1
|
Zheng Q, Wang D, Lin R, Xu W. Pyroptosis, ferroptosis, and autophagy in spinal cord injury: regulatory mechanisms and therapeutic targets. Neural Regen Res 2025; 20:2787-2806. [PMID: 39101602 PMCID: PMC11826477 DOI: 10.4103/nrr.nrr-d-24-00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/24/2024] [Accepted: 06/07/2024] [Indexed: 08/06/2024] Open
Abstract
Regulated cell death is a form of cell death that is actively controlled by biomolecules. Several studies have shown that regulated cell death plays a key role after spinal cord injury. Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords. Autophagy, a complex form of cell death that is interconnected with various regulated cell death mechanisms, has garnered significant attention in the study of spinal cord injury. This injury triggers not only cell death but also cellular survival responses. Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis, ferroptosis, and autophagy. Therefore, this review aims to comprehensively examine the mechanisms underlying regulated cell deaths, the signaling pathways that modulate these mechanisms, and the potential therapeutic targets for spinal cord injury. Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury. Moreover, a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury.
Collapse
Affiliation(s)
- Qingcong Zheng
- Department of Spinal Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Du Wang
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China
| | - Rongjie Lin
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Weihong Xu
- Department of Spinal Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
2
|
Liu H, Wang X, Li B, Xiang Z, Zhao Y, Lu M, Lin Q, Zheng S, Guan T, Zhang Y, Hu Y. LncRNA HITT inhibits autophagy by attenuating ATG12-ATG5-ATG16L1 complex formation. Cancer Lett 2025; 616:217532. [PMID: 40021040 DOI: 10.1016/j.canlet.2025.217532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 03/03/2025]
Abstract
Dysregulated autophagy has been implicated in the pathogenesis of numerous diseases, including cancer. Despite extensive research on the underlying mechanisms of autophagy, the involvement of long non-coding RNAs (lncRNAs) remains poorly understood. Here, we demonstrate that a previously identified lncRNA, HITT (HIF-1α inhibitor at the translation level), is closely associated with biological processes such as autophagy through unbiased bioinformatic analysis. Subsequent studies demonstrate that HITT is increased by several autophagic stimuli, including PI-103, a potent inhibitor of PI3K and mTOR. This is caused by a reduction in the binding between HITT and AGO2, resulting in a reduction in the activity of miR-205 towards HITT degradation. Increased HITT then binds to a key autophagy protein, Autophagy-related 5 (ATG5), and inhibits autophagosome formation by preventing the formation of the ATG12-ATG5-ATG16L1 complex. This results in HITT sensitizing PI-103-mediated cell death both in vitro and in vivo in nude mice by attenuating protective autophagy. The data presented herein demonstrate that HITT is a newly identified RNA regulator of autophagy and that it can be used to sensitize the colon cancer response to cell death by blocking the protective autophagy.
Collapse
Affiliation(s)
- Hao Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou, 450000, China
| | - Xingwen Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Bolun Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Zhiyuan Xiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou, 450000, China
| | - Yanan Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Minqiao Lu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou, 450000, China
| | - Qingyu Lin
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou, 450000, China
| | - Shanliang Zheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China
| | - Tianqi Guan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou, 450000, China
| | - Yihong Zhang
- Department of Endocrinology, Heilongjiang Province Hospital, Harbin, Heilongjiang Province, 150001, China
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150001, China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou, 450000, China.
| |
Collapse
|
3
|
Mohamed NM, Mohamed RH, Kennedy JF, Elhefnawi MM, Hamdy NM. A comprehensive review and in silico analysis of the role of survivin (BIRC5) in hepatocellular carcinoma hallmarks: A step toward precision. Int J Biol Macromol 2025:143616. [PMID: 40306500 DOI: 10.1016/j.ijbiomac.2025.143616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/25/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Hepatocellular carcinoma (HCC) is a complex malignancy driven by the dysregulation of multiple cellular pathways. Survivin, a key member of the inhibitor of apoptosis (IAP) family, plays a central role in HCC tumorigenesis and progression. Despite significant research, a comprehensive understanding of the contributions of survivin to the hallmarks of cancer, its molecular network, and its potential as a therapeutic target remains incomplete. In this review, we integrated bioinformatics analysis with an extensive literature review to provide deeper insights into the role of survivin in HCC. Using bioinformatics tools such as the Human Protein Atlas, GEPIA, STRING, TIMER, and Metascape, we analyzed survivin expression and its functional associations and identified the top 20 coexpressed genes in HCC. These include TK1, SPC25, SGO2, PTTG1, PRR11, PLK1, NCAPH, KPNA2, KIF2C, KIF11, HJURP, GTSE1, FOXM1, CEP55, CENPA, CDCA3, CDC45, CCNB2, CCNB1 and CTD-2510F5.4. Our findings also revealed significant protein-protein interactions among these genes, which were enriched in pathways associated with the FOXM1 oncogenic signaling cascade, and biological processes such as cell cycle regulation, mitotic checkpoints, and diseases such as liver neoplasms. We also discussed the involvement of survivin in key oncogenic pathways, including the PI3K/AKT, WNT/β-catenin, Hippo, and JAK/STAT3 pathways, and its role in modulating cell cycle checkpoints, apoptosis, and autophagy. Furthermore, we explored its interactions with the tumor microenvironment, particularly its impact on immune modulation through myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages, and natural killer cell function in HCC. Additionally, we highlighted its involvement in alkylglycerone phosphate synthase (AGPS)-mediated lipid reprogramming and identified important gaps in the survivin network that warrant further investigation. This review also examined the role of survivin in cancer stemness, inflammation, and virally mediated hepatocarcinogenesis. We evaluated its potential as a diagnostic, prognostic, predictive, and pharmacodynamic biomarker in HCC, emphasizing its relevance in precision medicine. Finally, we summarized emerging survivin-targeted therapeutics and ongoing clinical trials, underscoring the need for novel strategies to effectively target survivin in HCC.
Collapse
Affiliation(s)
- Nermin M Mohamed
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt
| | - Rania Hassan Mohamed
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abassia, 11566 Cairo, Egypt
| | - John F Kennedy
- Chembiotech Laboratories, Kyrewood House, Tenbury Wells, Worcestershire, United Kingdom
| | - Mahmoud M Elhefnawi
- Biomedical Informatics and Chemoinformatics Group, Informatics and Systems Department, National Research Centre, Cairo, Egypt.
| | - Nadia M Hamdy
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt.
| |
Collapse
|
4
|
Yang X, Zhang Y, Duan F, Li S, Wang G. BIRC5 Is a Potential Biomarker Associated with Immune System Infiltration in Glioma. J Korean Neurosurg Soc 2025; 68:184-201. [PMID: 39999831 PMCID: PMC11924638 DOI: 10.3340/jkns.2024.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/23/2024] [Indexed: 02/27/2025] Open
Abstract
OBJECTIVE Baculovirus inhibitory of apoptosis repeat-containing 5 (BIRC5) is critically implicated in various types of tumors. However, the specific mechanisms by which it operates in glioma are yet to be fully understood. METHODS The data sourced from The Cancer Genome Atlas and Gene Expression Omnibus were merged and analyzed using the R software to investigate the relationship between BIRC5 expression and prognosis and diagnosis outcomes. This exploration was conducted utilizing various biological information repositories. The correlation between BIRC5 and immunity was obtained based on TIMER and TISIDB databases. RESULTS Gliomas displayed a markedly elevated level of BIRC5 expression compared to adjacent tissues. Patients with glioma who exhibit elevated levels of BIRC5 experience poorer prognoses and shorter survival times. Subgroup classification further revealed that heightened expression of BIRC5 led to diminished overall survival. Analysis of logistic regression and COX indicated that expression of BIRC5 serves as a risk factor in glioma development. Functional enrichment pathways showed that the 72 hub genes related to BIRC5 were mainly closely related to nuclear division, spindle, tubulin binding, and cell cycle in glioma patients. BBIRC5 methylation suggested that BIRC5 might influence the immune response regulation and the tumor microenvironment within gliomas. BIRC5 is associated with many chemicals. Additionally, studies conducted using cell experiments and pathological sections have consistently shown that BIRC5 expression is higher in tumor cells compared to normal cells and tissues. CONCLUSION BIRC5 holds promise as a valuable tool in the diagnosis, prognosis, and management of gliomas.
Collapse
Affiliation(s)
- Xitong Yang
- Department of Genetic Testing Center, The First Affiliated Hospital of Dali University, Dali, China
| | - Yuanyuan Zhang
- Department of Genetic Testing Center, The First Affiliated Hospital of Dali University, Dali, China
| | - Fuhui Duan
- Department of Genetic Testing Center, The First Affiliated Hospital of Dali University, Dali, China
| | - Siying Li
- Department of Genetic Testing Center, The First Affiliated Hospital of Dali University, Dali, China
| | - Guangming Wang
- Department of Genetic Testing Center, The First Affiliated Hospital of Dali University, Dali, China
| |
Collapse
|
5
|
Mousso T, Pham K, Drewes R, Babatunde S, Jong J, Krug A, Inserra G, Biber J, Brazzo JA, Gupte S, Bae Y. Survivin in cardiovascular diseases and its therapeutic potential. Vascul Pharmacol 2025; 159:107475. [PMID: 40015658 DOI: 10.1016/j.vph.2025.107475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Aberrant changes in cell behaviors, such as proliferation, apoptosis, and migration, are some of the contributing factors to the development of various cardiovascular diseases (CVDs) and pathologies, including atherosclerosis, neointimal hyperplasia, and heart failure. In recent years, numerous studies have identified survivin, a key player in the anti-apoptotic pathway, to be extensively involved in modulating cellular functioning in cancer, with many reaching clinical trials. Though seemingly different, CVDs and cancer share abundant similarities regarding abnormal cell modifications and behaviors. This overlap has sparked growing interest in investigating survivin as a therapeutic target in the context of CVD. With new findings emerging rapidly, a comprehensive understanding of survivin's role in cardiovascular pathology is crucial to revealing its full therapeutic potential and translating these discoveries into effective treatments. This review discusses recent findings of survivin in CVDs and related pathologies, focusing on its dual role in promoting proliferation and inhibiting apoptosis, specifically in atherosclerosis, neointimal hyperplasia, stroke, hypertension, myocardial infarction, and heart failure. Across different cell types and pathological contexts, survivin plays a pivotal role throughout the disease progression-from the onset of disease development to the facilitation of compensatory mechanisms post-injury-primarily through its function in regulating cell proliferation and apoptosis. Furthermore, given the limited research on survivin as a therapeutic target for CVDs, potential clinical avenues, including YM155 (a survivin inhibitor) or adenoviral, adeno-associated, and lentiviral vectors, are also discussed. Overall, this review highlights survivin as a promising target for mitigating the detrimental effects of CVDs and to provide new perspectives to advance research on the intervention of CVDs and associated pathologies.
Collapse
Affiliation(s)
- Thomas Mousso
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Khanh Pham
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Rhonda Drewes
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Sefunmi Babatunde
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jessica Jong
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Alanna Krug
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Gabrielle Inserra
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - John Biber
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Joseph A Brazzo
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Sachin Gupte
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA
| | - Yongho Bae
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
6
|
Lee CH, Lin YC, Chang YC, Chen PC, Lin KH, Yeh TM, Leung EY, Lin IL, Chen SH, Cheung CHA. NUPR1 contributes to endocrine therapy resistance by modulating BIRC5 expression and inducing luminal B-ERBB2 + subtype-like characteristics in estrogen receptor-positive breast cancer cells. J Cancer 2025; 16:1694-1708. [PMID: 39991577 PMCID: PMC11843241 DOI: 10.7150/jca.105425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/30/2025] [Indexed: 02/25/2025] Open
Abstract
Acquired resistance to endocrine therapy is a major clinical challenge in the treatment of luminal A [estrogen receptor (ER)+ and/or progesterone receptor (PR)+, human epidermal growth factor receptor 2 (ERBB2/HER2)-, and low Ki-67] breast cancer. Recently, molecular subtype conversion has been suggested as one of the possible causes of the development of drug-resistant breast cancer. However, the molecular mechanism underlying the molecular subtype conversion and the induction of endocrine therapy resistance in luminal A breast cancer is still incompletely understood. Here, we found that the ER+ MCF7-derived endocrine therapy-resistant MCF7-TamC3 breast cancer cells exhibit increased expression of an intrinsically disordered chromatin protein, NUPR1, compared to the parental luminal-A subtype like MCF7 breast cancer cells. Intriguingly, MCF7-TamC3 cells also exhibit characteristics that resemble the luminal B-ERBB2+ breast tumor subtype, like the increased expression of ERBB2 and the increased sensitivity to monoclonal ERBB2-targeting antibody Trastuzumab in vitro. Kaplan-Meier analysis of expression cohorts of breast tumors showed that high NUPR1 mRNA expression levels correlate with poor overall and relapse-free survival in both endocrine therapy-treated ER+ and ERBB2-enriched breast cancer patients. Results of the bioinformatics analysis showed that the NUPR1 mRNA expression level is also correlated with the clinical grading of the Tamoxifen-treated ER+ primary breast cancer. The qPCR and the western blot analysis results revealed that NUPR1 positively regulates the expression of the epigenetic regulator HDAC5, the anti-apoptotic molecule BIRC5, and the mitogenic receptor ERBB2 in MCF7-TamC3 and the ERBB2-enriched subtype like SK-BR-3 breast cancer cells. Downregulation of NUPR1 increased the sensitivity to estrogen deprivation in MCF7-TamC3 cells and decreased the viability of SK-BR-3 cells in vitro. These findings indicate that dysregulation of NUPR1 promotes the development of estrogen independence in ER+ breast cancer cells in part through expression regulation of HDAC5, ERBB2, and BIRC5. Targeting NUPR1 or its downstream regulating molecules may offer a potential strategy for overcoming resistance to endocrine therapy in patients with ER+ breast cancer.
