1
|
de Miranda ALS, Antunes BC, Minozzo JC, Lima SDA, Botelho AFM, Campos MTG, Chávez-Olórtegui C, Soto-Blanco B. The Health Status of Horses Used for at Least Six Complete Cycles of Loxoscelic Antivenom Production. Toxins (Basel) 2023; 15:589. [PMID: 37888620 PMCID: PMC10610985 DOI: 10.3390/toxins15100589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/28/2023] Open
Abstract
Antivenom production against Loxosceles venom relies on horses being immunized and bled for plasma harvest. One horse can partake in several cycles of antivenom production, which will require years of constant venom and adjuvant inoculation and bleeding. The actual impact on the health of horses that participate in several antivenom-producing cycles is unknown. Therefore, this study aimed to evaluate the general health status of horses that underwent at least six cycles of loxoscelic antivenom production. Seven crossbred horses that had partaken in six to eight complete antivenom-producing cycles were used and established as the immunized group (IG). Under the same handling and general management, eleven horses were established as the control group (CG). The horses were evaluated regarding their general clinical status and had their blood sampled, and an ECG recorded. The IG presented lower RBC and PCV, despite keeping values within inferior limits for the species. Renal function was not impaired, and liver-related enzymes were higher than those in the CG, probably due to liver exertion from immunoglobulin synthesis. ECG showed some abnormalities in the IG, such as atrioventricular block and a wandering atrial pacemaker, corroborated by an increase in CK-MB. The cardiovascular abnormalities were mainly found in the horses that participated in several antivenom-producing cycles. The overall results indicate that these horses had some impairment of their general health status. Once available, some alternative, less toxic antigens should replace the venom for immunization of horses used for antivenom production.
Collapse
Affiliation(s)
- Ana Luísa Soares de Miranda
- Department of Veterinary Clinics and Surgery, Veterinary College, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos 6627, Belo Horizonte 30123-970, MG, Brazil; (A.L.S.d.M.); (M.T.G.C.)
| | - Bruno Cesar Antunes
- Department of Health of the State of Paraná, Centro de Produção e Pesquisa de Imunobiológicos (CPPI), Rua Piquiri 170, Piraquara 80230-140, PR, Brazil; (B.C.A.); (J.C.M.)
| | - João Carlos Minozzo
- Department of Health of the State of Paraná, Centro de Produção e Pesquisa de Imunobiológicos (CPPI), Rua Piquiri 170, Piraquara 80230-140, PR, Brazil; (B.C.A.); (J.C.M.)
| | - Sabrina de Almeida Lima
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil; (S.d.A.L.); (C.C.-O.)
| | - Ana Flávia Machado Botelho
- Department of Veterinary Medicine, Veterinary College, Universidade Federal de Goiás (UFG), Campus Samambaia, Goiânia 74690-900, GO, Brazil;
| | - Marco Túlio Gomes Campos
- Department of Veterinary Clinics and Surgery, Veterinary College, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos 6627, Belo Horizonte 30123-970, MG, Brazil; (A.L.S.d.M.); (M.T.G.C.)
| | - Carlos Chávez-Olórtegui
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil; (S.d.A.L.); (C.C.-O.)
| | - Benito Soto-Blanco
- Department of Veterinary Clinics and Surgery, Veterinary College, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos 6627, Belo Horizonte 30123-970, MG, Brazil; (A.L.S.d.M.); (M.T.G.C.)
| |
Collapse
|
2
|
Peres-Damásio P, Silva-Magalhães R, Silva-Araújo AL, Pereira EHT, Silveira AL, Varella LSDRN, Borges MH, Chavez-Olórtegui C, Paiva ALB, Guerra-Duarte C. Partial characterization of Loxosceles anomala (Mello-Leitão, 1917) venom: A brown spider of potential medical concern. Toxicon 2023; 228:107107. [PMID: 37011787 DOI: 10.1016/j.toxicon.2023.107107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/16/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023]
Abstract
The spider's genus Loxosceles (also known as "brown spiders") is one of the few ones of medical importance in Brazil, being Loxosceles anomala a species of common occurrence in the Southeast region. This species is usually smaller in size than the other members of the Loxosceles group. A single human accident involving L. anomala was reported to date and the clinical picture shared similar characteristics with accidents caused by other Loxosceles species. Despite the potential relevance of L. anomalafor loxocelism in Minas Gerais state, its venom activity has never been characterized. In this work, we provide a preliminary characterization of L. anomala venom, considering its most relevant enzymatic activities and its venom immunorecognition by current therapeutic antivenoms. The results showed that L. anomala venom is immunorecognised by therapeutic antivenoms and by anti-phospholipase D antibodies. Its venom also shows enzymatic activities (sphingomyelinase activity, fibrinogenolytic) described for other Loxosceles venoms. This work contributes to a better knowledge on the venom content and activities of synanthropic Loxosceles species that have the potential of causing relevant human accidents.
