1
|
Chambers J, Roscoe CMP, Chidley C, Wisniewska A, Duggirala A. Molecular Effects of Physical Activity and Body Composition: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2025; 22:637. [PMID: 40283858 PMCID: PMC12026539 DOI: 10.3390/ijerph22040637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/01/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
Physical activity (PA) and body composition are important lifestyle factors that influence public health. Research suggests that DNA regions (CpG site locations) are differentially methylated in a physically active population. This meta-analysis aimed to identify CpG sites associated with various levels of PA and associated metabolic pathways. The meta-analysis followed PRISMA guidelines using PubMed, SportDISCUS, Embase, Scopus, Cochrane and Web of Science. Epigenomic analyses performed on DNA of participants with no underlying health conditions were included. Articles were screened using Rayyan AI and extracted CpG sites, and their location were confirmed using the EWAS catalogue. Six studies comprising 770 subjects were included in this meta-analysis. The meta-analysis was performed on clinical metrics extracted from the six studies and showed that BMI, blood pressure, insulin and glucose testing are significantly improved upon PA intervention. Amongst the included studies, a total of 257 CpG sites were differentially methylated in physically active participants, with 134 CpGs located in 92 genes associated with obesity-related pathways. The identified differentially methylated genes either belonged to the lipid metabolism or insulin signalling pathway. The genes which were differentially regulated in multiple tissue types and studies are JAZF1 (insulin signalling, and lipid and carbohydrate metabolism pathways) and NAV1 (mTOR signalling pathway). In conclusion, the current epigenomic meta-analysis showed that PA levels induce differential DNA methylation signatures on genes that affect metabolism. To understand the positive molecular effects of PA, further research on the above candidate genes needs to be conducted amongst various levels of a physically active population.
Collapse
Affiliation(s)
- Jenni Chambers
- Biomedical and Clinical Sciences, School of Science, University of Derby, Derby DE22 1GB, UK; (J.C.)
- Clinical Exercise Rehabilitation Research Centre, School of Sport and Exercise Science, University of Derby, Derby DE22 1GB, UK;
| | - Clare M. P. Roscoe
- Clinical Exercise Rehabilitation Research Centre, School of Sport and Exercise Science, University of Derby, Derby DE22 1GB, UK;
| | - Corinna Chidley
- Clinical Exercise Rehabilitation Research Centre, School of Sport and Exercise Science, University of Derby, Derby DE22 1GB, UK;
| | - Agnieszka Wisniewska
- Biomedical and Clinical Sciences, School of Science, University of Derby, Derby DE22 1GB, UK; (J.C.)
| | - Aparna Duggirala
- Biomedical and Clinical Sciences, School of Science, University of Derby, Derby DE22 1GB, UK; (J.C.)
| |
Collapse
|
2
|
Della Valle F, Reddy P, Aguirre Vazquez A, Izpisua Belmonte JC. Reactivation of retrotransposable elements is associated with environmental stress and ageing. Nat Rev Genet 2025:10.1038/s41576-025-00829-y. [PMID: 40175591 DOI: 10.1038/s41576-025-00829-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2025] [Indexed: 04/04/2025]
Abstract
Retrotransposable elements (RTEs) are interspersed repetitive sequences that represent a large portion of eukaryotic genomes. Ancestral expansions of RTEs directly contributed to the shaping of these genomes and to the evolution of different species, particularly mammals. RTE activity is tightly regulated by different epigenetic mechanisms but this control becomes compromised as cells age and RTEs are reactivated. This dysregulation of RTEs leads to perturbation of cell function and organ and organismal homeostasis, which drives ageing and age-related disease. Environmental stress is associated with both ageing-related characteristics and the epigenetic mechanisms that control RTE activity, with accumulating evidence indicating that RTE reactivation mediates the effects of environmental stressors on ageing onset and progression. A better understanding of how RTEs are reactivated and their subsequent biological roles may help the development of therapies against ageing-related phenotypes and diseases.
