1
|
Chen Q, An S, Wang C, Zhou Y, Liu X, Ren W. Phase separation in mitochondrial fate and mitochondrial diseases. Proc Natl Acad Sci U S A 2025; 122:e2422255122. [PMID: 40344006 DOI: 10.1073/pnas.2422255122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025] Open
Abstract
Mitochondria are central metabolic organelles that control cell fate and the development of mitochondrial diseases. Traditionally, phase separation directly regulates cell functions by driving RNA, proteins, or other molecules to concentrate into lipid droplets. Recent studies show that phase separation regulates cell functions and diseases through the regulation of subcellular organelles, particularly mitochondria. In fact, phase separation is involved in various mitochondrial activities including nucleoid assembly, autophagy, and mitochondria-related inflammation. Here, we outline the key mechanisms through which phase separation influences mitochondrial activities and the development of mitochondrial diseases. Insights into how phase separation regulates mitochondrial activities and diseases will help us develop interventions for related diseases.
Collapse
Affiliation(s)
- Qingyi Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning 530021, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Sanqi An
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Chuanlong Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yanshuang Zhou
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- Institute of Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- The Sixth School of Clinical Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guangzhou 511436, China
| | - Xingguo Liu
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- Institute of Development and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- The Sixth School of Clinical Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guangzhou 511436, China
| | - Wenkai Ren
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning 530021, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Jobling AI, Findlay Q, Greferath U, Vessey KA, Gunnam S, Morrison V, Venables G, Guymer RH, Fletcher EL. Nanosecond laser induces proliferation and improved cellular health within the retinal pigment epithelium. Front Med (Lausanne) 2025; 12:1516900. [PMID: 40098930 PMCID: PMC11911352 DOI: 10.3389/fmed.2025.1516900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
Background Age-related macular degeneration (AMD) is a leading cause of vision loss in those over 60 years of age. Although there are limited interventions that may prevent the development or progression of disease, more efficacious treatments are required. Short-pulsed laser treatment shows promise in delaying progression of early disease. This work details how nanosecond laser influences the retinal pigment epithelium (RPE), the principal cell type implicated in AMD. Methods C57BL/6J mice (3-month-old) underwent monocular nanosecond laser treatment to assess short-term RPE response, while 9-month-old C57BL/6J and ApoEnull mice were similarly treated and longer-term responses investigated after 3 months. Human tissue was also obtained after 2 nanosecond laser treatments (1 month apart). RPE proliferation was assessed using bromodeoxyuridine and RPE gene change explored using qPCR and RNAseq. Melanin and lipofuscin content were quantified using histological techniques. Results Nanosecond laser induced RPE proliferation in treated and fellow mouse eyes, with monolayer repair occurring within 3 days. This was replicated in human tissue, albeit over a longer duration (1-4 weeks). Wildtype animals showed no overt change in RPE gene expression after short or longer post-treatment durations, while laser treated ApoEnull animals showed increased Mertk and Pedf expression, and a reduced number of dysregulated aging genes in treated and fellow eyes after 3 months. Furthermore, melanin and lipofuscin content were restored to wildtype levels in laser-treated ApoEnull RPE, while melanolipofuscin granules were reduced within treated regions of human RPE. Conclusion This work shows nanosecond laser stimulates RPE proliferation and results in an improved cellular phenotype. These data provide a biological basis for the prophylactic use of nanosecond lasers in AMD.
Collapse
Affiliation(s)
- Andrew I. Jobling
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Quan Findlay
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Ursula Greferath
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Kirstan A. Vessey
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Satya Gunnam
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Victoria Morrison
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Gene Venables
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Robyn H. Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, The University of Melbourne, Parkville, VIC, Australia
| | - Erica L. Fletcher
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
3
|
Jarocki M, Turek K, Saczko J, Tarek M, Kulbacka J. Lipids associated with autophagy: mechanisms and therapeutic targets. Cell Death Discov 2024; 10:460. [PMID: 39477959 PMCID: PMC11525783 DOI: 10.1038/s41420-024-02224-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
Autophagy is a molecular process essential for maintaining cellular homeostasis, with its impairment or dysregulation linked to the progression of various diseases in mammals. Specific lipids, including phosphoinositides, sphingolipids, and oxysterols, play pivotal roles in inducing and regulating autophagy, highlighting their significance in this intricate process. This review focuses on the critical involvement of these lipids in autophagy and lipophagy, providing a comprehensive overview of the current understanding of their functions. Moreover, we delve into how abnormalities in autophagy, influenced by these lipids, contribute to the pathogenesis of various diseases. These include age-related conditions such as cardiovascular diseases, neurodegenerative disorders, type 2 diabetes, and certain cancers, as well as inflammatory and liver diseases, skeletal muscle pathologies and age-related macular degeneration (AMD). This review aims to highlight function of lipids and their potential as therapeutic targets in treating diverse human pathologies by elucidating the specific roles of phosphoinositides, sphingolipids, and oxysterols in autophagy.
Collapse
Affiliation(s)
- Michał Jarocki
- University Clinical Hospital, Wroclaw Medical University, Wroclaw, Poland
| | | | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Mounir Tarek
- Université de Lorraine, CNRS, LPCT, Nancy, France
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
| |
Collapse
|
4
|
Guo Y, Xu N, Yan H, Li J, Huang L, Zhu L, Du W, Liu Z, Zhao M. Splice Variant of Retinal G-Protein-Coupled Receptor Deletion-Mediated Dysregulation of Autophagy Increases the Susceptibility to Age-Related Macular Degeneration-Like Defects. Ophthalmic Res 2024; 67:611-624. [PMID: 39406195 DOI: 10.1159/000541991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/30/2024] [Indexed: 11/14/2024]
Abstract
INTRODUCTION The splice variant of retinal G-protein-coupled receptor deletion (RGR-d) is a persistent component of drusen and may be involved in the pathogenesis of dry age-related macular degeneration (AMD). Increasing evidence has demonstrated the critical role of autophagy in AMD. In this study, we investigated whether RGR-d disrupts autophagy in early dry AMD in vivo and in vitro. METHODS Fundus imaging and fluoroscopy were performed on RGR-d mice created by multiplex gene editing. The retina microstructure was evaluated by performing hematoxylin and eosin (H&E) staining as well as transmission electron microscopy (TEM). Retinal function was assessed by full-field electroretinography (ERG). After lentivirus transfection and stimulation, the permeability, phagocytosis, and tight junctions of ARPE-19 cells were evaluated. Western blotting of ATG5, Beclin-1, LC3II/I, and P62 was performed to detect the changes in autophagy pathways. RESULTS Atrophy and patchy penetrating hyperfluorescent foci, consistent with early AMD-like defects, were observed in the fundus of 12-month-old RGR-d mice. H&E staining of retinal tissues indicated thinning of each layer of the retinal structure. H&E staining of retinal tissues indicated thinning of each layer of the retinal structure. TEM analysis showed some diffuse granular deposits. And the morphology of choroidal microvascular endothelial cells was degraded and distorted. The morphology of the photoreceptor outer segments showed structural damage, and Bruch's membrane was thickened. ERG indicated that the photoreceptor of RGR-d mice were dysfunctional. Changes in autophagy-related protein expression were observed in the retinal pigment epithelium and retinal neurepithelium, and autophagy regulation was decreased. Palmitic acid (PA) stimulation caused permeability, phagocytosis, and tight junction dysfunction in cells overexpressing RGR-d. Beclin-1 and LC3II/I expression levels were significantly decreased and that of P62 was elevated in RGR-d cells after PA stimulation. CONCLUSION RGR-d disrupts the autophagy pathway, causing the development of an early AMD-like pathophysiology.