Collapse
Affiliation(s)
- Chun-Hui Lee
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Chen Lin
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Chieh Chang
- TMU Research Center of Cancer Translational Medicine and Taipei Cancer Center, Taipei Medical University Hospital, College of Medicine, Taipei Medical University, Taipei, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Pin-Chen Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kai-Hsuan Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Miao Yeh
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Euphemia Yee Leung
- Auckland Cancer Society Research Centre and Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - I-Li Lin
- Department of Radiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Shang-Hung Chen
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Chun Hei Antonio Cheung
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
7
|
Ren J, Chen X, Li J, Zan Y, Wang S, Tan Y, Ding Y. TET1 inhibits the migration and invasion of cervical cancer cells by regulating autophagy. Epigenetics 2024; 19:2323751. [PMID: 38431880 PMCID: PMC10913696 DOI: 10.1080/15592294.2024.2323751] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Methylation modifications play pertinent roles in regulating gene expression and various biological processes. The silencing of the demethylase enzyme TET1 can affect the expressions of key oncogenes or tumour suppressor genes, thus contributing to tumour formation. Nonetheless, how TET1 affects the progression of cervical cancer is yet to be elucidated. In this study, we found that the expression of TET1 was significantly downregulated in cervical cancer tissues. Functionally, TET1 knockdown in cervical cancer cells can promote cell proliferation, migration, invasion, cervical xenograft tumour formation and EMT. On the contrary, its overexpression can reverse the aforementioned processes. Moreover, the autophagy level of cervical cancer cells can be enhanced after TET1 knockdown. Mechanistically, methylated DNA immunoprecipitation (MeDIP)-sequencing and MeDIP quantitative real-time PCR revealed that TET1 mediates the methylation of autophagy promoter regions. These findings suggest that TET1 affects the autophagy of cervical cancer cells by altering the methylation levels of NKRF or HIST1H2AK, but the specific mechanism needs to be investigated further.
Collapse
Affiliation(s)
- Ji Ren
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Hubei University of Medicine, Shiyan, Hubei, China
- Center for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiuying Chen
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Hubei University of Medicine, Shiyan, Hubei, China
- Center for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Tongren city people’s hospital, Tongren, Guizhou, China
| | - Jing Li
- Gynecology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxin Zan
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shan Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yujie Tan
- Center for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Yan Ding
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
8
|
Liu M, Chen J, Liu S, Zhang C, Chao X, Yang H, Xu Q, Wang T, Bi H, Ding Y, Wang Z, Muhammad A, Muhammad M, Schinckel AP, Zhou B. LH-stimulated periodic lincRNA HEOE regulates follicular dynamics and influences estrous cycle and fertility via miR-16-ZMAT3 and PGF2α in pigs. Int J Biol Macromol 2024; 281:136426. [PMID: 39389516 DOI: 10.1016/j.ijbiomac.2024.136426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Disruption of the estrous cycle affects fertility and reproductive health. Follicular dynamics are key to the regularity of the estrous cycle. We identified a novel lincRNA, HEOE, showing significant upregulation in the ovaries during the estrus phase across various pig breeds. Functional analysis revealed that HEOE is responsive to luteinizing hormone (LH) stimulation, modulating transcriptional suppression and alternative splicing in ovarian granulosa cells (GCs). This leads to increased GC apoptosis and inhibition of proliferation. Mechanistically, HEOE inhibits miR-16 maturation in the nucleus, and sequesters miR-16 in the cytoplasm, thereby collectively reducing miR-16's inhibition on ZMAT3, enhancing the expression of ZMAT3, a key factor in the p53 pathway and alternative splicing, thereby regulating follicular development. This effect was validated in both mice and pig follicles. Persistent overexpression or suppression of HEOE throughout the estrous cycle impairs cycle regularity and reduces litter size. These outcomes are associated with HEOE reduced follicular PGF2α levels and modulation of the cAMP signaling pathway. Our data, combined with public databases, indicate that the high expression of HEOE during the estrus phase is crucial for maintaining the estrous cycle. HEOE is a potential therapeutic target for regulating fertility and ensuring estrous cycle regularity in pigs.
Collapse
Affiliation(s)
- Mingzheng Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; The Academy for Cell and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Jiahao Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shuhan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chunlei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiaohuan Chao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Huan Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qinglei Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Tianshuo Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Hongwei Bi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yuan Ding
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ziming Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Asim Muhammad
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Mubashir Muhammad
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Allan P Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907-2054, USA.
| | - Bo Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
9
|
Feng Y, Yang J, He Z, Liu X, Ma C. CRISPR-Cas-based biosensors for the detection of cancer biomarkers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6634-6653. [PMID: 39258950 DOI: 10.1039/d4ay01446d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Along with discovering cancer biomarkers, non-invasive detection methods have played a critical role in early cancer diagnosis and prognostic improvement. Some traditional detection methods have been used for detecting cancer biomarkers, but they are time-consuming and involve materials and human costs. With great flexibility, sensitivity and specificity, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated system provides a wide range of application prospects in this field. Herein, we introduce the background of the CRISPR-Cas (CRISPR-associated) system and comprehensively summarize the diagnosis strategies of cancer mediated by the CRISPR-Cas system, including four kinds of biochemical-based markers: nucleic acid, enzyme, tumor-specific protein and exosome. Furthermore, we discuss the challenges in implementing the CRISPR-Cas system in clinical applications.
Collapse
Affiliation(s)
- Yuxin Feng
- School of Life Sciences, Central South University, Changsha 410013, China.
- Clinical Medicine Eight-year Program, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Jinmeng Yang
- School of Life Sciences, Central South University, Changsha 410013, China.
- Clinical Medicine Eight-year Program, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Ziping He
- School of Life Sciences, Central South University, Changsha 410013, China.
- Clinical Medicine Eight-year Program, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Xinfa Liu
- School of Life Sciences, Central South University, Changsha 410013, China.
| | - Changbei Ma
- School of Life Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
10
|
Gu C, Jin L, Lv X, Wang C, Wen C, Su X. Development and validation of a prognostic model for colon cancer based on mitotic gene signatures and immune microenvironment analysis. Discov Oncol 2024; 15:535. [PMID: 39382813 PMCID: PMC11464972 DOI: 10.1007/s12672-024-01421-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Mitotic processes play a pivotal role in tumor progression and immune responses. However, the correlation between mitosis-related genes, clinical outcomes, and the tumor microenvironment (TME) in colon cancer remains unclear. This study aims to develop a prognostic and therapeutic significance model for colon cancer based on mitosis-related genes. METHODS RNA expression profiles and clinical data of 453 colon cancer patients were downloaded from The Cancer Genome Atlas (TCGA). Mitosis-related genes were selected from the MsigDb database. The gene model was constructed using differential analysis, univariate and multivariate Cox regression, and Lasso regression analyses. The predictive model was validated using data from the GSE17536, GSE17537, and GSE39582 datasets. Predictive accuracy was evaluated via Receiver Operating Characteristic (ROC) curves, while nomograms were developed by integrating clinical and pathological features. Gene set enrichment analysis explored biological processes and pathways linked to the model. TME was assessed using ESTIMATE, and the proportion and function of immune cells were analyzed through CIBERSORT. Drug sensitivity analysis was conducted using the CTRP database. RESULTS A predictive model based on 17 mitosis-related genes (KIFC1, CCNF, EME1, CDC25C, ORC1, CCNJL, ANKRD53, MEIS2, FZD3, TPD52L1, MAPK3, CDKN2A, EDN3, NPM2, PSRC1, INHBA, BIRC5) was created. The model exhibited robust predictive performance across both training and validation cohorts. Nomograms for predicting 3-, 5-, and 7-year survival rates in colon cancer (COAD) patients were generated. The model's correlation with immune cell infiltration and function was highlighted. CONCLUSION The mitosis-related gene model serves as a valuable indicator for predicting survival outcomes in colon cancer patients.
Collapse
Affiliation(s)
- Changhao Gu
- Cangnan Hospital of Traditional Chinese Medicine, Wenzhou, 325800, China.
- Cangnan Branch of Zhejiang Provincial Hospital of Chinese Medicine, Wenzhou, 325800, China.
| | - Lulu Jin
- Cangnan Hospital of Traditional Chinese Medicine, Wenzhou, 325800, China
- Cangnan Branch of Zhejiang Provincial Hospital of Chinese Medicine, Wenzhou, 325800, China
| | - Xiaoyan Lv
- Cangnan Hospital of Traditional Chinese Medicine, Wenzhou, 325800, China
- Cangnan Branch of Zhejiang Provincial Hospital of Chinese Medicine, Wenzhou, 325800, China
| | - Cheng Wang
- Cangnan Hospital of Traditional Chinese Medicine, Wenzhou, 325800, China
- Cangnan Branch of Zhejiang Provincial Hospital of Chinese Medicine, Wenzhou, 325800, China
| | - Congle Wen
- Cangnan Hospital of Traditional Chinese Medicine, Wenzhou, 325800, China
- Cangnan Branch of Zhejiang Provincial Hospital of Chinese Medicine, Wenzhou, 325800, China
| | - Xiuxiu Su
- Cangnan Hospital of Traditional Chinese Medicine, Wenzhou, 325800, China
- Cangnan Branch of Zhejiang Provincial Hospital of Chinese Medicine, Wenzhou, 325800, China
| |
Collapse
|
11
|
Liu Z, Zeng Y, Li R, Yan Y, Yi S, Zhang K. Treatment of chronic obstructive pulmonary disease by traditional Chinese medicine Morin monomer regulated by autophagy. J Thorac Dis 2024; 16:6052-6063. [PMID: 39444855 PMCID: PMC11494543 DOI: 10.21037/jtd-23-1836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 08/06/2024] [Indexed: 10/25/2024]
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a frequently occurring disorder. The aim of this study is to explore the mechanism of traditional Chinese medicine Morin monomer in the treatment of COPD via regulating autophagy based on the long non-coding RNA (lncRNA) H19/microRNA (miR)-194-5p/Sirtuin (SIRT)1 signal axis. Methods The COPD rat model was constructed, and the lung tissues were collected. The pathological analysis was performed using hematoxylin-eosin (HE), Masson, and periodic acid-Schiff (PAS) staining. Autophagosomes were observed using transmission electron microscope. LncRNA H19, miR-194-5p, SIRT1 genes in the rat lung tissues were detected using reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR). The autophagy-related proteins including SIRT1, mammalian/mechanistic target of rapamycin (mTOR), phosphorylated (p)-mTOR, microtubule-associated protein light chain 3 (LC3), Beclin-1, autophagy-related (ATG)7, and p62 in each group were detected using Western blot. Results The rats in the control group had normal lung structure. Alveolar enlargement and destruction could be found in the rat lung tissues in the model group, accompanied with obvious infiltration of inflammatory cells, thickened bronchial walls, enlarged alveolar septum, collagen fibers deposition, and goblet cells proliferation. In comparison with the model group, Morin treatment relieved the lung injuries, which was optimized in the moderate- and high-dose groups. The number of autophagosomes in the lung tissues of the model rats was dramatically increased compared with the normal rats. However, the number of autophagosomes in each Morin treatment group was obviously less than that in the model group. LncRNA H19 and SIRT1 expression was significantly increased in the model group, and miR-194-5p was significantly decreased (P<0.05). Morin and 3-methyladenine (3-MA) could obviously reduce the lncRNA H19 and SIRT1 expression, and increase the miR-194-5p expression (P<0.05). Relative to control rats, ATG7, Beclin-1, LC3II/I and SIRT1 levels in the model group increased obviously, while the expression of p62, and p-mTOR/mTOR decreased (P<0.05). Morin treatment reduced the expression of ATG7, Beclin-1, SIRT1, LC3II/I significantly, and increased the p-mTOR/mTOR and p62 expression (P<0.05). Conclusions Morin decreased lncRNA H19 expression, resulting in upregulation of miR-194-5p expression, downregulation of SIRT1 expression, and increased of p-mTOR/mTOR expression. Furthermore, cell autophagy was inhibited, contributing to the COPD treatment.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Traditional Chinese Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yang Zeng
- Department of Traditional Chinese Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Rui Li
- Department of Traditional Chinese Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Ying Yan
- Department of Traditional Chinese Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Sicheng Yi
- Department of Traditional Chinese Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Kui Zhang
- Department of Traditional Chinese Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
12
|
Luo Y, Ye T, Tian H, Song H, Kan C, Han F, Hou N, Sun X, Zhang J. Empagliflozin alleviates obesity-related cardiac dysfunction via the activation of SIRT3-mediated autophagosome formation. Lipids Health Dis 2024; 23:308. [PMID: 39334359 PMCID: PMC11430456 DOI: 10.1186/s12944-024-02293-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Empagliflozin (EMPA) has demonstrated efficacy in providing cardiovascular benefits in metabolic diseases. However, the direct effect of EMPA on autophagy in obesity-related cardiac dysfunction remains unclear. Therefore, this study aimed to determine changes in cardiac autophagy during diet-induced obesity and clarify the exact mechanism by which EMPA regulates autophagic pathways. METHODS Male C57BL/6J mice were fed a 12-week high-fat diet (HFD) followed by 8 weeks of EMPA treatment. Body composition analysis and echocardiography were performed to evaluate metabolic alterations and cardiac function. Histological and immunofluorescence staining was used to evaluate potential enhancements in myocardial structure and biological function. Additionally, H9c2 cells were transfected with small interfering RNA targeting sirtuin 3 (SIRT3) and further treated with palmitic acid (PA) with or without EMPA. Autophagy-related targets were analyzed by western blotting and RT‒qPCR. RESULTS EMPA administration effectively ameliorated metabolic disorders and cardiac diastolic dysfunction in HFD-fed mice. EMPA prevented obesity-induced myocardial hypertrophy, fibrosis, and inflammation through the activation of SIRT3-mediated autophagosome formation. The upregulation of SIRT3 triggered by EMPA promoted the initiation of autophagy by activating AMP-activated protein kinase (AMPK) and Beclin1. Furthermore, activated SIRT3 contributed to the elongation of autophagosomes through autophagy-related 4B cysteine peptidase (ATG4B) and autophagy-related 5 (ATG5). CONCLUSIONS EMPA promotes SIRT3-mediated autophagosome formation to alleviate damage to the cardiac structure and function of obese mice. Activated SIRT3 initiates autophagy through AMPK/Beclin1 and further stimulates elongation of the autophagosome membrane via ATG4B/ATG5. These results provide a new explanation for the cardioprotective benefits of EMPA in obesity.
Collapse
Affiliation(s)
- Youhong Luo
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Tongtong Ye
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Hongzhan Tian
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Hongwei Song
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China.