Collapse
Affiliation(s)
| | - Pradeep Reddy
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | | | | |
Collapse
|
3
|
Katsanou A, Kostoulas C, Liberopoulos E, Tsatsoulis A, Georgiou I, Tigas S. Retrotransposons and Diabetes Mellitus. EPIGENOMES 2024; 8:35. [PMID: 39311137 PMCID: PMC11417941 DOI: 10.3390/epigenomes8030035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024] Open
Abstract
Retrotransposons are invasive genetic elements, which replicate by copying and pasting themselves throughout the genome in a process called retrotransposition. The most abundant retrotransposons by number in the human genome are Alu and LINE-1 elements, which comprise approximately 40% of the human genome. The ability of retrotransposons to expand and colonize eukaryotic genomes has rendered them evolutionarily successful and is responsible for creating genetic alterations leading to significant impacts on their hosts. Previous research suggested that hypomethylation of Alu and LINE-1 elements is associated with global hypomethylation and genomic instability in several types of cancer and diseases, such as neurodegenerative diseases, obesity, osteoporosis, and diabetes mellitus (DM). With the advancement of sequencing technologies and computational tools, the study of the retrotransposon's association with physiology and diseases is becoming a hot topic among researchers. Quantifying Alu and LINE-1 methylation is thought to serve as a surrogate measurement of global DNA methylation level. Although Alu and LINE-1 hypomethylation appears to serve as a cellular senescence biomarker promoting genomic instability, there is sparse information available regarding their potential functional and biological significance in DM. This review article summarizes the current knowledge on the involvement of the main epigenetic alterations in the methylation status of Alu and LINE-1 retrotransposons and their potential role as epigenetic markers of global DNA methylation in the pathogenesis of DM.
Collapse
Affiliation(s)
- Andromachi Katsanou
- Department of Endocrinology, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.T.)
- Department of Internal Medicine, Hatzikosta General Hospital, 45445 Ioannina, Greece
| | - Charilaos Kostoulas
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (C.K.); (I.G.)
| | - Evangelos Liberopoulos
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece;
| | - Agathocles Tsatsoulis
- Department of Endocrinology, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.T.)
| | - Ioannis Georgiou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (C.K.); (I.G.)
| | - Stelios Tigas
- Department of Endocrinology, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.T.)
| |
Collapse
|
4
|
Abdolmaleky HM, Nohesara S, Thiagalingam S. Epigenome Defines Aberrant Brain Laterality in Major Mental Illnesses. Brain Sci 2024; 14:261. [PMID: 38539649 PMCID: PMC10968810 DOI: 10.3390/brainsci14030261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 11/03/2024] Open
Abstract
Brain-hemisphere asymmetry/laterality is a well-conserved biological feature of normal brain development. Several lines of evidence, confirmed by the meta-analysis of different studies, support the disruption of brain laterality in mental illnesses such as schizophrenia (SCZ), bipolar disorder (BD), attention-deficit/hyperactivity disorder (ADHD), obsessive compulsive disorder (OCD), and autism. Furthermore, as abnormal brain lateralization in the planum temporale (a critical structure in auditory language processing) has been reported in patients with SCZ, it has been considered a major cause for the onset of auditory verbal hallucinations. Interestingly, the peripheral counterparts of abnormal brain laterality in mental illness, particularly in SCZ, have also been shown in several structures of the human body. For instance, the fingerprints of patients with SCZ exhibit aberrant asymmetry, and while their hair whorl rotation is random, 95% of the general population exhibit a clockwise rotation. In this work, we present a comprehensive literature review of brain laterality disturbances in mental illnesses such as SCZ, BD, ADHD, and OCD, followed by a systematic review of the epigenetic factors that may be involved in the disruption of brain lateralization in mental health disorders. We will conclude with a discussion on whether existing non-pharmacological therapies such as rTMS and ECT may be used to influence the altered functional asymmetry of the right and left hemispheres of the brain, along with their epigenetic and corresponding gene-expression patterns.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Surgery, Nutrition/Metabolism Laboratory, BIDMC, Harvard Medical School, Boston, MA 02215, USA
| | - Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Pathology & Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
5
|