Collapse
Affiliation(s)
- Yue Guo
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China,
- Eye Diseases and Optometry Institute, Beijing, China,
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China,
- College of Optometry, Peking University Health Science Center, Beijing, China,
| | - Ningda Xu
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Huichao Yan
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Jiarui Li
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Lvzhen Huang
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Li Zhu
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Wei Du
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Zhiming Liu
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Mingwei Zhao
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| |
Collapse
|
5
|
Stevanovic D, Vucicevic L, Misirkic-Marjanovic M, Martinovic T, Mandic M, Harhaji-Trajkovic L, Trajkovic V. Trehalose Attenuates In Vitro Neurotoxicity of 6-Hydroxydopamine by Reducing Oxidative Stress and Activation of MAPK/AMPK Signaling Pathways. Int J Mol Sci 2024; 25:10659. [PMID: 39408988 PMCID: PMC11476739 DOI: 10.3390/ijms251910659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
The effects of trehalose, an autophagy-inducing disaccharide with neuroprotective properties, on the neurotoxicity of parkinsonian mimetics 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenylpiridinium (MPP+) are poorly understood. In our study, trehalose suppressed 6-OHDA-induced caspase-3/PARP1 cleavage (detected by immunoblotting), apoptotic DNA fragmentation/phosphatidylserine externalization, oxidative stress, mitochondrial depolarization (flow cytometry), and mitochondrial damage (electron microscopy) in SH-SY5Y neuroblastoma cells. The protection was not mediated by autophagy, autophagic receptor p62, or antioxidant enzymes superoxide dismutase and catalase. Trehalose suppressed 6-OHDA-induced activation of c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), and AMP-activated protein kinase (AMPK), as revealed by immunoblotting. Pharmacological/genetic inhibition of JNK, p38 MAPK, or AMPK mimicked the trehalose-mediated cytoprotection. Trehalose did not affect the extracellular signal-regulated kinase (ERK) and mechanistic target of rapamycin complex 1 (mTORC1)/4EBP1 pathways, while it reduced the prosurvival mTORC2/AKT signaling. Finally, trehalose enhanced oxidative stress, mitochondrial damage, and apoptosis without decreasing JNK, p38 MAPK, AMPK, or AKT activation in SH-SY5Y cells exposed to MPP+. In conclusion, trehalose protects SH-SY5Y cells from 6-OHDA-induced oxidative stress, mitochondrial damage, and apoptosis through autophagy/p62-independent inhibition of JNK, p38 MAPK, and AMPK. The opposite effects of trehalose on the neurotoxicity of 6-OHDA and MPP+ suggest caution in its potential development as a neuroprotective agent.
Collapse
Affiliation(s)
- Danijela Stevanovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia; (D.S.)
| | - Ljubica Vucicevic
- Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (M.M.-M.)
| | - Maja Misirkic-Marjanovic
- Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (M.M.-M.)
| | - Tamara Martinovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia; (D.S.)
| | - Milos Mandic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia; (D.S.)
| | - Ljubica Harhaji-Trajkovic
- Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (M.M.-M.)
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia; (D.S.)
| |
Collapse
|
6
|
Wang XL, Gao YX, Yuan QZ, Zhang M. NLRP3 and autophagy in retinal ganglion cell inflammation in age-related macular degeneration: potential therapeutic implications. Int J Ophthalmol 2024; 17:1531-1544. [PMID: 39156786 PMCID: PMC11286452 DOI: 10.18240/ijo.2024.08.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/22/2024] [Indexed: 08/20/2024] Open
Abstract
Retinal degenerative diseases were a large group of diseases characterized by the primary death of retinal ganglion cells (RGCs). Recent studies had shown an interaction between autophagy and nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasomes, which may affect RGCs in retinal degenerative diseases. The NLRP3 inflammasome was a protein complex that, upon activation, produces caspase-1, mediating the apoptosis of retinal cells and promoting the occurrence and development of retinal degenerative diseases. Upregulated autophagy could inhibit NLRP3 inflammasome activation, while inhibited autophagy can promote NLRP3 inflammasome activation, which leaded to the accelerated emergence of drusen and lipofuscin deposition under the neurosensory retina. The activated NLRP3 inflammasome could further inhibit autophagy, thus forming a vicious cycle that accelerated the damage and death of RGCs. This review discussed the relationship between NLRP3 inflammasome and autophagy and its effects on RGCs in age-related macular degeneration, providing a new perspective and direction for the treatment of retinal diseases.
Collapse
Affiliation(s)
- Xiao-Li Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yun-Xia Gao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Qiong-Zhen Yuan
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ming Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
7
|
Hu ZL, Wang YX, Lin ZY, Ren WS, Liu B, Zhao H, Qin Q. Regulatory factors of Nrf2 in age-related macular degeneration pathogenesis. Int J Ophthalmol 2024; 17:1344-1362. [PMID: 39026906 PMCID: PMC11246936 DOI: 10.18240/ijo.2024.07.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/06/2024] [Indexed: 07/20/2024] Open
Abstract
Age-related macular degeneration (AMD) is a complicated disease that causes irreversible visual impairment. Increasing evidences pointed retinal pigment epithelia (RPE) cells as the decisive cell involved in the progress of AMD, and the function of anti-oxidant capacity of PRE plays a fundamental physiological role. Nuclear factor erythroid 2 related factor 2 (Nrf2) is a significant transcription factor in the cellular anti-oxidant system as it regulates the expression of multiple anti-oxidative genes. Its functions of protecting RPE cells against oxidative stress (OS) and ensuing physiological changes, including inflammation, mitochondrial damage and autophagy dysregulation, have already been elucidated. Understanding the roles of upstream regulators of Nrf2 could provide further insight to the OS-mediated AMD pathogenesis. For the first time, this review summarized the reported upstream regulators of Nrf2 in AMD pathogenesis, including proteins and miRNAs, and their underlying molecular mechanisms, which may help to find potential targets via regulating the Nrf2 pathway in the future research and further discuss the existing Nrf2 regulators proved to be beneficial in preventing AMD.