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China.
| |
Collapse
|
13
|
Sun L, Jiao YW, Cui FQ, Liu J, Xu ZY, Sun DL. tRF-Leu reverse breast cancer cells chemoresistance by regulation of BIRC5. Discov Oncol 2024; 15:449. [PMID: 39278863 PMCID: PMC11402887 DOI: 10.1007/s12672-024-01317-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/05/2024] [Indexed: 09/18/2024] Open
Abstract
OBJECTIVE Accumulating studies reported the crucial roles of tRFs in tumorigenesis. However, their further mechanisms and clinical values remains unclear. This study aimed at the further investigation of tRF-Leu in breast cancer chemotherapy resistance. METHODS The high-throughput sequencing was performed and identified the downregulation of tRF-Leu in MCF7/ADR cells. The function of tRF-Leu in breast cancer cells and breast cancer chemotherapy resistance was investigated in vitro and in vivo, including colony formation assay, CCK-8 assay, transwell assay and apoptosis assay. The binding site of tRF-Leu on BIRC5 was verified by dual-luciferase assay. RESULTS tRF-Leu was downregulated in MCF7/ADR cells. Overexpression of tRF-Leu inhibited the migration of breast cancer cells. Furthermore, tRF-Leu could reverse the resistance of MCF7/ADR cells to Adriamycin both in vitro and in vivo. BIRC5 was a target of tRF-Leu, which might be involved in the chemotherapy resistance regulation. CONCLUSION We demonstrated that tRF-Leu could inhibit the chemotherapy resistance of breast cancer by targeting BIRC5. These findings might identify new biomarkers of breast cancer therapy and bring new strategies to reverse chemotherapy resistance.
Collapse
Affiliation(s)
- Li Sun
- Hepatopancreatobiliary Surgery Department, The Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou, China
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yu-Wen Jiao
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Fu-Qi Cui
- Department Graduate School of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Jin Liu
- Department Graduate School of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Zhong-Ya Xu
- Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Dong-Lin Sun
- Hepatopancreatobiliary Surgery Department, The Third Affiliated Hospital of Soochow University, Changzhou First People's Hospital, Changzhou, China.
| |
Collapse
|
14
|
Wu N, Zheng W, Zhou Y, Tian Y, Tang M, Feng X, Ashrafizadeh M, Wang Y, Niu X, Tambuwala M, Wang L, Tergaonkar V, Sethi G, Klionsky D, Huang L, Gu M. Autophagy in aging-related diseases and cancer: Principles, regulatory mechanisms and therapeutic potential. Ageing Res Rev 2024; 100:102428. [PMID: 39038742 DOI: 10.1016/j.arr.2024.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Macroautophagy/autophagy is primarily accountable for the degradation of damaged organelles and toxic macromolecules in the cells. Regarding the essential function of autophagy for preserving cellular homeostasis, changes in, or dysfunction of, autophagy flux can lead to disease development. In the current paper, the complicated function of autophagy in aging-associated pathologies and cancer is evaluated, highlighting the underlying molecular mechanisms that can affect longevity and disease pathogenesis. As a natural biological process, a reduction in autophagy is observed with aging, resulting in an accumulation of cell damage and the development of different diseases, including neurological disorders, cardiovascular diseases, and cancer. The MTOR, AMPK, and ATG proteins demonstrate changes during aging, and they are promising therapeutic targets. Insulin/IGF1, TOR, PKA, AKT/PKB, caloric restriction and mitochondrial respiration are vital for lifespan regulation and can modulate or have an interaction with autophagy. The specific types of autophagy, such as mitophagy that degrades mitochondria, can regulate aging by affecting these organelles and eliminating those mitochondria with genomic mutations. Autophagy and its specific types contribute to the regulation of carcinogenesis and they are able to dually enhance or decrease cancer progression. Cancer hallmarks, including proliferation, metastasis, therapy resistance and immune reactions, are tightly regulated by autophagy, supporting the conclusion that autophagy is a promising target in cancer therapy.
Collapse
Affiliation(s)
- Na Wu
- Department of Infectious Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yundong Zhou
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Yu Tian
- School of Public Health, Benedictine University, No.5700 College Road, Lisle, IL 60532, USA; Research Center, the Huizhou Central People's Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing 401120, China
| | - Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| | - Daniel Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Li Huang
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China.
| | - Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
15
|
Guo T, Xu J. Cancer-associated fibroblasts: a versatile mediator in tumor progression, metastasis, and targeted therapy. Cancer Metastasis Rev 2024; 43:1095-1116. [PMID: 38602594 PMCID: PMC11300527 DOI: 10.1007/s10555-024-10186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/31/2024] [Indexed: 04/12/2024]
Abstract
Tumor microenvironment (TME) has been demonstrated to play a significant role in tumor initiation, progression, and metastasis. Cancer-associated fibroblasts (CAFs) are the major component of TME and exhibit heterogeneous properties in their communication with tumor cells. This heterogeneity of CAFs can be attributed to various origins, including quiescent fibroblasts, mesenchymal stem cells (MSCs), adipocytes, pericytes, endothelial cells, and mesothelial cells. Moreover, single-cell RNA sequencing has identified diverse phenotypes of CAFs, with myofibroblastic CAFs (myCAFs) and inflammatory CAFs (iCAFs) being the most acknowledged, alongside newly discovered subtypes like antigen-presenting CAFs (apCAFs). Due to these heterogeneities, CAFs exert multiple functions in tumorigenesis, cancer stemness, angiogenesis, immunosuppression, metabolism, and metastasis. As a result, targeted therapies aimed at the TME, particularly focusing on CAFs, are rapidly developing, fueling the promising future of advanced tumor-targeted therapy.
Collapse
Affiliation(s)
- Tianchen Guo
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Junfen Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
16
|
Xia Y, Wang D, Zhao H, Meng T, Jiang Q, Pan Z, Wang G, An T, Li B, Bi S, Wang H, Lu J, Liu H, Lin H, Lin C, Zheng Q, Li D. Silencing of tropomodulin 1 inhibits acute myeloid leukemia cell proliferation and tumor growth by elevating karyopherin alpha 2-mediated autophagy. Pharmacol Res 2024; 207:107327. [PMID: 39079577 DOI: 10.1016/j.phrs.2024.107327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/25/2024]
Abstract
Evidence shows that tropomodulin 1 (TMOD1) is a powerful diagnostic marker in the progression of several cancer types. However, the regulatory mechanism of TMOD1 in tumor progression is still unclear. Here, we showed that TMOD1 was highly expressed in acute myeloid leukemia (AML) specimens, and TMOD1-silencing inhibited cell proliferation by inducing autophagy in AML THP-1 and MOLM-13 cells. Mechanistically, the C-terminal region of TMOD1 directly bound to KPNA2, and TMOD1-overexpression promoted KPNA2 ubiquitylation and reduced KPNA2 levels. In contrast, TMOD1-silencing increased KPNA2 levels and facilitated the nuclear transfer of KPNA2, then subsequently induced autophagy and inhibited cell proliferation by increasing the nucleocytoplasmic transport of p53 and AMPK activation. KPNA2/p53 inhibitors attenuated autophagy induced by silencing TMOD1 in AML cells. Silencing TMOD1 also inhibited tumor growth by elevating KPNA2-mediated autophagy in nude mice bearing MOLM-13 xenografts. Collectively, our data demonstrated that TMOD1 could be a novel therapeutic target for AML treatment.
Collapse
Affiliation(s)
- Yuan Xia
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Dan Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Huijie Zhao
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Tingyi Meng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Qingling Jiang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Zhaohai Pan
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Bohan Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Sixue Bi
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Huikai Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Hongfu Liu
- Department of Human Anatomy, College of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, PR China
| | - Haiyan Lin
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Chunhua Lin
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264003, PR China.
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China.
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine & Binzhou Hospital of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China.
| |
Collapse
|
17
|
Xu L, Ning R, Du X, Zhang Y, Gu C, Wang B, Bian L, Sun Q, Sun Y, Ren J. Bone Morphogenetic Protein Signaling Agonist SB4 (BMPSB4) Inhibits Corticotroph Pituitary Neuroendocrine Tumors by Activation of Autophagy via a BMP4/SMADs-Dependent Pathway. ACS Pharmacol Transl Sci 2024; 7:1951-1970. [PMID: 39022361 PMCID: PMC11249644 DOI: 10.1021/acsptsci.4c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024]
Abstract
Corticotroph pituitary neuroendocrine tumors (PitNETs), associated with Cushing's disease (CD), have limited treatment options other than surgical resection. Bone morphogenetic protein 4 (BMP4), a potential therapeutic target, is decreased in patients with CD. Previous studies have identified BMPSB4 as a potent agonist of the BMP4 signaling pathway. Here, we investigated the effect of BMPSB4 on the corticotroph PitNET cell line AtT20/D16v-F2 and explored the underlying mechanisms and therapeutic potential. We verified the low expression patterns of BMP4 and downstream p-SMAD1/5/9 in CD samples at the transcriptional and protein levels. In addition, BMPSB4 activated SMAD1/5/9 in a time- and concentration-dependent manner, with concomitant inhibitory effects on AtT20/D16v-F2 cells. Further RNA sequencing, transmission electron microscopy (TEM), and transfection with the mRFP-EGFP-LC3 adenoviral vector revealed that BMPSB4 induced cellular autophagy, which was the basis for the inhibitory effect of BMPSB4. Moreover, we demonstrated that autophagy induced by BMPSB4 was achieved through the SMADs-dependent pathway. In vivo, BMPSB4 inhibited tumor growth and significantly reduced adrenocorticotrophin (ACTH) and corticosterone (CORT) secretion, thereby alleviating the CD phenotype. In conclusion, this study identified BMPSB4 as an effective therapeutic agent for CD. BMPSB4 activates autophagy through a SMADs-dependent pathway, which in turn promotes autophagy-mediated cell death. Our work further elucidates the mechanism of the BMP4 signaling pathway in CD and suggests broad prospects for the development and application of BMPSB4 in CD therapy.
Collapse
Affiliation(s)
- Longyu Xu
- Department
of Neurosurgery, Ruijin Hospital, Shanghai
Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Ruonan Ning
- Department
of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment
of Bone and Joint Diseases, Shanghai Institute of Traumatology and
Orthopaedics, Ruijin Hospital, Shanghai
Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Xueqing Du
- Department
of Respiratory and Critical Care Medicine of Ruijin Hospital, Department
of Immunology and Microbiology, Shanghai
Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Yuxin Zhang
- Department
of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment
of Bone and Joint Diseases, Shanghai Institute of Traumatology and
Orthopaedics, Ruijin Hospital, Shanghai
Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Changwei Gu
- Department
of Neurosurgery, Ruijin Hospital, Luwan
Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, P. R. China
| | - Baofeng Wang
- Department
of Neurosurgery, Ruijin Hospital, Shanghai
Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Liuguan Bian
- Department
of Neurosurgery, Ruijin Hospital, Shanghai
Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Qingfang Sun
- Department
of Neurosurgery, Ruijin Hospital, Shanghai
Jiaotong University School of Medicine, Shanghai 200025, P. R. China
- Department
of Neurosurgery, Ruijin Hospital, Luwan
Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, P. R. China
| | - Yuhao Sun
- Department
of Neurosurgery, Ruijin Hospital, Shanghai
Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Jie Ren
- Department
of Neurosurgery, Ruijin Hospital, Shanghai
Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| |
Collapse
|
18
|
Huang Q, Tian R, Yu J, Du W. Identification of PSMD11 as a novel cuproptosis- and immune-related prognostic biomarker promoting lung adenocarcinoma progression. Cancer Med 2024; 13:e7379. [PMID: 38859698 PMCID: PMC11165170 DOI: 10.1002/cam4.7379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Due to the unfavorable prognosis associated with lung adenocarcinoma (LUAD), the development of targeted therapies and immunotherapies is essential. Cuproptosis, an emerging form of regulated cell death, is implicated in mitochondrial metabolism and is induced by copper ions. This study aimed to explore the prognostic value of cuproptosis- and immune-related genes (CIRGs) in LUAD. METHODS We used The Cancer Genome Atlas database to develop a prognostic prediction model for LUAD patients based on eight CIRGs. Using Cox regression analysis, we determined that the CIRG signature is a reliable, independent prognostic factor. We further identified PSMD11 as a critical CIRG and performed immunohistochemistry to study the protein expression levels of PSMD11 in LUAD tissues. We also investigated the impact of PSMD11 on the biological behavior of lung cancer cell lines. RESULTS We found that patients with low PSMD11 expression levels displayed an improved prognosis compared with those with high PSMD11 expression levels. Overexpression of PSMD11 enhanced proliferation, migration, invasion, and tumor growth of lung carcinoma cell line A549, while PSMD11 knockdown diminished proliferation, migration, invasion, and tumor growth of lung carcinoma cell line PC9. Additionally, we discovered that PSMD11 expression was positively correlated with the infiltration of myeloid-derived suppressor cells and the increased expression of immunosuppressive molecules. CONCLUSION These findings suggest that PSMD11 may serve as a valuable prognostic biomarker and therapeutic target for LUAD.
Collapse
Affiliation(s)
- Qiumin Huang
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin, China
- Department of Laboratory and Diagnosis, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Ran Tian
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Jinxi Yu
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin, China
| | - Wei Du
- Department of Immunology, Biochemistry and Molecular Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Tianjin Medical University, Tianjin, China
| |
Collapse
|
19
|
Wang Q, Greene MI. Survivin as a Therapeutic Target for the Treatment of Human Cancer. Cancers (Basel) 2024; 16:1705. [PMID: 38730657 PMCID: PMC11083197 DOI: 10.3390/cancers16091705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Survivin was initially identified as a member of the inhibitor apoptosis (IAP) protein family and has been shown to play a critical role in the regulation of apoptosis. More recent studies showed that survivin is a component of the chromosome passenger complex and acts as an essential mediator of mitotic progression. Other potential functions of survivin, such as mitochondrial function and autophagy, have also been proposed. Survivin has emerged as an attractive target for cancer therapy because its overexpression has been found in most human cancers and is frequently associated with chemotherapy resistance, recurrence, and poor survival rates in cancer patients. In this review, we discuss our current understanding of how survivin mediates various aspects of malignant transformation and drug resistance, as well as the efforts that have been made to develop therapeutics targeting survivin for the treatment of cancer.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mark I. Greene
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Yunchu Y, Miyanaga A, Matsuda K, Kamio K, Seike M. Exploring effective biomarkers and potential immune related gene in small cell lung cancer. Sci Rep 2024; 14:7604. [PMID: 38556560 PMCID: PMC10982305 DOI: 10.1038/s41598-024-58454-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/29/2024] [Indexed: 04/02/2024] Open
Abstract
Small cell lung cancer (SCLC) is well known as a highly malignant neuroendocrine tumor. Immunotherapy combined with chemotherapy has become a standard treatment for extensive SCLC. However, since most patients quickly develop resistance and relapse, finding new therapeutic targets for SCLC is important. We obtained four microarray datasets from the Gene Expression Omnibus database and screened differentially expressed genes by two methods: batch correction and "RobustRankAggregation". After the establishment of a protein-protein interaction network through Cytoscape, seven hub genes (AURKB, BIRC5, TOP2A, TYMS, PCNA, UBE2C, and AURKA) with high expression in SCLC samples were obtained by eight CytoHubba algorithms. The Least Absolute Shrinkage and Selection Operator regression and the Wilcoxon test were used to analyze the differences in the immune cells' infiltration between normal and SCLC samples. The contents of seven kinds of immune cells were considered to differ significantly between SCLC samples and normal samples. A negative association was found between BIRC5 and monocytes in the correlation analysis between immune cells and the seven hub genes. The subsequent in vitro validation of experimental results showed that downregulating the expression of BIRC5 by siRNA can promote apoptotic activity of SCLC cells and inhibit their vitality, migration, and invasion. The use of BIRC5 inhibitor inhibited the vitality of SCLC cells and increased their apoptotic activity. BIRC5 may be a novel therapeutic target option for SCLC.