Collapse
Affiliation(s)
- Pamella Peres-Damásio
- Molecular Toxinology Lab, Research and Development Department, Ezequiel Dias Foundation - FUNED, Belo Horizonte, MG, Brazil
| | - Rafaela Silva-Magalhães
- Molecular Toxinology Lab, Research and Development Department, Ezequiel Dias Foundation - FUNED, Belo Horizonte, MG, Brazil
| | - Ana Luiza Silva-Araújo
- Molecular Toxinology Lab, Research and Development Department, Ezequiel Dias Foundation - FUNED, Belo Horizonte, MG, Brazil
| | | | | | | | - Márcia Helena Borges
- Arachnid Proteomics Lab, Research and Development Department, Ezequiel Dias Foundation - FUNED, Belo Horizonte, MG, Brazil
| | - Carlos Chavez-Olórtegui
- Biochemistry and Immunology Department, Biological Sciences Institute, Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Ana Luiza Bittencourt Paiva
- Molecular Toxinology Lab, Research and Development Department, Ezequiel Dias Foundation - FUNED, Belo Horizonte, MG, Brazil
| | - Clara Guerra-Duarte
- Molecular Toxinology Lab, Research and Development Department, Ezequiel Dias Foundation - FUNED, Belo Horizonte, MG, Brazil.
| |
Collapse
|
3
|
Miranda ALSD, Guerra-Duarte C, Lima SDA, Chávez-Olórtegui C, Soto-Blanco B. History, challenges and perspectives on Loxosceles (brown spiders) antivenom production in Brazil. Toxicon 2021; 192:40-45. [PMID: 33465358 DOI: 10.1016/j.toxicon.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/28/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
Antivenom is the only effective therapy for treating any envenomation. Despite its obvious public health importance, the laborious process of procuring, distributing and controlling the quality of such immunobiologicals is being neglected. Brazil is fully self-sufficient in the production of antivenoms. Since the 1950s, Loxoscelism, a syndrome with an onset after a spider bite from specimens of the Loxosceles genus occurs, is considered a public health issue. The Brazilian history in developing antivenom therapy, its production hindrances, and other challenges are discussed in this paper, as well as some promising novelties that can improve production and processing of Loxosceles antivenom.
Collapse
Affiliation(s)
- Ana Luísa Soares de Miranda
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | | | - Sabrina de Almeida Lima
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Benito Soto-Blanco
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| |
Collapse
|
4
|
Fingermann M, de Roodt AR, Cascone O, Miranda MV. Biotechnological potential of Phospholipase D for Loxosceles antivenom development. Toxicon X 2020; 6:100036. [PMID: 32550591 PMCID: PMC7286061 DOI: 10.1016/j.toxcx.2020.100036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 01/26/2023] Open
Abstract
Loxoscelism is one of the most important forms of araneism in South America. The Health Authorities from countries with the highest incidence and longer history in registering loxoscelism cases indicate that specific antivenom should be administered during the first hours after the accident, especially in the presence or at risk of the most severe clinical outcome. Current antivenoms are based on immunoglobulins or their fragments, obtained from plasma of hyperimmunized horses. Antivenom has been produced using the same traditional techniques for more than 120 years. Although the whole composition of the spider venom remains unknown, the discovery and biotechnological production of the phospholipase D enzymes represented a milestone for the knowledge of the physiopathology of envenomation and for the introduction of new innovative tools in antivenom production. The fact that this protein is a principal toxin of the venom opens the possibility of replacing the use of whole venom as an immunogen, an attractive alternative considering the laborious techniques and low yields associated with venom extraction. This challenge warrants technological innovation to facilitate production and obtain more effective antidotes. In this review, we compile the reported studies, examining the advances in the expression and application of phospholipase D as a new immunogen and how the new biotechnological tools have introduced some degree of innovation in this field.