Collapse
Affiliation(s)
- Zi-Ling Hu
- Five Year Program of Ophthalmology and Optometry 2019, Beijing Tong Ren Hospital, Capital Medical University, Beijing 100054, China
| | - Yu-Xuan Wang
- Four Year Program of Traditional Chinese Pharmacy 2020, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Zi-Yue Lin
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Wen-Shuo Ren
- Four Year Program of Traditional Chinese Pharmacy 2020, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Bo Liu
- Five Year Program of Ophthalmology and Optometry 2021, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing 100069, China
| | - Qiong Qin
- Biochemistry & Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
8
|
Zhou L, Mo Y, Zhang H, Zhang M, Xu J, Liang S. Role of AMPK-regulated autophagy in retinal pigment epithelial cell homeostasis: A review. Medicine (Baltimore) 2024; 103:e38908. [PMID: 38996139 PMCID: PMC11245211 DOI: 10.1097/md.0000000000038908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The retinal pigment epithelium (RPE) is a regularly arranged monolayer of cells in the outermost layer of the retina. It is crucial for transporting nutrients and metabolic substances in the retina and maintaining the retinal barrier. RPE dysfunction causes diseases related to vision loss. Thus, understanding the mechanisms involved in normal RPE function is vital. Adenosine monophosphate-activated protein kinase (AMPK) is an RPE energy sensor regulating various signaling and metabolic pathways to maintain cellular energetic homeostasis. AMPK activation is involved in multiple signaling pathways regulated by autophagy in the RPE, thereby protecting the cells from oxidative stress and slowing RPE degeneration. In this review, we attempt to broaden the understanding of the pathogenesis of RPE dysfunction by focusing on the role and mechanism of AMPK regulation of autophagy in the RPE. The correlation between RPE cellular homeostasis and role of AMPK was determined by analyzing the structure and mechanism of AMPK and its signaling pathway in autophagy. The protective effect of AMPK-regulated autophagy on the RPE for gaining insights into the regulatory pathways of RPE dysfunction has been discussed.
Collapse
Affiliation(s)
- Liangliang Zhou
- Department of Opthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- Department of Opthalmology, People’s Hospital of Dayi County, Chengdu, People’s Republic of China
| | - Ya Mo
- Department of Opthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- Department of Opthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Haiyan Zhang
- Department of Opthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Mengdi Zhang
- Department of Opthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Jiayu Xu
- Department of Opthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Sumin Liang
- Department of Opthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
9
|
Hu H, Liu F, Gao P, Huang Y, Jia D, Reilly J, Chen X, Han Y, Sun K, Luo J, Li P, Zhang Z, Wang Q, Lu Q, Luo D, Shu X, Tang Z, Liu M, Ren X. Cross-species single-cell landscapes identify the pathogenic gene characteristics of inherited retinal diseases. Front Genet 2024; 15:1409016. [PMID: 39055259 PMCID: PMC11269129 DOI: 10.3389/fgene.2024.1409016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/30/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction Inherited retinal diseases (IRDs) affect ∼4.5 million people worldwide. Elusive pathogenic variants in over 280 genes are associated with one or more clinical forms of IRDs. It is necessary to understand the complex interaction among retinal cell types and pathogenic genes by constructing a regulatory network. In this study, we attempt to establish a panoramic expression view of the cooperative work in retinal cells to understand the clinical manifestations and pathogenic bases underlying IRDs. Methods Single-cell RNA sequencing (scRNA-seq) data on the retinas from 35 retina samples of 3 species (human, mouse, and zebrafish) including 259,087 cells were adopted to perform a comparative analysis across species. Bioinformatic tools were used to conduct weighted gene co-expression network analysis (WGCNA), single-cell regulatory network analysis, cell-cell communication analysis, and trajectory inference analysis. Results The cross-species comparison revealed shared or species-specific gene expression patterns at single-cell resolution, such as the stathmin family genes, which were highly expressed specifically in zebrafish Müller glias (MGs). Thirteen gene modules were identified, of which nine were associated with retinal cell types, and Gene Ontology (GO) enrichment of module genes was consistent with cell-specific highly expressed genes. Many IRD genes were identified as hub genes and cell-specific regulons. Most IRDs, especially the retinitis pigmentosa (RP) genes, were enriched in rod-specific regulons. Integrated expression and transcription regulatory network genes, such as congenital stationary night blindness (CSNB) genes GRK1, PDE6B, and TRPM1, showed cell-specific expression and transcription characteristics in either rods or bipolar cells (BCs). IRD genes showed evolutionary conservation (GNAT2, PDE6G, and SAG) and divergence (GNAT2, MT-ND4, and PDE6A) along the trajectory of photoreceptors (PRs) among species. In particular, the Leber congenital amaurosis (LCA) gene OTX2 showed high expression at the beginning of the trajectory of both PRs and BCs. Conclusion We identified molecular pathways and cell types closely connected with IRDs, bridging the gap between gene expression, genetics, and pathogenesis. The IRD genes enriched in cell-specific modules and regulons suggest that these diseases share common etiological bases. Overall, mining of interspecies transcriptome data reveals conserved transcriptomic features of retinas across species and promising applications in both normal retina anatomy and retina pathology.
Collapse
Affiliation(s)
- Hualei Hu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pan Gao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yuwen Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Danna Jia
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jamas Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Xiang Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yunqiao Han
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Kui Sun
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jiong Luo
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zuxiao Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qunwei Lu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Daji Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinhua Shu
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Ren
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Qin X, Li H, Zhao H, Fang L, Wang X. Enhancing healthy aging with small molecules: A mitochondrial perspective. Med Res Rev 2024; 44:1904-1922. [PMID: 38483176 DOI: 10.1002/med.22034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/27/2024] [Accepted: 03/04/2024] [Indexed: 06/10/2024]
Abstract
The pursuit of enhanced health during aging has prompted the exploration of various strategies focused on reducing the decline associated with the aging process. A key area of this exploration is the management of mitochondrial dysfunction, a notable characteristic of aging. This review sheds light on the crucial role that small molecules play in augmenting healthy aging, particularly through influencing mitochondrial functions. Mitochondrial oxidative damage, a significant aspect of aging, can potentially be lessened through interventions such as coenzyme Q10, alpha-lipoic acid, and a variety of antioxidants. Additionally, this review discusses approaches for enhancing mitochondrial proteostasis, emphasizing the importance of mitochondrial unfolded protein response inducers like doxycycline, and agents that affect mitophagy, such as urolithin A, spermidine, trehalose, and taurine, which are vital for sustaining protein quality control. Of equal importance are methods for modulating mitochondrial energy production, which involve nicotinamide adenine dinucleotide boosters, adenosine 5'-monophosphate-activated protein kinase activators, and compounds like metformin and mitochondria-targeted tamoxifen that enhance metabolic function. Furthermore, the review delves into emerging strategies that encourage mitochondrial biogenesis. Together, these interventions present a promising avenue for addressing age-related mitochondrial degradation, thereby setting the stage for the development of innovative treatment approaches to meet this extensive challenge.