Tisato V, Castiglione A, Ciorba A, Aimoni C, Silva JA, Gallo I, D'Aversa E, Salvatori F, Bianchini C, Pelucchi S, Secchiero P, Zauli G, Singh AV, Gemmati D. LINE-1 global DNA methylation, iron homeostasis genes, sex and age in sudden sensorineural hearing loss (SSNHL). Hum Genomics 2023; 17:112. [PMID: 38098073 PMCID: PMC10722762 DOI: 10.1186/s40246-023-00562-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Sudden sensorineural hearing loss (SSNHL) is an abrupt loss of hearing, still idiopathic in most of cases. Several mechanisms have been proposed including genetic and epigenetic interrelationships also considering iron homeostasis genes, ferroptosis and cellular stressors such as iron excess and dysfunctional mitochondrial superoxide dismutase activity. RESULTS We investigated 206 SSNHL patients and 420 healthy controls for the following genetic variants in the iron pathway: SLC40A1 - 8CG (ferroportin; FPN1), HAMP - 582AG (hepcidin; HEPC), HFE C282Y and H63D (homeostatic iron regulator), TF P570S (transferrin) and SOD2 A16V in the mitochondrial superoxide dismutase-2 gene. Among patients, SLC40A1 - 8GG homozygotes were overrepresented (8.25% vs 2.62%; P = 0.0015) as well SOD2 16VV genotype (32.0% vs 24.3%; P = 0.037) accounting for increased SSNHL risk (OR = 3.34; 1.54-7.29 and OR = 1.47; 1.02-2.12, respectively). Moreover, LINE-1 methylation was inversely related (r2 = 0.042; P = 0.001) with hearing loss score assessed as pure tone average (PTA, dB HL), and the trend was maintained after SLC40A1 - 8CG and HAMP - 582AG genotype stratification (ΔSLC40A1 = + 8.99 dB HL and ΔHAMP = - 6.07 dB HL). In multivariate investigations, principal component analysis (PCA) yielded PC1 (PTA, age, LINE-1, HAMP, SLC40A1) and PC2 (sex, HFEC282Y, SOD2, HAMP) among the five generated PCs, and logistic regression analysis ascribed to PC1 an inverse association with moderate/severe/profound HL (OR = 0.60; 0.42-0.86; P = 0.0006) and with severe/profound HL (OR = 0.52; 0.35-0.76; P = 0.001). CONCLUSION Recognizing genetic and epigenetic biomarkers and their mutual interactions in SSNHL is of great value and can help pharmacy science to design by pharmacogenomic data classical or advanced molecules, such as epidrugs, to target new pathways for a better prognosis and treatment of SSNHL.
Collapse
Affiliation(s)
- Veronica Tisato
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
- LTTA Centre, University of Ferrara, 44121, Ferrara, Italy
- University Strategic Centre for Studies on Gender Medicine, University of Ferrara, 44121, Ferrara, Italy
| | | | - Andrea Ciorba
- Department of Neurosciences, University Hospital of Ferrara, 44121, Ferrara, Italy
| | - Claudia Aimoni
- Department of Neurosciences, University Hospital of Ferrara, 44121, Ferrara, Italy
| | - Juliana Araujo Silva
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Ines Gallo
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Elisabetta D'Aversa
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Francesca Salvatori
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Chiara Bianchini
- Department of Neurosciences, University Hospital of Ferrara, 44121, Ferrara, Italy
| | - Stefano Pelucchi
- Department of Neurosciences, University Hospital of Ferrara, 44121, Ferrara, Italy
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Giorgio Zauli
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy.
- University Strategic Centre for Studies on Gender Medicine, University of Ferrara, 44121, Ferrara, Italy.
- Centre Haemostasis and Thrombosis, University of Ferrara, 44121, Ferrara, Italy.
| |
Collapse
|
6
|
ElGendy K, Malcomson FC, Afshar S, Bradburn MD, Mathers JC. Effects of obesity, and of weight loss following bariatric surgery, on methylation of DNA from the rectal mucosa and in cell-free DNA from blood. Int J Obes (Lond) 2023; 47:1278-1285. [PMID: 37714902 DOI: 10.1038/s41366-023-01384-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/21/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND DNA methylation is an epigenetic mechanism through which environmental factors including nutrition and inflammation influence health. Obesity is a major modifiable risk factor for many common diseases including cardiovascular diseases and cancer. In particular, obesity-induced inflammation resulting from aberrantly-methylated inflammatory genes may drive risk of several non-communicable diseases including colorectal cancer (CRC). This study is the first to investigate the effects of weight loss induced by bariatric surgery (BS) on DNA methylation in the rectum and in cell-free DNA (cfDNA) from blood. SUBJECTS AND METHODS DNA methylation was quantified in rectal mucosal biopsies and cfDNA from serum of 28 participants with obesity before and 6 months after BS, as well as in 12 participants without obesity (control group) matched for age and sex from the Biomarkers Of Colorectal cancer After Bariatric Surgery (BOCABS) Study. DNA methylation of LEP, IL6, POMC, LINE1, MAPK7 and COX2 was quantified by pyrosequencing. RESULTS BMI decreased significantly from 41.8 kg/m2 pre-surgery to 32.3 kg/m2 at 6 months after BS. Compared with the control group, obesity was associated with lower LEP methylation in both the rectal mucosa and in cfDNA from serum. BS normalised LEP methylation in DNA from the rectal mucosa but not in cfDNA. BS decreased methylation of some CpG sites of LINE1 in the rectal mucosal DNA and in cfDNA to levels comparable with those in participants without obesity. Methylation of POMC in rectal mucosal DNA was normalised at 6 months after BS. CONCLUSION BS reversed LINE1, POMC and LEP methylation in the rectal mucosa of patients with obesity to levels similar to those in individuals without obesity. These findings support current evidence of effects of BS-induced weight loss on reversibility of DNA methylation in other tissues. The DNA methylation changes in the rectal mucosa shows promise as a biomarker for objective assessment of effects of weight loss interventions on risk of cancer and other diseases.
