1
|
Qureshi MUUR, Ali NZ, Rehman UU, Nadeem M, Rafiq MA. Highly compatible ZIF-11 MOF-embedded carbon foam nanocomposites for efficient electromagnetic wave absorption. Phys Chem Chem Phys 2025. [PMID: 40289533 DOI: 10.1039/d5cp00276a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Developing lightweight, high-performance materials for effective electromagnetic wave (EMW) absorption is crucial for the mitigation of adverse exposure to high-frequency electromagnetic radiation. In this study, we present a novel approach to achieve wide-range EM wave attenuation in the radar range (X-band) through the incorporation of a ZIF-11 MOF porous architecture in a carbon foam (CF), forming a heterogeneous distribution to enhance interface polarization and facilitate strong electromagnetic wave absorption. The structural features and composition of the synthesized hybrid composites were characterized using XRD, SEM, FTIR spectroscopy, and TGA. With precise control over variable MOF loadings, the 12% ZIF-11/CF composite achieved the best optimal EMW absorption, exhibiting a notable reflection loss of -49.12 dB with a broad effective absorption bandwidth of 4.2 GHz at 2 mm thickness, indicating 99.99% absorption and covering almost the entire X band. The porous structure of the ZIF-11/carbon foam composite was found to be ideally suited to promote multiple scattering and enhance dielectric loss, yielding improved impedance matching across the X band. Additionally, the lightweight structure maintained structural integrity, offering a promising balance of effective EM wave attenuation and low material density. This work highlights the potential of MOF-incorporated carbon composites for high-performance EMW absorption, thus providing a scalable pathway toward advanced applications in electronic, healthcare and defense technologies through effective electromagnetic interference (EMI) reduction.
Collapse
Affiliation(s)
- M Ubaid-Ur-Rehman Qureshi
- National Center for Physics, Quaid-i-Azam University Campus, Islamabad 44000, Pakistan.
- Department of Physics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Naveed Zafar Ali
- National Center for Physics, Quaid-i-Azam University Campus, Islamabad 44000, Pakistan.
| | - Ubaid Ur Rehman
- Polymer Composite Group, Directorate of Science, PINSTECH, Nilore, Islamabad, Pakistan
| | - M Nadeem
- Polymer Composite Group, Directorate of Science, PINSTECH, Nilore, Islamabad, Pakistan
| | - M Aftab Rafiq
- National Center for Physics, Quaid-i-Azam University Campus, Islamabad 44000, Pakistan.
| |
Collapse
|
2
|
Liu Q, Xiong J, Lin W, Liu J, Wan Y, Guo CF, Wang Q, Liu Z. Porous polymers: structure, fabrication and application. MATERIALS HORIZONS 2025; 12:2436-2466. [PMID: 39804097 DOI: 10.1039/d4mh01618a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The porous polymer is a common and fascinating category within the vast family of porous materials. It offers valuable features such as sufficient raw materials, easy processability, controllable pore structures, and adjustable surface functionality by combining the inherent properties of both porous structures and polymers. These characteristics make it an effective choice for designing functional and advanced materials. In this review, the structural features, processing techniques and application fields of the porous polymer are discussed comprehensively to present their current status and provide a valuable tutorial guide and help for researchers. Firstly, the basic classification and structural features of porous polymers are elaborated upon to provide a comprehensive analysis from a mesoscopic to macroscopic perspective. Secondly, several established techniques for fabricating porous polymers are introduced, including their respective basic principles, characteristics of the resulting pores, and applied scopes. Thirdly, we demonstrate application research of porous polymers in various emerging frontier fields from multiple perspectives, including pressure sensing, thermal control, electromagnetic shielding, acoustic reduction, air purification, water treatment, health management, and so on. Finally, the review explores future directions for porous polymers and evaluates their future challenges and opportunities.
Collapse
Affiliation(s)
- Qingxian Liu
- Department of Mechanical Engineering, Shantou University, Shantou, Guangdong, 515063, China.
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou, Guangdong, 515063, China
| | - Jinkui Xiong
- Department of Mechanical Engineering, Shantou University, Shantou, Guangdong, 515063, China.
| | - Wengui Lin
- Department of Mechanical Engineering, Shantou University, Shantou, Guangdong, 515063, China.
| | - Jinlong Liu
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yongbiao Wan
- Microsystem & Terahertz Research Center, Institute of Electronic Engineering, China Academy of Engineering Physics, Chengdu, Sichuan, 610200, China
| | - Chuan Fei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Quan Wang
- College of Engineering, Eastern Institute of Technology, Ningbo (EIT), Zhejiang, 315000, China
| | - Zhiguang Liu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| |
Collapse
|
3
|
Zachariah SM, Naseem S, Rizwan M, Nair GG, Grohens Y, Sadiqa A, Ahmad A, Thomas S. Eco-friendly cellulose paper composites: A sustainable solution for EMI shielding and green engineering applications. Int J Biol Macromol 2025; 292:139127. [PMID: 39732255 DOI: 10.1016/j.ijbiomac.2024.139127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/09/2024] [Accepted: 12/21/2024] [Indexed: 12/30/2024]
Abstract
Cellulose paper-based composites represent a promising and sustainable alternative for electromagnetic interference (EMI) shielding applications. Derived from renewable and biodegradable cellulose fibers, these composites are enhanced with conductive fillers namely carbon nanotubes, graphene, or metallic nanoparticles, achieving efficient EMI shielding while maintaining environmental friendliness. Their lightweight, flexible nature, and mechanical robustness make them ideal for diverse applications, including wearable electronics, flexible circuits, and green electronics. This paper explores the fabrication techniques, composite properties, with particular emphasis on ways to enhance the shielding properties, and performance metrics of cellulose-based composites, highlighting their potential to replace traditional metallic materials in various EMI shielding scenarios, thus contributing to the development of eco-friendly and high-performance electronic devices. Despite advancements, challenges such as achieving uniform filler dispersion and scalability of eco-friendly production methods persist, limiting industrial application.
Collapse
Affiliation(s)
- Suji Mary Zachariah
- International and Inter-University Centre for Nanoscience and Nanotechnology (IIUCNN), Mahatma Gandhi University, Kottayam, Kerala 686 560, India; University Bretagne Sud, UMR CNRS 6027, IRDL, 56100 Lorient, France
| | - Sobia Naseem
- Department of Chemistry, University of Engineering & Technology Lahore, Pakistan; Department of Polymer and Process Engineering, University of Engineering & Technology Lahore, Pakistan
| | - Muhammad Rizwan
- Department of Chemistry, University of Engineering & Technology Lahore, Pakistan.
| | - Gopika G Nair
- Department of Physics, CMS College Kottayam (Autonomous), Kerala India, 686001
| | - Yves Grohens
- University Bretagne Sud, UMR CNRS 6027, IRDL, 56100 Lorient, France
| | - Ayesha Sadiqa
- Department of Chemistry, University of Lahore, P.O. Box 54000, Lahore, Pakistan
| | - Awais Ahmad
- Department of Chemistry, University of Lahore, P.O. Box 54000, Lahore, Pakistan
| | - Sabu Thomas
- International and Inter-University Centre for Nanoscience and Nanotechnology (IIUCNN), Mahatma Gandhi University, Kottayam, Kerala 686 560, India; School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India; Department of Chemical Sciences, University of Johannesburg, P.O.Box 17011, Doornfontein, 2028 Johannesburg, South Africa; Trivandrum Engineering, Science and Technology (TrEST) Research Park, Trivandrum 695016, India; School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala India 686560.
| |
Collapse
|
4
|
Li Y, Wang Y, Huang Y. A Review on MXene/Nanocellulose Composites: Toward Wearable Multifunctional Electromagnetic Interference Shielding Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410283. [PMID: 39696902 DOI: 10.1002/smll.202410283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Indexed: 12/20/2024]
Abstract
With the rapid development of mobile communication technology and wearable electronic devices, the electromagnetic radiation generated by high-frequency information exchange inevitably threatens human health, so high-performance wearable electromagnetic interference (EMI) shielding materials are urgently needed. The 2D nanomaterial MXene exhibits superior EMI shielding performance owing to its high conductivity, however, its mechanical properties are limited due to the high porosity between MXene nanosheets. In recent years, it has been reported that by introducing natural nanocellulose as an organic framework, the EMI shielding and mechanical properties of MXene/nanocellulose composites can be synergically improved, which are expected to be widely used in wearable multifunctional shielding devices. In this review, the electromagnetic wave (EMW) attenuation mechanism of EMI shielding materials is briefly introduced, and the latest progress of MXene/nanocellulose composites in wearable multifunctional EMI shielding applications is comprehensively reviewed, wherein the advantages and disadvantages of different preparation methods and various types of composites are summarized. Finally, the challenges and perspectives are discussed, regarding the performance improvement, the performance control mechanism, and the large-scale production of MXene/nanocellulose composites. This review can provide guidance on the design of flexible MXene/nanocellulose composites for multifunctional electromagnetic protection applications in the future intelligent wearable field.
Collapse
Affiliation(s)
- Yuhong Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yang Wang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yi Huang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
5
|
Zhu L, Liu Q, Zhang Y, Sun H, Chen S, Liang L, An S, Yang X, Zang L. Recent Advances in the Tunable Optoelectromagnetic Properties of PEDOTs. Molecules 2025; 30:179. [PMID: 39795235 PMCID: PMC11721937 DOI: 10.3390/molecules30010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Conducting polymers represent a crucial class of functional materials with widespread applications in diverse fields. Among these, poly(3,4-ethylenedioxythiophene) (PEDOT) and its derivatives have garnered significant attention due to their distinctive optical, electronic, and magnetic properties, as well as their exceptional tunability. These properties often exhibit intricate interdependencies, manifesting as synergistic, concomitant, or antagonistic relationships. In optics, PEDOTs are renowned for their high transparency and unique photoelectric responses. From an electrical perspective, they display exceptional conductivity, thermoelectric, and piezoelectric performance, along with notable electrochemical activity and stability, enabling a wide array of electronic applications. In terms of magnetic properties, PEDOTs demonstrate outstanding electromagnetic shielding efficiency and microwave absorption capabilities. Moreover, these properties can be precisely tailored through molecular structure modifications, chemical doping, and composite formation to suit various application requirements. This review systematically examines the mechanisms underlying the optoelectromagnetic properties of PEDOTs, highlights their tunability, and outlines prospective research directions. By providing critical theoretical insights and technical references, this review aims to advance the application landscape of PEDOTs.
Collapse
Affiliation(s)
- Ling Zhu
- School of Pharmacy and Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (L.Z.); (Q.L.); (S.A.)
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Nanchang 330013, China; (Y.Z.); (L.L.)
| | - Qi Liu
- School of Pharmacy and Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (L.Z.); (Q.L.); (S.A.)
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Nanchang 330013, China; (Y.Z.); (L.L.)
| | - Yuqian Zhang
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Nanchang 330013, China; (Y.Z.); (L.L.)
| | - Hui Sun
- Binzhou Testing Center, Binzhou 256600, China;
| | - Shuai Chen
- School of Pharmacy and Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (L.Z.); (Q.L.); (S.A.)
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Nanchang 330013, China; (Y.Z.); (L.L.)
| | - Lishan Liang
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Nanchang 330013, China; (Y.Z.); (L.L.)
| | - Siying An
- School of Pharmacy and Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (L.Z.); (Q.L.); (S.A.)
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Nanchang 330013, China; (Y.Z.); (L.L.)
| | - Xiaomei Yang
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, USA;
| | - Ling Zang
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, USA;
| |
Collapse
|
6
|
Zhou J, Zhu Y, Qian K, Miao M, Feng X. Poly(3,4-Ethylenedioxythiophene):Sulfamic Acid Modified Aramid Nanofibers: An Innovative Conductive Polymer With Enhanced Electromagnetic Interference Shielding and Thermoelectric Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405400. [PMID: 39235363 DOI: 10.1002/smll.202405400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/09/2024] [Indexed: 09/06/2024]
Abstract
The development of alternative conductive polymers for the well-known poly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is of great significance for improving the stability in long-term using and high-temperature environments. Herein, an innovative PEDOT:S-ANF aqueous dispersion is successfully prepared by using sulfamic acid (SA) to modified aramid nanofibers (S-ANF) as an alternative dispersant for PSS and the subsequent in situ polymerization of PEDOT. Thanks to the excellent film forming ability and surface negative groups of S-ANF, the PEDOT:S-ANF films show comparable tensile strength and elongation to unmodified PEDOT:ANF. Meanwhile, PEDOT:S-ANF has a high conductivity of 27.87 S cm-1, which is more than 20 times higher than that of PEDOT:PSS. The film exhibits excellent electromagnetic interference (EMI) shielding and thermoelectric performance, with a shielding effectiveness (SE) of 31.14 dB and a power factor (PF) of 0.43 µW m-1K-2. As a substitute for PSS, S-ANF exhibits significant structural and physicochemical properties, resulting in excellent chemical and thermal stability. Even under harsh conditions such as immersing to 0.1 M HCl, 0.1 M NaOH, and 3.5% NaCl solution, or high temperature conditions, the PEDOT:S-ANF films still maintain exceptional EMI shielding performance. Therefore, this multifunctional conductive polymer exhibits enormous potential and even proves its reliability in extreme situations.
