|
38
|
Liu S, Sun WC, Zhang YL, Lin QY, Liao JW, Song GR, Ma XL, Li HH, Zhang B. SOCS3 Negatively Regulates Cardiac Hypertrophy via Targeting GRP78-Mediated ER Stress During Pressure Overload. Front Cell Dev Biol 2021; 9:629932. [PMID: 33585485 PMCID: PMC7874011 DOI: 10.3389/fcell.2021.629932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/06/2021] [Indexed: 01/17/2023] Open
Abstract
Pressure overload-induced hypertrophic remodeling is a critical pathological process leading to heart failure (HF). Suppressor of cytokine signaling-3 (SOCS3) has been demonstrated to protect against cardiac hypertrophy and dysfunction, but its mechanisms are largely unknown. Using primary cardiomyocytes and cardiac-specific SOCS3 knockout (SOCS3cko) or overexpression mice, we demonstrated that modulation of SOCS3 level influenced cardiomyocyte hypertrophy, apoptosis and cardiac dysfunction induced by hypertrophic stimuli. We found that glucose regulatory protein 78 (GRP78) was a direct target of SOCS3, and that overexpression of SOCS3 inhibited cardiomyocyte hypertrophy and apoptosis through promoting proteasomal degradation of GRP78, thereby inhibiting activation of endoplasmic reticulum (ER) stress and mitophagy in the heart. Thus, our results uncover SOCS3-GRP78-mediated ER stress as a novel mechanism in the transition from cardiac hypertrophy to HF induced by sustained pressure overload, and suggest that modulating this pathway may provide a new therapeutic approach for hypertrophic heart diseases.
Collapse
Affiliation(s)
- Shuang Liu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Wen-Chang Sun
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yun-Long Zhang
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Qiu-Yue Lin
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jia-Wei Liao
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Gui-Rong Song
- Department of Health Statistics, School of Public Health, Dalian Medical University, Dalian, China
| | - Xiao-Lei Ma
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hui-Hua Li
- Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bo Zhang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
39
|
EGR1/GADD45α Activation by ROS of Non-Thermal Plasma Mediates Cell Death in Thyroid Carcinoma. Cancers (Basel) 2021; 13:cancers13020351. [PMID: 33477921 PMCID: PMC7833439 DOI: 10.3390/cancers13020351] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Recent studies have identified new anti-cancer mechanisms of nonthermal plasma (NTP) in several cancers. However, the molecular mechanisms underlying its therapeutic effect on thyroid cancer have not been elucidated. The objective of this study was to understand the anticancer effects of NTP-activated medium (NTPAM) on thyroid cancer cells and elucidate the signaling mechanisms responsible for NTPAM-induced thyroid cancer cell death. Abstract (1) Background: Nonthermal plasma (NTP) induces cell death in various types of cancer cells, providing a promising alternative treatment strategy. Although recent studies have identified new mechanisms of NTP in several cancers, the molecular mechanisms underlying its therapeutic effect on thyroid cancer (THCA) have not been elucidated. (2) Methods: To investigate the mechanism of NTP-induced cell death, THCA cell lines were treated with NTP-activated medium -(NTPAM), and gene expression profiles were evaluated using RNA sequencing. (3) Results: NTPAM upregulated the gene expression of early growth response 1 (EGR1). NTPAM-induced THCA cell death was enhanced by EGR1 overexpression, whereas EGR1 small interfering RNA had the opposite effect. NTPAM-derived reactive oxygen species (ROS) affected EGR1 expression and apoptotic cell death in THCA. NTPAM also induced the gene expression of growth arrest and regulation of DNA damage-inducible 45α (GADD45A) gene, and EGR1 regulated GADD45A through direct binding to its promoter. In xenograft in vivo tumor models, NTPAM inhibited tumor progression of THCA by increasing EGR1 levels. (4) Conclusions: Our findings suggest that NTPAM induces apoptotic cell death in THCA through a novel mechanism by which NTPAM-induced ROS activates EGR1/GADD45α signaling. Furthermore, our data provide evidence that the regulation of the EGR1/GADD45α axis can be a novel strategy for the treatment of THCA.