Collapse
Affiliation(s)
- Yang Yunchu
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akihiko Miyanaga
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.
| | - Kuniko Matsuda
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Koichiro Kamio
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
21
|
Cui Q, Liu HC, Liu WM, Ma F, Lv Y, Ma JC, Wu RQ, Ren YF. Milk fat globule epidermal growth factor 8 alleviates liver injury in severe acute pancreatitis by restoring autophagy flux and inhibiting ferroptosis in hepatocytes. World J Gastroenterol 2024; 30:728-741. [PMID: 38515944 PMCID: PMC10950629 DOI: 10.3748/wjg.v30.i7.728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/18/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Liver injury is common in severe acute pancreatitis (SAP). Excessive autophagy often leads to an imbalance of homeostasis in hepatocytes, which induces lipid peroxidation and mitochondrial iron deposition and ultimately leads to ferroptosis. Our previous study found that milk fat globule epidermal growth factor 8 (MFG-E8) alleviates acinar cell damage during SAP via binding to αvβ3/5 integrins. MFG-E8 also seems to mitigate pancreatic fibrosis via inhibiting chaperone-mediated autophagy. AIM To speculate whether MFG-E8 could also alleviate SAP induced liver injury by restoring the abnormal autophagy flux. METHODS SAP was induced in mice by 2 hly intraperitoneal injections of 4.0 g/kg L-arginine or 7 hly injections of 50 μg/kg cerulein plus lipopolysaccharide. mfge8-knockout mice were used to study the effect of MFG-E8 deficiency on SAP-induced liver injury. Cilengitide, a specific αvβ3/5 integrin inhibitor, was used to investigate the possible mechanism of MFG-E8. RESULTS The results showed that MFG-E8 deficiency aggravated SAP-induced liver injury in mice, enhanced autophagy flux in hepatocyte, and worsened the degree of ferroptosis. Exogenous MFG-E8 reduced SAP-induced liver injury in a dose-dependent manner. Mechanistically, MFG-E8 mitigated excessive autophagy and inhibited ferroptosis in liver cells. Cilengitide abolished MFG-E8's beneficial effects in SAP-induced liver injury. CONCLUSION MFG-E8 acts as an endogenous protective mediator in SAP-induced liver injury. MFG-E8 alleviates the excessive autophagy and inhibits ferroptosis in hepatocytes by binding to integrin αVβ3/5.
Collapse
Affiliation(s)
- Qing Cui
- Department of Cardiology, Xi’an Central Hospital Affiliated to Xi’an Jiaotong University, Xi’an 710003, Shaanxi Province, China
| | - Hang-Cheng Liu
- Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| | - Wu-Ming Liu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Feng Ma
- Department of Cardiology, Xi’an Central Hospital Affiliated to Xi’an Jiaotong University, Xi’an 710003, Shaanxi Province, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Jian-Cang Ma
- Department of Vascular Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| | - Rong-Qian Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Yi-Fan Ren
- Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| |
Collapse
|
22
|
Wu Q, Ouyang Y. Association of ATG16L1 and ATG5 gene polymorphisms with susceptibility to hepatitis B virus infection and progression to HCC in central China. Microbiol Immunol 2024; 68:47-55. [PMID: 37991129 DOI: 10.1111/1348-0421.13104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 11/23/2023]
Abstract
Hepatitis B virus (HBV) infection is a severe public health problem worldwide. The relationship between polymorphisms of autophagy-related 16-like 1 gene (ATG16L1) and autophagy-related gene 5 (ATG5) with susceptibility to the stage of HBV infection has been reported in different populations. Nevertheless, this association is not seen in the population of central China. This study recruited 452 participants, including 246 HBV-infected patients (139 chronically infected HBV without hepatocellular carcinoma [HCC] and 107 HBV-related HCC patients) and 206 healthy controls. Genotyping of ATG16L1 rs2241880 and ATG5 rs688810 were performed using Sanger sequencing and polymerase chain reaction-restriction fragment length polymorphism, respectively. Our results indicated that the G allele of ATG16L1 rs2241880 was more frequent in healthy controls than in patients with chronicHBV infection. After adjusting for age and sex, an association between the ATG16L1 rs2241880 polymorphism and HBV infection was significant under the dominant and allele models (p = 0.009 and 0.003, respectively). However, no association between the ATG5 polymorphisms and HBV infection was observed. We also did not find a significant association between ATG16L1 and ATG5 polymorphisms and the progression of HBV-related HCC. Therefore, the genetic polymorphism of ATG16L1 rs2241880 may be associated with susceptibility to HBV infection in the population of central China.
Collapse
Affiliation(s)
- Qiaoyu Wu
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Yaoling Ouyang
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| |
Collapse
|
23
|
Wang R, Li X, Gan Y, Liao J, Han S, Li W, Deng G. Dioscin inhibits non-small cell lung cancer cells and activates apoptosis by downregulation of Survivin. J Cancer 2024; 15:1366-1377. [PMID: 38356707 PMCID: PMC10861826 DOI: 10.7150/jca.89831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/22/2023] [Indexed: 02/16/2024] Open
Abstract
Human malignancies exhibit elevated levels of survivin, and have been linked to poor prognosis. Targeting survivin expression is a promising therapeutic strategy against cancer cells. Natural compounds have become a hot topic in research due to their non-toxic, non-invasive, and efficient treatment of multiple diseases. In this current investigation, it was discovered that Dioscin, as a natural compound, exerted profound antitumor activity against NSCLC cell lines, inhibiting NSCLC cell viability and promoting apoptosis. Further mechanistic studies showed that Dioscin promoted ubiquitination-mediated survivin degradation via strengthening the interaction between survivin and the E3 ubiquitin ligase Fbxl7. Furthermore, Dioscin exhibited a strong tumor suppressive effect in xenograft tumor models, and Dioscin treatment led to a notable decrease in tumor volume and weight. Based on our findings, Dioscin is expected to be a potential antitumor agent for non-small cell lung cancer treatment.
Collapse
Affiliation(s)
- Ruirui Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Yu Gan
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Jinzhuang Liao
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Shuangze Han
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Gaoyan Deng
- Department of Thoracic Surgery, Hunan Chest Hospital, Changsha 410013, Hunan, China
| |
Collapse
|
24
|
Kondapuram SK, Ramachandran HK, Arya H, Coumar MS. Targeting survivin for cancer therapy: Strategies, small molecule inhibitors and vaccine based therapeutics in development. Life Sci 2023; 335:122260. [PMID: 37963509 DOI: 10.1016/j.lfs.2023.122260] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
Survivin is a member of the family of inhibitors of apoptosis proteins (IAPs). It is involved in the normal mitotic process and acts as an anti-apoptotic molecule. While terminally differentiated normal tissues lack survivin, several human malignancies have significant protein levels. Resistance to chemotherapy and radiation in tumor cells is associated with survivin expression. Decreased tumor development, apoptosis, and increased sensitivity to chemotherapy and radiation are all effects of downregulating survivin expression or activity. As a prospective cancer treatment, small molecules targeting the transcription and translation of survivin and molecules that can directly bind with the survivin are being explored both in pre-clinical and clinics. Pre-clinical investigations have found and demonstrated the effectiveness of several small-molecule survivin inhibitors. Unfortunately, these inhibitors have also been shown to have off-target effects, which could limit their clinical utility. In addition to small molecules, several survivin peptide vaccines are currently under development. These vaccines are designed to elicit a cytotoxic T-cell response against survivin, which could lead to the destruction of tumor cells expressing survivin. Some survivin-based vaccines are advancing through Phase II clinical studies. Overall, survivin is a promising cancer drug target. However, challenges still need to be addressed before the survivin targeted therapies can be widely used in the clinics.
Collapse
Affiliation(s)
- Sree Karani Kondapuram
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India
| | - Hema Kasthuri Ramachandran
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India
| | - Hemant Arya
- Institute for Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Faculty of Medicine, Ruhr University Bochum, 44780 Bochum, Germany
| | - Mohane Selvaraj Coumar
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India.
| |
Collapse
|
25
|
He Q, He Y, Li C, Wang J, Xia T, Xiong X, Xu J, Liu L. Downregulated BIRC5 inhibits proliferation and metastasis of melanoma through the β-catenin/HIF-1α/VEGF/MMPs pathway. J Cancer Res Clin Oncol 2023; 149:16797-16809. [PMID: 37728702 DOI: 10.1007/s00432-023-05425-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE Melanoma is a malignant skin tumor caused by melanocytes and associated with high mortality rates. This study aims to investigate the specific mechanism of ZWZ-3 in melanoma proliferation and metastasis. METHODS RNA sequencing was performed to identify the effect of ZWZ-3 on gene expression. siRNA was used to inhibit BIRC5 gene expression in the B16F10 cell line. A zebrafish tumor model was used to assess the therapeutic effect of ZWZ-3 in vivo. Mechanistic insights into the inhibition of tumor metastasis by ZWZ-3 were obtained through analysis of tumor tissue sections in mice. RESULTS Our findings demonstrated that ZWZ-3 suppressed melanoma cell proliferation and migration. We performed RNA sequencing in melanoma cells after the treatment with ZWZ-3 and found that Birc5, which is closely associated with tumor metastasis, was significantly down-regulated. Bioinformatics analysis and the immuno-histochemical results of tissue chips for melanoma further confirmed the high expression of BIRC5 in melanoma and its effect on disease progression. Moreover, Birc5 knock-down significantly inhibited melanoma cell proliferation and metastasis, which was correlated with the β-catenin/HIF-1α/VEGF/MMPs pathway. Additionally, ZWZ-3 significantly inhibited tumor growth in the zebrafish tumor model without any evident side effects. Histological and immuno-histochemical analyses revealed that ZWZ-3 inhibited tumor cell metastasis by down-regulating HIF-1α, VEGF, and MMP9. CONCLUSION Our findings revealed that ZWZ-3 could downregulate BIRC5 and inhibit melanoma proliferation and metastasis through the β-catenin/HIF-1α/VEGF/MMPs pathway. Therefore, BIRC5 represents a promising therapeutic target for the treatment of melanoma.
Collapse
Affiliation(s)
- Qingqing He
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yijing He
- Department of Science and Technology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Changqiang Li
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jianv Wang
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Tong Xia
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jixiang Xu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Li Liu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
26
|
Zhu Z, Feng W, Tan XY, Gu PC, Song W, Ma HT. Immune-related gene prognostic index (IRGPI) for lung adenocarcinoma predicts patient prognosis and immunotherapy response. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2023; 16:260-281. [PMID: 37970331 PMCID: PMC10641371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/28/2023] [Indexed: 11/17/2023]
Abstract
OBJECTIVE We searched for a predictive biomarker that also predicts whether patients would benefit from immune checkpoint blockade (ICB) treatment from a few angles, because existing biomarkers no longer wholly replicate the interconnections of distinctive elements in the tumor microenvironment (TME). METHODS We identified 55 pivotal IRGs by performing a WGCNA and univariate Cox regression analysis on a lung adenocarcinoma dataset from the TCGA database. The IRGPI model was then constructed using multivariate Cox regression analysis, which identified 16 genes and verified the use of the GSE68465 database. The AUC of the IRGPI was compared to those of the current biomarkers to determine its predictive potential. Then we examined the molecular and immunological properties of ICB and assessed its effectiveness using CTLA4 expression and TIDE. RESULTS Patients with a high IRGPI had a later clinical stage, more severe symptoms, and a worse prognosis. Patients with a low IRGPI had a higher immune escape potential and were less responsive to immunotherapy. CONCLUSION The IRGPI may be a biomarker for determining the prognosis of patients and whether they respond favorably to ICB therapy.
Collapse
Affiliation(s)
- Zheng Zhu
- Department of Thoracic Surgery, Suzhou Dushu Lake Hospital (Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University), Soochow UniversityNo. 9 Chongwen Road, Suzhou 215000, Jiangsu, China
| | - Wei Feng
- Department of Thoracic Surgery, Suzhou Dushu Lake Hospital (Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University), Soochow UniversityNo. 9 Chongwen Road, Suzhou 215000, Jiangsu, China
| | - Xiao-Yan Tan
- Department of Thoracic Surgery, Suzhou Dushu Lake Hospital (Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University), Soochow UniversityNo. 9 Chongwen Road, Suzhou 215000, Jiangsu, China
| | - Pin-Chao Gu
- Department of Thoracic Surgery, Suzhou Dushu Lake Hospital (Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University), Soochow UniversityNo. 9 Chongwen Road, Suzhou 215000, Jiangsu, China
| | - Wei Song
- Emergency Department, Suzhou Dushu Lake Hospital (Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University), Soochow UniversityNo. 9 Chongwen Road, Suzhou 215000, Jiangsu, China
| | - Hai-Tao Ma
- Department of Thoracic Surgery, Suzhou Dushu Lake Hospital (Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University), Soochow UniversityNo. 9 Chongwen Road, Suzhou 215000, Jiangsu, China
| |
Collapse
|
27
|
Sun W, Yang H, Cao L, Wu R, Ding B, Liu X, Wang X, Zhang Q. Effects of high-risk human papillomavirus infection on P53, pRb, and survivin in lung adenocarcinoma-a retrospective study. PeerJ 2023; 11:e15570. [PMID: 37520249 PMCID: PMC10386818 DOI: 10.7717/peerj.15570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/25/2023] [Indexed: 08/01/2023] Open
Abstract
Objective To observe the effects of high-risk human papillomavirus (HR-HPV) infection on P53, pRb, and survivin in lung adenocarcinoma (LUAD). Methods The cancerous and cancer-adjacent tissues of 102 patients with LUAD from January 2020 to April 2022 were selected for the study. HR-HPV infection was detected by flow fluorescence method, and P53, pRb, and survivin protein expression was detected by immunohistochemical staining method. Statistical analysis was performed to determine the differences in the HR-HPV infection and the expression of P53, pRb, and survivin proteins between LUAD tissues and cancer-adjacent tissues; the correlation between HR-HPV infection and P53, pRb, and survivin protein expression in cancer tissues; and the correlation between HR-HPV infection and clinicopathological features of LUAD. Results The infection rate of HR-HPV was higher in the LUAD tissues (28.43%) than in cancer-adjacent tissues (7.84%), and the difference was statistically significant (P < 0.05). The positive rates of P53 and survivin protein were higher in the LUAD group (33.33% and 67.16%, respectively) than in the cancer-adjacent group (3.92% and 11.73%, respectively), and the difference was statistically significant (P < 0.05). The positive rate of pRb protein was lower in the LUAD group (58.82%) than in the cancer-adjacent group (92.14%), and the difference was statistically significant (P < 0.05). The positive rates of P53 and survivin proteins were significantly higher in the HR-HPV LUAD group (58.62% and 86.21%, respectively) than in the non-HR-HPV LUAD group (41.38% and 67.12%, respectively), and the difference was statistically significant (P < 0.05). The expression rate of pRb protein was significantly lower in the HR-HPV LUAD group (37.93%) than in the non-HR-HPV LUAD group (67.12%), and the difference was statistically significant (P < 0.05). The expression of p53 and survivin protein was positively correlated with HR-HPV infection (r = 0.338 and 0.444, P < 0.05), whereas the expression of pRb protein was negatively correlated with HR-HPV infection (r = - 0.268, P < 0.05). HR-HPV infection was not associated with gender, age, and smoking in patients with LUAD (P > 0.05). HR-HPV infection was associated with lymph node metastasis and clinical stage of LUAD (P < 0.05). Conclusions HR-HPV infection was associated with lymph node metastasis and clinical stage of LUAD, which may be achieved by up-regulating p53 and survivin protein expression and down-regulating pRb protein expression.