Collapse
Affiliation(s)
- Jianyu Zhou
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yan Zhu
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Kunpeng Qian
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Materials Sciences and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Miao Miao
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xin Feng
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Materials Sciences and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
7
|
Bheema RK, J G, Bhaskaran K, Verma A, Chavali M, Etika KC. A review on recent progress in polymer composites for effective electromagnetic interference shielding properties - structures, process, and sustainability approaches. NANOSCALE ADVANCES 2024:d4na00572d. [PMID: 39478997 PMCID: PMC11520351 DOI: 10.1039/d4na00572d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024]
Abstract
The rapid proliferation and extensive use of electronic devices have resulted in a meteoric increase in electromagnetic interference (EMI), which causes electronic devices to malfunction. The quest for the best shielding material to overcome EMI is boundless. This pursuit has taken different directions, right from materials to structures to process, up to the concept of sustainable materials. The emergence of polymer composites has substituted metal and metal alloy-based EMI shielding materials due to their unique features such as light weight, excellent corrosion resistance, and superior electrical, dielectric, thermal, mechanical, and magnetic properties that are beneficial for suppressing the EMI. Therefore, polymer nanocomposites are an extensively explored EMI shielding materials strategy. This review focuses on recent research developments with a major emphasis on structural aspects and processing for enhancing the EMI shielding effectiveness of polymer nanocomposites with their underlying mechanisms and some glimpses of the sustainability approaches taken in this field.
Collapse
Affiliation(s)
- Rajesh Kumar Bheema
- Department of Chemical Engineering, BITS Pilani Pilani Rajasthan 333 031 India
| | - Gopu J
- Department of Chemical Engineering, BITS Pilani Pilani Rajasthan 333 031 India
| | - Krithika Bhaskaran
- Department of Chemical Engineering, BITS Pilani Pilani Rajasthan 333 031 India
| | - Akshat Verma
- Department of Chemical Engineering, BITS Pilani Pilani Rajasthan 333 031 India
| | - Murthy Chavali
- Office of the Dean Research, Dr. Vishwanath Karad MIT World Peace University Survey No, 124, Paud Rd, Kothrud Pune Maharashtra 411038 India
| | | |
Collapse
|
8
|
Shi Y, Wu M, Ge S, Li J, Alshammari AS, Luo J, Amin MA, Qiu H, Jiang J, Asiri YM, Huang R, Hou H, El-Bahy ZM, Guo Z, Jia C, Xu K, Chen X. Advanced Functional Electromagnetic Shielding Materials: A Review Based on Micro-Nano Structure Interface Control of Biomass Cell Walls. NANO-MICRO LETTERS 2024; 17:3. [PMID: 39302510 DOI: 10.1007/s40820-024-01494-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/27/2024] [Indexed: 09/22/2024]
Abstract
Research efforts on electromagnetic interference (EMI) shielding materials have begun to converge on green and sustainable biomass materials. These materials offer numerous advantages such as being lightweight, porous, and hierarchical. Due to their porous nature, interfacial compatibility, and electrical conductivity, biomass materials hold significant potential as EMI shielding materials. Despite concerted efforts on the EMI shielding of biomass materials have been reported, this research area is still relatively new compared to traditional EMI shielding materials. In particular, a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment, preparation process, and micro-control would be valuable. The preparation methods and characteristics of wood, bamboo, cellulose and lignin in EMI shielding field are critically discussed in this paper, and similar biomass EMI materials are summarized and analyzed. The composite methods and fillers of various biomass materials were reviewed. this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.
Collapse
Affiliation(s)
- Yang Shi
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Mingjun Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Jianzhang Li
- State Key Laboratory of Efficient Production of Forest Resourced, Beijing Forestry University, Qinghua East Road 35, Haidian District, Beijing, 100083, People's Republic of China.
| | - Anoud Saud Alshammari
- Department of Physics, Faculty of Sciences-Arar, Northern Border University, Arar, 91431, Saudi Arabia
| | - Jing Luo
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Hua Qiu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, People's Republic of China
| | - Jinxuan Jiang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Yazeed M Asiri
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Runzhou Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Hua Hou
- Integrated Composites Lab, Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, People's Republic of China
| | - Zeinhom M El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Zhanhu Guo
- Integrated Composites Lab, Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK.
| | - Chong Jia
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Kaimeng Xu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming, 650224, People's Republic of China.
| | - Xiangmeng Chen
- School of Science, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China.
| |
Collapse
|
9
|
Ly Duc M, Bilik P, Martinek R. Hybrid six sigma based on recursive kalman filter and weibull distribution to estimate the lifespan of Bulb LEDs. RESULTS IN ENGINEERING 2024; 23:102633. [DOI: 10.1016/j.rineng.2024.102633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Ramisetti P, Dumpala M, Danikonda SK, Suramoni R, Nampally B, Katakam M. Synthesis of biopolymer blends nanocomposites embedded with mono-(Ag, Fe) and bi-(Ag-Fe) metallic nanoparticles using an eco-friendly approach for antimicrobial activities. Bioprocess Biosyst Eng 2024; 47:1293-1306. [PMID: 38568262 DOI: 10.1007/s00449-024-03011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/28/2024] [Indexed: 07/25/2024]
Abstract
Plant-mediated solution casting is used to develop eco-friendly polymer blend nanocomposites from polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) doped with Silver (Ag), Ferrous (Fe) monometallic and Silver-Ferrous (Ag-Fe) bimetallic nanoparticles (NPs). These nanocomposites were studied to understand their electromagnetic interface (EMI) shielding efficiency and antimicrobial activities, besides evaluating their physical and chemical properties. The Fourier transform infrared (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and energy dispersive X-ray (EDX) characterization techniques were used to examine the interactions between the polymers, the presence of silver and ferrous particles in the composites, the crystallinity shift, the surface morphology, the shape and size of the nanoparticles and the distribution of the nanoparticles in the composites. The FTIR spectra showed the interactions among the components of the composites. According to XRD spectra, the incorporation of nanoparticles into the PVA polymer significantly reduced the crystalline character of the polymer from 0.38 to 0.24 for the composition consisting of silver and iron nanoparticles in equal proportion. The results from SEM, EDX and XRD corroborate the presence of nanoparticle forms. The thermogravimetric analysis (TGA) tests reveal that the thermal stability of bimetallic composites is greater than that of monometallic composites. The tensile properties showed that the addition of nanoparticles to the PVA/PVP polymer matrix increased its mechanical strength from 59.3 MPa to 85.5 MPa. We examined its efficacy against Escherichia coli, Staphylococcus aureus and Candida albicans as microorganisms. Good antibacterial and antifungal activity was observed. The bimetallic composites demonstrated greater activity than monometallic composites against these bacterial and fungal species. All bimetallic nanocomposites have shown enhanced, loss due to reflection, loss due to absorption, and the total EMI shielding efficiency at 8 GHz (X-band) and 16 GHz (Ku-band) frequency. All these results ratify, that these newly developed bio nanocomposites are most suitable in many applications, in EMI shielding, nanotechnology, and medical fields.
Collapse
Affiliation(s)
- Praveen Ramisetti
- Polymer Nanocomposites and Functional Materials Laboratory, Department of Physics, University College of Science, Osmania University, Hyderabad, 500 007, Telangana, India
- Department of Physics, Government Degree College for Women, Khammam, 507 001, Telangana, India
| | - Madhuri Dumpala
- Polymer Nanocomposites and Functional Materials Laboratory, Department of Physics, University College of Science, Osmania University, Hyderabad, 500 007, Telangana, India
| | - Suresh Kumar Danikonda
- Department of Physics, University P G College, Satavahana University, Godavarikhani, 505 209, Telangana, India
| | - Ramesh Suramoni
- University Institute of Sciences and Applied Arts (UISAA), Guru Nanak University, Ibrahimpatnam, Hyderabad, 500100, Telangana, India
| | - Bikshamaiah Nampally
- Department of Physics, University College of Science, Mahatma Gandhi University, Nalgonda, 508 001, Telangana, India
| | - Madhukar Katakam
- Polymer Nanocomposites and Functional Materials Laboratory, Department of Physics, University College of Science, Osmania University, Hyderabad, 500 007, Telangana, India.
| |
Collapse
|
11
|
Lebedeva EA, Ivanova EV, Trukhinov DK, Istomina TS, Knyazev NS, Malkin AI, Chechetkin VA, Korotkov AN, Balasoiu M, Astaf’eva SA. Electrophysical Characteristics of Acrylonitrile Butadiene Styrene Composites Filled with Magnetite and Carbon Fiber Fillers. Polymers (Basel) 2024; 16:2153. [PMID: 39125178 PMCID: PMC11314315 DOI: 10.3390/polym16152153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
With the rapid development of wireless communication technologies and the miniaturization trend in the electronics industry, the reduction of electromagnetic interference has become an important issue. To solve this problem, a lot of attention has been focused on polymer composites with combined functional fillers. In this paper, we report a method for creating an acrylonitrile butadiene styrene (ABS) plastic composite with a low amount of conductive carbon and magnetic fillers preparation. Also, we investigate the mechanical, thermophysical, and electrodynamic characteristics of the resulting composites. Increasing the combined filler amount in the ABS composite from 1 to 5 wt % leads to a composite conductivity growth of almost 50 times. It is necessary to underline the temperature decrease of 5 wt % mass loss and, accordingly, the composite heat resistance reduction with an increase in the combined filler from 1 to 5 wt %, while the thermal conductivity remains almost constant. It was established that electrodynamic and physical-mechanical characteristics depend on the agglomeration of fillers. This work is expected to reveal the potential of combining commercially available fillers to construct effective materials with good electromagnetic interference (EMI) protection using mass production methods (extrusion and injection molding).
Collapse
Affiliation(s)
- Elena A. Lebedeva
- “Institute of Technical Chemistry of UB RAS”—Affiliation of Perm Federal Research Centre of Ural Branch of Russian Academy of Sciences, Akademika Koroleva str., 3, Perm 614013, Russia; (E.A.L.); (D.K.T.)
| | - Elena V. Ivanova
- “Institute of Technical Chemistry of UB RAS”—Affiliation of Perm Federal Research Centre of Ural Branch of Russian Academy of Sciences, Akademika Koroleva str., 3, Perm 614013, Russia; (E.A.L.); (D.K.T.)
| | - Denis K. Trukhinov
- “Institute of Technical Chemistry of UB RAS”—Affiliation of Perm Federal Research Centre of Ural Branch of Russian Academy of Sciences, Akademika Koroleva str., 3, Perm 614013, Russia; (E.A.L.); (D.K.T.)
| | - Tatiana S. Istomina
- “Institute of Technical Chemistry of UB RAS”—Affiliation of Perm Federal Research Centre of Ural Branch of Russian Academy of Sciences, Akademika Koroleva str., 3, Perm 614013, Russia; (E.A.L.); (D.K.T.)
| | - Nikolay S. Knyazev
- Engineering School of Information Technologies, Telecommunications and Control Systems, Ural Federal University, Mira str., 19, Yekaterinburg 620002, Russia (A.I.M.)
| | - Alexander I. Malkin
- Engineering School of Information Technologies, Telecommunications and Control Systems, Ural Federal University, Mira str., 19, Yekaterinburg 620002, Russia (A.I.M.)
| | - Victor A. Chechetkin
- Engineering School of Information Technologies, Telecommunications and Control Systems, Ural Federal University, Mira str., 19, Yekaterinburg 620002, Russia (A.I.M.)
| | - Alexey N. Korotkov
- Engineering School of Information Technologies, Telecommunications and Control Systems, Ural Federal University, Mira str., 19, Yekaterinburg 620002, Russia (A.I.M.)
| | - Maria Balasoiu
- Joint Institute for Nuclear Research, Dubna 141980, Russia;
- “Horia Hulubei” National Institute of Physics and Nuclear Engineering, 077125 Magurele, Romania
- R&D CSMBA, Faculty of Physics, West University of Timișoara, 300223 Timișoara, Romania
| | - Svetlana A. Astaf’eva
- “Institute of Technical Chemistry of UB RAS”—Affiliation of Perm Federal Research Centre of Ural Branch of Russian Academy of Sciences, Akademika Koroleva str., 3, Perm 614013, Russia; (E.A.L.); (D.K.T.)
| |
Collapse
|
12
|
Yadegari A, Akbarzadeh M, Kargaran F, Mirzaee R, Salahshoori I, Nobre MAL, Khonakdar HA. Recent advancements in bio-based dielectric and piezoelectric polymers and their biomedical applications. J Mater Chem B 2024; 12:5272-5298. [PMID: 38739040 DOI: 10.1039/d4tb00231h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The advent of polymer-based dielectrics marked a significant breakthrough in dielectric materials. However, despite their many advantages, they pose serious environmental threats. Therefore, in recent years, there has been growing interest in bio-based polymers as a sustainable alternative to traditional petroleum-based polymers. Their renewable nature and reduced environmental impact can fulfil the rising demand for eco-friendly substitutes. Beyond their ecological benefits, bio-based polymers also possess distinctive electrical properties that make them extremely attractive in a variety of applications. Considering these, herein, we present recent advancements in bio-based dielectric polymers and nanocomposites. First, the fundamental concepts of dielectric and polymer-based dielectric materials are covered. Then, we will delve into the discussion of recent advancements in the dielectric properties and thermal stability of bio-based polymers, including polylactic acid, polyhydroxyalkanoates, polybutylene succinate, starch, cellulose, chitosan, chitins, and alginates, and their nanocomposites. Other novel bio-based dielectric polymers and their distinct dielectric characteristics have also been pointed out. In an additional section, the piezoelectric properties of these polymers and their recent biomedical applications have been highlighted and discussed thoroughly. In conclusion, this paper thoroughly discusses the recent advances in bio-based dielectric polymers and their potential to revolutionize the biomedical industry while cultivating a more sustainable and greener future.