Collapse
|
40
|
UBXN7 cofactor of CRL3 KEAP1 and CRL2 VHL ubiquitin ligase complexes mediates reciprocal regulation of NRF2 and HIF-1α proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118963. [PMID: 33444648 DOI: 10.1016/j.bbamcr.2021.118963] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/17/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
UBXN7 is a cofactor protein that provides a scaffold for both CRL3KEAP1 and CRL2VHL ubiquitin ligase complexes involved in the regulation of the NRF2 and HIF-1α protein levels respectively. NRF2 and HIF-1α are surveillance transcription factors that orchestrate the cellular response to oxidative stress (NRF2) or to hypoxia (HIF-1α). Since mitochondria are the main oxygen sensors as well as the principal producers of ROS, it can be presumed that they may be able to modulate the activity of CRL3KEAP1 and CRL2VHL complexes in response to stress. We have uncovered a new mechanism of such regulation that involves the UBXN7 cofactor protein and its regulation by mitochondrial MUL1 E3 ubiquitin ligase. High level of UBXN7 leads to HIF-1α accumulation, whereas low level of UBXN7 correlates with an increase in NRF2 protein. The reciprocal regulation of HIF-1α and NRF2 by UBXN7 is coordinated under conditions of oxidative stress or hypoxia. In addition, this molecular mechanism leads to different metabolic states; high level of UBXN7 and accumulation of HIF-1α support glycolysis, whereas inactivation of UBXN7 and activation of NRF2 confer increased OXPHOS. We describe a new mechanism by which MUL1 E3 ubiquitin ligase modulates the UBXN7 cofactor protein level and provides a reciprocal regulation of CRL3KEAP1 and CRL2VHL ubiquitin ligase complexes. Furthermore, we delineate how this regulation is reflected in NRF2 and HIF-1α accumulation and determines the metabolic state as well as the adaptive response to mitochondrial stress.
Collapse
|
41
|
Lin JZ, Lin N. A risk signature of three autophagy-related genes for predicting lower grade glioma survival is associated with tumor immune microenvironment. Genomics 2021; 113:767-777. [PMID: 33069830 DOI: 10.1016/j.ygeno.2020.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/17/2020] [Accepted: 10/05/2020] [Indexed: 02/05/2023]
Abstract
Treatment for lower-grade gliomas (LGG) has been challenging. Though emerging approaches such as immunotherapy is promising, it is still faced with immune tolerance, an obstacle that may be overcome by targeting autophagy-related (ATG) genes. After identifying three differentially expressed ATG genes (RIPK2, MUL1 and CXCR4), we constructed an ATG gene risk signature by Kaplan-Meier, univariate Cox regression, least absolute shrinkage and selection operator regression and multivariate Cox regression, followed by internal and external validation using K-M and ROC analysis. Since gene set enrichment analysis (GSEA) suggested that the signature was strongly associated with immune cell functions, CIBERSORT, LM22 matrix and Pearson correlation were further performed, showing that the risk signature was significantly correlated with immune cell infiltration and immune checkpoint genes. In conclusion, we identified and independently validated an ATG gene risk signature for LGG patients, as well as discovering its significant association with LGG immune microenvironment.