Collapse
Affiliation(s)
- Matías Fingermann
- Instituto Nacional de Producción de Biológicos (INPB), ANLIS "Dr. Carlos G. Malbrán", Vélez Sársfield 563, (1282) Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, 2290, (1425) Buenos Aires, Argentina
| | - Adolfo Rafael de Roodt
- Instituto Nacional de Producción de Biológicos (INPB), ANLIS "Dr. Carlos G. Malbrán", Vélez Sársfield 563, (1282) Buenos Aires, Argentina.,Área de Zootoxicología, Cátedra de Toxicología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay, 2155, (1113) Buenos Aires, Argentina
| | - Osvaldo Cascone
- Instituto Nacional de Producción de Biológicos (INPB), ANLIS "Dr. Carlos G. Malbrán", Vélez Sársfield 563, (1282) Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, 2290, (1425) Buenos Aires, Argentina.,Instituto de Nanobiotecnología (NANOBIOTEC), CONICET-Universidad de Buenos Aires, Junín 956, (1113) Buenos Aires, Argentina.,Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, (1113) Buenos Aires, Argentina
| | - María Victoria Miranda
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, 2290, (1425) Buenos Aires, Argentina.,Instituto de Nanobiotecnología (NANOBIOTEC), CONICET-Universidad de Buenos Aires, Junín 956, (1113) Buenos Aires, Argentina.,Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, (1113) Buenos Aires, Argentina
| |
Collapse
|
5
|
|
6
|
de Roodt AR, Lanari LC, Laskowicz RD, Costa de Oliveira V, Irazu LE, González A, Giambelluca L, Nicolai N, Barragán JH, Ramallo L, López RA, Lopardo J, Jensen O, Larrieu E, Calabró A, Vurcharchuc MG, Lago NR, García SI, de Titto EH, Damín CF. Toxicity of the venom of Latrodectus (Araneae: Theridiidae) spiders from different regions of Argentina and neutralization by therapeutic antivenoms. Toxicon 2017; 130:63-72. [DOI: 10.1016/j.toxicon.2017.02.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 10/20/2022]
|
7
|
Sampaio VS, Gomes AA, Silva IM, Sachett J, Ferreira LCL, Oliveira S, Sabidò M, Chalkidis H, Barbosa Guerra MGV, Salinas JL, Wen FH, Lacerda MVG, Monteiro WM. Low Health System Performance, Indigenous Status and Antivenom Underdosage Correlate with Spider Envenoming Severity in the Remote Brazilian Amazon. PLoS One 2016; 11:e0156386. [PMID: 27227455 PMCID: PMC4881914 DOI: 10.1371/journal.pone.0156386] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/15/2016] [Indexed: 11/25/2022] Open
Abstract
Background A better knowledge of the burden and risk factors associated with severity due to spider bites would lead to improved management with a reduction of sequelae usually seen for this neglected health problem, and would ensure proper use of antivenoms in remote localities in the Brazilian Amazon. The aim of this study was to analyze the profile of spider bites reported in the state of Amazonas in the Western Brazilian Amazon, and to investigate potential risk factors associated with severity of envenomation. Methodology/Principal Findings We used a case-control study in order to identify factors associated with spider bite severity in the Western Brazilian Amazon from 2007 to 2014. Patients evolving to any severity criteria were considered cases and those with non-severe bites were included in the control group. All variables were retrieved from the official Brazilian reporting systems. Socioeconomical and environmental components were also included in a multivariable analysis in order to identify ecological determinants of incidence and severity. A total of 1,181 spider bites were recorded, resulting in an incidence of 4 cases per 100,000 person/year. Most of the spider bites occurred in males (65.8%). Bites mostly occurred in rural areas (59.5%). The most affected age group was between 16 and 45 years old (50.9%). A proportion of 39.7% of the bites were related to work activities. Antivenom was prescribed to 39% of the patients. Envenomings recorded from urban areas [Odds ratio (OR) = 0.40 (95%CI = 0.30–0.71; p<0.001)] and living in a municipality with a mean health system performance index (MHSPI >median [OR = 0.64 (95%CI = 0.39–0.75; p<0.001)] were independently associated with decreased risk of severity. Work related accidents [OR = 2.09 (95%CI = 1.49–2.94; p<0.001)], Indigenous status [OR = 2.15 (95%CI = 1.19–3.86; p = 0.011)] and living in a municipality located >300 km away from the state capital Manaus [OR = 1.90 (95%CI = 1.28–2.40; p<0.001)] were independently associated with a risk of severity. Living in a municipality located >300 km away from the state capital Manaus [OR = 1.53 (95%CI = 1.15–2.02; p = 0.003)] and living in a municipality with a MHSPI <median [OR = 1.91 (95%CI = 1.28–2.47; p = 0.002)] increased the odds of antivenom underdosage. Conclusions Spider bites is prevalent across the study region with a higher incidence in the rainy season in rural areas. Spider bites can be painful and lead to local manifestations but rarely result in life-threatening envenoming. Major local complications were dermonecrosis and secondary infection in cases diagnosed as Loxosceles bites. Based on the correlations shown here, envenomings occurring in remote rural areas, Indigenous status and living in a municipality located >300 km away from the state capital Manaus could be contributing factors to higher severity of spider envenomings in this area, as well as to antivenom underdosage.