Collapse
Affiliation(s)
- Ali Yadegari
- Faculty of Petroleum, Gas and Petrochemical Engineering, Persian Gulf University, Bushehr, 75169, Iran
| | - Mahsa Akbarzadeh
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, P.O. BOX: 14975/112, Tehran, Iran.
| | - Farshad Kargaran
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, P.O. BOX: 14975/112, Tehran, Iran.
| | - Ramin Mirzaee
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, P.O. BOX: 14975/112, Tehran, Iran.
| | - Iman Salahshoori
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, P.O. BOX: 14975/112, Tehran, Iran.
| | - Marcos A L Nobre
- São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP, 19060-900, Brazil
| | - Hossein Ali Khonakdar
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, P.O. BOX: 14975/112, Tehran, Iran.
| |
Collapse
|
13
|
Zhang H, Gong X, Dai X, Yong Z, Ramakrishna S. Robust ultrahigh electromagnetic interference shielding effectiveness based on engineered structures of carbon nanotube films. iScience 2024; 27:109525. [PMID: 38711450 PMCID: PMC11070331 DOI: 10.1016/j.isci.2024.109525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/14/2024] [Accepted: 03/14/2024] [Indexed: 05/08/2024] Open
Abstract
High-performance electromagnetic interference (EMI) shielding materials with ultrathin, flexible, and pliable mechanical properties are highly desired for high-end equipments, yet there remain large challenges in the manufacture of these materials. Here, carbon nanotube film (CNTF)/copper (Cu) nanoparticle (NP) composite films are fabricated via a facile electrodeposition method to achieve high electromagnetic shielding efficiency. Notably, a CNTF/Cu NP composite film with 15 μm thickness can achieve excellent EMI shielding efficiency of ∼248 dB and absolute EMI shielding effectiveness as high as 2.17 × 105 dB cm2 g-1, which are the best values for composite EMI shielding materials with similar or greater thicknesses. These engineered composite films exhibit excellent deformation tolerance, which ensures the robust reliability of EMI shielding efficiency after 20,000 cycles of repeated bending. Our results represent a critical breakthrough in the preparation of ultrathin, flexible, and pliable shielding films for applications in smart, portable and wearable electronic devices, and 5G communication.
Collapse
Affiliation(s)
- Haoxiang Zhang
- Institute of Materials Science and Engineering, Changzhou University, Changzhou 213164, P.R. China
| | - Xiaojing Gong
- Institute of Materials Science and Engineering, Changzhou University, Changzhou 213164, P.R. China
| | - Xucheng Dai
- Institute of Materials Science and Engineering, Changzhou University, Changzhou 213164, P.R. China
| | - Zhenzhong Yong
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
14
|
Abbas R, Rehman UU, bilal A, Sultan N, Ghazanfar U, Ali T, Nadeem M. 3D printed lightweight honeycomb vent structures with subsequent coating of silver nanowires for efficient electromagnetic interference (EMI) shielding. Heliyon 2024; 10:e30429. [PMID: 38737227 PMCID: PMC11088321 DOI: 10.1016/j.heliyon.2024.e30429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/28/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
In light of the rapid advancements within the electronic industry, the urgent need for the development and implementation of advanced electromagnetic interference (EMI) shielding materials has become paramount. Herein a novel approach is presented for developing of lightweight honeycomb structures using 3D printing technology, combined with subsequent conductive spray coating, containing Silver Nanowires (AgNWs), to achieve effective EMI shielding as well as air vent functionality for thermal cooling. Using polyol method, AgNWs were synthesized having high aspect ratio and crystallinity for to be used as conductive coating on 3D printed structures. The EMI shielding results in X-band demonstrated that the developed structures exhibit promising EMI shielding properties, up to 35 dB attenuation with 2 mm honeycomb cell size, making them suitable for applications requiring EMI protection along with air venting. More importantly in all samples major contribution of the shielding efficiency comes from the absorption of the EM waves (up to 75 %) inside the structures which is helpful to reduce reflected EM noise. Effort was to effectively addresses the inherent limitations of conventional processing technology, by using additive manufacturing and material science to create structures for EMI shielding applications, bridging the gap between existing materials and desired components.
Collapse
Affiliation(s)
- Raheel Abbas
- Polymer Composite Group, Directorate of Science, PINSTECH, Nilore, 44000, Islamabad, Pakistan
- Department of Physics, University of Wah, Wah Rawalpindi, Pakistan
| | - Ubaid ur Rehman
- Polymer Composite Group, Directorate of Science, PINSTECH, Nilore, 44000, Islamabad, Pakistan
| | - Ahmed bilal
- Polymer Composite Group, Directorate of Science, PINSTECH, Nilore, 44000, Islamabad, Pakistan
| | - Numrah Sultan
- Polymer Composite Group, Directorate of Science, PINSTECH, Nilore, 44000, Islamabad, Pakistan
| | - Uzma Ghazanfar
- Department of Physics, University of Wah, Wah Rawalpindi, Pakistan
| | - Tahir Ali
- Physics Division, Directorate of Science, PINSTECH, Islamabad, Pakistan
| | - Muhammad Nadeem
- Polymer Composite Group, Directorate of Science, PINSTECH, Nilore, 44000, Islamabad, Pakistan
| |
Collapse
|
15
|
Anju, Masař M, Machovský M, Urbánek M, Šuly P, Hanulíková B, Vilčáková J, Kuřitka I, Yadav RS. Optimization of CoFe 2O 4 nanoparticles and graphite fillers to endow thermoplastic polyurethane nanocomposites with superior electromagnetic interference shielding performance. NANOSCALE ADVANCES 2024; 6:2149-2165. [PMID: 38633039 PMCID: PMC11019480 DOI: 10.1039/d3na01053h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/05/2024] [Indexed: 04/19/2024]
Abstract
The rapid growth, integration, and miniaturization of electronics have raised significant concerns about how to handle issues with electromagnetic interference (EMI), which has increased demand for the creation of EMI shielding materials. In order to effectively shield against electromagnetic interference (EMI), this study developed a variety of thermoplastic polyurethane (TPU)-based nanocomposites in conjunction with CoFe2O4 nanoparticles and graphite. The filler percentage and nanocomposite thickness were tuned and optimized. The designed GF15-TPU nanocomposite, which has a 5 mm thickness, 15 weight percent cobalt ferrite nanoparticles, and 35 weight percent graphite, showed the highest total EMI shielding effectiveness value of 41.5 dB in the 8.2-12.4 GHz frequency range, or 99.993% shielding efficiency, out of all the prepared polymer nanocomposites. According to experimental findings, the nanocomposite's dipole polarization, interfacial polarization, conduction loss, eddy current loss, natural resonance, exchange resonance, multiple scattering, and high attenuation significantly contribute to improving its electromagnetic interference shielding properties. The created TPU-based nanocomposites containing graphite and CoFe2O4 nanoparticles have the potential to be used in communication systems, defense, spacecraft, and aircraft as EMI shielding materials.
Collapse
Affiliation(s)
- Anju
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín Trida Tomase Bati 5678 760 01 Zlín Czech Republic
| | - Milan Masař
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín Trida Tomase Bati 5678 760 01 Zlín Czech Republic
| | - Michal Machovský
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín Trida Tomase Bati 5678 760 01 Zlín Czech Republic
| | - Michal Urbánek
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín Trida Tomase Bati 5678 760 01 Zlín Czech Republic
| | - Pavol Šuly
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín Trida Tomase Bati 5678 760 01 Zlín Czech Republic
| | - Barbora Hanulíková
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín Trida Tomase Bati 5678 760 01 Zlín Czech Republic
| | - Jarmila Vilčáková
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín Trida Tomase Bati 5678 760 01 Zlín Czech Republic
| | - Ivo Kuřitka
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín Trida Tomase Bati 5678 760 01 Zlín Czech Republic
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín Vavrečkova 5669 760 01 Zlín Czech Republic
| | - Raghvendra Singh Yadav
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín Trida Tomase Bati 5678 760 01 Zlín Czech Republic
| |
Collapse
|
16
|
Zecchi S, Cristoforo G, Bartoli M, Tagliaferro A, Torsello D, Rosso C, Boccaccio M, Acerra F. A Comprehensive Review of Electromagnetic Interference Shielding Composite Materials. MICROMACHINES 2024; 15:187. [PMID: 38398916 PMCID: PMC10891677 DOI: 10.3390/mi15020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
The interaction between matter and microwaves assumes critical significance due to the ubiquity of wireless communication technology. The selective shielding of microwaves represents the only way to achieve the control on crucial technological sectors. The implementation of microwave shielding ensures the proper functioning of electronic devices. By preventing electromagnetic pollution, shielding safeguards the integrity and optimal performances of devices, contributing to the reliability and efficiency of technological systems in various sectors and allowing the further step forwards in a safe and secure society. Nevertheless, the microwave shielding research is vast and can be quite hard to approach due to the large number and variety of studies regarding both theory and experiments. In this review, we focused our attention on the comprehensive discussion of the current state of the art of materials used for the production of electromagnetic interference shielding composites, with the aim of providing a solid reference point to explore this research field.
Collapse
Affiliation(s)
- Silvia Zecchi
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (S.Z.); (G.C.); (D.T.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Firenze, Italy;
| | - Giovanni Cristoforo
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (S.Z.); (G.C.); (D.T.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Firenze, Italy;
| | - Mattia Bartoli
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Firenze, Italy;
- Italian Institute of Technology, Via Livorno 60, 10144 Torino, Italy
| | - Alberto Tagliaferro
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (S.Z.); (G.C.); (D.T.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Firenze, Italy;
| | - Daniele Torsello
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (S.Z.); (G.C.); (D.T.)