Collapse
Affiliation(s)
- Jia-Zhe Lin
- Neurosurgical Department, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Nuan Lin
- Obstetrics & Gynecology Department, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| |
Collapse
|
42
|
Liu J, Ma T, Gao M, Liu Y, Liu J, Wang S, Xie Y, Wen Q, Wang L, Cheng J, Liu S, Zou J, Wu J, Li W, Xie H. Proteomic Characterization of Proliferation Inhibition of Well-Differentiated Laryngeal Squamous Cell Carcinoma Cells Under Below-Background Radiation in a Deep Underground Environment. Front Public Health 2020; 8:584964. [PMID: 33194991 PMCID: PMC7661695 DOI: 10.3389/fpubh.2020.584964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/06/2020] [Indexed: 02/05/2023] Open
Abstract
Background: There has been a considerable concern about cancer induction in response to radiation exposure. However, only a limited number of studies have focused on the biological effects of below-background radiation (BBR) in deep underground environments. To improve our understanding of the effects of BBR on cancer, we studied its biological impact on well-differentiated laryngeal squamous cell carcinoma cells (FD-LSC-1) in a deep underground laboratory (DUGL). Methods: The growth curve, morphological, and quantitative proteomic experiments were performed on FD-LSC-1 cells cultured in the DUGL and above-ground laboratory (AGL). Results: The proliferation of FD-LSC-1 cells from the DUGL group was delayed compared to that of cells from the AGL group. Transmission electron microscopy scans of the cells from the DUGL group indicated the presence of hypertrophic endoplasmic reticulum (ER) and a higher number of ER. At a cutoff of absolute fold change ≥ 1.2 and p < 0.05, 807 differentially abundant proteins (DAPs; 536 upregulated proteins and 271 downregulated proteins in the cells cultured in the DUGL) were detected. KEGG pathway analysis of these DAPs revealed that seven pathways were enriched. These included ribosome (p < 0.0001), spliceosome (p = 0.0001), oxidative phosphorylation (p = 0.0001), protein export (p = 0.0001), thermogenesis (p = 0.0003), protein processing in the endoplasmic reticulum (p = 0.0108), and non-alcoholic fatty liver disease (p = 0.0421). Conclusion: The BBR environment inhibited the proliferation of FD-LSC-1 cells. Additionally, it induced changes in protein expression associated with the ribosome, gene spliceosome, RNA transport, and energy metabolism among others. The changes in protein expression might form the molecular basis for proliferation inhibition and enhanced survivability of cells adapting to BBR exposure in a deep underground environment. RPL26, RPS27, ZMAT2, PRPF40A, SNRPD2, SLU7, SRSF5, SRSF3, SNRPF, WFS1, STT3B, CANX, ERP29, HSPA5, COX6B1, UQCRH, and ATP6V1G1 were the core proteins associated with the BBR stress response in cells.
Collapse
Affiliation(s)
- Jifeng Liu
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China.,Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tengfei Ma
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China.,Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Mingzhong Gao
- College of Water Resources and Hydropower, Sichuan University, Chengdu, China
| | - Yilin Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Liu
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shichao Wang
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yike Xie
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiao Wen
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Wang
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Cheng
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shixi Liu
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Zou
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China.,Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiang Wu
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Weimin Li
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Heping Xie
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China.,College of Water Resources and Hydropower, Sichuan University, Chengdu, China.,Institute of Deep Earth Science and Green Energy, Shenzhen University, Shenzhen, China
| |
Collapse
|
43
|
Lu G, Luo H, Zhu X. Targeting the GRP78 Pathway for Cancer Therapy. Front Med (Lausanne) 2020; 7:351. [PMID: 32850882 PMCID: PMC7409388 DOI: 10.3389/fmed.2020.00351] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/11/2020] [Indexed: 12/24/2022] Open
Abstract
The 78-kDa glucose-regulated protein (GRP78) plays an important part in maintaining protein stability, regulating protein folding, and inducing apoptosis autophagy, which is considered as a powerful protein. Meanwhile, it also plays a role in ensuring the normal function of organs. In recent years, more and more researches have been carried out on the targeted therapy of GRP78, mainly focusing on its relevant role in tumor and its role as a major modulator and modulator of subordinate pathways. The ability of GRP78 to respond to endoplasmic reticulum stress (ERS) determines whether tumor cells survive and whether the changes in expression level of GRP78 regulated by endoplasmic reticulum (ER) caused by various factors will directly or indirectly affect cell proliferation, apoptosis, and injury, or reduce the body's defense ability, or have protective effects on various organs.