Collapse
Affiliation(s)
- Wenwen Sun
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Hui Yang
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Lu Cao
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Ruochen Wu
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Baoqi Ding
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Xiaocui Liu
- Department of Histoloembryology, School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xinli Wang
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Qiang Zhang
- Shandong First Medical University, Jinan, Shandong, Taian
| |
Collapse
|
28
|
Zheng L, Xia J, Ge P, Meng Y, Li W, Li M, Wang M, Song C, Fan Y, Zhou Y. The interrelation of galectins and autophagy. Int Immunopharmacol 2023; 120:110336. [PMID: 37262957 DOI: 10.1016/j.intimp.2023.110336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 06/03/2023]
Abstract
Autophagy is a vital physiological process that maintains intracellular homeostasis by removing damaged organelles and senescent or misfolded molecules. However, excessive autophagy results in cell death and apoptosis, which will lead to a variety of diseases. Galectins are a type of animal lectin that binds to β-galactosides and can bind to the cell surface or extracellular matrix glycans, affecting a variety of immune processes in vivo and being linked to the development of many diseases. In many cases, galectins and autophagy both play important regulatory roles in the cellular life course, yet our understanding of the relationship between them is still incomplete. Galectins and autophagy may share common etiological cofactors for some diseases. Hence, we summarize the relationship between galectins and autophagy, aiming to draw attention to the existence of multiple associations between galectins and autophagy in a variety of physiological and pathological processes, which provide new ideas for etiological diagnosis, drug development, and therapeutic targets for related diseases.
Collapse
Affiliation(s)
- Lujuan Zheng
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Jing Xia
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Pengyu Ge
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Yuhan Meng
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Weili Li
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Mingming Li
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Min Wang
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Chengcheng Song
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Yuying Fan
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
29
|
Li ZY, Zhu YX, Chen JR, Chang X, Xie ZZ. The role of KLF transcription factor in the regulation of cancer progression. Biomed Pharmacother 2023; 162:114661. [PMID: 37068333 DOI: 10.1016/j.biopha.2023.114661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/19/2023] Open
Abstract
Kruppel-like factors (KLFs) are a family of zinc finger transcription factors that have been found to play an essential role in the development of various human tissues, including epithelial, teeth, and nerves. In addition to regulating normal physiological processes, KLFs have been implicated in promoting the onset of several cancers, such as gastric cancer, lung cancer, breast cancer, liver cancer, and colon cancer. To inhibit cancer progression, various existing medicines have been used to modulate the expression of KLFs, and anti-microRNA treatments have also emerged as a potential strategy for many cancers. Investigating the possibility of targeting KLFs in cancer therapy is urgently needed, as the roles of KLFs in cancer have not received enough attention in recent years. This review summarizes the factors that regulate KLF expression and function at both the transcriptional and posttranscriptional levels, which could aid in understanding the mechanisms of KLFs in cancer progression. We hope that this review will contribute to the development of more effective anti-cancer medicines targeting KLFs in the future.
Collapse
Affiliation(s)
- Zi-Yi Li
- College of Basic Medical, Nanchang University, Nanchang, Jiangxi 330006, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yu-Xin Zhu
- College of Basic Medical, Nanchang University, Nanchang, Jiangxi 330006, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Jian-Rui Chen
- College of Basic Medical, Nanchang University, Nanchang, Jiangxi 330006, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Xu Chang
- College of Basic Medical, Nanchang University, Nanchang, Jiangxi 330006, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Zhen-Zhen Xie
- College of Basic Medical, Nanchang University, Nanchang, Jiangxi 330006, PR China; Experimental teaching center of Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
30
|
López-Méndez TB, Sánchez-Álvarez M, Trionfetti F, Pedraz JL, Tripodi M, Cordani M, Strippoli R, González-Valdivieso J. Nanomedicine for autophagy modulation in cancer therapy: a clinical perspective. Cell Biosci 2023; 13:44. [PMID: 36871010 PMCID: PMC9985235 DOI: 10.1186/s13578-023-00986-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
In recent years, progress in nanotechnology provided new tools to treat cancer more effectively. Advances in biomaterials tailored for drug delivery have the potential to overcome the limited selectivity and side effects frequently associated with traditional therapeutic agents. While autophagy is pivotal in determining cell fate and adaptation to different challenges, and despite the fact that it is frequently dysregulated in cancer, antitumor therapeutic strategies leveraging on or targeting this process are scarce. This is due to many reasons, including the very contextual effects of autophagy in cancer, low bioavailability and non-targeted delivery of existing autophagy modulatory compounds. Conjugating the versatile characteristics of nanoparticles with autophagy modulators may render these drugs safer and more effective for cancer treatment. Here, we review current standing questions on the biology of autophagy in tumor progression, and precursory studies and the state-of-the-art in harnessing nanomaterials science to enhance the specificity and therapeutic potential of autophagy modulators.
Collapse
Affiliation(s)
- Tania B López-Méndez
- NanoBioCel Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Miguel Sánchez-Álvarez
- Area of Cell and Developmental Biology. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Instituto de Investigaciones Biomédicas Alberto Sols (IIB), Madrid, Spain
| | - Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,National Institute for Infectious Diseases L. Spallanzani IRCCS, Rome, Italy
| | - José L Pedraz
- NanoBioCel Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Marco Tripodi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,National Institute for Infectious Diseases L. Spallanzani IRCCS, Rome, Italy
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain. .,Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain.
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy. .,National Institute for Infectious Diseases L. Spallanzani IRCCS, Rome, Italy.
| | - Juan González-Valdivieso
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, USA.
| |
Collapse
|
31
|
AURKA, as a potential prognostic biomarker, regulates autophagy and immune infiltration in nasopharyngeal carcinoma. Immunobiology 2023; 228:152314. [PMID: 36587494 DOI: 10.1016/j.imbio.2022.152314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/08/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Dysfunction of Aurora A (AURKA) plays crucial role in tumorigenesis and development of many types of cancer. However, the role of AURKA in nasopharyngeal carcinoma (NPC) has not been investigated yet. MATERIALS AND METHODS Two independent NPC cohorts (GSE61218 and GSE102349) were enrolled from public database to investigate the expression level of AURKA between NPC and nasopharyngitis samples, the association of AURKA expression level with prognosis in NPC, and the potential mechanism of AURKA in NPC by using bioinformatics analyses. The expression level of AURKA protein in 62 paired NPC and nasopharyngitis tissues was evaluated by immunohistochemistry (IHC). Two NPC cell lines (SUNE-1 and CNE-2) were enrolled and the expression levels of AURKA in the NPC cells were inhibited by RNA interference. The expression levels of mRNAs were tested by qPCR and western-blotting. CCK-8 assay was applied to measure the cell growth. Cell migration was measured by using wound healing assays. RESULTS AURKA was highly expressed in NPC samples compared to nasopharyngitis samples in GSE61218, which was confirmed by IHC. High expression of AURKA was associated with worse prognosis in GSE102349. Notably, silencing of AURKA was associated with significantly decreased cell growth and migration in NPC. Moreover, we found that the differentially expressed genes between high and low AURKA expression groups in GSE102349 were majorly enriched in both autophagy-related and immune-related pathways. Additionally, the expression level of AURKA was associated with the expression levels of autophagy-related genes and the infiltration of immune cells. CONCLUSION AURKA overexpressed in NPC, which was associated with poor prognosis. Silencing of AURKA inhibited the proliferation and migration of NPC cells. Besides, AURKA might participate in the regulation of both autophagy and immunity in NPC.
Collapse
|
32
|
Chang WH, Liu Y, Hammes EA, Bryant KL, Cerione RA, Antonyak MA. Oncogenic RAS promotes MYC protein stability by upregulating the expression of the inhibitor of apoptosis protein family member Survivin. J Biol Chem 2023; 299:102842. [PMID: 36581205 PMCID: PMC9860443 DOI: 10.1016/j.jbc.2022.102842] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
The small GTPase KRAS is frequently mutated in pancreatic cancer and its cooperation with the transcription factor MYC is essential for malignant transformation. The key to oncogenic KRAS and MYC working together is the stabilization of MYC expression due to KRAS activating the extracellular signal-regulated kinase 1/2, which phosphorylates MYC at serine 62 (Ser 62). This prevents the proteasomal degradation of MYC while enhancing its transcriptional activity. Here, we identify how this essential signaling connection between oncogenic KRAS and MYC expression is mediated by the inhibitor of apoptosis protein family member Survivin. This discovery stemmed from our finding that Survivin expression is downregulated upon treatment of pancreatic cancer cells with the KRASG12C inhibitor Sotorasib. We went on to show that oncogenic KRAS increases Survivin expression by activating extracellular signal-regulated kinase 1/2 in pancreatic cancer cells and that treating the cells either with siRNAs targeting Survivin or with YM155, a small molecule that potently blocks Survivin expression, downregulates MYC and strongly inhibited their growth. We further determined that Survivin protects MYC from degradation by blocking autophagy, which then prevents cellular inhibitor of protein phosphatase 2A from undergoing autophagic degradation. Cellular inhibitor of protein phosphatase 2A, by inhibiting protein phosphatase 2A, helps to maintain MYC phosphorylation at Ser 62, thereby ensuring its cooperation with oncogenic KRAS in driving cancer progression. Overall, these findings highlight a novel role for Survivin in mediating the cooperative actions of KRAS and MYC during malignant transformation and raise the possibility that targeting Survivin may offer therapeutic benefits against KRAS-driven cancers.
Collapse
Affiliation(s)
- Wen-Hsuan Chang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yinzhe Liu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Emma A Hammes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Kirsten L Bryant
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Richard A Cerione
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA; Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA.
| | - Marc A Antonyak
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
33
|
Zhao J, Mu X, Hou X, Zhang X, Li P, Jiang J. Synergistic treatment of osteosarcoma with biomimetic nanoparticles transporting doxorubicin and siRNA. Front Oncol 2023; 13:1111855. [PMID: 36756155 PMCID: PMC9900173 DOI: 10.3389/fonc.2023.1111855] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/10/2023] [Indexed: 01/24/2023] Open
Abstract
Introduction Osteosarcoma tumors are the most common malignant bone tumors in children and adolescents. Their treatment usually requires surgical removal of all detectable cancerous tissue and multidrug chemotherapy; however, the prognosis for patients with unresectable or recurrent osteosarcoma is unfavorable. To make chemotherapy safer and more effective for osteosarcoma patients, biomimetic nanoparticles (NPs) camouflaged by mesenchymal stem cell membranes (MSCMs) were synthesized to induce osteosarcoma cell apoptosis by co-delivering the anticancer drug doxorubicin hydrochloride(DOX) and a small interfering RNA (siRNA). Importantly, these NPs have high biocompatibility and tumor-homing ability. This study aimed to improve the efficacy of osteosarcoma therapy by using the synergistic combination of DOX and an siRNA targeting the apoptosis suppressor gene survivin. Methods Biomimetic NPs (DOX/siSUR-PLGA@MSCM NPs) were synthesized by coloading DOX and survivin siRNA (siSUR) into poly (lactide-co-glycolide acid) (PLGA) via a double-emulsion solvent evaporation method. The NPs were camouflaged by MSCMs to deliver both DOX and survivin-targeting siRNA and characterized and evaluated in terms of cellular uptake, in vitro release, in vitro and in vivo antitumor effects, and biosafety. Results DOX/siSUR-PLGA@MSCM NPs had good tumor-homing ability due to the MSCMs modification. The drug-laden biomimetic NPs had good antitumor effects in homozygous MG63 tumor-bearing mice due to the synergistic effect of the drug combination. Conclusion DOX/siSUR-PLGA@MSCM NPs can show improved therapeutic effects in osteosarcoma patients due to the combination of a chemotherapeutic drug and gene therapy based on their good tumor targeting and biosafety.
Collapse
Affiliation(s)
- Jingtong Zhao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xupeng Mu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xuejia Hou
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaowen Zhang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ping Li
- Rheumatology and Immunology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China,*Correspondence: Jinlan Jiang, ; Ping Li,
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China,*Correspondence: Jinlan Jiang, ; Ping Li,
| |
Collapse
|
34
|
Wu Y, Zhang J. Study on differentially expressed genes between stage M and stage MS neuroblastoma. Front Oncol 2023; 12:1083570. [PMID: 36713522 PMCID: PMC9880530 DOI: 10.3389/fonc.2022.1083570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/22/2022] [Indexed: 01/14/2023] Open
Abstract
Objective To search for the DEGs between stage MS NB and stage M NB and speculate the possible mechanism of spontaneous regression of stage MS NB. Materials and methods The NB datasets GSE49710 and GSE45547 in the GEO database were selected to screen the DEGs between children with NB stage MS vs. stage M, < 18 months. GO enrichment and KEGG pathway analysis of DEGs was performed using DAVID. The intersecting genes among DEGs and RCD-related genes were selected, and their survival roles and functions were assessed. We then used the collected clinical samples to validate the expression of these genes at the protein level using IHC methods and further analysis to explore their role. Results BIRC5, SLCO4A1, POPDC3, and HK2 were found to be downregulated in stage MS NB and related to apoptosis. BIRC5 and HK2 also participate in autophagy. The TF gene is upregulated in stage MS NB and related to ferroptosis. The above five genes are closely related to the survival of children with NB. And the expression levels of all five genes at the protein level were verified by IHC to be consistent with the results of the preliminary screening described above. Conclusion BIRC5, SLCO4A1, POPDC3, HK2 and TF are expected to become new important indicators to predict the prognosis of NB and can be used as the basis for further explored the benign prognosis and spontaneous regression mechanism of stage MS NB.