- Istituto Nazionale di Fisica Nucleare, Sez. Torino, Via P. Giuria 1, 10125 Torino, Italy
| | - Carlo Rosso
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy;
| | - Marco Boccaccio
- Leonardo Labs, OGR Tech, Corso Castelfidardo 22, 10138 Torino, Italy
| | - Francesco Acerra
- Leonardo Aircraft, Viale dell’Aeronautica Sns, 80038 Pomigliano d’Arco, Italy;
| |
Collapse
|
17
|
Zhang Z, Ning X, Liu B, Zhou J, Sun Z. Self-Assembly TiO 2-Ti 3C 2T x Ball-Plate Structure for Highly Efficient Electromagnetic Interference Shielding. MATERIALS (BASEL, SWITZERLAND) 2023; 17:72. [PMID: 38203926 PMCID: PMC10779825 DOI: 10.3390/ma17010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
MXene is a promising candidate for the next generation of lightweight electromagnetic interference (EMI) materials owing to its low density, excellent conductivity, hydrophilic properties, and adjustable component structure. However, MXene lacks interlayer support and tends to agglomerate, leading to a shorter service life and limiting its development in thin-layer electromagnetic shielding material. In this study, we designed self-assembled TiO2-Ti3C2Tx materials with a ball-plate structure to mitigate agglomeration and obtain a thin-layer and multiple absorption porous materials for high-efficiency EMI shielding. The TiO2-Ti3C2Tx composite with a thickness of 50 μm achieved a shielding efficiency of 72 dB. It was demonstrated that the ball-plate structure generates additional interlayer cavities and internal interface, increasing the propagation path for an electromagnetic wave, which, in turn, raises the capacity of materials to absorb and dissipate the wave. These effects improve the overall EMI shielding performance of MXene and pave the way for the development of the next-generation EMI shielding system.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China; (Z.Z.); (X.N.); (J.Z.)
| | - Xingyang Ning
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China; (Z.Z.); (X.N.); (J.Z.)
| | - Bin Liu
- School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China;
| | - Jian Zhou
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China; (Z.Z.); (X.N.); (J.Z.)
| | - Zhimei Sun
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China; (Z.Z.); (X.N.); (J.Z.)
| |
Collapse
|
18
|
Martins LC, Silva CS, Fernandes LC, Sampaio ÁM, Pontes AJ. Evaluating the Electromagnetic Shielding of Continuous Carbon Fiber Parts Produced by Additive Manufacturing. Polymers (Basel) 2023; 15:4649. [PMID: 38139901 PMCID: PMC10748082 DOI: 10.3390/polym15244649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 12/24/2023] Open
Abstract
Electronic devices are sensitive to electromagnetic (EM) emissions, and require electromagnetic shielding protection to ensure good operation, and prevent noise, malfunctioning, or even burning. To ensure protection, it is important to develop suitable material and design solutions for electronic enclosures. Most common enclosures are made with metal alloys using traditional manufacturing methods. However, using thermoplastic composites combined with additive manufacturing (AM) technologies emerges as an alternative that enables the fabrication of complex parts that are lightweight, consolidated, and oxidation- and corrosion-resistant. In this research, an AM technique based on material extrusion was used to print 2 mm-thick specimens with a multi-material made of micro-carbon fiber (CF)-filled polyamide that was reinforced at specific layers using continuous carbon fibers stacked with a 90° rotation to each other. The specimens' electromagnetic shielding effectiveness (EMSE) was evaluated in the frequency band of 0.03-3 GHz using the coaxial transmission line method. Depending on the number of CF layers, the EM shielding obtained can be up to 70 dB, with a specific shielding up to 60 dB.cm3/g, predominantly by the absorption mechanism, being 22 times higher than without the CF layers. These findings promote this innovative approach to lightweight customizable solutions for EM shielding applications.
Collapse
Affiliation(s)
- Luís C. Martins
- Institute of Polymers and Composites, Department of Polymer Engineering, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (L.C.M.); (C.S.S.); (L.C.F.)
| | - Cátia S. Silva
- Institute of Polymers and Composites, Department of Polymer Engineering, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (L.C.M.); (C.S.S.); (L.C.F.)
- DONE Lab—Advanced Manufacturing of Polymers and Tools, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
| | - Leandro C. Fernandes
- Institute of Polymers and Composites, Department of Polymer Engineering, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (L.C.M.); (C.S.S.); (L.C.F.)
- DONE Lab—Advanced Manufacturing of Polymers and Tools, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
| | - Álvaro M. Sampaio
- DONE Lab—Advanced Manufacturing of Polymers and Tools, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
- Lab2PT—Landscapes, Heritage and Territory Laboratory, School of Architecture, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal
| | - António J. Pontes
- Institute of Polymers and Composites, Department of Polymer Engineering, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal; (L.C.M.); (C.S.S.); (L.C.F.)
- DONE Lab—Advanced Manufacturing of Polymers and Tools, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
| |
Collapse
|
19
|
Petrychuk MV, Oliynyk VV, Zagorodnii VV, Ogurtsov NA, Pud AA. PVDF/poly(3-methylthiophene)/MWCNT nanocomposites for EMI shielding in the microwave range. Heliyon 2023; 9:e23101. [PMID: 38144327 PMCID: PMC10746465 DOI: 10.1016/j.heliyon.2023.e23101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
This work presents a new approach to enhance EMI shielding efficiency of nanocomposites of dielectric polymers, multiwalled carbon nanotubes (MWCNTs) and intrinsically conducting polymers for account of using core-shell morphology for conducting components. To realize this approach new ternary nanocomposites of poly(vinylidene fluoride) (PVDF), MWCNTs and poly(3-methylthiophene) doped by Cl- anions (P3MT) were prepared through synthesis of thermally stable core/shell nanocomposites PVDF/P3MT and MWCNT/P3MT. These binary nanocomposites were mixed with pure MWCNTs or PVDF followed by compression molding to prepare the ternary nanocomposites of different morphology to discriminate their EMI shielding properties in a wide frequency range (1-67 GHz). Values of the tangent of dielectric loss angle, the efficiency of transmission, reflection and absorption of microwave radiation, and shielding efficiency (SE) of the specified materials were found from analysis of spectral dependences of their complex dielectric constants. It was shown that while the melt mixing of the binary PVDF/P3MT nanocomposite with MWCNTs both in a pure state and in the binary nanocomposite (MWCNT/P3MT) expectedly strongly enhances SE of the former, this effect is non-linear and depends on presence/absence of the P3MT shell on the MWCNT core. The ternary nanocomposite PVDF/P3MT/MWCNT made of the binary polymer-polymer nanocomposite PVDF/P3MT and pure MWCNTs showed highest SE values at the frequencies above 4.5 GHz up to 68.4 dB at 67 GHz in the case of the 1 mm thickness sample. However, below 4.5 GHz the SE was higher in the case of the ternary nanocomposites containing core/shell MWCNT/P3MT nanocomposite instead of pure MWCNT.
Collapse
Affiliation(s)
- Mykhailo V. Petrychuk
- Institute of Biological Information Processing (IBI-3): Bioelectronics, Forschungszentrum Jülich, 52425, Jülich, Germany
- Taras Shevchenko National University of Kyiv, Educational Scientific Institute of High Technologies, 01601, Kyiv, Ukraine
| | - Victor V. Oliynyk
- Taras Shevchenko National University of Kyiv, Educational Scientific Institute of High Technologies, 01601, Kyiv, Ukraine
| | - Volodymyr V. Zagorodnii
- Taras Shevchenko National University of Kyiv, Educational Scientific Institute of High Technologies, 01601, Kyiv, Ukraine
| | - Nikolay A. Ogurtsov
- V.P. Kukhar Institute of Bioorganic Chemistry and Petro Chemistry of NAS of Ukraine, 50 Kharkivske Shose, Kyiv, 02160, Ukraine
| | - Alexander A. Pud
- V.P. Kukhar Institute of Bioorganic Chemistry and Petro Chemistry of NAS of Ukraine, 50 Kharkivske Shose, Kyiv, 02160, Ukraine
| |
Collapse
|
20
|
Ma H, Fashandi M, Rejeb ZB, Ming X, Liu Y, Gong P, Li G, Park CB. Efficient Electromagnetic Wave Absorption and Thermal Infrared Stealth in PVTMS@MWCNT Nano-Aerogel via Abundant Nano-Sized Cavities and Attenuation Interfaces. NANO-MICRO LETTERS 2023; 16:20. [PMID: 37975901 PMCID: PMC10656378 DOI: 10.1007/s40820-023-01218-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/28/2023] [Indexed: 11/19/2023]
Abstract
Pre-polymerized vinyl trimethoxy silane (PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization, sol-gel transition and supercritical CO2 drying. The fabricated organic-inorganic hybrid PVTMS@MWCNT aerogel structure shows nano-pore size (30-40 nm), high specific surface area (559 m2 g-1), high void fraction (91.7%) and enhanced mechanical property: (1) the nano-pore size is beneficial for efficiently blocking thermal conduction and thermal convection via Knudsen effect (beneficial for infrared (IR) stealth); (2) the heterogeneous interface was beneficial for IR reflection (beneficial for IR stealth) and MWCNT polarization loss (beneficial for electromagnetic wave (EMW) attenuation); (3) the high void fraction was beneficial for enhancing thermal insulation (beneficial for IR stealth) and EMW impedance match (beneficial for EMW attenuation). Guided by the above theoretical design strategy, PVTMS@MWCNT nano-aerogel shows superior EMW absorption property (cover all Ku-band) and thermal IR stealth property (ΔT reached 60.7 °C). Followed by a facial combination of the above nano-aerogel with graphene film of high electrical conductivity, an extremely high electromagnetic interference shielding material (66.5 dB, 2.06 mm thickness) with superior absorption performance of an average absorption-to-reflection (A/R) coefficient ratio of 25.4 and a low reflection bandwidth of 4.1 GHz (A/R ratio more than 10) was experimentally obtained in this work.
Collapse
Affiliation(s)
- Haoyu Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 24 Yihuan Road, Nanyiduan, Chengdu, 610065, Sichuan, People's Republic of China
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada
- Jiangsu JITRI Advanced Polymer Materials Research Institute, Tengfei Building, 88 Jiangmiao Road, Jiangbei New District, Nanjing, 211800, Jiangsu, People's Republic of China
| | - Maryam Fashandi
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada
| | - Zeineb Ben Rejeb
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada
| | - Xin Ming
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, International Research Center for X Polymers, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China
| | - Yingjun Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, International Research Center for X Polymers, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China
| | - Pengjian Gong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 24 Yihuan Road, Nanyiduan, Chengdu, 610065, Sichuan, People's Republic of China.
| | - Guangxian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 24 Yihuan Road, Nanyiduan, Chengdu, 610065, Sichuan, People's Republic of China
| | - Chul B Park
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 24 Yihuan Road, Nanyiduan, Chengdu, 610065, Sichuan, People's Republic of China.
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada.
| |
Collapse
|
21
|
Zhao Y, Li C, Lang T, Gao J, Zhang H, Zhao Y, Guo Z, Miao Z. Research Progress on Intrinsically Conductive Polymers and Conductive Polymer-Based Composites for Electromagnetic Shielding. Molecules 2023; 28:7647. [PMID: 38005369 PMCID: PMC10674943 DOI: 10.3390/molecules28227647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Electromagnetic shielding materials are special materials that can effectively absorb and shield electromagnetic waves and protect electronic devices and electronic circuits from interference and damage by electromagnetic radiation. This paper presents the research progress of intrinsically conductive polymer materials and conductive polymer-based composites for electromagnetic shielding as well as an introduction to lightweight polymer composites with multicomponent systems. These materials have excellent electromagnetic interference shielding properties and have the advantages of electromagnetic wave absorption and higher electromagnetic shielding effectiveness compared with conventional electromagnetic shielding materials, but these materials still have their own shortcomings. Finally, the paper also discusses the future opportunities and challenges of intrinsically conductive polymers and composites containing a conductive polymer matrix for electromagnetic shielding applications.
Collapse
Affiliation(s)
- Yuzhen Zhao
- Technological Institute of Materials & Energy Science (TIMES), Xi’an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi’an 710123, China; (Y.Z.); (C.L.); (T.L.); (J.G.); (H.Z.); (Y.Z.); (Z.G.)
| | - Chaonian Li
- Technological Institute of Materials & Energy Science (TIMES), Xi’an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi’an 710123, China; (Y.Z.); (C.L.); (T.L.); (J.G.); (H.Z.); (Y.Z.); (Z.G.)
| | - Tingting Lang
- Technological Institute of Materials & Energy Science (TIMES), Xi’an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi’an 710123, China; (Y.Z.); (C.L.); (T.L.); (J.G.); (H.Z.); (Y.Z.); (Z.G.)
| | - Jianjing Gao
- Technological Institute of Materials & Energy Science (TIMES), Xi’an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi’an 710123, China; (Y.Z.); (C.L.); (T.L.); (J.G.); (H.Z.); (Y.Z.); (Z.G.)
| | - Huimin Zhang
- Technological Institute of Materials & Energy Science (TIMES), Xi’an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi’an 710123, China; (Y.Z.); (C.L.); (T.L.); (J.G.); (H.Z.); (Y.Z.); (Z.G.)
| | - Yang Zhao
- Technological Institute of Materials & Energy Science (TIMES), Xi’an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi’an 710123, China; (Y.Z.); (C.L.); (T.L.); (J.G.); (H.Z.); (Y.Z.); (Z.G.)
| | - Zhun Guo
- Technological Institute of Materials & Energy Science (TIMES), Xi’an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi’an 710123, China; (Y.Z.); (C.L.); (T.L.); (J.G.); (H.Z.); (Y.Z.); (Z.G.)
| | - Zongcheng Miao
- Technological Institute of Materials & Energy Science (TIMES), Xi’an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi’an 710123, China; (Y.Z.); (C.L.); (T.L.); (J.G.); (H.Z.); (Y.Z.); (Z.G.)