Collapse
Affiliation(s)
- Guanhua Lu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Hui Luo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China.,The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China.,The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
44
|
Yang C, Zhang Z, Zou Y, Gao G, Liu L, Xu H, Liu F. Expression of glucose-regulated protein 78 as prognostic biomarkers for triple-negative breast cancer. Histol Histopathol 2020; 35:559-568. [PMID: 31745967 DOI: 10.14670/hh-18-185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Glucose-regulated protein78(GRP78) is a stress - induced endoplasmic reticulum chaperone protein. it is closely related to the occurrence, development, proliferation, differentiation and drug resistance of breast cancer. However, the association and clinicopathological features between GRP78 and triple negative breast cancer (TNBC) remain to be studied. MATERIAL AND METHODS Clinical and pathological characteristics and overall survival were analysed retrospectively in 179 surgically resected TNBC patients. GRP78 was detected by immunohistochemistry (IHC) using breast cancer tissue microarrays (TMAs), and the association between GRP78 levels and clinicopathological factors and prognosis was analyzed. Furthermore, GRP78 expression in human TNBC and NTNBC cell lines was detected by Western blot and qRT-PCR. After Si-GRP78 knocked-down GRP78 in MDA-MB-231 and BT549 cell lines, cell proliferation was detected using Cell Counting Kit-8 (CCK-8) and cell colony formation was detected by crystal violet staining, respectively. RESULTS GRP78 was expressed in triple negative breast cancer (TNBC). GRP78 expression was significantly associated with invasive, distant metastasis and proliferation of TNBC (P<0.05). In addition, patients with positive GRP78 expression had shorter overall survival (OS) and disease-free survival (DFS). And the high expression of GRP78 was significantly associated with disease-free survival (DFS) in patients with TNBC (P<0.001). CONCLUSIONS These findings improve our understanding of the expression pattern of GRP78 in TNBC and clarify the role of GRP78 as promising prognostic biomarkers for triple-negative breast cancer.
Collapse
Affiliation(s)
- Chenlian Yang
- Department of Breast Thyroid Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan, PR China
| | - Zhiwei Zhang
- Hengyang Medical School of University of South China, Hengyang, Hunan, PR China
| | - Yutian Zou
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Guanfeng Gao
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Lingrui Liu
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Haifan Xu
- Department of Breast Thyroid Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan, PR China.
| | - Feng Liu
- Hengyang Medical School of University of South China, Hengyang, Hunan, PR China.
| |
Collapse
|
45
|
Kim HJ, Kim SY, Kim DH, Park JS, Jeong SH, Choi YW, Kim CH. Crosstalk between HSPA5 arginylation and sequential ubiquitination leads to AKT degradation through autophagy flux. Autophagy 2020; 17:961-979. [PMID: 32164484 DOI: 10.1080/15548627.2020.1740529] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AKT/PKB is downregulated by the ubiquitin-proteasome system (UPS), which plays a key role in cell survival and tumor progression in various types of cancer. The objective of this study was to determine the relationship between the sequential ubiquitination of lysine residues K284 to K214 in AKT and R-HSPA5 (the arginylated form of HSPA5), which contribute to the autophagic/lysosomal degradation of AKT when impaired proteasomal activity induces cellular stress. Results show that proteasome inhibitors (PIs) increased ATE1 (arginyltransferase 1)-mediated R-HSPA5 levels in a reactive oxygen species (ROS)-dependent manner. Further, binding of fully ubiquitinated AKT with R-HSPA5 induced AKT degradation via the autophagy-lysosome pathway. Specifically, the K48 (Lys48)-linked ubiquitinated form of AKT was selectively degraded in the lysosome with R-HSPA5. The deubiquitinase, USP7 (ubiquitin specific peptidase 7), prevented AKT degradation by inhibiting AKT ubiquitination via interaction with AKT. MUL1 (mitochondrial ubiquitin ligase activator of NFKB 1) also played a vital role in the lysosomal degradation of AKT by sequentially ubiquitinating AKT residues K284 to K214 for R-HSPA5-mediated autophagy. Consistent with this finding, despite HSPA5 arginylation, AKT was not degraded in mul1 KO cells. These results suggest that MUL1-mediated sequential ubiquitination of K284 to K214 may serve as a novel mechanism by which AKT is designated for lysosomal degradation. Moreover, binding of R-HSPA5 with fully ubiquitinated AKT is required for the autophagic/lysosomal degradation of AKT. Thus, modulating the MUL1-mediated non-proteasomal proteolysis mechanisms, such as sequential ubiquitination, may prove to be a novel therapeutic approach for cancer treatment.Abbreviations: AKT1: thymoma viral proto-oncogene 1; ATE1: arginyltransferase 1; ATG5: autophagy related 5; CASP3: caspase 3; EGFP: enhanced green fluorescent protein; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GSK3B; glycogen synthase kinase 3 beta; HA: hemagglutinin; HSPA5/GRP78/BIP: heat shock protein 5; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MEF: mouse embryonic fibroblast; MUL1: mitochondrial ubiquitin ligase activator of NFKB1; NAC: N-acetylcysteine; NEK2: NIMA (never in mitosis gene a)-related expressed kinase 2; NH4Cl: ammonium chloride; PARP1: poly(ADP-ribose) polymerase family, member 1; PI: proteasome inhibitor; R-HSPA5: arginylated HSPA5; ROS: reactive oxygen species; SQSTM1: sequestome 1; Ub: ubiquitin; USP7: ubiquitin specific peptidase 7.