Collapse
Affiliation(s)
- Khalil ElGendy
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, England.
- Surgery Department, Northumbria NHS Foundation Trust, Newcastle upon Tyne, England.
| | - Fiona C Malcomson
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, England
| | - Sorena Afshar
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, England
- Surgery Department, Northumbria NHS Foundation Trust, Newcastle upon Tyne, England
| | - Michael D Bradburn
- Surgery Department, Northumbria NHS Foundation Trust, Newcastle upon Tyne, England
| | - John C Mathers
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, England
| |
Collapse
|
7
|
Marson F, Zampieri M, Verdone L, Bacalini MG, Ravaioli F, Morandi L, Chiarella SG, Vetriani V, Venditti S, Caserta M, Raffone A, Dotan Ben-Soussan T, Reale A. Quadrato Motor Training (QMT) is associated with DNA methylation changes at DNA repeats: A pilot study. PLoS One 2023; 18:e0293199. [PMID: 37878626 PMCID: PMC10599555 DOI: 10.1371/journal.pone.0293199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023] Open
Abstract
The control of non-coding repeated DNA by DNA methylation plays an important role in genomic stability, contributing to health and healthy aging. Mind-body practices can elicit psychophysical wellbeing via epigenetic mechanisms, including DNA methylation. However, in this context the effects of movement meditations have rarely been examined. Consequently, the current study investigates the effects of a specifically structured movement meditation, called the Quadrato Motor Training (QMT) on psychophysical wellbeing and on the methylation level of repeated sequences. An 8-week daily QMT program was administered to healthy women aged 40-60 years and compared with a passive control group matched for gender and age. Psychological well-being was assessed within both groups by using self-reporting scales, including the Meaning in Life Questionnaire [MLQ] and Psychological Wellbeing Scale [PWB]). DNA methylation profiles of repeated sequences (ribosomal DNA, LINE-1 and Alu) were determined in saliva samples by deep-sequencing. In contrast to controls, the QMT group exhibited increased Search for Meaning, decreased Presence of Meaning and increased Positive Relations, suggesting that QMT may lessen the automatic patterns of thinking. In the QMT group, we also found site-specific significant methylation variations in ribosomal DNA and LINE-1 repeats, consistent with increased genome stability. Finally, the correlations found between changes in methylation and psychometric indices (MLQ and PWB) suggest that the observed epigenetic and psychological changes are interrelated. Collectively, the current results indicate that QMT may improve psychophysical health trajectories by influencing the DNA methylation of specific repetitive sequences.