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
22
|
Ahmed S, Li B, Luo S, Liao K. Heterogeneous Ti 3C 2T x MXene-MWCNT@MoS 2 Film for Enhanced Long-Term Electromagnetic Interference Shielding in the Moisture Environment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49458-49467. [PMID: 37844286 PMCID: PMC10614194 DOI: 10.1021/acsami.3c08279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/01/2023] [Indexed: 10/18/2023]
Abstract
MXene, as a novel two-dimensional (2D) material, has unique inherent features such as lightweight, flexibility, high electrical conductivity, customizable surface chemistry, and facile solution processability. However, utilizing MXene (Ti3C2Tx) films for long-term electromagnetic interference (EMI) shielding poses challenges, as they are susceptible to chemical deterioration through oxidation into TiO2. In this work, an ultrathin heterogeneous film of Ti3C2Tx MXene integrated with multiwalled carbon nanotubes supporting MoS2 clusters (MXene/MWCNT@MoS2) was developed. The heterogeneous film with 15 wt % of MWCNT@MoS2 clusters exhibited improved EMI shielding performance such as the highest EMI shielding effectiveness of 50 dB and the specific shielding effectiveness of 20,355 dB cm2 g -1, mainly attributed to the excellent electrical conductivity, distinctive porous structure, and multiple interfacial interactions. The heterogeneous films underwent extended exposure to a moisture environment (35 days), and their structural stability and EMI shielding performance were enhanced by the integration of MWCNT@MoS2 clusters. As a result, the engineered heterostructure of multilayered hybrid films holds promise as a viable option for improving the EMI shielding effectiveness and stability of Ti3C2Tx MXene.
Collapse
Affiliation(s)
- Sarab Ahmed
- Department
of Aerospace Engineering, Khalifa University
of Science and Technology, 127788 Abu Dhabi, UAE
| | - Baosong Li
- Department
of Aerospace Engineering, Khalifa University
of Science and Technology, 127788 Abu Dhabi, UAE
| | - Shaohong Luo
- Department
of Biomedical Engineering, Khalifa University
of Science and Technology, 127788 Abu Dhabi, UAE
| | - Kin Liao
- Department
of Aerospace Engineering, Khalifa University
of Science and Technology, 127788 Abu Dhabi, UAE
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, 127788 Abu Dhabi, UAE
| |
Collapse
|
23
|
Talipova AB, Buranych VV, Savitskaya IS, Bondar OV, Turlybekuly A, Pogrebnjak AD. Synthesis, Properties, and Applications of Nanocomposite Materials Based on Bacterial Cellulose and MXene. Polymers (Basel) 2023; 15:4067. [PMID: 37896311 PMCID: PMC10610809 DOI: 10.3390/polym15204067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/17/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
MXene exhibits impressive characteristics, including flexibility, mechanical robustness, the capacity to cleanse liquids like water through MXene membranes, water-attracting nature, and effectiveness against bacteria. Additionally, bacterial cellulose (BC) exhibits remarkable qualities, including mechanical strength, water absorption, porosity, and biodegradability. The central hypothesis posits that the incorporation of both MXene and bacterial cellulose into the material will result in a remarkable synthesis of the attributes inherent to MXene and BC. In layered MXene/BC coatings, the presence of BC serves to separate the MXene layers and enhance the material's integrity through hydrogen bond interactions. This interaction contributes to achieving a high mechanical strength of this film. Introducing cellulose into one layer of multilayer MXene can increase the interlayer space and more efficient use of MXene. Composite materials utilizing MXene and BC have gained significant traction in sensor electronics due to the heightened sensitivity exhibited by these sensors compared to usual ones. Hydrogel wound healing bandages are also fabricated using composite materials based on MXene/BC. It is worth mentioning that MXene/BC composites are used to store energy in supercapacitors. And finally, MXene/BC-based composites have demonstrated high electromagnetic interference (EMI) shielding efficiency.
Collapse
Affiliation(s)
- Aizhan B Talipova
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Volodymyr V Buranych
- Department of Nanoelectronics and Surface Modification, Sumy State University, 40000 Sumy, Ukraine
- Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, 917 24 Trnava, Slovakia
| | - Irina S Savitskaya
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Oleksandr V Bondar
- Department of Nanoelectronics and Surface Modification, Sumy State University, 40000 Sumy, Ukraine
| | - Amanzhol Turlybekuly
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
- Aman Technologies, LLP, Astana 010000, Kazakhstan
| | - Alexander D Pogrebnjak
- Department of Nanoelectronics and Surface Modification, Sumy State University, 40000 Sumy, Ukraine
- Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, 917 24 Trnava, Slovakia
- Faculty of Mechanical Engineering, Lublin University of Technology, 20-618 Lublin, Poland
| |
Collapse
|
24
|
Bian X, Yang Z, Zhang T, Yu J, Xu G, Chen A, He Q, Pan J. Multifunctional Flexible AgNW/MXene/PDMS Composite Films for Efficient Electromagnetic Interference Shielding and Strain Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41906-41915. [PMID: 37610108 DOI: 10.1021/acsami.3c08093] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
With the rapid development of electronic information technology, composite materials with outstanding performance in terms of electromagnetic interference (EMI) shielding and strain sensing are crucial for next-generation smart wearable electronic devices. However, the fabrication of flexible composite films with dual functionality remains a significant challenge. Herein, multifunctional flexible composite films with exciting EMI shielding and strain sensing properties were constructed using a facile vacuum-assisted filtration process and transfer method. The films consisted of ultrathin AgNW/MXene (Ti3C2Tx)/AgNW conductive networks (1 μm) attached to a flexible polydimethylsiloxane (PDMS) substrate. The obtained AgNW/MXene/PDMS composite film exhibited an exceptional EMI shielding effectiveness of 50.82 dB and good flexibility (retaining 93.67 and 90.18% of its original value after 1000 bending and stretching cycles, respectively), which are attributed to the enhanced multilayer internal reflection network created by the AgNWs and MXene as well as the synergistic effect of PDMS. Besides EMI shielding, the composite films also displayed remarkable strain sensing properties. They exhibited a wide linear range of tensile strain up to 68% with a gauge factor of 468. They also showed fast response, ultralow detection limit, and high mechanical stability. Interestingly, the composite films could also detect motion and voice recognition, demonstrating their potential as wearable sensors. This study highlights the effectiveness of multifunctional flexible AgNW/MXene/PDMS composite films in resisting electromagnetic radiation and monitoring human motion, thereby providing a promising solution for the development of flexible wearable electronic devices in complex electromagnetic environments.
Collapse
Affiliation(s)
- Xiaolong Bian
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zhonglin Yang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Tao Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Jiewen Yu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Gaopeng Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - An Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Qingquan He
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Jun Pan
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
25
|
Kim Y, Kim N, Lee SH, Hyeong SK, Lee JH, Lee J, Bae JS, Cho IS, Choi JY, Kim SY, Yu HK. Enhanced ultra high frequency EMI shielding with controlled ITO nano-branch width via different tin material types. NANOSCALE 2023; 15:13635-13644. [PMID: 37548600 DOI: 10.1039/d3nr03153e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The development of technologies for electromagnetic wave contamination has garnered attention. Among the various electromagnetic wave frequencies, for high frequencies such as those in the K and Ka ranges, there is a limitation of using only the properties of a single material. Therefore, it is necessary to improve the absorption coefficients by increasing the path of electromagnetic waves through internal scattering at an interface or a structure inside the material. Here, we accurately demonstrated the role of Sn in the growth of an indium tin oxide (ITO) nano-branch structure and grew high-density ITO nano-branches with the lowest thickness possible. Consequently, we obtained shielding efficiencies of 21.09 dB (K band) and 17.81 dB (Ka band) for a film with a thickness of 0.00364 mm. Owing to the significantly high specific shielding efficiency and low thickness and weight, it is expected to be applied in various fields.
Collapse
Affiliation(s)
- Youngho Kim
- Department of Materials Science and Engineering and Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea.
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Noeul Kim
- Department of Materials Science and Engineering and Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea.
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Sang Hoon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Seok-Ki Hyeong
- Department of Materials Science and Engineering and Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea.
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk-do, 55324, Republic of Korea
| | - Jae-Hyun Lee
- Department of Materials Science and Engineering and Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea.
| | - Jaeyeong Lee
- Korea Basic Science Institute, Busan Center, Busan 46742, Republic of Korea
| | - Jong Seong Bae
- Korea Basic Science Institute, Busan Center, Busan 46742, Republic of Korea
| | - In Sun Cho
- Department of Materials Science and Engineering and Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea.
| | - Jae-Young Choi
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Soo Young Kim
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Hak Ki Yu
- Department of Materials Science and Engineering and Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
26
|
Chaubisa P, Dharmendra D, Vyas Y, Chundawat P, Jangid NK, Ameta C. Synthesis and characterization of PANI and PANI-indole copolymer and study of their antimalarial and antituberculosis activity. Polym Bull (Berl) 2023:1-21. [PMID: 37362957 PMCID: PMC10243275 DOI: 10.1007/s00289-023-04873-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/31/2023] [Accepted: 05/28/2023] [Indexed: 06/28/2023]
Abstract
The preparation of polyaniline (PANI) and its copolymer with indole involved a chemical oxidative polymerization method, with benzene sulfonic acid (BSA, C6H6O3S) used as a dopant and potassium persulfate (PPS, K2S2O8) as an oxidant. The synthesized compounds underwent characterization using FTIR, 1H-NMR, TGA, and GPC techniques, which allowed the calculation of their average molecular weight and polydispersity index (PDI) through the GPC technique. The PDI values of the PANI copolymer with indole in different aniline-to-indole ratios were 1.53, 1.13, and 1.532 for 1:1, 1:2, and 2:1 ratios, respectively. Thermal stability was determined using TGA, revealing that the indole heterocyclic compound increased the inflexibility of the polymer chains in the synthesized PANI copolymer. The structure of the copolymer was further analyzed using 1HNMR and FTIR techniques, which confirmed the existence of benzenoid and quinoid groups in the PANI-indole copolymers, as well as the effect of doping on the polymer chains. The antibacterial and antifungal properties of the copolymers were studied against several bacterial and fungal strains and measured in terms of minimum inhibitory concentration. Results indicated that the inhibition rate of the PANI-indole copolymer on S. pyogenus (MTCC 442) was higher than that of standard drugs and individual PANI. The PANI-indole copolymers also displayed excellent antituberculosis and antimalarial activities, with the synthesized copolymer showing better outcomes than individual PANI.
Collapse
Affiliation(s)
- Purnima Chaubisa
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan India
| | | | - Yogeshwari Vyas
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan India
| | - Priyanka Chundawat
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan India
| | | | - Chetna Ameta
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan India
| |
Collapse
|
27
|
Lapka T, Vilčáková J, Kopecký D, Prokeš J, Dendisová M, Moučka R, Sedlačík M, Hassouna F. Flexible, ultrathin and light films from one-dimensional nanostructures of polypyrrole and cellulose nanofibers for high performance electromagnetic interference shielding. Carbohydr Polym 2023; 309:120662. [PMID: 36906374 DOI: 10.1016/j.carbpol.2023.120662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023]
Abstract
Combining highly conducting one-dimensional nanostructures of polypyrrole with cellulose nanofibers (CNF) into flexible films with tailored electrical conductivity and mechanical properties presents a promising route towards the development of eco-friendly electromagnetic interference shielding devices. Herein, conducting films with a thickness of 140 μm were synthesized from polypyrrole nanotubes (PPy-NT) and CNF using two approaches, i.e., a new one-pot synthesis consisting of in situ polymerization of pyrrole in the presence of structure guiding agent and CNF, and a two-step synthesis, in which CNF and PPy-NT were physically blended. Films based on one-pot synthesis (PPy-NT/CNFin) exhibited higher conductivity than those processed by physical blending, which was further enhanced up to 14.51 S cm-1 after redoping using HCl post-treatment. PPy-NT/CNFin containing the lowest PPy-NT loading (40 wt%), thus the lowest conductivity (5.1 S cm-1), displayed the highest shielding effectiveness of -23.6 dB (>90 % attenuation), thanks to the good balance between its mechanical properties and electrical conductivity.
Collapse
Affiliation(s)
- Tomáš Lapka
- Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, 166 28 Prague 6, Czech Republic
| | - Jarmila Vilčáková
- Centre of Polymer Systems, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic
| | - Dušan Kopecký
- Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, 166 28 Prague 6, Czech Republic
| | - Jan Prokeš
- Faculty of Mathematics and Physics, Charles University, 180 00 Prague 8, Czech Republic
| | - Marcela Dendisová
- Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, 166 28 Prague 6, Czech Republic
| | - Robert Moučka
- Centre of Polymer Systems, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic
| | - Michal Sedlačík
- Centre of Polymer Systems, Tomas Bata University in Zlín, 760 01 Zlín, Czech Republic
| | - Fatima Hassouna
- Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
28
|
Sadek R, Sharawi MS, Dubois C, Tantawy H, Chaouki J. Reduced Graphene Oxide/Barium Ferrite Ceramic Nanocomposite Synergism for High EMI Wave Absorption. ACS OMEGA 2023; 8:15099-15113. [PMID: 37151556 PMCID: PMC10157665 DOI: 10.1021/acsomega.2c08168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/06/2023] [Indexed: 05/09/2023]
Abstract
The developed nanocomposite exhibits significantly enhanced shielding performance due to the synergistic effect of high dielectric and magnetic loss materials, which modifies the material's impedance and improves its absorption ability. Different weight percentages (0, 1, 5, 10, 15, 20, and 25 wt %) of thermally treated chemically reduced graphene oxide (TCRGO) were combined with two types of magnets, barium hexaferrite (BF) and magnetite (MAG), using a dry powder compaction technique to produce binary ceramic nanocomposite sheets. The shielding performance of a 1 mm thick compressed nanoceramic sheet over the X-band was evaluated using a vector network analyzer. The 25% TCRGO showed high shielding performance for both BF and MAG, while BF had a total shielding efficiency (SET) that exceeded MAG by 130%. The SET of 25 wt % TCRGO/BF was 52 dB, with a 41 dB absorption shielding efficiency (SEA). Additionally, the effect of different levels of incident electromagnetic wave power (0.001-1000 mW) at various thicknesses (1, 2, and 5 mm) was explored. At 1000 mW, the 5 mm TCRGO/BF had an SET of 99 dB, an SEA of 91 dB, and a reflection shielding efficiency (SER) of 8 dB. The use of BF as a hard magnet paired with TCRGO exhibited excellent and stable electromagnetic shielding performance.