Collapse
Affiliation(s)
- Hyo Jeong Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea.,Ajou University School of Medicine, Oncoprotein Modification and Regulation Research Center, Suwon, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Sun-Yong Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea.,Ajou University School of Medicine, Oncoprotein Modification and Regulation Research Center, Suwon, Republic of Korea
| | - Dae-Ho Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea.,Ajou University School of Medicine, Oncoprotein Modification and Regulation Research Center, Suwon, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Joon Seong Park
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Seong Hyun Jeong
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Young Won Choi
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea.,Ajou University School of Medicine, Oncoprotein Modification and Regulation Research Center, Suwon, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
46
|
Kim SY, Kim HJ, Kim HJ, Kim CH. Non-Thermal Plasma Induces Antileukemic Effect Through mTOR Ubiquitination. Cells 2020; 9:cells9030595. [PMID: 32131492 PMCID: PMC7140413 DOI: 10.3390/cells9030595] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 12/20/2022] Open
Abstract
Non-thermal plasma (NTP) has been studied as a novel therapeutic tool for cancer that does not damage healthy cells. In this study, we show that NTP-treated solutions (NTS) can induce death in various leukemia cells through mechanistic target of rapamycin (mTOR) ubiquitination. Previously, we manufactured and demonstrated the efficacy of NTS in solid cancers. NTS did not exhibit any deleterious side effects, such as acute death or weight loss in nude mice. In the present study, NTS induced cell death in myeloid leukemia cells, including acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). We found that mTOR was downregulated in NTS-treated cells via the ubiquitin-proteasome system (UPS). We also identified ‘really interesting new gene’ finger protein 126 (RNF126) as a novel binding protein for mTOR through protein arrays and determined the role of E3 ligase in NTS-induced mTOR ubiquitination. NTS-derived reactive oxygen species (ROS) affected RNF126 expression and lysosomal dysfunction. These findings suggest that NTS has potential antileukemic effects through RNF126-mediated mTOR ubiquitination with no deleterious side effects. Thus, NTS may represent a new therapeutic method for chemotherapy-resistant leukemia.
Collapse
Affiliation(s)
- Sun-Yong Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea; (S.-Y.K.); (H.J.K.); (H.J.K.)
- Oncoprotein Modification and Regulation Research Center, Ajou University, Suwon 16499, Korea
| | - Hyo Jeong Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea; (S.-Y.K.); (H.J.K.); (H.J.K.)
- Oncoprotein Modification and Regulation Research Center, Ajou University, Suwon 16499, Korea
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Haeng Jun Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea; (S.-Y.K.); (H.J.K.); (H.J.K.)
- Oncoprotein Modification and Regulation Research Center, Ajou University, Suwon 16499, Korea
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea; (S.-Y.K.); (H.J.K.); (H.J.K.)