Collapse
|
35
|
Chen H, Xu K, Sun C, Gui S, Wu J, Wang S. Inhibition of ANGPT2 activates autophagy during hypertrophic scar formation via PI3K/AKT/mTOR pathway. An Bras Dermatol 2023; 98:26-35. [PMID: 36272879 PMCID: PMC9837657 DOI: 10.1016/j.abd.2021.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Hypertrophic scar (HS), a fibroproliferative disorder caused by aberrant wound healing following skin injuries such as burns, lacerations and surgery, is characterized by invasive proliferation of fibroblasts and excessive extracellular matrix (ECM) accumulation. The dysregulation of autophagy is the pathological basis of HS formation. Previously, angiopoietin-2 (ANGPT2) was found to be overexpressed in HS fibroblasts (HSFs) compared with normal skin fibroblasts. However, whether ANGPT2 participates in the process of HS formation and the potential molecular mechanisms are not clear. OBJECTIVE This study is intended to figure out the role of ANGPT2 and ANGPT2-mediated autophagy during the development of HS. METHODS RT-qPCR was used to detect ANGPT2 expression in HS tissues and HSFs. HSFs were transfected with sh-ANGPT2 to knock down ANGPT2 expression and then treated with MHT1485, the mTOR agonist. The effects of sh-ANGPT2 or MHT1485 on the proliferation, migration, autophagy and ECM accumulation of HSFs were evaluated by CCK-8 assay, Transwell assay and western blotting. The expression of PI3K/Akt/mTOR pathway-related molecules (p-PI3K, p-Akt and p-mTOR) was assessed by western blotting. RESULTS ANGPT2 expression was markedly upregulated in HS tissues and HSFs. ANGPT2 knockdown decreased the expression of p-PI3K, p-Akt and p-mTOR. ANGPT2 knockdown activated autophagy and inhibited the proliferation, migration, and ECM accumulation of HSFs. Additionally, the treatment of MHT1485, the mTOR agonist, on ANGPT2-downregulated HSFs, partially reversed the influence of ANGPT2 knockdown on HSFs. STUDY LIMITATIONS The study lacks the establishment of more stable in vivo animal models of HS for investigating the effects of ANGPT2 on HS formation in experimental animals. CONCLUSIONS ANGPT2 downregulation represses growth, migration, and ECM accumulation of HSFs via autophagy activation by suppressing the PI3K/Akt/mTOR pathway. Our study provides a novel potential therapeutic target for HS.
Collapse
Affiliation(s)
- Hongxin Chen
- School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China,Department of Burn and Plastic Surgery, General Hospital of Central Theater Command of People’s Liberation Army, Wuhan, Hubei, China,Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan, Hubei, China
| | - Kai Xu
- Department of Burn and Plastic Surgery, General Hospital of Central Theater Command of People’s Liberation Army, Wuhan, Hubei, China,Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan, Hubei, China
| | - Chao Sun
- The Sixth Resignation Cadre Sanatorium of Shandong Province Military Region, Qingdao, China
| | - Si Gui
- Department of Burn and Plastic Surgery, General Hospital of Central Theater Command of People’s Liberation Army, Wuhan, Hubei, China,Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan, Hubei, China
| | - Juanjuan Wu
- Department of Burn and Plastic Surgery, General Hospital of Central Theater Command of People’s Liberation Army, Wuhan, Hubei, China,Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan, Hubei, China
| | - Song Wang
- School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China,Department of Burn and Plastic Surgery, General Hospital of Central Theater Command of People’s Liberation Army, Wuhan, Hubei, China,Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan, Hubei, China,Corresponding author.
| |
Collapse
|
36
|
Wang L, Wan G, Wang G, Zhang M, Li N, Zhang Q, Yan H. Anthocyanin from Lycium ruthenicum Murr. in the Qaidam Basin Alleviates Ultraviolet-Induced Apoptosis of Human Skin Fibroblasts by Regulating the Death Receptor Pathway. CLINICAL, COSMETIC AND INVESTIGATIONAL DERMATOLOGY 2022; 15:2925-2932. [PMID: 36601462 PMCID: PMC9807275 DOI: 10.2147/ccid.s388418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/15/2022] [Indexed: 12/30/2022]
Abstract
Purpose The study aimed to investigate the potential protective role of anthocyanin from Lycium ruthenicum Murr. in the Qaidam Basin against ultraviolet B (UVB)-induced apoptosis of human skin fibroblasts (HSFs). Methods HSFs cultured in vitro were randomly divided into a control group, UVB group, and anthocyanin groups (0.1, 0.5, and 1.0 mg/mL). HSFs in the UVB and anthocyanin groups were exposed to 30 mJ/cm2 UVB to establish a photoaging model. Then, apoptosis rate, tumor necrosis factor-α (TNF-α), cysteinyl aspartate specific proteinase-3 (caspase-3), cysteinyl aspartate specific proteinase-7 (caspase-7), and survivin expression were evaluated. Results UVB irradiation can increase the apoptosis rate of HSFs and expression of TNF-α, caspase-7, and survivin. Anthocyanin pretreatment (0.1, 0.5, and 1.0 mg/mL) decreased UVB-induced apoptosis rate and TNF-α and caspase-7 expression and increased survivin expression. Compared with the control group, the apoptosis rate and expression of TNF-α, caspase-7, and survivin of anthocyanin groups in UVB-irradiated HSFs were high. Among the three doses of anthocyanin (0.1, 0.5, and 1.0 mg/mL) groups, the apoptosis rate and TNF-α expression of anthocyanin at 1.0 mg/mL were the lowest. There was no significant change in caspase-3 expression in each group. Conclusion Anthocyanin from Lycium ruthenicum Murr. in the Qaidam Basin could alleviate UVB-induced apoptosis by regulating the death receptor pathway.
Collapse
Affiliation(s)
- Liwen Wang
- Department of Dermatology, Qinghai University Affiliated Hospital, Xining, People’s Republic of China
| | - Guangmei Wan
- Department of Dermatology, Qinghai University Affiliated Hospital, Xining, People’s Republic of China
| | - Gang Wang
- Department of Dermatology, Qinghai University Affiliated Hospital, Xining, People’s Republic of China
| | - Meihong Zhang
- Department of Dermatology, Qinghai University Affiliated Hospital, Xining, People’s Republic of China
| | - Nanxin Li
- Department of Dermatology, Qinghai University Affiliated Hospital, Xining, People’s Republic of China
| | - Qinning Zhang
- Shijingshan Teaching Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Hualing Yan
- Department of Dermatology, Qinghai University Affiliated Hospital, Xining, People’s Republic of China,Correspondence: Hualing Yan, Department of Dermatology, Qinghai University Affiliated Hospital, No. 29, Tongren Road, Chengxi District, Xining, Qinghai Province, People’s Republic of China, Email
| |
Collapse
|
37
|
Combined exposure to di(2-ethylhexyl) phthalate and polystyrene microplastics induced renal autophagy through the ROS/AMPK/ULK1 pathway. Food Chem Toxicol 2022; 171:113521. [PMID: 36423728 DOI: 10.1016/j.fct.2022.113521] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 10/29/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) and polystyrene microplastics (PS-MPs) are new environmental pollutants that attracted increased attention. At present, the effects and underlying mechanisms of action of combined exposure of DEHP and PS-MPs on the kidney have not been elucidated. To investigate the renal toxicity of DEHP and PS-MPs exposure, we established single and combined DEHP and PS-MPs exposure models in mice and HEK293 cells, respectively. Hematoxylin and eosin staining, transmission electron microscopy, monodansylcadaverine staining, immunofluorescence, real-time quantitative PCR, Western blot analysis and other methods were used to detect relevant indicators. The results showed that the expression levels of ROS/AMPK/ULK1 and Ppargc1α/Mfn2 signaling pathway-related genes were significantly increased in the DEHP and PS-MPs exposure models. The mRNA and protein expression levels of autophagy markers were also upregulated. In addition, we found that the expression levels of mRNAs and proteins in the combined exposure group were more significantly increased than those in the single exposure group. In conclusion, combined exposure to DEHP and PS-MPs caused oxidative stress and activated the AMPK/ULK1 pathway, thereby inducing renal autophagy. Our results enhance the field of nephrotoxicity studies of plasticizers and microplastics and provide new light on combined toxicity studies of DEHP and PS-MPs.
Collapse
|
38
|
Li Q, Chen Z, Yang C, Wang L, Ma J, He T, Li H, Quan Z. Role of ferroptosis-associated genes in ankylosing spondylitis and immune cell infiltration. Front Genet 2022; 13:948290. [PMID: 36437923 PMCID: PMC9691995 DOI: 10.3389/fgene.2022.948290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/28/2022] [Indexed: 10/17/2023] Open
Abstract
Ankylosing spondylitis (AS) is a chronic progressive autoimmune disease with insidious onset, high rates of disability among patients, unknown pathogenesis, and no effective treatment. Ferroptosis is a novel type of regulated cell death that is associated with various cancers and diseases. However, its relation to AS is not clear. In the present study, we identified two potential therapeutic targets for AS based on genes associated with ferroptosis and explored their association with immune cells and immune cell infiltration (ICI). We studied gene expression profiles of two cohorts of patients with AS (GSE25101 and GSE41038) derived from the gene expression omnibus database, and ferroptosis-associated genes (FRGs) were obtained from the FerrDb database. LASSO regression analysis was performed to build predictive models for AS based on FRGs, and the ferroptosis level in each sample was assessed via single-sample gene set enrichment analysis. Weighted gene co-expression network and protein-protein interaction network analyses were performed for screening; two key genes, DDIT3 and HSPB1, were identified in patients with AS. The relationship between key genes and ICI levels was assessed using the CIBERSORT algorithm, followed by gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. Finally, DDIT3 and HSPB1 were identified as diagnostic markers and potential therapeutic targets for AS. DDIT3 was highly positively correlated with the infiltration levels of various immune cells, while HSPB1 was negatively correlated with the infiltration levels of several different types of immune cells. In conclusion, DDIT3 and HSPB1 may induce ferroptosis in the cells of patients with AS via changes in the inflammatory response in the immune microenvironment, and these genes could serve as molecular targets for AS therapy.
Collapse
Affiliation(s)
- Qiaochu Li
- The First Clinical College, Chongqing Medical University, Chongqing, China
| | - Zhiyu Chen
- The First Clinical College, Chongqing Medical University, Chongqing, China
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chaohua Yang
- The First Clinical College, Chongqing Medical University, Chongqing, China
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Linbang Wang
- The First Clinical College, Chongqing Medical University, Chongqing, China
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jingjin Ma
- The First Clinical College, Chongqing Medical University, Chongqing, China
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao He
- The First Clinical College, Chongqing Medical University, Chongqing, China
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Orthopaedic Trauma, Chongqing General Hospital, Chongqing, China
| | - Huanhuan Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengxue Quan
- The First Clinical College, Chongqing Medical University, Chongqing, China
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
39
|
Yu Z, Chen Z, Zhou G, Zhou X, Ma H, Yu Y, Wang X, Cao X. miR-92a-3p promotes breast cancer proliferation by regulating the KLF2/BIRC5 axis. Thorac Cancer 2022; 13:2992-3000. [PMID: 36100919 PMCID: PMC9626348 DOI: 10.1111/1759-7714.14648] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Breast cancer remains the most common malignancy in females around the world. Recently, a growing number of studies have focused on gene dysregulation. In our previous study, Krüppel-like factors (KLFs) were found to play essential roles in breast cancer development, among which KLF2 could function as a tumor suppressor. Nevertheless, the underlying molecular mechanism remains unclear. METHODS miR-92a-3p was identified as the upstream regulator of KLF2 by starBase v.3.0. The regulation of KLF2 by miR-92a-3p was verified by a series of in vitro and in vivo assays. Further exploration revealed that Baculoviral IAP Repeat Containing 5 (BIRC5) was the target of KLF2. ChIP assay, dual-luciferase reporter analysis, quantitative real-time PCR, and western blot were performed for verification. RESULTS miR-92a-3p functioned as a tumor promoter by inhibiting KLF2 by binding to its 3'-untranslated region (3'-UTR). In addition, KLF2 could transcriptionally suppress the expression of BIRC5. CONCLUSION Collectively, our results uncovered the miR-92a-3p/KLF2/BIRC5 axis in breast cancer and provided a potential mechanism for breast cancer development, which may serve as promising strategies for breast cancer therapy.