Collapse
Affiliation(s)
- Xiujiao Qin
- Department of Geriatrics, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Hongyuan Li
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Huiying Zhao
- Department of Geriatrics, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Le Fang
- Department of Neurology, The China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
- Beijing National Laboratory for Molecular Sciences, Beijing, China
| |
Collapse
|
11
|
Dieguez HH, Romeo HE, Alaimo A, Bernal Aguirre NA, Calanni JS, Adán Aréan JS, Alvarez S, Sciurano R, Rosenstein RE, Dorfman D. Mitochondrial quality control in non-exudative age-related macular degeneration: From molecular mechanisms to structural and functional recovery. Free Radic Biol Med 2024; 219:17-30. [PMID: 38579938 DOI: 10.1016/j.freeradbiomed.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Non-exudative age-related macular degeneration (NE-AMD) is the leading blindness cause in the elderly. Clinical and experimental evidence supports that early alterations in macular retinal pigment epithelium (RPE) mitochondria play a key role in NE-AMD-induced damage. Mitochondrial dynamics (biogenesis, fusion, fission, and mitophagy), which is under the central control of AMP-activated kinase (AMPK), in turn, determines mitochondrial quality. We have developed a NE-AMD model in C57BL/6J mice induced by unilateral superior cervical ganglionectomy (SCGx), which progressively reproduces the disease hallmarks circumscribed to the temporal region of the RPE/outer retina that exhibits several characteristics of the human macula. In this work we have studied RPE mitochondrial structure, dynamics, function, and AMPK role on these parameters' regulation at the nasal and temporal RPE from control eyes and at an early stage of experimental NE-AMD (i.e., 4 weeks post-SCGx). Although RPE mitochondrial mass was preserved, their function, which was higher at the temporal than at the nasal RPE in control eyes, was significantly decreased at 4 weeks post-SCGx at the same region. Mitochondria were bigger, more elongated, and with denser cristae at the temporal RPE from control eyes. Exclusively at the temporal RPE, SCGx severely affected mitochondrial morphology and dynamics, together with the levels of phosphorylated AMPK (p-AMPK). AMPK activation with metformin restored RPE p-AMPK levels, and mitochondrial dynamics, structure, and function at 4 weeks post-SCGx, as well as visual function and RPE/outer retina structure at 10 weeks post-SCGx. These results demonstrate a key role of the temporal RPE mitochondrial homeostasis as an early target for NE-AMD-induced damage, and that pharmacological AMPK activation could preserve mitochondrial morphology, dynamics, and function, and, consequently, avoid the functional and structural damage induced by NE-AMD.
Collapse
Affiliation(s)
- Hernán H Dieguez
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Horacio E Romeo
- School of Engineering and Agrarian Sciences, Pontifical Catholic University of Argentina, BIOMED/UCA/CONICET, Buenos Aires, Argentina
| | - Agustina Alaimo
- Interdisciplinary Laboratory of Cellular Dynamics and Nanotools, Department of Biological Chemistry, Faculty of Exact and Natural Sciences/IQUIBICEN, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Nathaly A Bernal Aguirre
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Juan S Calanni
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Juan S Adán Aréan
- Department of Analytical Chemistry and Physicochemistry, School of Pharmacy and Biochemistry/IBIMOL, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Silvia Alvarez
- Department of Analytical Chemistry and Physicochemistry, School of Pharmacy and Biochemistry/IBIMOL, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Roberta Sciurano
- Department of Cellular Biology, Histology, Embryology and Genetics, School of Medicine/INBIOMED, UBA/CONICET, Buenos Aires, Argentina
| | - Ruth E Rosenstein
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Biological Chemistry, Faculty of Exact and Natural Sciences/IQUIBICEN, University of Buenos Aires, Buenos Aires, Argentina; Department of Human Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Damián Dorfman
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Raeker MÖ, Perera ND, Karoukis AJ, Chen L, Feathers KL, Ali RR, Thompson DA, Fahim AT. Reduced Retinal Pigment Epithelial Autophagy Due to Loss of Rab12 Prenylation in a Human iPSC-RPE Model of Choroideremia. Cells 2024; 13:1068. [PMID: 38920696 PMCID: PMC11201631 DOI: 10.3390/cells13121068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Choroideremia is an X-linked chorioretinal dystrophy caused by mutations in CHM, encoding Rab escort protein 1 (REP-1), leading to under-prenylation of Rab GTPases (Rabs). Despite ubiquitous expression of CHM, the phenotype is limited to degeneration of the retina, retinal pigment epithelium (RPE), and choroid, with evidence for primary pathology in RPE cells. However, the spectrum of under-prenylated Rabs in RPE cells and how they contribute to RPE dysfunction remain unknown. A CRISPR/Cas-9-edited CHM-/- iPSC-RPE model was generated with isogenic control cells. Unprenylated Rabs were biotinylated in vitro and identified by tandem mass tag (TMT) spectrometry. Rab12 was one of the least prenylated and has an established role in suppressing mTORC1 signaling and promoting autophagy. CHM-/- iPSC-RPE cells demonstrated increased mTORC1 signaling and reduced autophagic flux, consistent with Rab12 dysfunction. Autophagic flux was rescued in CHM-/- cells by transduction with gene replacement (ShH10-CMV-CHM) and was reduced in control cells by siRNA knockdown of Rab12. This study supports Rab12 under-prenylation as an important cause of RPE cell dysfunction in choroideremia and highlights increased mTORC1 and reduced autophagy as potential disease pathways for further investigation.
Collapse
Affiliation(s)
- Maide Ö. Raeker
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA; (M.Ö.R.); (N.D.P.); (A.J.K.); (K.L.F.); (R.R.A.); (D.A.T.)
| | - Nirosha D. Perera
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA; (M.Ö.R.); (N.D.P.); (A.J.K.); (K.L.F.); (R.R.A.); (D.A.T.)
| | - Athanasios J. Karoukis
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA; (M.Ö.R.); (N.D.P.); (A.J.K.); (K.L.F.); (R.R.A.); (D.A.T.)
| | - Lisheng Chen
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Kecia L. Feathers
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA; (M.Ö.R.); (N.D.P.); (A.J.K.); (K.L.F.); (R.R.A.); (D.A.T.)
| | - Robin R. Ali
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA; (M.Ö.R.); (N.D.P.); (A.J.K.); (K.L.F.); (R.R.A.); (D.A.T.)