- Oncoprotein Modification and Regulation Research Center, Ajou University, Suwon 16499, Korea
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- Correspondence: ; Tel.: +82-31-219-5269
| |
Collapse
|
47
|
Mitochondrial MUL1 E3 ubiquitin ligase regulates Hypoxia Inducible Factor (HIF-1α) and metabolic reprogramming by modulating the UBXN7 cofactor protein. Sci Rep 2020; 10:1609. [PMID: 32005965 PMCID: PMC6994496 DOI: 10.1038/s41598-020-58484-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/18/2019] [Indexed: 11/15/2022] Open
Abstract
MUL1 is a multifunctional E3 ubiquitin ligase anchored in the outer mitochondrial membrane with its RING finger domain facing the cytoplasm. MUL1 participates in various biological pathways involved in apoptosis, mitochondrial dynamics, and innate immune response. The unique topology of MUL1 enables it to “sense” mitochondrial stress in the intermembrane mitochondrial space and convey these signals through the ubiquitination of specific cytoplasmic substrates. We have identified UBXN7, the cofactor protein of the CRL2VHL ligase complex, as a specific substrate of MUL1 ligase. CRL2VHL ligase complex regulates HIF-1α protein levels under aerobic (normoxia) or anaerobic (hypoxia) conditions. Inactivation of MUL1 ligase leads to accumulation of UBXN7, with concomitant increase in HIF-1α protein levels, reduction in oxidative phosphorylation, and increased glycolysis. We describe a novel pathway that originates in the mitochondria and operates upstream of the CRL2VHL ligase complex. Furthermore, we delineate the mechanism by which the mitochondria, through MUL1 ligase, can inhibit the CRL2VHL complex leading to high HIF-1α protein levels and a metabolic shift to glycolysis under normoxic conditions.
Collapse
|
48
|
Zhai T, Muhanhali D, Jia X, Wu Z, Cai Z, Ling Y. Identification of gene co-expression modules and hub genes associated with lymph node metastasis of papillary thyroid cancer. Endocrine 2019; 66:573-584. [PMID: 31332712 DOI: 10.1007/s12020-019-02021-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/12/2019] [Indexed: 01/04/2023]
Abstract
Papillary thyroid cancer (PTC) is the most prevalent histological type among thyroid cancers, and some patients are at a high risk for recurrent disease or even death. Identification for the potential biomarkers of PTC may contribute to early discovery of recurrence and treatment. In The Cancer Genome Atlas (TCGA) database, we obtained the information of RNA sequence data and clinical characteristics of PTC. Weighted gene co-expression network analysis (WGCNA) was performed to construct gene co-expression networks and investigate the relationship between modules and clinical traits. Finally, we constructed 16 co-expression modules in 10,428 genes, and three key modules (darkturquoise, lightyellow, and red) associated with tumor N grade were identified. The results of functional annotation indicated that the darkturquoise module was primarily enriched in the regulation of the extracellular matrix (ECM), collagen metabolism, and cell adhesion, the lightyellow module was primarily enriched in the mitochondrial function regulation and energy synthesis, and the red module was primarily enriched in the process of cell junction, apoptosis, and inflammatory response, suggesting their significant role in the progression of PTC. In addition, the hub genes in the three modules were identified and screened for differentially expressed genes (DEGs). Relapse-free survival analyses found that 11 genes (KCNQ3, MET, FN1, ITGA3, RUNX1, ITGA2, PERP, GCSH, FAAH, NGFRAP1, and HSPA5) may play a pivotal role in PTC relapse. In general, our research revealed the key co-expression modules and identified several prognostic biomarkers, which provides some new insights into the lymph node metastasis of PTC.
Collapse
Affiliation(s)
- Tianyu Zhai
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, 200032, Shanghai, China
| | - Dilidaer Muhanhali
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, 200032, Shanghai, China
| | - Xi Jia
- Department of Endocrinology, Jinshan Hospital, Fudan University, No.1508 Longhang Road, 201500, Shanghai, China
| | - Zhiyong Wu
- The Graduate School of Fujian Medical University, 350108, FuZhou, China
| | - Zhenqin Cai
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, 200032, Shanghai, China
| | - Yan Ling
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, 200032, Shanghai, China.