Collapse
Affiliation(s)
- Vanderson Souza Sampaio
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- Núcleo de Sistemas de Informação, Fundação de Vigilância em Saúde do Amazonas, Manaus, Brazil
| | - André Alexandre Gomes
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Iran Mendonça Silva
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Jacqueline Sachett
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Luiz Carlos Lima Ferreira
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Sâmella Oliveira
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Meritxell Sabidò
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Department of Medical Sciences, Faculty of Medicine, Universitat de Girona, Catalunya, Spain
| | - Hipócrates Chalkidis
- Curso de Ciências Biológicas, Faculdades Integradas do Tapajós, Santarém, Pará, Brazil
| | - Maria Graças Vale Barbosa Guerra
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Jorge Luis Salinas
- Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Fan Hui Wen
- Instituto Butantan, Secretaria de Estado da Saúde de São Paulo, São Paulo, Brazil
| | - Marcus Vinícius Guimarães Lacerda
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Instituto de Pesquisas Leônidas & Maria Deane, FIOCRUZ, Manaus, Brazil
| | - Wuelton Marcelo Monteiro
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
- * E-mail:
| |
Collapse
|
8
|
Gehrie EA, Nian H, Young PP. Brown Recluse spider bite mediated hemolysis: clinical features, a possible role for complement inhibitor therapy, and reduced RBC surface glycophorin A as a potential biomarker of venom exposure. PLoS One 2013; 8:e76558. [PMID: 24086749 PMCID: PMC3785411 DOI: 10.1371/journal.pone.0076558] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/30/2013] [Indexed: 11/18/2022] Open
Abstract
Background The venom of Loxoscelesreclusa (Brown Recluse spider) can cause a severe, life-threatening hemolysis in humans for which no therapy is currently available in the USA beyond supportive measures. Because this hemolysis is uncommon, relatively little is known about its clinical manifestation, diagnosis, or management. Here, we aimed to clarify the clinical details of envenomation, to determine the efficacy of the complement inhibitor eculizumab to prevent the hemolysis invitro, and to investigate markers of exposure to Brown Recluse venom. Study Design and Methods We performed a 10-year chart review of cases of Brown Recluse spider bite-mediated hemolysis at our institution. We also designed an invitro assay to test the efficacy of eculizumab to inhibit hemolysis of venom exposed red blood cells. Finally, we compared levels of CD55, CD59 and glycophorin A on venom exposed versus venom-naïve cells. Results Most victims of severe Brown Recluse spider mediated hemolysis at our institution are children and follow an unpredictable clinical course. Brown Recluse spider bite mediated hemolysis is reduced by 79.2% (SD=18.8%) by eculizumab invitro. Erythrocyte glycophorin A, but not CD55 or CD59, is reduced after red blood cells are incubated with venom invitro. Conclusion Taken together, our laboratory data and clinical observations indicate that L. reclusa venom exposure results in non-specific antibody and complement fixation on red blood cells, resulting in complement mediated hemolysis that is curtailed by the complement inhibitor eculizumab invitro. Glycophorin A measurement by flow cytometry may help to identify victims of L. reclusa envenomation.