Collapse
Affiliation(s)
- Ramy Sadek
- Chemical
Engineering Department, Polytechnique Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Mohammad S. Sharawi
- Poly-Grames
Research Center, Electrical Engineering Department, Polytechnique Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Charles Dubois
- Chemical
Engineering Department, Polytechnique Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Hesham Tantawy
- Chemical
Engineering Department, Military Technical
College, Cairo 11766, Egypt
| | - Jamal Chaouki
- Chemical
Engineering Department, Polytechnique Montréal, Montréal, Quebec H3T 1J4, Canada
| |
Collapse
|
29
|
Won JS, Prasad C, Jeong SG, Rosaiah P, Reddy AS, Ahmad Z, Sangaraju S, Choi HY. Recent advances in the development of MXenes/cellulose based composites: A review. Int J Biol Macromol 2023; 240:124477. [PMID: 37076072 DOI: 10.1016/j.ijbiomac.2023.124477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Over the past few years, transition metal carbides, nitrides, and carbonitrides, commonly referred to as MXenes have been discovered and utilized quickly in a range of technical fields due to their distinctive and controlled characteristics. MXenes are a new class of two-dimensional (2D) materials that have found extensive use in a variety of fields, including energy storage, catalysis, sensing, biology, and other scientific disciplines. This is because of their exceptional mechanical and structural characteristics, metal electrical conductivity, and other outstanding physical and chemical properties. In this contribution, we review recent cellulose research advances and show that MXene hybrids are effective composites that benefit from cellulose superior water dispersibility and the electrostatic attraction between cellulose and MXene to prevent MXene accumulation and improve the composite's mechanical properties. Electrical, materials, chemical, mechanical, environmental, and biomedical engineering are all fields in which cellulose/MXene composites are used. These properties and applications-based reviews on MXene/cellulose composite, critically analyze the results and accomplishments in these fields and provide context for potential future research initiatives. It examines newly reported applications for cellulose nanocomposites assisted by MXene. To support their development and future applications, perspectives and difficulties are suggested in the conclusion.
Collapse
Affiliation(s)
- Jong Sung Won
- Defense Materials & Energy Technology Center, Agency for Defense Development, Daejeon 34060, Republic of Korea
| | - Cheera Prasad
- Department of Fashion Design, Dong-A University, Busan 49315, Republic of Korea
| | - Seong-Geun Jeong
- Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea
| | - P Rosaiah
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105, India
| | - A Subba Reddy
- Analytical Development Laboratory, Apicore LLC, NJ 08873, USA
| | - Zubair Ahmad
- Applied College, Mahala Campus, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Sambasivam Sangaraju
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Hyeong Yeol Choi
- Department of Fashion Design, Dong-A University, Busan 49315, Republic of Korea.
| |
Collapse
|
30
|
Salimi A, Chatterjee S, Lee JY. Exposure to the electric field: A potential way to block the aggregation of histidine tautomeric isomers of β-amyloid. Int J Biol Macromol 2023; 232:123385. [PMID: 36693605 DOI: 10.1016/j.ijbiomac.2023.123385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Controlling protein misfolding and accumulation in neurodegeneration is a challenge in chemical neuroscience. The application of appropriate electric fields (EFs) can be a potential noninvasive therapy to treat neuro disorders. The effect of EFs of varying intensities and directions on the conformational dynamics of β-Amyloid40 (Aβ40) under histidine tautomerism has been investigated for the first time. Our findings suggest that peptides tend to align their dipole moments with the orientation of EF. Irrespective of the EF direction, the dipole moment magnitude is affected by the EF strength. With the conformational changes, the EF strength equal to 0.5 V/nm destroyed the β-sheet content of the δδδ isomer as a potentially toxic agent. The content of the alpha-helical structure which can be transformed into the β-sheet is reduced. The strength of the EF showed a significant influence on the reduction of the number of intra-protein hydrogen bonds especially when EF is equal to 0.5 V/nm which could facilitate destabilization of the structure of the peptides. Current findings provide quantitative insights into the tautomerization-mediated Aβ40 dynamic and conformational changes induced by the external EFs in aqueous solutions, which may provide beneficial information for use as a therapeutic technique.
Collapse
Affiliation(s)
- Abbas Salimi
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Sompriya Chatterjee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
31
|
Zhao X, Wan J, Sun D, Li G, Ma H, Li H, Chen Z, Liu X, Huang J, Gui C. Fabrication of Ni-Encapsulated Carbon Tube/Poly(dimethylsiloxane) Composite Materials for Lightweight and Flexible Electromagnetic Interference Shielding Material. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3558-3568. [PMID: 36857599 DOI: 10.1021/acs.langmuir.2c02830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The exploration of flexible and lightweight electromagnetic interference (EMI) shielding materials with excellent shielding effectiveness, as a means to effectively alleviate electromagnetic pollution, is still a tremendous challenge. This paper proposes a conducting material named the textured Ni-encapsulated carbon tube, which can be applied in EMI shielding material by being inserted in the center of a poly(dimethysiloxane) (PDMS) polymer. We demonstrated that Pd2+ could be absorbed by the active groups on the plant fiber surface to catalyze the reduction of Ni2+ as a catalytic center by means of a textured Ni-encapsulated plant fiber. Owing to the outstanding heat-conducting capability of the Ni coating, the inner plant fiber was carbonized and attached to the Ni-tube inside the surface during annealing. To be precise, the textured Ni-encapsulated C tube was fabricated successfully after annealing at 300 °C. On further increasing the annealing temperature, the C tube disappeared gradually with the Ni coating being oxidized to NiO. Of note, the C tube acted as a support layer for the external Ni coating, providing sufficient mechanical strength. When combined with the coating PDMS layer, a flexible and lightweight EMI shielding material is fabricated successfully. It displays an outstanding EMI shielding effectiveness of 31.34 dB and a higher specific shielding efficiency of 27.5 dB·cm3/g, especially showing excellent mechanical property and flexibility with only 2 mm thickness. This study provides a new method to fabricate outstanding EMI shielding materials.
Collapse
Affiliation(s)
- Xingke Zhao
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China
| | - Jiajia Wan
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China
| | - Di Sun
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China
| | - Ge Li
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China
| | - Haodong Ma
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China
| | - Honglin Li
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China
- College of Chemical and Material Engineering, Chaohu University, Hefei 230009, China
| | - Zhenming Chen
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China
| | - Xing Liu
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China
| | - Junjun Huang
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China
- College of Chemical and Material Engineering, Chaohu University, Hefei 230009, China
| | - Chengmei Gui
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China
- College of Chemical and Material Engineering, Chaohu University, Hefei 230009, China
| |
Collapse
|
32
|
Zhang H, Lin S. Research Progress with Membrane Shielding Materials for Electromagnetic/Radiation Contamination. MEMBRANES 2023; 13:315. [PMID: 36984702 PMCID: PMC10054763 DOI: 10.3390/membranes13030315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
As technology develops at a rapid pace, electromagnetic and radiation pollution have become significant issues. These forms of pollution can cause many important environmental issues. If they are not properly managed and addressed, they will be everywhere in the global biosphere, and they will have devastating impacts on human health. In addition to minimizing sources of electromagnetic radiation, the development of lightweight composite shielding materials to address interference from radiation has become an important area of research. A suitable shielding material can effectively reduce the harm caused by electromagnetic interference/radiation. However, membrane shielding materials with general functions cannot effectively exert their shielding performance in all fields, and membrane shielding materials used in different fields must have specific functions under their use conditions. The aim of this review was to provide a comprehensive review of these issues. Firstly, the causes of electromagnetic/radiation pollution were briefly introduced and comprehensively identified and analyzed. Secondly, the strategic solutions offered by membrane shielding materials to address electromagnetic/radiation problems were discussed. Then, the design concept, technical innovation, and related mechanisms of the existing membrane shielding materials were expounded, the treatment methods adopted by scholars to study the environment and performance change laws were introduced, and the main difficulties encountered in this area of research were summarized. Finally, on the basis of a comprehensive analysis of the protection provided by membrane shielding materials against electromagnetic/radiation pollution, the action mechanism of membrane shielding materials was expounded in detail, and the research progress, structural design and performance characterization techniques for these materials were summarized. In addition, the future challenges were prospected. This review will help universities, research institutes, as well as scientific and technological enterprises engaged in related fields to fully understand the design concept and research progress of electromagnetic/radiation-contaminated membrane shielding materials. In addition, it is hoped that this review will facilitate efforts to accelerate the research and development of membrane shielding materials and offer potential applications in areas such as electronics, nuclear medicine, agriculture, and other areas of industry.
Collapse
Affiliation(s)
- Hengtong Zhang
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Shudong Lin
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Xiao M, Qin Q, He X, Li F, Wang X. Shielding Capability Research on Composite Base Materials in Hybrid Neutron-Gamma Mixed Radiation Fields. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2084. [PMID: 36903199 PMCID: PMC10004341 DOI: 10.3390/ma16052084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The 16N monitoring system operates in a mixed neutron-gamma radiation field and is subject to high background radiation, thus triggering instability in the 16N monitoring system measurement data. Due to its property of actual physical process simulation, the Monte Carlo method was adopted to establish the model of the 16N monitoring system and design a structure-functionally integrated shield to realize neutron-gamma mixed radiation shielding. First, the optimal shielding layer with a thickness of 4 cm was determined in this working environment, which had a significant shielding effect on the background radiation and improved the measurement of the characteristic energy spectrum and the shielding effect on neutrons was better than gamma shielding with the increase in the shield thickness. Then, functional fillers such as B, Gd, W, and Pb were added to the matrix to compare the shielding rates of three matrix materials of polyethylene, epoxy resin, and 6061 aluminum alloy at 1 MeV neutron and gamma energy. The shielding performance of epoxy resin as the matrix material was better than that of the aluminum alloy and polyethylene, and the shielding rate of boron-containing epoxy resin was 44.8%. The γ-ray mass attenuation coefficients of lead and tungsten in the three matrix materials were simulated to determine the best material for the gamma shielding performance. Finally, the optimal materials for neutron shielding and gamma shielding were combined, and the shielding performance of single-layer shielding and double-layer shielding in mixed radiation field was compared. The optimal shielding material-boron-containing epoxy resin was determined as the shielding layer of the 16N monitoring system to realize the integration of structure and function, which provides a theoretical basis for the selection of shielding materials in a special working environment.
Collapse
Affiliation(s)
- Ming Xiao
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Qingao Qin
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Xin He
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Fei Li
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, China
- Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu 610059, China
| | - Xiaobo Wang
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, China
| |
Collapse
|
34
|
Saeed PA, Juraij K, Saharuba PM, Sujith A. A one-pot water mediated process for developing conductive composites with segregated network of poly(3,4-ethylenedioxythiophene) on spherical poly(methyl methacrylate) particles. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03497-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
35
|
Xing Y, Wan Y, Wu Z, Wang J, Jiao S, Liu L. Multilayer Ultrathin MXene@AgNW@MoS 2 Composite Film for High-Efficiency Electromagnetic Shielding. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5787-5797. [PMID: 36669167 DOI: 10.1021/acsami.2c18759] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Structure and material composition is crucial in realizing high electromagnetic interference (EMI) shielding effectiveness (SE). Herein, an ultrathin MXene@AgNW@MoS2 (MAM) composite film that resembles the structure of a pork belly and exhibits superior EMI shielding performance was fabricated via the vacuum-assisted suction filtration process and atomic layer deposition (ALD). The staggered AgNWs form skeletons and intersperse in MXene sheets to build a doped layer with three-dimensional network structures, which improves the electrical conductivity of the film. Based on the optimal dispersion concentration of Ag in doped and single layers, the MXene/AgNW doped layer and AgNW single layer are alternately vacuum-assisted-filtered to obtain laminated structures with multiple heterogeneous interfaces. These interfaces generate interface polarization and increase multiple reflection and scattering, resulting in the increased electromagnetic (EM) wave losses. On the other hand, MoS2 outer nanolayers fabricated precisely by ALD effectively increases the absorption proportion of electromagnetic waves, reduces the secondary reflection, and improves the stability of EMI shielding properties. Ultimately, an ultrathin MAM film (a thickness of 0.03 mm) with five alternating internal layers and MoS2 outer layers exhibits an excellent EMI SE of 86.3 dB in the X-band.