| |
Collapse
|
49
|
Yuan Y, Li X, Xu Y, Zhao H, Su Z, Lai D, Yang W, Chen S, He Y, Li X, Liu L, Xu G. Mitochondrial E3 ubiquitin ligase 1 promotes autophagy flux to suppress the development of clear cell renal cell carcinomas. Cancer Sci 2019; 110:3533-3542. [PMID: 31489722 PMCID: PMC6825007 DOI: 10.1111/cas.14192] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 02/07/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common malignant tumors in the urinary system. Surgical intervention is the preferred treatment for ccRCC, but targeted biological therapy is required for postoperative recurrent or metastatic ccRCC. Autophagy is an intracellular degradation system for misfolded/aggregated proteins and dysfunctional organelles. Defective autophagy is associated with many diseases. Mul1 is a mitochondrion-associated E3 ubiquitin ligase and involved in the regulation of divergent pathophysiological processes such as mitochondrial dynamics, and thus affects the development of various diseases including cancers. Whether Mul1 regulates ccRCC development and what is the mechanism remain unclear. Histochemical staining and immunoblotting were used to analyze the levels of Mul1 protein in human renal tissues. Statistical analysis of information associated with tissue microarray and The Cancer Genome Atlas (TCGA) database was conducted to show the relationship between Mul1 expression and clinical features and survival of ccRCC patients. Impact of Mul1 on rates of cell growth and migration and autophagy flux were tested in cultured cancer cells. Herein we show that Mul1 promoted autophagy flux to facilitate the degradation of P62-associated protein aggresomes and adipose differentiation-related protein (ADFP)-associated lipid droplets and suppressed the growth and migration of ccRCC cells. Levels of Mul1 protein and mRNA were significantly reduced so that autophagy flux was likely blocked in ccRCC tissues, which is potentially correlated with enhancement of malignancy of ccRCC and impairment of patient survival. Therefore, Mul1 may promote autophagy to suppress the development of ccRCC.
Collapse
Affiliation(s)
- Yaoji Yuan
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiezhao Li
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuyu Xu
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haibo Zhao
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhengming Su
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dehui Lai
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weiqing Yang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuangxing Chen
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongzhong He
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xun Li
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Center for the Innovation and Translation of Minimally Invasive Techniques, Guangzhou Medical University, Guangzhou, China
| | - Leyuan Liu
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA.,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX, USA
| | - Guibin Xu
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Center for the Innovation and Translation of Minimally Invasive Techniques, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
50
|
Kim H, Kang JY, Mun D, Yun N, Joung B. Calcium chloride enhances the delivery of exosomes. PLoS One 2019; 14:e0220036. [PMID: 31329632 PMCID: PMC6645520 DOI: 10.1371/journal.pone.0220036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/07/2019] [Indexed: 12/21/2022] Open
Abstract
Exosomes might have an unimproved potential to serve as effective delivery vehicles. However, when exosomes are developed for therapeutic applications, a method to enhance their delivery is important. This study aimed to evaluate wheather calcium chloride (CaCl2) or other chloride compounds could enhance exosome delivery to various cells without causing toxicity. Exosomes were purified from human serum by using the ExoQuick exosome precipitation kit. Isolated exosomes were mixed with CaCl2 at concentrations ranging from 100 μM to 1 mM, and then washed using Amicon filter for treating the cells. The delivery efficiency of exosomes and the viability of the cells [HEK 293 (human kidney cells) and H9C2 (rat cardiomyocytes)] were evaluated. Cellular uptake of exosomes was observed using a confocal microscope based on PKH26 labeling of exosomes. CaCl2 increased the delivery of exosomes in a dose- and treatment time-dependent manner. In HEK 293 cells, a CaCl2 concentration of 400 μM and exposure time of 12 h increased the delivery of exosomes by >20 times compared with controls. In H9C2 cells, a CaCl2 concentration of 400 μM and exposure time of >24 h increased the delivery of exosomes by >400 times compared with controls. The viability of both cell lines was maintained up to a CaCl2 concentration of 1 mM. However, cobalt chloride, cupric chloride, and magnesium chloride did not change the delivery of exosomes in both cell lines. These results suggest that the use of CaCl2 treatment might be a useful method for enhancing the delivery of exosomes.
Collapse
Affiliation(s)
- Hyoeun Kim
- Division of Cardiology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Ji-Young Kang
- Division of Cardiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dasom Mun
- Division of Cardiology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Nuri Yun
- Institute of Life Science & Biotechnology Yonsei University, Seoul, Republic of Korea
- * E-mail: (BYJ); (NRY)
| | - Boyoung Joung
- Division of Cardiology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea
- * E-mail: (BYJ); (NRY)
| |
Collapse
|