Collapse
Affiliation(s)
- Fabio Marson
- Research Institute for Neuroscience, Education and Didactics, Fondazione Patrizio Paoletti, Assisi, Italy
- Neuroimaging Laboratory, Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Michele Zampieri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Loredana Verdone
- CNR Institute of Molecular Biology and Pathology, National Council of Research (CNR), Rome, Italy
| | - Maria Giulia Bacalini
- Brain Aging Laboratory, IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Francesco Ravaioli
- Dep. of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Luca Morandi
- Dep. of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Salvatore Gaetano Chiarella
- Institute of Sciences and Technologies of Cognition (ISTC), National Council of Research (CNR), Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Valerio Vetriani
- Dept. of Biology and biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Sabrina Venditti
- Dept. of Biology and biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Micaela Caserta
- CNR Institute of Molecular Biology and Pathology, National Council of Research (CNR), Rome, Italy
| | - Antonino Raffone
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Tal Dotan Ben-Soussan
- Research Institute for Neuroscience, Education and Didactics, Fondazione Patrizio Paoletti, Assisi, Italy
| | - Anna Reale
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
8
|
Hunter DJ, James LS, Hussey B, Ferguson RA, Lindley MR, Mastana SS. Impacts of Eccentric Resistance Exercise on DNA Methylation of Candidate Genes for Inflammatory Cytokines in Skeletal Muscle and Leukocytes of Healthy Males. Genes (Basel) 2023; 14:478. [PMID: 36833405 PMCID: PMC9957508 DOI: 10.3390/genes14020478] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Physical inactivity and a poor diet increase systemic inflammation, while chronic inflammation can be reduced through exercise and nutritional interventions. The mechanisms underlying the impacts of lifestyle interventions on inflammation remain to be fully explained; however, epigenetic modifications may be critical. The purpose of our study was to investigate the impacts of eccentric resistance exercise and fatty acid supplementation on DNA methylation and mRNA expression of TNF and IL6 in skeletal muscle and leukocytes. Eight non-resistance exercise-trained males completed three bouts of isokinetic eccentric contractions of the knee extensors. The first bout occurred at baseline, the second occurred following a three-week supplementation of either omega-3 polyunsaturated fatty acid or extra virgin olive oil and the final bout occurred after eight-weeks of eccentric resistance training and supplementation. Acute exercise decreased skeletal muscle TNF DNA methylation by 5% (p = 0.031), whereas IL6 DNA methylation increased by 3% (p = 0.01). Leukocyte DNA methylation was unchanged following exercise (p > 0.05); however, three hours post-exercise the TNF DNA methylation decreased by 2% (p = 0.004). In skeletal muscle, increased TNF and IL6 mRNA expression levels were identified immediately post-exercise (p < 0.027); however, the leukocyte mRNA expression was unchanged. Associations between DNA methylation and markers of exercise performance, inflammation and muscle damage were identified (p < 0.05). Acute eccentric resistance exercise is sufficient to induce tissue-specific DNA methylation modifications to TNF and IL6; however, neither eccentric training nor supplementation was sufficient to further modify the DNA methylation.
Collapse
Affiliation(s)
- David John Hunter
- Translational Chemical Biology Research Group, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
| | - Lynsey S. James
- Translational Chemical Biology Research Group, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
| | - Bethan Hussey
- Translational Chemical Biology Research Group, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
| | - Richard A. Ferguson
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
| | - Martin R. Lindley
- Translational Chemical Biology Research Group, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
- School of Biomedical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Sarabjit S. Mastana
- Translational Chemical Biology Research Group, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK
| |
Collapse
|
9
|
Alves VRG, Micali D, Ota VK, Bugiga AVG, Muniz Carvalho C, Belangero SI. A Systematic Review of LINE-1 Methylation Profile in Psychiatric Disorders. Complex Psychiatry 2023; 9:119-129. [PMID: 37404869 PMCID: PMC10315007 DOI: 10.1159/000530641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/03/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction Long interspersed nuclear elements (LINEs) are endogenous retrotransposable elements. A few studies have linked the methylation pattern of LINE-1 to different mental disorders (e.g., post-traumatic stress disorder [PTSD], autism spectrum disorder [ASD], panic disorder [PD]). We sought to unify the existing knowledge in the field and provide a better understanding of the association between mental disorders and LINE-1 methylation. Methods A systematic review was executed with 12 eligible articles according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Results For psychotic disorders, PTSD, ASD, and PD, lower LINE-1 methylation levels were detected, whereas for mood disorders, the findings are controversial. The studies were conducted with subjects aged 18-80 years. Peripheral blood samples were utilized in 7/12 articles. Conclusion Although most studies have shown that LINE-1 hypomethylation was associated with mental disorders, there were still some divergences (i.e., hypermethylation associated with mental disorders). These studies suggest that LINE-1 methylation may be an important factor related to the development of mental disorders and highlight the need to better comprehend the biological mechanisms underlying the role of LINE-1 in mental disorders pathophysiology.