Collapse
Affiliation(s)
- Eric A. Gehrie
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Hui Nian
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Pampee P. Young
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Tennessee Valley Veterans Affairs Hospital, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
9
|
Haddad V, Cardoso JLC, Lupi O, Tyring SK. Tropical dermatology: Venomous arthropods and human skin. J Am Acad Dermatol 2012; 67:347.e1-9; quiz 355. [DOI: 10.1016/j.jaad.2012.05.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/30/2012] [Accepted: 05/02/2012] [Indexed: 11/28/2022]
|
10
|
Pauli I, Minozzo JC, Henrique da Silva P, Chaim OM, Veiga SS. Analysis of therapeutic benefits of antivenin at different time intervals after experimental envenomation in rabbits by venom of the brown spider (Loxosceles intermedia). Toxicon 2009; 53:660-71. [DOI: 10.1016/j.toxicon.2009.01.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Rocha-e-Silva TA, Sutti R, Hyslop S. Milking and partial characterization of venom from the Brazilian spider Vitalius dubius (Theraphosidae). Toxicon 2009; 53:153-61. [DOI: 10.1016/j.toxicon.2008.10.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 10/30/2008] [Accepted: 10/31/2008] [Indexed: 11/15/2022]
|
12
|
Binford GJ, Bodner MR, Cordes MHJ, Baldwin KL, Rynerson MR, Burns SN, Zobel-Thropp PA. Molecular evolution, functional variation, and proposed nomenclature of the gene family that includes sphingomyelinase D in sicariid spider venoms. Mol Biol Evol 2008; 26:547-66. [PMID: 19042943 DOI: 10.1093/molbev/msn274] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The venom enzyme sphingomyelinase D (SMase D) in the spider family Sicariidae (brown or fiddleback spiders [Loxosceles] and six-eyed sand spiders [Sicarius]) causes dermonecrosis in mammals. SMase D is in a gene family with multiple venom-expressed members that vary in functional specificity. We analyze molecular evolution of this family and variation in SMase D activity among crude venoms using a data set that represents the phylogenetic breadth of Loxosceles and Sicarius. We isolated a total of 190 nonredundant nucleotide sequences encoding 168 nonredundant amino acid sequences of SMase D homologs from 21 species. Bayesian phylogenies support two major clades that we name alpha and beta, within which we define seven and three subclades, respectively. Sequences in the alpha clade are exclusively from New World Loxosceles and Loxosceles rufescens and include published genes for which expression products have SMase D and dermonecrotic activity. The beta clade includes paralogs from New World Loxosceles that have no, or reduced, SMase D and no dermonecrotic activity and also paralogs from Sicarius and African Loxosceles of unknown activity. Gene duplications are frequent, consistent with a birth-and-death model, and there is evidence of purifying selection with episodic positive directional selection. Despite having venom-expressed SMase D homologs, venoms from New World Sicarius have reduced, or no, detectable SMase D activity, and Loxosceles in the Southern African spinulosa group have low SMase D activity. Sequence conservation mapping shows >98% conservation of proposed catalytic residues of the active site and around a plug motif at the opposite end of the TIM barrel, but alpha and beta clades differ in conservation of key residues surrounding the apparent substrate binding pocket. Based on these combined results, we propose an inclusive nomenclature for the gene family, renaming it SicTox, and discuss emerging patterns of functional diversification.
Collapse
Affiliation(s)
- Greta J Binford
- Department of Biology, Lewis and Clark College, Portland, OR, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Senff-Ribeiro A, Henrique da Silva P, Chaim OM, Gremski LH, Paludo KS, Bertoni da Silveira R, Gremski W, Mangili OC, Veiga SS. Biotechnological applications of brown spider (Loxosceles genus) venom toxins. Biotechnol Adv 2007; 26:210-8. [PMID: 18207690 DOI: 10.1016/j.biotechadv.2007.12.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 12/06/2007] [Accepted: 12/06/2007] [Indexed: 11/18/2022]
Abstract
Loxoscelism (the term used to define accidents by the bite of brown spiders) has been reported worldwide. Clinical manifestations following brown spider bites are frequently associated with skin degeneration, a massive inflammatory response at the injured region, intravascular hemolysis, platelet aggregation causing thrombocytopenia and renal disturbances. The mechanisms by which the venom exerts its noxious effects are currently under investigation. The whole venom is a complex mixture of toxins enriched with low molecular mass proteins in the range of 5-40 kDa. Toxins including alkaline phosphatase, hyaluronidase, metalloproteases (astacin-like proteases), low molecular mass (5.6-7.9 kDa) insecticidal peptides and phospholipases-D (dermonecrotic toxins) have been identified in the venom. The purpose of the present review is to describe biotechnological applications of whole venom or some toxins, with especial emphasis upon molecular biology findings obtained in the last years.
Collapse
Affiliation(s)
- Andrea Senff-Ribeiro
- Department of Cell Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|