Collapse
Affiliation(s)
- Youqiang Xing
- School of Mechanical Engineering, Southeast University, Nanjing211189, Jiangsu Province, PR China
- Engineering Research Center of New Light Sources Technology and Equipment of MOE, Southeast University, Nanjing211189, Jiangsu Province, PR China
| | - Yizhi Wan
- School of Mechanical Engineering, Southeast University, Nanjing211189, Jiangsu Province, PR China
| | - Ze Wu
- School of Mechanical Engineering, Southeast University, Nanjing211189, Jiangsu Province, PR China
| | - Jianqiao Wang
- School of Mechanical Engineering, Southeast University, Nanjing211189, Jiangsu Province, PR China
| | - Songlong Jiao
- School of Mechanical Engineering, Southeast University, Nanjing211189, Jiangsu Province, PR China
| | - Lei Liu
- School of Mechanical Engineering, Southeast University, Nanjing211189, Jiangsu Province, PR China
| |
Collapse
|
36
|
Kausar A. Nanocarbon Nanocomposites of Polyaniline and Pyrrole for Electromagnetic Interference Shielding: Design and Effectiveness. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2086816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Ayesha Kausar
- National Center for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
| |
Collapse
|
37
|
Kavitha N, Chandramohan A, Sharma D, Dinakaran K. Synthesis and microwave absorption studies on 2D graphitic carbon nitride loaded polyaniline/polyvinyl alcohol nanocomposites. HIGH PERFORM POLYM 2022. [DOI: 10.1177/09540083221134955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A light weight electromagnetic interference (EMI) shielding and microwave absorbing composite films has been developed by loading varying weight content of graphitic carbon nitride (g-C3N4) nanosheets and polyaniline (PANI) into polyvinyl alcohol (PVA) matrix. The prepared PVA/PANI/g-C3N4 (1%, 3%, 5%) composites has been subjected to FTIR, X-Ray powder diffraction, SEM, Thermal studies, Dielectric studies and electromagnetic shielding effectiveness (EMI SE) analysis. The PVA/PANI/g-C3N4 (1%, 3%, 5%) composites was discovered to have improved electrical conductivity, dielectric loss, and dielectric constant. It is observed from the SEM images that the sheet layers of g-C3N4 are wrapped by the polymer matrix and the morphology to PVA/PANI composite in the g-C3N4 indicates homogeneous blending of PVA/PANI without any phase separation and has porous in it. The PANI/g-C3N4 fractured surfaces present are smooth but irregular in appearance indicating good compatibility between the PVA and PANI matrices. The dielectric properties was found to increase on increasing the concentration of the g-C3N4 nanofiller and reached a maximum of 9.8 × 106 at 1 MHz for 3% g-C3N4 in PVA/PANI. The incorporation of g-C3N4 into PVA/PANI enhanced the conductivity and the 5% g-C3N4 loaded composite film exhibited a conductivity value of 0.043 S/cm at 1 MHz. The PVA/PANI/g-C3N4 (1%, 3%, 5%) composites exhibited potential EMI SE values ranging from 24 to 35 dB at 8.6 GHz and from 42 to 63 dB at 12.4 GHz, for instance the PVA/PANI/g-C3N4 5% composite showed highest value of 63 dB at 12.4 GHz. The PVA/PANI/g-C3N4 5% exhibits the maximum highest reflection loss 8 GHz–12 GHz in which the higher absorption of −36 dB is observed at 10.3 GHz of the X-band region.
Collapse
Affiliation(s)
| | - Ayyavu Chandramohan
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, India
| | - Devansh Sharma
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | | |
Collapse
|
38
|
Liu R, Li X, Yu D, Cao T, Cao J, Wang B, Wu D. A 3D printed sandwich-type piezoelectric motor with a surface texture. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:105003. [PMID: 36319375 DOI: 10.1063/5.0107009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Polymer-based piezoelectric motors have excellent properties, such as lightweight and corrosion resistance. In addition, 3D printing and customized additive manufacturing of polymers provide new opportunities for the development of piezoelectric motors with complex or special structures. In this paper, a 3D printed polymer-based sandwich-type piezoelectric motor operating in a single longitudinal mode is developed. A vibration decomposition model of the motor and an analytical model considering polymer viscoelasticity are established to analyze the dynamic characteristics and to determine the geometric structure of the motor. To increase the coefficient of friction, a polymer surface texture is utilized on the contacts. The experimental results show that the friction coefficient of the contact tip with surface texture is about 0.16, which increased by 45.5% compared to a smooth surface. The resonance frequency is 28.648 kHz, and the maximum no-load speed under 300 Vp-p is 54 r/min. Our study shows the promise of polymer-based materials in the development of the piezoelectric motor.
Collapse
Affiliation(s)
- Ruixuan Liu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing, China
| | - Xiaoniu Li
- State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aeronautics and Astronautics, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing, China
| | - De Yu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing, China
| | - Teng Cao
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing, China
| | - Jia Cao
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing, China
| | - Boquan Wang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing, China
| | - Dawei Wu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aeronautics and Astronautics, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing, China
| |
Collapse
|
39
|
Li Y, Shang Y, Li M, Zhang X, He J. High Electromagnetic Shielding Effect of Carbon Nanotubes/Waterborne Polyurethane Composites Prepared by "Break-Adsorption" Method. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15186430. [PMID: 36143743 PMCID: PMC9502012 DOI: 10.3390/ma15186430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 05/17/2023]
Abstract
In recent years, conductive polymer composites have been widely studied for their electrical conductivity and electromagnetic shielding effects due to their advantages of light weight, simple preparation methods, and structural design versatility. In this study, oxidized multi-walled carbon nanotubes/waterborne polyurethane composites (OCNT/WPU) were prepared by grafting oxidized carbon nanotubes onto polyurethane molecular chains through in situ polymerization, using environmentally friendly waterborne polyurethane as the polymer matrix. Then, the OCNT/WPU structure was broken by high shear force, and the loading of CNTs was increased by adsorption, and a new composite structure was designed (denoted by OCWPU). The structure and morphology of OCNT/WPU and OCWPU were characterized by FT-IR and SEM. The structure and morphology of OCWPU with different multi-walled carbon nanotube loadings (CNTs/OCWPU) were characterized by SEM, Raman. Finally, the electrical conductivity and the electromagnetic shielding properties of the composites were investigated. It was found that after application of high shear force, the structure of OCWPU was disrupted and the surface activity of the material increased. With the increase in CNTs content, CNTs formed a rosette structure in the polyurethane matrix and covered the surface, and its electromagnetic shielding effect in X-bond (8.2-12.4 Ghz) would be able to reach 23 dB at 5% CNTs/OCWPU and 66.5 dB at 50% CNTs/OCWPU to meet the commercial needs. With 50% CNTs/OCWPU, an electrical conductivity of 5.1 S/cm could be achieved. This work provides a novel idea for the structural design of conductive polymer composites, which can achieve greater performance with the same carbon nanotube content.
Collapse
Affiliation(s)
- Yasen Li
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
| | - Yudong Shang
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Correspondence:
| | - Mingyue Li
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
| | - Xiang Zhang
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
| | - Jiangping He
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- State Key Laboratory of Intelligent Textile Material and Products, Xi’an Polytechnic University, Xi’an 710048, China
| |
Collapse
|
40
|
Xu L, Lu H, Dong Y, Fu Y, Ni Q. Graphene fibre film/polydimethylsiloxane nanocomposites for high-performance electromagnetic interference shielding. NANOSCALE ADVANCES 2022; 4:3804-3815. [PMID: 36133325 PMCID: PMC9470028 DOI: 10.1039/d2na00243d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/29/2022] [Indexed: 06/16/2023]
Abstract
Exploration of high-performance electromagnetic interference (EMI) shielding materials has become a trend to address the increasing electromagnetic (EM) wave pollution environment. In this paper, oriented graphene fibre film (GFF)/polydimethylsiloxane (PDMS) nanocomposites with one-ply unidirectional, two-ply cross-ply, and two-ply unidirectional configurations were prepared using wet-spinning and hot-pressing techniques in a two-step process. Due to the anisotropic electrical performance of GFF, the one-ply laminate exhibits EMI shielding anisotropy that is affected by fibre orientation relative to the electric field component in EM waves. The maximum shielding difference at 8.8 GHz is up to 32.0 dB between the fibre orientation parallel to and perpendicular to the electric field component. In addition, we found that adding a layer of GFF is an intuitive method to enhance the shielding efficiency (SE) of GFF/PDMS nanocomposites by providing more interfaces to enhance absorption losses. An optimal EMI shielding performance of a two-ply unidirectional laminate is observed with an SE value of 50.6 dB, which shields 99.999% of EM waves. The shielding mechanisms are also discussed and clarified from the results of both experimental and theoretical analyses by adjusting the GFF structural parameters, such as the fibre orientation, areal density, number of plies and stacking sequence.
Collapse
Affiliation(s)
- Lu Xu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou Zhejiang 310018 China
| | - Haohao Lu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou Zhejiang 310018 China
| | - Yubing Dong
- School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou Zhejiang 310018 China
| | - Yaqin Fu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou Zhejiang 310018 China
| | - Qingqing Ni
- School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou Zhejiang 310018 China
| |
Collapse
|
41
|
Li W, Xu M, Xu HX, Wang X, Huang W. Metamaterial Absorbers: From Tunable Surface to Structural Transformation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202509. [PMID: 35604541 DOI: 10.1002/adma.202202509] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Since the first demonstration, remarkable progress has been made in the theoretical analysis, structural design, numerical simulation, and potential applications of metamaterial absorbers (MAs). With the continuous advancement of novel materials and creative designs, the absorption of MAs is significantly improved over a wide frequency spectrum from microwaves to the optical regime. Further, the integration of active elements into the MA design allows the dynamical manipulation of electromagnetic waves, opening a new platform to push breakthroughs in metadevices. In the last several years, numerous efforts have been devoted to exploring innovative approaches for incorporating tunability to MAs, which is highly desirable because of the progressively increasing demand on designing versatile metadevices. Here, a comprehensive and systematical overview of active MAs with adaptive and on-demand manner is presented, highlighting innovative materials and unique strategies to precisely control the electromagnetic response. In addition to the mainstream method by manipulating periodic patterns, two additional approaches, including tailoring dielectric spacer and transforming overall structure are called back. Following this, key parameters, such as operating frequency, relative tuning range, and switching speed are summarized and compared to guide for optimum design. Finally, potential opportunities in the development of active MAs are discussed.
Collapse
Affiliation(s)
- Weiwei Li
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Manzhang Xu
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - He-Xiu Xu
- Air and Missile Defense College, Air Force Engineering University, Xi'an, 710051, P. R. China
| | - Xuewen Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
- Key Laboratory of Flexible Electronics(KLoFE)and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, P. R. China
| |
Collapse
|
42
|
Light-weight FeCo/CNTs/HNTs triple-phase magnetic composites for high-performance microwave absorption. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
Peng T, Wang S, Xu Z, Tang T, Zhao Y. Multifunctional MXene/Aramid Nanofiber Composite Films for Efficient Electromagnetic Interference Shielding and Repeatable Early Fire Detection. ACS OMEGA 2022; 7:29161-29170. [PMID: 36033682 PMCID: PMC9404508 DOI: 10.1021/acsomega.2c03219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/05/2022] [Indexed: 05/31/2023]
Abstract
Rapid development of highly integrated electronic and telecommunication devices has led to urgent demands for electromagnetic interference (EMI) shielding materials that incorporate flame retardancy, and more desirably the early fire detection ability, due to the potential fire hazards caused by heat propagation and thermal failure of the devices during operation. Here, multifunctional flexible films having the main dual functions of high EMI shielding performance and repeatable fire detection ability are fabricated by vacuum filtration of the mixture of MXene and aramid nanofiber (ANF) suspensions. ANFs serve to reinforce MXene films via the formation of hydrogen bonding between the carbonyl groups of ANFs and the hydroxyl groups of MXene. When the ANF content is 20 wt %, the tensile strength of the film is increased from 24.6 MPa for a pure MXene film to 79.5 MPa, and such a composite film (9 μm thickness) exhibits a high EMI shielding effectiveness (SE) value of ∼40 dB and a specific SE (SSE) value of 4361.1 dB/mm. Upon fire exposure, the composite films can trigger the fire detection system within 10 s owing to the thermoelectric property of MXene. The self-extinguishing feature of ANFs ensures the structural integrity of the films during burning, thus allowing for continuous alarm signals. Moreover, the films also exhibit excellent Joule heating and photothermal conversion performances with rapid response and sufficient heating reliability.