- KCL Center for Cell and Gene Therapy, London WC2R 2LS, UK
| | - Debra A. Thompson
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA; (M.Ö.R.); (N.D.P.); (A.J.K.); (K.L.F.); (R.R.A.); (D.A.T.)
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Abigail T. Fahim
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105, USA; (M.Ö.R.); (N.D.P.); (A.J.K.); (K.L.F.); (R.R.A.); (D.A.T.)
| |
Collapse
|
13
|
Vessey KA, Jobling AI, Greferath U, Fletcher EL. Pharmaceutical therapies targeting autophagy for the treatment of age-related macular degeneration. Curr Opin Pharmacol 2024; 76:102463. [PMID: 38788268 DOI: 10.1016/j.coph.2024.102463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Age-related macular degeneration (AMD) is a major cause of irreversible vision loss in the elderly. Although new therapies have recently emerged, there are currently no ways of preventing the development of the disease. Changes in intracellular recycling processes. Changes in intracellular recycling processes, called autophagy, lead to debris accumulation and cellular dysfunction in AMD models and AMD patients. Drugs that enhance autophagy hold promise as therapies for slowing AMD progression in preclinical models; however, more studies in humans are required. While a definitive cure for AMD will likely hinge on a personalized medicine approach, treatments that enhance autophagy hold promise for slowing vision loss.
Collapse
Affiliation(s)
- Kirstan A Vessey
- Department of Anatomy and Physiology, The University of Melbourne, VIC 3010, Australia; School of Science and Technology, The University of New England, NSW 2350, Australia
| | - Andrew I Jobling
- Department of Anatomy and Physiology, The University of Melbourne, VIC 3010, Australia
| | - Ursula Greferath
- Department of Anatomy and Physiology, The University of Melbourne, VIC 3010, Australia
| | - Erica L Fletcher
- Department of Anatomy and Physiology, The University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
14
|
Huang J, Feng Q, Zou L, Liu Y, Bao M, Xia W, Zhu C. [Gly14]-humanin exerts a protective effect against D-galactose-induced primary ovarian insufficiency in mice. Reprod Biomed Online 2024; 48:103330. [PMID: 38163419 DOI: 10.1016/j.rbmo.2023.103330] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 01/03/2024]
Abstract
RESEARCH QUESTION Is there a protective effect of the humanin derivative [Gly14]-humanin (HNG) on a D-gal-induced mouse model of primary ovarian insufficiency (POI), and what is the underlying mechanism? DESIGN D-gal (200 mg/kg/day) was injected subcutaneously for 6 weeks to induce the mouse POI model. Mice treated with HNG were injected intraperitoneally with different concentrations for 6 weeks. Ovarian morphology, function, levels of sex hormones and states of oxidative stress in the ovary and body were evaluated. RESULTS Compared with the D-gal group, 10 mg/kg HNG improved the abnormal ovarian morphology and oestrous cycle (P = 0.0036), increased the number of ovarian follicles (P = 0.0016) and litters (P = 0.0127), and increased the levels of oestrogen (P = 0.0043) and AMH (P = 0.0147). Antioxidant indicators in the ovaries and serum of mice, including total antioxidant capacity (P = 0.0004 and P = 0.0032, respectively), catalase (P = 0.0173 and P = 0.0103, respectively) and glutathione (both P < 0.0001) were significantly increased. The oxidation indicator malondialdehyde decreased significantly (all P < 0.01). Apoptosis of ovarian granulosa cells was significantly reduced (P = 0.0140) as was the expression of senescence-related proteins p53, p21 and p16 (all P < 0.01). The level of autophagy in ovarian tissue of mice treated with high increased (significantly increased LC3 protein [P < 0.0001] and significantly reduced p62 protein [P = 0.0007]). CONCLUSIONS HNG inhibited D-gal-induced oxidative stress, apoptosis and ovarian damage, promoting ovarian autophagy. HNG may be a potential prophylactic agent against POI.
Collapse
Affiliation(s)
- Jin Huang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Qiwen Feng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Liping Zou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Yumeng Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Meng Bao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Wei Xia
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China..
| | - Changhong Zhu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China..
| |
Collapse
|
15
|
Geng Y, Wang Z, Xu X, Sun X, Dong X, Luo Y, Sun X. Extensive therapeutic effects, underlying molecular mechanisms and disease treatment prediction of Metformin: a systematic review. Transl Res 2024; 263:73-92. [PMID: 37567440 DOI: 10.1016/j.trsl.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
Metformin (Met), a first-line management for type 2 diabetes mellitus, has been expansively employed and studied with results indicating its therapeutic potential extending beyond glycemic control. Beyond its established role, this therapeutic drug demonstrates a broad spectrum of action encompassing over 60 disorders, encompassing metabolic conditions, inflammatory disorders, carcinomas, cardiovascular diseases, and cerebrovascular pathologies. There is clear evidence of Met's action targeting specific nodes in the molecular pathways of these diseases and, intriguingly, interactions with the intestinal microbiota and epigenetic processes have been explored. Furthermore, novel Met derivatives with structural modifications tailored to diverse diseases have been synthesized and assessed. This manuscript proffers a comprehensive thematic review of the diseases amenable to Met treatment, elucidates their molecular mechanisms, and employs informatics technology to prospect future therapeutic applications of Met. These data and insights gleaned considerably contribute to enriching our understanding and appreciation of Met's far-reaching clinical potential and therapeutic applicability.
Collapse
Affiliation(s)
- Yifei Geng
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Zhen Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Xiaoyu Xu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Xiao Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Xi Dong
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Diabetes Research Center, Chinese Academy of Medical Sciences, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, China.
| |
Collapse
|
16
|
Tan JX, Finkel T. Lysosomes in senescence and aging. EMBO Rep 2023; 24:e57265. [PMID: 37811693 PMCID: PMC10626421 DOI: 10.15252/embr.202357265] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/08/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
Dysfunction of lysosomes, the primary hydrolytic organelles in animal cells, is frequently associated with aging and age-related diseases. At the cellular level, lysosomal dysfunction is strongly linked to cellular senescence or the induction of cell death pathways. However, the precise mechanisms by which lysosomal dysfunction participates in these various cellular or organismal phenotypes have remained elusive. The ability of lysosomes to degrade diverse macromolecules including damaged proteins and organelles puts lysosomes at the center of multiple cellular stress responses. Lysosomal activity is tightly regulated by many coordinated cellular processes including pathways that function inside and outside of the organelle. Here, we collectively classify these coordinated pathways as the lysosomal processing and adaptation system (LYPAS). We review evidence that the LYPAS is upregulated by diverse cellular stresses, its adaptability regulates senescence and cell death decisions, and it can form the basis for therapeutic manipulation for a wide range of age-related diseases and potentially for aging itself.