Collapse
Affiliation(s)
- Vitória Rodrigues Guimarães Alves
- Department of Psychiatry and Medical Psychology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- LiNC, Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Danilo Micali
- LiNC, Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Vanessa Kiyomi Ota
- LiNC, Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Amanda Victória Gomes Bugiga
- LiNC, Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Carolina Muniz Carvalho
- Department of Psychiatry and Medical Psychology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- LiNC, Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Sintia Iole Belangero
- Department of Psychiatry and Medical Psychology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- LiNC, Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
10
|
Carvalho CM, Coimbra BM, Bugiga A, Marques DF, Kiyomi Ota V, Mello AF, Mello MF, Belangero SI. Hyperarousal Symptom Severity in Women with Posttraumatic Stress Disorder Might Be Associated with LINE-1 Hypomethylation in Childhood Sexual Abuse Victims. Complex Psychiatry 2023; 9:44-56. [PMID: 37034826 PMCID: PMC10080193 DOI: 10.1159/000529698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Introduction Sexual assault and a history of childhood sexual abuse (CSA) are related to posttraumatic stress disorder (PTSD) development. Long interspersed nuclear elements (LINE-1) are transposable elements, and their methylation is used to infer DNA global methylation. DNA methylation can be affected by trauma exposition which in turn would be associated with PTSD. Thus, we investigated if the LINE-1 methylation pattern is related to PTSD symptoms in females with a history of CSA. Methods This is a case-control study that examined, at baseline (W1), 64 women victims of sexual assault diagnosed with PTSD and 31 patients with PTSD who completed the 1-year follow-up (W2). Participants were categorized into two groups according to the presence of CSA (PTSDCSA+: NW1 = 19, NW2 = 10; PTSDCSA-: NW1 = 45, NW2 = 21). PTSD symptoms (re-experiencing, avoidance, hyperarousal, alterations in cognition/mood) were assessed using the Clinician-Administered PTSD Scale, and the history of CSA was assessed by the Childhood Trauma Questionnaire. LINE-1 methylation was measured in three sites (CpG1, CpG2, CpG3) located in the 5'UTR region using bisulfite conversion followed by pyrosequencing. Linear regression models were performed to test the relation between LINE-1 CpG sites methylation and PTSD symptoms. Results We found a negative association between CpG2 methylation and hyperarousal symptoms among those in the PTSDCSA+ group in W1 (adjusted p = 0.003) compared to the PTSDCSA- group (p > 0.05). Still, no association was observed between other PTSD symptoms and other CpG sites. Further, in the longitudinal analysis, LINE-1 hypomethylation was no longer observed in PTSD participants exposed to CSA. Conclusion Our findings suggest that LINE-1 methylation may help understand the relationship between trauma and PTSD. However, more studies are needed to investigate LINE-1 as an epigenetic marker of psychiatric disorders.
Collapse
Affiliation(s)
- Carolina Muniz Carvalho
- Department of Psychiatry of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- LiNC - Laboratory of Integrative Neuroscience of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Bruno Messina Coimbra
- Department of Psychiatry of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Department of Psychiatry, Amsterdam Public Health Research Institute and Amsterdam Neuroscience Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Amanda Bugiga
- LiNC - Laboratory of Integrative Neuroscience of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Genetics Division of Department of Morphology and Genetics of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Diogo Ferri Marques
- Department of Psychiatry of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- LiNC - Laboratory of Integrative Neuroscience of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
| | - Vanessa Kiyomi Ota
- LiNC - Laboratory of Integrative Neuroscience of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Genetics Division of Department of Morphology and Genetics of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Andrea Feijó Mello
- Department of Psychiatry of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Marcelo Feijó Mello
- Department of Psychiatry of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Sintia Iole Belangero
- LiNC - Laboratory of Integrative Neuroscience of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Genetics Division of Department of Morphology and Genetics of Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
11
|
Rerkasem A, Nantakool S, Wilson BC, Mangklabruks A, Boonyapranai K, Mutirangura A, Derraik JGB, Rerkasem K. Associations between maternal plasma zinc concentrations in late pregnancy and LINE-1 and Alu methylation loci in the young adult offspring. PLoS One 2022; 17:e0279630. [PMID: 36584155 PMCID: PMC9803117 DOI: 10.1371/journal.pone.0279630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 12/12/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In animal models, prenatal zinc deficiency induced epigenetic changes in the fetus, but data in humans are lacking. We aimed to examine associations between maternal zinc levels during pregnancy and DNA methylation in LINE-1 and Alu repetitive sequences in young adult offspring, as well as anthropometry and cardiometabolic parameters. METHODS Participants were 74 pregnant women from the Chiang Mai Low Birth Weight cohort, and their offspring followed up at 20 years of age. Maternal plasma zinc concentrations were measured at approximately 36 weeks of gestation. DNA methylation levels in LINE-1 and Alu repetitive sequences were measured in the offspring, as well as anthropometry and cardiometabolic parameters (lipid profile, blood pressure, and glucose metabolism). RESULTS Over half of mothers (39/74; 53%) were zinc deficient (<50 μg/dL) during their third trimester of pregnancy. Maternal zinc concentrations during pregnancy were associated with LINE-1 DNA methylation levels in adult offspring. Specifically, lower prenatal zinc concentrations were associated with: 1) lower levels of total LINE-1 methylation; 2) lower levels of LINE-1 hypermethylation loci; and 3) higher levels of LINE-1 partial methylation loci. Prenatal zinc concentrations were not associated with Alu methylation levels, nor with any anthropometric or cardiometabolic parameters in adult offspring. However, we observed associations between Alu and LINE-1 methylation patterns and cardiometabolic outcomes in offspring, namely total cholesterol levels and diastolic blood pressure, respectively. CONCLUSIONS Lower maternal zinc concentrations late in gestation were associated with changes in DNA methylation in later life. Thus, zinc deficiency during pregnancy may induce alterations in total LINE-1 methylation and LINE-1 hypermethylation loci. These results suggest a possible epigenetic link between zinc deficiency during pregnancy and long-term outcomes in the offspring.