Collapse
Affiliation(s)
- Tianshu Peng
- College
of Textile and Clothing Engineering, Soochow
University, Suzhou 215123, China
| | - Shanchi Wang
- College
of Textile and Clothing Engineering, Soochow
University, Suzhou 215123, China
| | - Zhiguang Xu
- China-Australia
Institute for Advanced Materials and Manufacturing, Jiaxing University, Jiaxing 314001, China
| | - Tingting Tang
- College
of Textile and Clothing Engineering, Soochow
University, Suzhou 215123, China
| | - Yan Zhao
- College
of Textile and Clothing Engineering, Soochow
University, Suzhou 215123, China
| |
Collapse
|
44
|
Zhang H, Zhou L. Study on Regenerative Processing Performance of Chlorinated Polyethylene Based on Wireless Network and Artificial Intelligence Technology. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:3811320. [PMID: 36035852 PMCID: PMC9417760 DOI: 10.1155/2022/3811320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/18/2022]
Abstract
The development of Information Technology has intruded the chemical industry. In the conventional chemical industry, humans are involved in monitoring the chemical evaporation processes. If there is any damage, then humans suffer enormously. These drawbacks are overcome in the chemical industry by implanting the sensors to the required blocks for monitoring the levels of chemical substances. An alert system can be introduced with an artificial intelligence algorithm to regenerate the process using details updated in the database. In this research, the machine-based Time-Temperature Superposition (TTS) method is implemented to monitor the chemical reactions in the chemical component manufacturing company.
Collapse
Affiliation(s)
- Haifeng Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Lianzhu Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
45
|
Luna CBB, do Nascimento EP, Siqueira DD, Soares BG, Agrawal P, de Mélo TJA, Araújo EM. Tailoring Nylon 6/Acrylonitrile-Butadiene-Styrene Nanocomposites for Application against Electromagnetic Interference: Evaluation of the Mechanical, Thermal and Electrical Behavior, and the Electromagnetic Shielding Efficiency. Int J Mol Sci 2022; 23:ijms23169020. [PMID: 36012282 PMCID: PMC9408880 DOI: 10.3390/ijms23169020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/22/2022] Open
Abstract
Nylon 6/acrylonitrile-butadiene-styrene nanocomposites were prepared by mixing in a molten state and injection molded for application in electromagnetic interference shielding and antistatic packaging. Multi-wall carbon nanotubes (MWCNT) and maleic anhydride-grafted ABS compatibilizer were incorporated to improve the electrical conductivity and mechanical performance. The nanocomposites were characterized by oscillatory rheology, Izod impact strength, tensile strength, thermogravimetry, current-voltage measurements, shielding against electromagnetic interference, and scanning electron microscopy. The rheological behavior evidenced a severe increase in complex viscosity and storage modulus, which suggests an electrical percolation phenomenon. Adding 1 to 5 phr MWCNT into the nanocomposites produced electrical conductivities between 1.22 × 10−6 S/cm and 6.61 × 10−5 S/cm. The results make them suitable for antistatic purposes. The nanocomposite with 5 phr MWCNT showed the highest electromagnetic shielding efficiency, with a peak of –10.5 dB at 9 GHz and a value around –8.2 dB between 11 and 12 GHz. This was possibly due to the higher electrical conductivity of the 5 phr MWCNT composition. In addition, the developed nanocomposites, regardless of MWCNT content, showed tenacious behavior at room temperature. The results reveal the possibility for tailoring the properties of insulating materials for application in electrical and electromagnetic shielding. Additionally, the good mechanical and thermal properties further widen the application range.
Collapse
Affiliation(s)
- Carlos Bruno Barreto Luna
- Academic Unit of Materials Engineering, Federal University of Campina Grande, Av. Aprígio Veloso, 882-Bodocongó, Campina Grande 58429-900, PB, Brazil
- Correspondence:
| | - Emanuel Pereira do Nascimento
- Academic Unit of Materials Engineering, Federal University of Campina Grande, Av. Aprígio Veloso, 882-Bodocongó, Campina Grande 58429-900, PB, Brazil
| | - Danilo Diniz Siqueira
- Academic Unit of Materials Engineering, Federal University of Campina Grande, Av. Aprígio Veloso, 882-Bodocongó, Campina Grande 58429-900, PB, Brazil
| | - Bluma Guenther Soares
- Department of Metallurgic and Materials Engineering, Macromolecules Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-598, RJ, Brazil
| | - Pankaj Agrawal
- Academic Unit of Materials Engineering, Federal University of Campina Grande, Av. Aprígio Veloso, 882-Bodocongó, Campina Grande 58429-900, PB, Brazil
| | - Tomás Jeferson Alves de Mélo
- Academic Unit of Materials Engineering, Federal University of Campina Grande, Av. Aprígio Veloso, 882-Bodocongó, Campina Grande 58429-900, PB, Brazil
| | - Edcleide Maria Araújo
- Academic Unit of Materials Engineering, Federal University of Campina Grande, Av. Aprígio Veloso, 882-Bodocongó, Campina Grande 58429-900, PB, Brazil
| |
Collapse
|
46
|
Zheng X, Tang J, Wang P, Wang Z, Zou L, Li C. Interfused core-shell heterogeneous graphene/MXene fiber aerogel for high-performance and durable electromagnetic interference shielding. J Colloid Interface Sci 2022; 628:994-1003. [PMID: 35973264 DOI: 10.1016/j.jcis.2022.08.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 01/27/2023]
Abstract
Flexible, lightweight, and durable electromagnetic interference (EMI) shielding materials are urgently required to solve the increasingly serious electromagnetic radiation pollution. Transition metal carbides/nitrides (MXenes) are promising candidates for EMI shielding materials because of their excellent metallic electrical conductivity. However, MXenes are highly susceptible to oxidization when exposed to wet environments, leading to the loss of their functional properties and degradation of reliability and stability. Herein, an interfused core-shell heterogeneous reduced graphene oxide (rGO)/MXene aerogel (GMA) is designed for the first time via coaxial wet spinning and freeze-drying. The fabricated GMAs exhibit excellent EMI shielding performance, and the EMI shielding effectiveness (SE) and specific EMI SE can be up to 83.3 dB and 3119 dB·cm3/g, respectively, which is higher than most carbon-based and MXene-based aerogels and foams. More importantly, GMAs have only a 17.4 % degradation in EMI shielding performance after 120 days due to the protection of hydrophobic graphene sheath, exhibiting superior EMI shielding durability to its MXene film counterpart. Moreover, the hydrophobic GMAs exhibit good oil/water separation and thermal insulation performance. The interfused core-shell GMAs are highly promising for applications in durable EMI shielding, thermal insulation, oil/water separation and sensors, etc.
Collapse
Affiliation(s)
- Xianhong Zheng
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Jinhao Tang
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Peng Wang
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Zongqian Wang
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| | - Lihua Zou
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Changlong Li
- School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| |
Collapse
|
47
|
Dang W, Liu Z, Wang L, Chen Y, Qi M, Zhang Q. A flexible, robust and multifunctional montmorillonite/aramid nanofibers@MXene electromagnetic shielding nanocomposite with an alternating structure for enhanced Joule heating and fire-resistant protective performance. NANOSCALE 2022; 14:11305-11315. [PMID: 35880791 DOI: 10.1039/d2nr01926d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the rapidly increasing development of portable devices and flexible electronic devices, multifunctional composites with excellent mechanical strength, great electromagnetic interference shielding, great Joule heating performance and strong fire-resistant protective performance are noticeably required. Herein, inspired by the sandwich structure, we have designed a montmorillonite/aramid nanofibers@MXene (MMT/ANFs@MXene) nanocomposite with an alternating multilayered structure via a simple AVF process. In this nanocomposite, the ANFs/MMT (AT) layer acts as a mechanically reinforced and insulation protection layer, while the MXene layer maintains a complete conductive network. The superior alternating multilayered structure endows the nanocomposite with outstanding mechanical properties (154.66 MPa, 14.22%) and excellent EMI shielding effectiveness values (58.4 dB). In addition, the fire-resistant protective performance of the nanocomposite improves its safety and reliability, especially, the EMI shielding effectiveness is maintained at ∼34 dB after burning for 30 s. Besides, the MMT/ANFs@MXene nanocomposite shows excellent Joule heating performance with a fast thermal response, low driving voltage and long-time temperature stability, which could reach 110.2 °C at only 3 V applied voltage within 10 s. As a result, this work presents a novel strategy for constructing multifunctional composites with outstanding overall performance, which will broaden application areas and prospects in thermal management and EMI shielding in wearable products.
Collapse
Affiliation(s)
- Wanbin Dang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Zongxu Liu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Lingna Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Yanhui Chen
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Min Qi
- School of Electronics and Information, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Qiuyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| |
Collapse
|
48
|
Omana L, Chandran A, John RE, Wilson R, George KC, Unnikrishnan N, Varghese SS, George G, Simon SM, Paul I. Recent Advances in Polymer Nanocomposites for Electromagnetic Interference Shielding: A Review. ACS OMEGA 2022; 7:25921-25947. [PMID: 35936479 PMCID: PMC9352219 DOI: 10.1021/acsomega.2c02504] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/06/2022] [Indexed: 05/27/2023]
Abstract
The mushrooming utilization of electronic devices in the current era produces electromagnetic interference (EMI) capable of disabling commercial and military electronic appliances on a level like never before. Due to this, the development of advanced materials for effectively shielding electromagnetic radiation has now become a pressing priority for the scientific world. This paper reviews the current research status of polymer nanocomposite-based EMI shielding materials, with a special focus on those with hybrid fillers and MXenes. A discussion on the theory of EMI shielding followed by a brief account of the most popular synthesis methods of EMI shielding polymer nanocomposites is included in this review. Emphasis is given to unravelling the connection between microstructures of the composites, their physical properties, filler type, and EMI shielding efficiency (EMI SE). Along with EMI shielding efficiency and conductivity, mechanical properties reported for EMI shielding polymer nanocomposites are also reviewed. An elaborate discussion on the gap areas in various fields where EMI shielding materials have potential applications is reported, and future directions of research are proposed to overcome the existing technological obstacles.
Collapse
Affiliation(s)
- Lekshmi Omana
- Department
of Physics, St. Berchmans College, Changanassery, Kerala 686101, India
| | - Anoop Chandran
- Department
of Physics, St. Cyril’s College, Adoor, Kerala 691554, India
| | - Reenu Elizabeth John
- Department
of Physics, Saintgits College of Engineering, Kottayam, Kerala 686532, India
| | - Runcy Wilson
- Department
of Chemistry, St. Cyril’s College, Adoor, Kerala 691554, India
| | | | | | - Steffy Sara Varghese
- Space
and Planetary Science Centre, Khalifa University, P.O. Box 127788, Abu Dhabi, UAE
| | - Gejo George
- Department
of Chemistry, St. Berchmans College, Changanassery, Kerala 686101, India
| | - Sanu Mathew Simon
- Department
of Physics, Mar Thoma College, Thiruvalla, Kerala 689103, India
| | - Issac Paul
- Department
of Physics, St. Berchmans College, Changanassery, Kerala 686101, India
| |
Collapse
|
49
|
Novel and Green Synthesis of Nitrogen-Doped Carbon Cohered Fe3O4 Nanoparticles with Rich Oxygen Vacancies and Its Application. Catalysts 2022. [DOI: 10.3390/catal12060621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A one-pot and green synthesis methodology was successfully designed to prepare nitrogen-doped carbon (NC) cohered Fe3O4 nanoparticles with rich oxygen vacancies (Fe3O4-OVs/NC). The preparation was achieved via cold-atmospheric-pressure air plasma using Fe2O3 nanoparticles as the only precursor, and pyridine as the carbon and nitrogen source. Systematic characterization results of the as-prepared Fe3O4-OVs/NC confirmed the transition from Fe2O3 to Fe3O4, along with the generation of oxygen vacancies, while preserving the original needle-like morphology of Fe2O3. Moreover, the results indicated the formation of the NC attaching to the surface of the formed Fe3O4 nanoparticles with a weight percent of ~13.6%. The synthesized nanocomposite was further employed as a heterogeneous Fenton catalyst to remove phenol from an aqueous solution. The material has shown excellent catalytic activity and stability, demonstrating a promising application for wastewater treatment.
Collapse
|
50
|
Abdul Kadar CH, Faisal M, Maruthi N, Raghavendra N, Prasanna BP, Manohara SR. Corrosion-Resistant Polyaniline-Coated Zinc Tungstate Nanocomposites with Enhanced Electric Properties for Electromagnetic Shielding Applications. Macromol Res 2022. [DOI: 10.1007/s13233-022-0067-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|