Collapse
Affiliation(s)
- Jay Xiaojun Tan
- Aging InstituteUniversity of Pittsburgh School of Medicine/University of Pittsburgh Medical CenterPittsburghPAUSA
- Department of Cell BiologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Toren Finkel
- Aging InstituteUniversity of Pittsburgh School of Medicine/University of Pittsburgh Medical CenterPittsburghPAUSA
- Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| |
Collapse
|
17
|
Gao Y, Liu J, Li K, Li T, Li R, Zhang W, Zhang X, Wang Y, Chen M, Shi R, Cao J. Metformin Alleviates Sepsis-Associated Myocardial Injury by Enhancing AMP-Activated Protein Kinase/Mammalian Target of Rapamycin Signaling Pathway-Mediated Autophagy. J Cardiovasc Pharmacol 2023; 82:308-317. [PMID: 37499052 DOI: 10.1097/fjc.0000000000001463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
ABSTRACT Sepsis-associated myocardial injury is one of the main causes of death in intensive care units, and current clinical treatments have not been satisfactory. Therefore, finding an effective intervention is an urgent requirement. Metformin, an anti-type 2 diabetes drug, has been reported to be an autophagic activator agent that confers protection in some diseases. However, it is unclear whether it can provide defense against sepsis-associated myocardial injury. In this study, we investigated the cardioprotective effects of metformin pretreatment against lipopolysaccharide (LPS)-induced myocardial injury in C57BL/6J mice or H9c2 cells and the possible underlying mechanisms. Metformin was administered at a dose of 100 mg/kg for a week before LPS intraperitoneal injection. Twenty-four hours after LPS intervention, echocardiographic evaluation, reactive oxygen species measurement, Hoechst staining, western blotting, hematoxylin and eosin staining, and enzyme-linked immunosorbent assay were performed. Inhibitors of autophagy and AMP-activated protein kinase (AMPK) were used to further clarify the mechanisms involved. Metformin pretreatment effectively attenuated cardiac dysfunction, reduced the levels of myocardial enzymes, and alleviated cardiac hydroncus in LPS-treated mice. In addition, metformin restored the LPS-disrupted antioxidant defense and activated LPS-reduced autophagy by modulating the AMPK/mammalian target of rapamycin (AMPK/mTOR) pathway both in vivo and in vitro. The antioxidant effects of metformin on cardiomyocytes were abolished by the autophagy inhibitor 3-methyladenine (3-MA). Treatment with compound C, an AMPK inhibitor, reversed the metformin-induced autophagy in LPS-treated H9c2 cells. In conclusion, metformin pretreatment alleviates LPS-induced myocardial injury by activating AMPK/mTOR pathway-mediated autophagy.
Collapse
Affiliation(s)
- Yu Gao
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jiao Liu
- First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China; and
| | - Kemin Li
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Tian Li
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruihan Li
- First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China; and
| | - Wenlong Zhang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China; and
| | - Xuanping Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan Wang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Min Chen
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruizan Shi
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Cao
- Department of Critical Care Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
18
|
Sekar P, Hsiao G, Hsu SH, Huang DY, Lin WW, Chan CM. Metformin inhibits methylglyoxal-induced retinal pigment epithelial cell death and retinopathy via AMPK-dependent mechanisms: Reversing mitochondrial dysfunction and upregulating glyoxalase 1. Redox Biol 2023; 64:102786. [PMID: 37348156 PMCID: PMC10363482 DOI: 10.1016/j.redox.2023.102786] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
Diabetic retinopathy (DR) is a major cause of blindness in adult, and the accumulation of advanced glycation end products (AGEs) is a major pathologic event in DR. Methylglyoxal (MGO), a highly reactive dicarbonyl compound, is a precursor of AGEs. Although the therapeutic potential of metformin for retinopathy disorders has recently been elucidated, possibly through AMPK activation, it remains unknown how metformin directly affects the MGO-induced stress response in retinal pigment epithelial cells. Therefore, in this study, we compared the effects of metformin and the AMPK activator A769662 on MGO-induced DR in mice, as well as evaluated cytotoxicity, mitochondrial dynamic changes and dysfunction in ARPE-19 cells. We found MGO can induce mitochondrial ROS production and mitochondrial membrane potential loss, but reduce cytosolic ROS level in ARPE-19 cells. Although these effects of MGO can be reversed by both metformin and A769662, we demonstrated that reduction of mitochondrial ROS production rather than restoration of cytosolic ROS level contributes to cell protective effects of metformin and A769662. Moreover, MGO inhibits AMPK activity, reduces LC3II accumulation, and suppresses protein and gene expressions of MFN1, PGC-1α and TFAM, leading to mitochondrial fission, inhibition of mitochondrial biogenesis and autophagy. In contrast, these events of MGO were reversed by metformin in an AMPK-dependent manner as evidenced by the effects of compound C and AMPK silencing. In addition, we observed an AMPK-dependent upregulation of glyoxalase 1, a ubiquitous cellular enzyme that participates in the detoxification of MGO. In intravitreal drug-treated mice, we found that AMPK activators can reverse the MGO-induced cotton wool spots, macular edema and retinal damage. Functional, histological and optical coherence tomography analysis support the protective actions of both agents against MGO-elicited retinal damage. Metformin and A769662 via AMPK activation exert a strong protection against MGO-induced retinal pigment epithelial cell death and retinopathy. Therefore, metformin and AMPK activator can be therapeutic agents for DR.