Collapse
Affiliation(s)
- Amaraporn Rerkasem
- Environmental—Occupational Health Sciences and Non-Communicable Diseases Research Group, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Sothida Nantakool
- Environmental—Occupational Health Sciences and Non-Communicable Diseases Research Group, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Brooke C. Wilson
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Ampica Mangklabruks
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kongsak Boonyapranai
- Environmental—Occupational Health Sciences and Non-Communicable Diseases Research Group, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Apiwat Mutirangura
- Center of Excellence of Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - José G. B. Derraik
- Environmental—Occupational Health Sciences and Non-Communicable Diseases Research Group, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- Department of Paediatrics: Child and Youth Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- * E-mail: (KR); (JGBD)
| | - Kittipan Rerkasem
- Environmental—Occupational Health Sciences and Non-Communicable Diseases Research Group, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
- Clinical Surgical Research Centre, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- * E-mail: (KR); (JGBD)
| |
Collapse
|
12
|
Cai Y, Song W, Li J, Jing Y, Liang C, Zhang L, Zhang X, Zhang W, Liu B, An Y, Li J, Tang B, Pei S, Wu X, Liu Y, Zhuang CL, Ying Y, Dou X, Chen Y, Xiao FH, Li D, Yang R, Zhao Y, Wang Y, Wang L, Li Y, Ma S, Wang S, Song X, Ren J, Zhang L, Wang J, Zhang W, Xie Z, Qu J, Wang J, Xiao Y, Tian Y, Wang G, Hu P, Ye J, Sun Y, Mao Z, Kong QP, Liu Q, Zou W, Tian XL, Xiao ZX, Liu Y, Liu JP, Song M, Han JDJ, Liu GH. The landscape of aging. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2354-2454. [PMID: 36066811 PMCID: PMC9446657 DOI: 10.1007/s11427-022-2161-3] [Citation(s) in RCA: 190] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023]
Abstract
Aging is characterized by a progressive deterioration of physiological integrity, leading to impaired functional ability and ultimately increased susceptibility to death. It is a major risk factor for chronic human diseases, including cardiovascular disease, diabetes, neurological degeneration, and cancer. Therefore, the growing emphasis on "healthy aging" raises a series of important questions in life and social sciences. In recent years, there has been unprecedented progress in aging research, particularly the discovery that the rate of aging is at least partly controlled by evolutionarily conserved genetic pathways and biological processes. In an attempt to bring full-fledged understanding to both the aging process and age-associated diseases, we review the descriptive, conceptual, and interventive aspects of the landscape of aging composed of a number of layers at the cellular, tissue, organ, organ system, and organismal levels.
Collapse
Affiliation(s)
- Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Wei Song
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430071, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Jing
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chuqian Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Liyuan Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Xia Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenhui Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Beibei Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Yongpan An
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Jingyi Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Baixue Tang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Siyu Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xueying Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuxuan Liu
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Cheng-Le Zhuang
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiaotong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Xuefeng Dou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Dingfeng Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ya Zhao
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China
| | - Yang Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lihui Wang
- Institute of Ageing Research, Hangzhou Normal University, School of Basic Medical Sciences, Hangzhou, 311121, China
| | - Yujing Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- The Fifth People's Hospital of Chongqing, Chongqing, 400062, China.
| | - Xiaoyuan Song
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Jie Ren
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liang Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Jun Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, 100191, China.