Collapse
Affiliation(s)
- Zhi‐Hao Yu
- The First Department of Breast CancerTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina,Key Laboratory of Cancer Prevention and TherapyTianjinChina,Tianjin's Clinical Research Center for CancerTianjinChina,Key Laboratory of Breast Cancer Prevention and TherapyTianjin Medical University, Ministry of EducationTianjinChina
| | - Zhao‐Hui Chen
- The First Department of Breast CancerTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina,Key Laboratory of Cancer Prevention and TherapyTianjinChina,Tianjin's Clinical Research Center for CancerTianjinChina,Key Laboratory of Breast Cancer Prevention and TherapyTianjin Medical University, Ministry of EducationTianjinChina
| | - Guang‐Lei Zhou
- The First Department of Breast CancerTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina,Key Laboratory of Cancer Prevention and TherapyTianjinChina,Tianjin's Clinical Research Center for CancerTianjinChina,Key Laboratory of Breast Cancer Prevention and TherapyTianjin Medical University, Ministry of EducationTianjinChina
| | - Xue‐Jie Zhou
- The First Department of Breast CancerTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina,Key Laboratory of Cancer Prevention and TherapyTianjinChina,Tianjin's Clinical Research Center for CancerTianjinChina,Key Laboratory of Breast Cancer Prevention and TherapyTianjin Medical University, Ministry of EducationTianjinChina
| | - Hai‐Yan Ma
- The First Department of Breast CancerTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina,Key Laboratory of Cancer Prevention and TherapyTianjinChina,Tianjin's Clinical Research Center for CancerTianjinChina,Key Laboratory of Breast Cancer Prevention and TherapyTianjin Medical University, Ministry of EducationTianjinChina
| | - Yue Yu
- The First Department of Breast CancerTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina,Key Laboratory of Cancer Prevention and TherapyTianjinChina,Tianjin's Clinical Research Center for CancerTianjinChina,Key Laboratory of Breast Cancer Prevention and TherapyTianjin Medical University, Ministry of EducationTianjinChina
| | - Xin Wang
- The First Department of Breast CancerTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina,Key Laboratory of Cancer Prevention and TherapyTianjinChina,Tianjin's Clinical Research Center for CancerTianjinChina,Key Laboratory of Breast Cancer Prevention and TherapyTianjin Medical University, Ministry of EducationTianjinChina
| | - Xu‐Chen Cao
- The First Department of Breast CancerTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina,Key Laboratory of Cancer Prevention and TherapyTianjinChina,Tianjin's Clinical Research Center for CancerTianjinChina,Key Laboratory of Breast Cancer Prevention and TherapyTianjin Medical University, Ministry of EducationTianjinChina
| |
Collapse
|
40
|
Zhang J, Zhao J, Wei S, Huang P, Tu X, Su G, Gan Y, Gong W, Xiang B. Developing and Validating an Autophagy Gene-Set-Based Prognostic Signature in Hepatocellular Carcinoma Patients. Int J Gen Med 2022; 15:8399-8415. [DOI: 10.2147/ijgm.s388592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
|
41
|
Tang B, Hu L, Jiang T, Li Y, Xu H, Zhou H, Lan M, Xu K, Yin J, Su C, Zhou C, Xu C. A Metabolism-Related Gene Prognostic Index for Prediction of Response to Immunotherapy in Lung Adenocarcinoma. Int J Mol Sci 2022; 23:12143. [PMID: 36293001 PMCID: PMC9602971 DOI: 10.3390/ijms232012143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 12/01/2023] Open
Abstract
Immunotherapy, such as immune checkpoint inhibitors (ICIs), is a validated strategy for treating lung adenocarcinoma (LUAD) patients. One of the main challenges in ICIs treatment is the lack of efficient biomarkers for predicting response or resistance. Metabolic reprogramming has been proven to remodel the tumor microenvironment, altering the response to ICIs. We constructed a prognostic model as metabolism-related gene (MRG) of four genes by using weighted gene co-expression network analysis (WGCNA), the nonnegative matrix factorization (NMF), and Cox regression analysis of a LUAD dataset (n = 500) from The Cancer Genome Atlas (TCGA), which was validated with three Gene Expression Omnibus (GEO) datasets (n = 442, n = 226 and n = 127). The MRG was constructed based on BIRC5, PLK1, CDKN3, and CYP4B1 genes. MRG-high patients had a worse survival probability than MRG-low patients. Furthermore, the MRG-high subgroup was more associated with cell cycle-related pathways; high infiltration of activated memory CD4+T cells, M0 macrophages, and neutrophils; and showed better response to ICIs. Contrarily, the MRG-low subgroup was associated with fatty acid metabolism, high infiltration of dendric cells, and resting mast cells, and showed poor response to ICIs. MRG is a promising prognostic index for predicting survival and response to ICIs and other therapeutic agents in LUAD, which might provide insights on strategies with ICIs alone or combined with other agents.
Collapse
Affiliation(s)
- Bo Tang
- Integrative Cancer Center and Cancer Clinical Research Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Lanlin Hu
- Integrative Cancer Center and Cancer Clinical Research Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Tao Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507, Zhengmin Road, Shanghai 200433, China
| | - Yunchang Li
- Integrative Cancer Center and Cancer Clinical Research Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Huasheng Xu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning 530021, China
| | - Hang Zhou
- Integrative Cancer Center and Cancer Clinical Research Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Mei Lan
- Integrative Cancer Center and Cancer Clinical Research Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Ke Xu
- Integrative Cancer Center and Cancer Clinical Research Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Jun Yin
- Integrative Cancer Center and Cancer Clinical Research Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610042, China
| | - Chunxia Su
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507, Zhengmin Road, Shanghai 200433, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, No. 507, Zhengmin Road, Shanghai 200433, China
| | - Chuan Xu
- Integrative Cancer Center and Cancer Clinical Research Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610042, China
| |
Collapse
|
42
|
Shen B, Zhang G, Liu Y, Wang J, Jiang J. Identification and Analysis of Immune-Related Gene Signature in Hepatocellular Carcinoma. Genes (Basel) 2022; 13:genes13101834. [PMID: 36292719 PMCID: PMC9601963 DOI: 10.3390/genes13101834] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) originates from the hepatocytes and accounts for 90% of liver cancer. The study intends to identify novel prognostic biomarkers for predicting the prognosis of HCC patients based on TCGA and GSE14520 cohorts. METHODS Differential analysis was employed to obtain the DEGs (Differentially Expressed Genes) of the TCGA-LIHC-TPM cohort. The lasso regression analysis was applied to build the prognosis model through using the TCGA cohort as the training group and the GSE14520 cohort as the testing group. Next, based on the prognosis model, we performed the following analyses: the survival analysis, the independent prognosis analysis, the clinical feature analysis, the mutation analysis, the immune cell infiltration analysis, the tumor microenvironment analysis, and the drug sensitivity analysis. Finally, the survival time of HCC patients was predicted by constructing nomograms. RESULTS Through the lasso regression analysis, we obtained a prognosis model of ten genes including BIRC5 (baculoviral IAP repeat containing 5), CDK4 (cyclin-dependent kinase 4), DCK (deoxycytidine kinase), HSPA4 (heat shock protein family A member 4), HSP90AA1 (heat shock protein 90 α family class A member 1), PSMD2 (Proteasome 26S Subunit Ubiquitin Receptor, Non-ATPase 2), IL1RN (interleukin 1 receptor antagonist), PGF (placental growth factor), SPP1 (secreted phosphoprotein 1), and STC2 (stanniocalcin 2). First, we found that the risk score is an independent prognosis factor and is related to the clinical features of HCC patients, covering AFP (α-fetoprotein) and stage. Second, we observed that the p53 mutation was the most obvious mutation between the high-risk and low-risk groups. Third, we also discovered that the risk score is related to some immune cells, covering B cells, T cells, dendritic, macrophages, neutrophils, etc. Fourth, the high-risk group possesses a lower TIDE score, a higher expression of immune checkpoints, and higher ESTIMATE score. Finally, nomograms include the clinical features and risk signatures, displaying the clinical utility of the signature in the survival prediction of HCC patients. CONCLUSIONS Through the comprehensive analysis, we constructed an immune-related prognosis model to predict the survival of HCC patients. In addition to predicting the survival time of HCC patients, this model significantly correlates with the tumor microenvironment. Furthermore, we concluded that these ten immune-related genes (BIRC5, CDK4, DCK, HSPA4, HSP90AA1, PSMD2, IL1RN, PGF, SPP1, and STC2) serve as novel targets for antitumor immunity. Therefore, this study plays a significant role in exploring the clinical application of immune-related genes.
Collapse
|
43
|
Hou YC, Zhang C, Zhang ZJ, Xia L, Rao KQ, Gu LH, Wu YC, Lv ZC, Wu HX, Zuo XL, Li F, Feng H, Xia Q. Aggregation-Induced Emission (AIE) and Magnetic Resonance Imaging Characteristics for Targeted and Image-Guided siRNA Therapy of Hepatocellular Carcinoma. Adv Healthc Mater 2022; 11:e2200579. [PMID: 35749736 DOI: 10.1002/adhm.202200579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/06/2022] [Indexed: 01/27/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer and remains a global health challenge. Small interfering RNA (siRNA) is a promising therapeutic modality that blocks multiple disease-causing genes without impairing cell structures. However, siRNA therapeutics still have off-target proportion and lack effective quantitative analysis method in vivo. Thus, a novel theragnostic nanoparticle with dual-mode imaging is synthesized for targeted and image-guided siRNA therapy of HCC. Survivin siRNA is carried by Poly-ethylenimine (PEI) and interacted with T7-AIE/Gd NPs, which are self-assembled of DSPE-PEG-DTPA(Gd), DSPE-PEG-Mal, DSPE-PEG-PEI, and TPE. The resulting theragnostic nanoparticles exhibit lower toxicity and high therapeutic effect, and excellent T1-weighted magnetic resonance imaging (MRI) and aggregation-induced emission (AIE) imaging performance. Moreover, in vivo MRI and AIE imaging indicate that this kind of theragnostic nanoparticles rapidly accumulates in the tumor due to active targeting and enhanced permeability and retention (EPR) effects. Sur@T7-AIE-Gd suppresses HCC tumor growth by inducing autophagy and destabilizes DNA integrity in tumor cells. The results suggest that T7-AIE-Gd nanoparticles carrying Survivin siRNA with dual-mode imaging characteristics are promising for targeted and image-guided siRNA therapy of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yu-Chen Hou
- Shanghai Institute of Transplantation, Shanghai, 200127, China.,Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, 200127, China
| | - Chao Zhang
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, 200127, China.,Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zi-Jie Zhang
- Shanghai Institute of Transplantation, Shanghai, 200127, China.,Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, 200127, China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ke-Qiang Rao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Li-Hong Gu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yi-Chi Wu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zi-Cheng Lv
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hao-Xiang Wu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiao-Lei Zuo
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, 200127, China.,Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Fan Li
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, 200127, China.,Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Hao Feng
- Shanghai Institute of Transplantation, Shanghai, 200127, China.,Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, 200127, China
| | - Qiang Xia
- Shanghai Institute of Transplantation, Shanghai, 200127, China.,Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, 200127, China
| |
Collapse
|
44
|
Kondapuram SK, Coumar MS. Pan-cancer gene expression analysis: Identification of deregulated autophagy genes and drugs to target them. Gene X 2022; 844:146821. [PMID: 35985410 DOI: 10.1016/j.gene.2022.146821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/07/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022] Open
Abstract
Identifying suitable deregulated targets in autophagy pathway is essential for developing autophagy modulating cancer therapies. With this aim, we systematically analyzed the expression levels of genes that contribute to the execution of autophagy in 21 cancers. Deregulated genes for 21 cancers were analyzed using the level 3 mRNA data from TCGAbiolinks. A total of 574 autophagy genes were mapped to the deregulated genes across 21 cancers. PPI network, cluster analysis, gene enrichment, gene ontology, KEGG pathway, patient survival, protein expression and cMap analysis were performed. Among the autophagy genes, 260 were upregulated, and 43 were downregulated across pan-cancer. The upregulated autophagy genes - CDKN2A and BIRC5 - were the most frequent signatures in cancers and could be universal cancer biomarkers. Significant involvement of autophagy process was found in 8 cancers (CHOL, HNSC, GBM, KICH, KIRC, KIRP, LIHC and SARC). Fifteen autophagy hub genes (ATP6V0C, BIRC5, HDAC1, IL4, ITGB1, ITGB4, MAPK3, mTOR, cMYC, PTK2, SRC, TCIRG1, TP63, TP73 and ULK1) were found to be linked with patients survival and also expressed in cancer patients tissue samples, making them as potential drug targets for these cancers. The deregulated autophagy genes were further used to identify drugs Losartan, BMS-345541, Embelin, Abexinostat, Panobinostat, Vorinostat, PD-184352, PP-1, XMD-1150, Triplotide, Doxorubicin and Ouabain, which could target one or more autophagy hub genes. Overall, our findings shed light on the most frequent cancer-associated autophagy genes, potential autophagy targets and molecules for cancer treatment. These findings can accelerate autophagy modulation in cancer therapy.
Collapse
Affiliation(s)
- Sree Karani Kondapuram
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry- 605014, India
| | - Mohane Selvaraj Coumar
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry- 605014, India.
| |
Collapse
|
45
|
Mir S, Ormsbee Golden BD, Griess BJ, Vengoji R, Tom E, Kosmacek EA, Oberley-Deegan RE, Talmon GA, Band V, Teoh-Fitzgerald ML. Upregulation of Nox4 induces a pro-survival Nrf2 response in cancer-associated fibroblasts that promotes tumorigenesis and metastasis, in part via Birc5 induction. Breast Cancer Res 2022; 24:48. [PMID: 35836253 PMCID: PMC9281082 DOI: 10.1186/s13058-022-01548-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/30/2022] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND A pro-oxidant enzyme, NADPH oxidase 4 (Nox4) has been reported to be a critical downstream effector of TGFβ-induced myofibroblast transformation during fibrosis. While there are a small number of studies suggesting an oncogenic role of Nox4 derived from activated fibroblasts, direct evidence linking this pro-oxidant to the tumor-supporting CAF phenotype and the mechanisms involved are lacking, particularly in breast cancer. METHODS We targeted Nox4 in breast patient-derived CAFs via siRNA-mediated knockdown or administration of a pharmaceutical inhibitor (GKT137831). We also determine primary tumor growth and metastasis of implanted tumor cells using a stable Nox4-/- syngeneic mouse model. Autophagic flux of CAFs was assessed using a tandem fluorescent-tagged ptfl-LC3 plasmid via confocal microscopy analysis and determination of the expression level of autophagy markers (beclin-1 and LC3B). Nox4 overexpressing CAFs depend on the Nrf2 (nuclear factor-erythroid factor 2-related factor 2) pathway for survival. We then determined the dependency of Nox4-overexpressing CAFs on the Nrf2-mediated adaptive stress response pathway for survival. Furthermore, we investigated the involvement of Birc5 on CAF phenotype (viability and collagen contraction activity) as well as the expression level of CAF markers, FAP and αSMA. CONCLUSIONS We found that deletion of stroma Nox4 and pharmaceutically targeting its activity with GKT137831 significantly inhibited orthotopic tumor growth and metastasis of implanted E0771 and 4T1 murine mammary carcinoma cell lines in mice. More importantly, we found a significant upregulation of Nox4 expression in CAFs isolated from human breast tumors versus normal mammary fibroblasts (RMFs). Our in situ RNA hybridization analysis for Nox4 transcription on a human breast tumor microarray further support a role of this pro-oxidant in the stroma of breast carcinomas. In addition, we found that Nox4 promotes autophagy in CAFs. Moreover, we found that Nox4 promoted survival of CAFs via activation of Nrf2, a master regulator of oxidative stress response. We have further shown Birc5 is involved as a downstream modulator of Nrf2-mediated pro-survival phenotype. Together these studies indicate a role of redox signaling via the Nox4-Nrf2 pathway in tumorigenesis and metastasis of breast cancer cells by promoting autophagy and survival of CAFs.