Collapse
Affiliation(s)
- Ponarulselvam Sekar
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - George Hsiao
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | - Shu-Hao Hsu
- Medical Research Center, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan; Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan.
| | - Chi-Ming Chan
- Department of Ophthalmology, Cardinal Tien Hospital, New Taipei City, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
19
|
Pinelli R, Ferrucci M, Biagioni F, Berti C, Bumah VV, Busceti CL, Puglisi-Allegra S, Lazzeri G, Frati A, Fornai F. Autophagy Activation Promoted by Pulses of Light and Phytochemicals Counteracting Oxidative Stress during Age-Related Macular Degeneration. Antioxidants (Basel) 2023; 12:1183. [PMID: 37371913 DOI: 10.3390/antiox12061183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
The seminal role of autophagy during age-related macular degeneration (AMD) lies in the clearance of a number of reactive oxidative species that generate dysfunctional mitochondria. In fact, reactive oxygen species (ROS) in the retina generate misfolded proteins, alter lipids and sugars composition, disrupt DNA integrity, damage cell organelles and produce retinal inclusions while causing AMD. This explains why autophagy in the retinal pigment epithelium (RPE), mostly at the macular level, is essential in AMD and even in baseline conditions to provide a powerful and fast replacement of oxidized molecules and ROS-damaged mitochondria. When autophagy is impaired within RPE, the deleterious effects of ROS, which are produced in excess also during baseline conditions, are no longer counteracted, and retinal degeneration may occur. Within RPE, autophagy can be induced by various stimuli, such as light and naturally occurring phytochemicals. Light and phytochemicals, in turn, may synergize to enhance autophagy. This may explain the beneficial effects of light pulses combined with phytochemicals both in improving retinal structure and visual acuity. The ability of light to activate some phytochemicals may further extend such a synergism during retinal degeneration. In this way, photosensitive natural compounds may produce light-dependent beneficial antioxidant effects in AMD.
Collapse
Affiliation(s)
- Roberto Pinelli
- SERI, Switzerland Eye Research Institute, 6900 Lugano, Switzerland
| | - Michela Ferrucci
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Francesca Biagioni
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy
| | - Caterina Berti
- SERI, Switzerland Eye Research Institute, 6900 Lugano, Switzerland
| | - Violet Vakunseth Bumah
- Department of Chemistry and Biochemistry, College of Sciences, San Diego State University, San Diego, CA 92182, USA
- Department of Chemistry and Physics, University of Tennessee, Martin, TN 38237, USA
| | - Carla Letizia Busceti
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy
| | | | - Gloria Lazzeri
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Alessandro Frati
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy
| | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzili, Italy
| |
Collapse
|
20
|
Pinelli R, Ferrucci M, Berti C, Biagioni F, Scaffidi E, Bumah VV, Busceti CL, Lenzi P, Lazzeri G, Fornai F. The Essential Role of Light-Induced Autophagy in the Inner Choroid/Outer Retinal Neurovascular Unit in Baseline Conditions and Degeneration. Int J Mol Sci 2023; 24:ijms24108979. [PMID: 37240326 DOI: 10.3390/ijms24108979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/26/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The present article discusses the role of light in altering autophagy, both within the outer retina (retinal pigment epithelium, RPE, and the outer segment of photoreceptors) and the inner choroid (Bruch's membrane, BM, endothelial cells and the pericytes of choriocapillaris, CC). Here autophagy is needed to maintain the high metabolic requirements and to provide the specific physiological activity sub-serving the process of vision. Activation or inhibition of autophagy within RPE strongly depends on light exposure and it is concomitant with activation or inhibition of the outer segment of the photoreceptors. This also recruits CC, which provides blood flow and metabolic substrates. Thus, the inner choroid and outer retina are mutually dependent and their activity is orchestrated by light exposure in order to cope with metabolic demand. This is tuned by the autophagy status, which works as a sort of pivot in the cross-talk within the inner choroid/outer retina neurovascular unit. In degenerative conditions, and mostly during age-related macular degeneration (AMD), autophagy dysfunction occurs in this area to induce cell loss and extracellular aggregates. Therefore, a detailed analysis of the autophagy status encompassing CC, RPE and interposed BM is key to understanding the fine anatomy and altered biochemistry which underlie the onset and progression of AMD.
Collapse
Affiliation(s)
- Roberto Pinelli
- Switzerland Eye Research Institute (SERI), 6900 Lugano, Switzerland
| | - Michela Ferrucci
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Caterina Berti
- Switzerland Eye Research Institute (SERI), 6900 Lugano, Switzerland
| | - Francesca Biagioni
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 86077 Pozzili, Italy
| | - Elena Scaffidi
- Switzerland Eye Research Institute (SERI), 6900 Lugano, Switzerland
| | - Violet Vakunseth Bumah
- Department of Chemistry and Biochemistry College of Sciences San Diego State University, San Diego, CA 92182, USA
- Department of Chemistry and Physics, University of Tennessee, Knoxville, TN 37996, USA
| | - Carla L Busceti
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 86077 Pozzili, Italy
| | - Paola Lenzi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Gloria Lazzeri
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 86077 Pozzili, Italy
| |
Collapse
|
21
|
Pinelli R, Ferrucci M, Biagioni F, Bumah V, Scaffidi E, Puglisi-Allegra S, Fornai F. Curcumin as a Perspective Protection for Retinal Pigment Epithelium during Autophagy Inhibition in the Course of Retinal Degeneration. Curr Neuropharmacol 2023; 21:2227-2232. [PMID: 37409546 PMCID: PMC10556393 DOI: 10.2174/1570159x21666230705103839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/11/2023] [Accepted: 02/04/2023] [Indexed: 07/07/2023] Open
Abstract
Defective autophagy in the retinal pigment epithelium (RPE) is involved in retinal degeneration, mostly in the course of age-related macular degeneration (AMD), which is an increasingly prevalent retinal disorder, eventually leading to blindness. However, most autophagy activators own serious adverse effects when administered systemically. Curcumin is a phytochemical, which induces autophagy with a wide dose-response curve, which brings minimal side effects. Recent studies indicating defective autophagy in AMD were analyzed. Accordingly, in this perspective, we discuss and provide some evidence about the protective effects of curcumin in preventing RPE cell damage induced by the autophagy inhibitor 3-methyladenine (3-MA). Cells from human RPE were administered the autophagy inhibitor 3-MA. The cell damage induced by 3-MA was assessed at light microscopy by hematoxylin & eosin, Fluoro Jade-B, and ZO1 immunohistochemistry along with electron microscopy. The autophagy inhibitor 3-MA produces cell loss and cell degeneration of RPE cells. These effects are counteracted dose-dependently by curcumin. In line with the hypothesis that the autophagy machinery is key in sustaining the integrity of the RPE, here we provide evidence that the powerful autophagy inhibitor 3-MA produces dose-dependently cell loss and cell degeneration in cultured RPE cells, while inhibiting autophagy as shown by LC3-II/LC3-I ratio and gold-standard assessment of autophagy through LC3-positive autophagy vacuoles. These effects are prevented dose-dependently by curcumin, which activates autophagy. These data shed the perspective of validating the role of phytochemicals as safe autophagy activators to treat AMD.
Collapse
Affiliation(s)
- Roberto Pinelli
- SERI, Switzerland Eye Research Institute, Lugano, Switzerland
| | - Michela Ferrucci
- Department of Translational Research and New Technologies in Medicine and Surgery, Human Anatomy, University of Pisa, Pisa, Italy
| | | | - Violet Bumah
- Department of Chemistry and Biochemistry, College of Sciences, San Diego State University, San Diego, CA, U.S.A
- Department of Chemistry and Physics, University of Tennessee, St. Martin, TN, USA
| | - Elena Scaffidi
- SERI, Switzerland Eye Research Institute, Lugano, Switzerland
| | | | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, Human Anatomy, University of Pisa, Pisa, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| |
Collapse
|
22
|
Wong JHC, Ma JYW, Jobling AI, Brandli A, Greferath U, Fletcher EL, Vessey KA. Exploring the pathogenesis of age-related macular degeneration: A review of the interplay between retinal pigment epithelium dysfunction and the innate immune system. Front Neurosci 2022; 16:1009599. [PMID: 36408381 PMCID: PMC9670140 DOI: 10.3389/fnins.2022.1009599] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/12/2022] [Indexed: 07/30/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss in the older population. Classical hallmarks of early and intermediate AMD are accumulation of drusen, a waste deposit formed under the retina, and pigmentary abnormalities in the retinal pigment epithelium (RPE). When the disease progresses into late AMD, vision is affected due to death of the RPE and the light-sensitive photoreceptors. The RPE is essential to the health of the retina as it forms the outer blood retinal barrier, which establishes ocular immune regulation, and provides support for the photoreceptors. Due to its unique anatomical position, the RPE can communicate with the retinal environment and the systemic immune environment. In AMD, RPE dysfunction and the accumulation of drusen drive the infiltration of retinal and systemic innate immune cells into the outer retina. While recruited endogenous or systemic mononuclear phagocytes (MPs) contribute to the removal of noxious debris, the accumulation of MPs can also result in chronic inflammation and contribute to AMD progression. In addition, direct communication and indirect molecular signaling between MPs and the RPE may promote RPE cell death, choroidal neovascularization and fibrotic scarring that occur in late AMD. In this review, we explore how the RPE and innate immune cells maintain retinal homeostasis, and detail how RPE dysfunction and aberrant immune cell recruitment contribute to AMD pathogenesis. Evidence from AMD patients will be discussed in conjunction with data from preclinical models, to shed light on future therapeutic targets for the treatment of AMD.
Collapse
|
23
|
Parreno J, Emin G, Vu MP, Clark JT, Aryal S, Patel SD, Cheng C. Methodologies to unlock the molecular expression and cellular structure of ocular lens epithelial cells. Front Cell Dev Biol 2022; 10:983178. [PMID: 36176273 PMCID: PMC9514789 DOI: 10.3389/fcell.2022.983178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/16/2022] [Indexed: 01/25/2023] Open
Abstract
The transparent ocular lens in the anterior chamber of the eye is responsible for fine focusing of light onto the retina. The lens is entirely cellular with bulk of the tissue composed of fiber cells, and the anterior hemisphere of the lens is covered by a monolayer of epithelial cells. Lens epithelial cells are important for maintaining fiber cell homeostasis and for continual growth of the lens tissue throughout life. Cataracts, defined as any opacity in the lens, remain the leading cause of blindness in the world. Following cataract surgery, lens epithelial cells can undergo a process of epithelial-to-mesenchymal transition (EMT), leading to secondary cataracts due to posterior capsular opacification (PCO). Since the epithelial cells make up only a small fraction of the lens, specialized techniques are required to study lens epithelial cell biology and pathology. Studies using native lens epithelial cells often require pooling of samples to obtain enough cells to make sufficient samples for traditional molecular biology techniques. Here, we provide detailed protocols that enable the study of native mouse lens epithelial cells, including immunostaining of the native lens epithelium in flat mounts, extraction of RNA and proteins from pairs of lens epithelial monolayers, and isolation of lens epithelial cells for primary culture. These protocols will enable researchers to gain better insight on representative molecular expression and cellular structure of lens epithelial cells. We also provide comparative data between native, primary culture, and immortalized lens epithelial cells and discuss the advantages and disadvantages of each technique presented.
Collapse
Affiliation(s)
- Justin Parreno
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
- *Correspondence: Justin Parreno, ; Catherine Cheng,
| | - Grace Emin
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Michael P. Vu
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN, United States
| | - Jackson T. Clark
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN, United States
| | - Sandeep Aryal
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Shaili D. Patel
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Catherine Cheng
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN, United States
- *Correspondence: Justin Parreno, ; Catherine Cheng,
| |
Collapse
|
24
|
Zhao L, Lan Z, Peng L, Wan L, Liu D, Tan X, Tang C, Chen G, Liu H. Triptolide promotes autophagy to inhibit mesangial cell proliferation in IgA nephropathy via the CARD9/p38 MAPK pathway. Cell Prolif 2022; 55:e13278. [PMID: 35733381 PMCID: PMC9436901 DOI: 10.1111/cpr.13278] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/04/2022] [Accepted: 05/23/2022] [Indexed: 01/18/2023] Open
Abstract
Background Mesangial cell proliferation is the most basic pathological feature of immunoglobulin A nephropathy (IgAN); however, the specific underlying mechanism and an appropriate therapeutic strategy are yet to be unearthed. This study aimed to investigate the therapeutic effect of triptolide (TP) on IgAN and the mechanism by which TP regulates autophagy and proliferation of mesangial cells through the CARD9/p38 MAPK pathway. Methods We established a TP‐treated IgAN mouse model and produced IgA1‐induced human mesangial cells (HMC) and divided them into control, TP, IgAN, and IgAN+TP groups. The levels of mesangial cell proliferation (PCNA, cyclin D1, cell viability, and cell cycle) and autophagy (P62, LC3 II, and autophagy flux rate) were measured, with the autophagy inhibitor 3‐Methyladenine used to explore the relationship between autophagy and proliferation. We observed CARD9 expression in renal biopsies from patients and analyzed its clinical significance. CARD9 siRNA and overexpression plasmids were constructed to investigate the changes in mesangial cell proliferation and autophagy as well as the expression of CARD9 and p‐p38 MAPK/p38 MAPK following TP treatment. Results Administering TP was safe and effectively alleviated mesangial cell proliferation in IgAN mice. Moreover, TP inhibited IgA1‐induced HMC proliferation by promoting autophagy. The high expression of CARD9 in IgAN patients was positively correlated with the severity of HMC proliferation. CARD9/p38 MAPK was involved in the regulation of HMC autophagy and proliferation, and TP promoted autophagy to inhibit HMC proliferation by downregulating the CARD9/p38 MAPK pathway in IgAN. Conclusion TP promotes autophagy to inhibit mesangial cell proliferation in IgAN via the CARD9/p38 MAPK pathway.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Zhixin Lan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Liang Peng
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lili Wan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Di Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Xia Tan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chengyuan Tang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Guochun Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| |
Collapse
|