Collapse
Affiliation(s)
- Shakeel Mir
- Department of Biochemistry and Molecular Biology, Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, 7005 Durham Research Center, 985870 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Briana D Ormsbee Golden
- Department of Biochemistry and Molecular Biology, Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, 7005 Durham Research Center, 985870 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Brandon J Griess
- Department of Biochemistry and Molecular Biology, Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, 7005 Durham Research Center, 985870 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, 7005 Durham Research Center, 985870 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Eric Tom
- Department of Biochemistry and Molecular Biology, Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, 7005 Durham Research Center, 985870 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Elizabeth A Kosmacek
- Department of Biochemistry and Molecular Biology, Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, 7005 Durham Research Center, 985870 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Rebecca E Oberley-Deegan
- Department of Biochemistry and Molecular Biology, Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, 7005 Durham Research Center, 985870 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Geoffrey A Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Vimla Band
- Department of Genetics, Cell Biology and Anatomy, Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Melissa Lt Teoh-Fitzgerald
- Department of Biochemistry and Molecular Biology, Buffett Cancer Center, College of Medicine, University of Nebraska Medical Center, 7005 Durham Research Center, 985870 Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
46
|
Wang C, Liang J, Ren Y, Huang J, Jin B, Wang G, Chen N. A Preclinical Systematic Review of the Effects of Chronic Exercise on Autophagy-Related Proteins in Aging Skeletal Muscle. Front Physiol 2022; 13:930185. [PMID: 35910582 PMCID: PMC9329943 DOI: 10.3389/fphys.2022.930185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Exercise is one of the most effective interventions for preventing and treating skeletal muscle aging. Exercise-induced autophagy is widely acknowledged to regulate skeletal muscle mass and delay skeletal muscle aging. However, the mechanisms underlying of the effect of different exercises on autophagy in aging skeletal muscle remain unclear. Methods: A systematic review was performed following an electronic search of SCOPUS, PubMed, Web of Science, ScienceDirect, and Google Scholar and two Chinese electronic databases, CNKI and Wan Fang. All articles published in English and Chinese between January 2010 and January 2022 that quantified autophagy-related proteins in aging skeletal muscle models. Results: The primary outcome was autophagy assessment, indicated by changes in the levels of any autophagy-associated proteins. A total of fifteen studies were included in the final review. Chronic exercise modes mainly comprise aerobic exercise and resistance exercise, and the intervention types include treadmill training, voluntary wheel running, and ladder training. LC3, Atg5-Atg7/9/12, mTOR, Beclin1, Bcl-2, p62, PGC-1α, and other protein levels were quantified, and the results showed that long-term aerobic exercise and resistance exercise could increase the expression of autophagy-related proteins in aging skeletal muscle (p < 0.05). However, there was no significant difference in short term or high-intensity chronic exercise, and different types and intensities of exercise yielded different levels of significance for autophagy-related protein expression. Conclusion: Existing evidence reveals that high-intensity exercise may induce excessive autophagy, while low-intensity exercise for a short period (Intervention duration <12 weeks, frequency <3 times/week) may not reach the threshold for exercise-induced autophagy. Precise control of the exercise dose is essential in the long term to maximize the benefits of exercise. Further investigation is warranted to explore the relationship between chronic exercise and different exercise duration and types to substantiate the delaying of skeletal muscle aging by exercise.
Collapse
Affiliation(s)
- Cenyi Wang
- School of Physical Education and Sports Science, Soochow University, Suzhou, China
| | - Jiling Liang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, China
| | - Yuanyuan Ren
- School of Physical Education and Sports Science, Soochow University, Suzhou, China
| | - Jielun Huang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, China
| | - Baoming Jin
- School of Physical Education and Sports Science, Soochow University, Suzhou, China
| | - Guodong Wang
- School of Physical Education and Sports Science, Soochow University, Suzhou, China
- *Correspondence: Guodong Wang, ; Ning Chen,
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, China
- *Correspondence: Guodong Wang, ; Ning Chen,
| |
Collapse
|
47
|
Rahimmi A, Fathi F, Nikkhoo B, Soleimani F, Khademerfan M. Over-expression of survivin could prevent the oxidative stress and toxicity of rotenone in SH-SY5Y cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:842-849. [PMID: 36033958 PMCID: PMC9392565 DOI: 10.22038/ijbms.2022.64345.14165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/28/2022] [Indexed: 12/02/2022]
Abstract
OBJECTIVES It is important to find novel therapeutic molecular targets for curing Parkinson's disease (PD). Accordingly, this study aimed to evaluate the effect of over-expression of the survivin gene, a gene frequently reported as neuroprotective, on the in vitro model of PD. MATERIALS AND METHODS Survivin was over-expressed in SH-SY5Y cells. Next, the cells were treated with rotenone (500 nM) for 24 hr. Then, viability and the total antioxidant capacity were assessed. The expression levels of 15 important genes of key cellular processes (oxidative stress, apoptosis, cell cycle, and autophagy) were assessed. The studied genes included survivin, superoxide dismutase, catalase, BAX, bcl2, caspase 3, caspase 8, caspase 9, p53, SMAC, β-catenin, mTOR, AMPK, ATG7, RPS18. The apoptosis level and the frequency of cell cycle stages were assessed by flow cytometry. For analyzing the data, the ANOVA test followed by Tukey's test was used to evaluate the significant differences between the experimental groups. P<0.05 was considered significant. RESULTS Survivin could significantly decrease the rotenone-induced apoptosis in SH-SY5Y cells. The rotenone treatment led to down-regulation of catalase and up-regulation of bax, bcl2, caspase 3, caspase 8, P53, β-catenin, and ATG7. Survivin could significantly neutralize the effect of rotenone in most the genes. It could also increase the total antioxidant capacity of SH-SY5Y cells. CONCLUSION Survivin could prevent the toxic effect of rotenone on SH-SY5Y cells during the development of in vitro PD model via regulating the genes of key cellular processes, including anti-oxidation, apoptosis, cell cycle, and autophagy.
Collapse
Affiliation(s)
- Arman Rahimmi
- Department of Molecular Medicine, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran , Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Fardin Fathi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran , Department of Anatomical Sciences, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Bahram Nikkhoo
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran , Department of Pathology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Farzad Soleimani
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammadbagher Khademerfan
- Department of Molecular Medicine, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran , Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran ,Corresponding author: Mohammadbagher Khademerfan. Department of Molecular Medicine, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran; Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
48
|
Bai Y, Yuan F, Yu J, Si Y, Zheng Y, Li D. A BIRC5 High COD1 Low Cancer Tissue Phenotype Indicates Poorer Prognosis of Metastatic Breast Cancer Patients. Cancer Inform 2022; 21:11769351221096655. [PMID: 35734521 PMCID: PMC9208035 DOI: 10.1177/11769351221096655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Extensive data research is helpful to find sensitive biomarkers for prognostic prediction of metastatic breast cancer. Through analyzing multiple GEO datasets, literature retrieval, and verified in GEPIA datasets, we identify BIRC5 (Baculoviral IAP repeat containing 5) and CDO1 (Cysteine dioxygenase type 1) as DEGs (differentially expressed genes) between breast tumor and normal tissue and DEGs between metastatic breast cancer and breast cancer in situ. Then, we performed a series of in silico studies on BIRC5 and CDO1 using online tools including the UALCAN, TIMER, TCGA-BRCA, LinkedOmics Kaplan-Meier Plotter, and an R script for analysis. To verify the association of 2 genes expression and patients’ clinical data, we detected BIRC5 and CDO1 mRNA in the tissue of 48 breast cancer patients. The results showed the tumor with BIRC5high CDO1low expression generally indicated patients’ shorter overall (OS) and relapse-free survival (RFS). Specifically, BIRC5 and CDO1 levels significantly affect OS or RFS in patients with Lymph node metastasis and molecular subtypes of TNBC (triple-negative breast cancer) and Luminal A. A BIRC5high tumor displayed a purer tumor purity and expressed more KIR receptors on NK cells while activating more FOXP3+CD25+ Treg cells. The CDO1low tumors infiltrated with more immunocytes leading to less tumor purity. In our verified experiment, BIRC5 mRNA level in patients with stage III and over was significantly higher than in patients with stage 0 to II, but there were no significant differences among molecular subtyping groups; TNBC tissue expressed lower CDO1 mRNA level than HER2+ and Luminal type cancer tissue. In conclusion, a BIRC5high CDO1low expression type in breast cancer tissue indicates a poorer prognosis of patients. The potential mechanism might be increased BIRC5 expression in cancer tissue is likely to accompany NK cells inhibition, activating more Treg cells, and lacking effective CD8+ T cells proliferation. Meanwhile, CDO1 level is positively related to more immunocytes infiltration.
Collapse
Affiliation(s)
- Yujie Bai
- Department of Microbiology, School of Basic Medical of Science, Wuhan University, Wuhan, China.,Department of Scientific Research and Education, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Feng Yuan
- Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan, China
| | - Jing Yu
- Department of Blood Transfusion, Wuhan No.1 Hospital/Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yibei Si
- Department of Microbiology, School of Basic Medical of Science, Wuhan University, Wuhan, China
| | - Yiwen Zheng
- Department of Microbiology, School of Basic Medical of Science, Wuhan University, Wuhan, China
| | - Dongqing Li
- Department of Microbiology, School of Basic Medical of Science, Wuhan University, Wuhan, China
| |
Collapse
|
49
|
Zhang Y, Gao LX, Wang W, Zhang T, Dong FY, Ding WP. M 6 A Demethylase FTO Regulates Cisplatin Resistance of Gastric Cancer by Modulating Autophagy Activation via ULK1. Cancer Sci 2022; 113:3085-3096. [PMID: 35730319 PMCID: PMC9459343 DOI: 10.1111/cas.15469] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022] Open
Abstract
Drug resistance is an important factor for treatment failure of gastric cancer. N6‐methyladenosine (m6A) is the predominant mRNA internal modification in eukaryotes. The roles of m6A modification in drug resistance of gastric cancer remains unclear. In the present study, the m6A methylated RNA level was significantly decreased while the expression of m6A demethylase fat mass and obesity‐associated protein (FTO) was obviously elevated in cisplatin‐resistant (SGC‐7901/DDP) gastric cancer cells. Knockdown of FTO reversed cisplatin resistance of SGC‐7901/DDP cells both in vitro and in vivo, which was attributed to the inhibition of Unc‐51‐like kinase 1 (ULK1)‐mediated autophagy. Mechanistically, ULK1 expression was regulated in an FTO‐m6A‐dependent and YTHDF2‐mediated manner. Collectively, our findings indicate that the FTO/ULK1 axis exerts crucial roles in cisplatin resistance of gastric cancer.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China.,Department of Gastroenterology, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Ling-Xi Gao
- Department of Gastroenterology, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Wen Wang
- Department of Gastroenterology, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Teng Zhang
- Department of Gastroenterology, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Fang-Yi Dong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Ping Ding
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China.,Department of Radiotherapy, The First Aflliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| |
Collapse
|
50
|
Jiang H, Zhang D, Aleksandrovich KD, Ye J, Wang L, Chen X, Gao M, Wang X, Yan T, Yang H, Lu E, Liu W, Zhang C, Wu J, Yao P, Sun Z, Rong X, Timofeevich SA, Mahmutovich SS, Zheng Z, Chen X, Zhao S. RRM2 Mediates the Anti-Tumor Effect of the Natural Product Pectolinarigenin on Glioblastoma Through Promoting CDK1 Protein Degradation by Increasing Autophagic Flux. Front Oncol 2022; 12:887294. [PMID: 35651787 PMCID: PMC9150261 DOI: 10.3389/fonc.2022.887294] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
The natural product pectolinarigenin exerts anti-inflammatory activity and anti-tumor effects, and exhibits different biological functions, particularly in autophagy and cell cycle regulation. However, the antineoplastic effect of pectolinarigenin on glioblastoma (GBM) remains unclear. In the present study, we found that pectolinarigenin inhibits glioblastoma proliferation, increases autophagic flux, and induces cell cycle arrest by inhibiting ribonucleotide reductase subunit M2 (RRM2), which can be reversed by RRM2 overexpression plasmid. Additionally, pectolinarigenin promoted RRM2 protein degradation via autolysosome-dependent pathway by increasing autophagic flow. RRM2 knockdown promoted the degradation of CDK1 protein through autolysosome-dependent pathway by increasing autophagic flow, thereby inhibiting the proliferation of glioblastoma by inducing G2/M phase cell cycle arrest. Clinical data analysis revealed that RRM2 expression in glioma patients was inversely correlated with the overall survival. Collectively, pectolinarigenin promoted the degradation of CDK1 protein dependent on autolysosomal pathway through increasing autophagic flux by inhibiting RRM2, thereby inhibiting the proliferation of glioblastoma cells by inducing G2/M phase cell cycle arrest, and RRM2 may be a potential therapeutic target and a prognosis and predictive biomarker in GBM patients.
Collapse
Affiliation(s)
- Haiping Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Neurosurgery, Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Dongzhi Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Neurosurgery, Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China.,Department of Neurosurgery, The Affiliated Cancer Hospital of Harbin Medical University, Harbin, China
| | - Karpov Denis Aleksandrovich
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Neurosurgery, Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China.,Department of Neurosurgery and Medical Rehabilitation, Bashkir State Medical University, Ufa, Russia
| | - Junyi Ye
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Neurosurgery, Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Lixiang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Neurosurgery, Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Xiaofeng Chen
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Neurosurgery, Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Ming Gao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Neurosurgery, Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Xinzhuang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Neurosurgery, Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Tao Yan
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Neurosurgery, Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - He Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Neurosurgery, Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Enzhou Lu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Neurosurgery, Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Wenwu Liu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Neurosurgery, Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Cheng Zhang
- Department of Undergraduate, Suffolk University, Boston, MA, United States
| | - Jianing Wu
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, China
| | - Penglei Yao
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, China
| | - Zhenying Sun
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, China
| | - Xuan Rong
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, China
| | - Sokhatskii Andrei Timofeevich
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Neurosurgery, Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China.,Department of Neurosurgery and Medical Rehabilitation, Bashkir State Medical University, Ufa, Russia
| | - Safin Shamil Mahmutovich
- Department of Neurosurgery and Medical Rehabilitation, Bashkir State Medical University, Ufa, Russia
| | - Zhixing Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Neurosurgery, Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Xin Chen
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Neurosurgery, Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China
| | - Shiguang Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Neurosurgery, Key Colleges and Universities Laboratory of Neurosurgery in Heilongjiang Province, Harbin, China.,Institute of Neuroscience, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, China.,Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, China
| |
Collapse
|