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianwei Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Ye Tian
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Gelin Wang
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China.
| | - Ping Hu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiaotong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, 98195, USA.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Qiang Liu
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China.
| | - Zhi-Xiong Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Yong Liu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430071, China.
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University, School of Basic Medical Sciences, Hangzhou, 311121, China.
- Department of Immunology and Pathology, Monash University Faculty of Medicine, Prahran, Victoria, 3181, Australia.
- Hudson Institute of Medical Research, and Monash University Department of Molecular and Translational Science, Clayton, Victoria, 3168, Australia.
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
13
|
Romero MA, Mumford PW, Roberson PA, Osburn SC, Young KC, Sedivy JM, Roberts MD. Translational Significance of the LINE-1 Jumping Gene in Skeletal Muscle. Exerc Sport Sci Rev 2022; 50:185-193. [PMID: 35749745 PMCID: PMC9651911 DOI: 10.1249/jes.0000000000000301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Retrotransposons are gene segments that proliferate in the genome, and the Long INterspersed Element 1 (LINE-1 or L1) retrotransposon is active in humans. Although older mammals show enhanced skeletal muscle L1 expression, exercise generally reverses this trend. We hypothesize skeletal muscle L1 expression influences muscle physiology, and additional innovative investigations are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Matthew A. Romero
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California USA
| | - Petey W. Mumford
- Department of Exercise Science, Lindenwood University, St. Charles, Missouri USA
| | - Paul A. Roberson
- Department of Cellular and Molecular Physiology, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania USA
| | | | - Kaelin C. Young
- School of Kinesiology, Auburn University, Auburn, Alabama USA
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn, Auburn, Alabama, USA
| | - John M. Sedivy
- Department of Molecular Biology, Cell Biology and Biochemistry, Center on the Biology of Aging, Brown University, Providence, Rhode Island, USA
| | - Michael D. Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama USA
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn, Auburn, Alabama, USA
| |
Collapse
|
14
|
Krammer UD, Tschida S, Berner J, Lilja S, Switzeny OJ, Hippe B, Rust P, Haslberger AG. MiRNA-based "fitness score" to assess the individual response to diet, metabolism, and exercise. J Int Soc Sports Nutr 2022; 19:455-473. [PMID: 35937778 PMCID: PMC9351578 DOI: 10.1080/15502783.2022.2106148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/22/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022] Open
Abstract
Background Regular, especially sustained exercise plays an important role in the prevention and treatment of multiple chronic diseases. Some of the underlying molecular and cellular mechanisms behind the adaptive response to physical activity are still unclear, but recent findings suggest a possible role of epigenetic mechanisms, especially miRNAs, in the progression and management of exercise-related changes. Due to the combination of the analysis of epigenetic biomarkers (miRNAs), the intake of food and supplements, and genetic dispositions, a "fitness score" was evaluated to assess the individual response to nutrition, exercise, and metabolic influence. Methods In response to a 12-week sports intervention, we analyzed genetic and epigenetic biomarkers in capillary blood from 61 sedentary, healthy participants (66.1% females, 33.9% males, mean age 33 years), including Line-1 methylation, three SNPs, and ten miRNAs using HRM and qPCR analysis. These biomarkers were also analyzed in a healthy, age- and sex-matched control group (n, 20) without intervention. Food frequency intake, including dietary supplement intake, and general health questionnaires were surveyed under the supervision of trained staff. Results Exercise training decreased the expression of miR-20a-5p, -22-5p, and -505-3p (p < 0.02) and improved the "fitness score," which estimates eight different lifestyle factors to assess, nutrition, inflammation, cardiovascular fitness, injury risk, regeneration, muscle and hydration status, as well as stress level. In addition, we were able to determine correlations between individual miRNAs, miR-20a-5p, -22-5p, and -101-3p (p < 0.04), and the genetic predisposition for endurance and/or strength and obesity risk (ACE, ACTN3, and FTO), as well as between miRNAs and the body composition (p < 0.05). MiR-19b-3p and -101-3p correlated with the intake of B vitamins. Further, miR-19b-3p correlated with magnesium and miR-378a-3p with iron intake (p < 0.05). Conclusions In summary, our results indicate that a combined analysis of several biomarkers (miRNAs) can provide information about an individual's training adaptions/fitness, body composition, nutritional needs, and possible recovery. In contrast to most studies using muscle biopsies, we were able to show that these biomarkers can also be measured using a minimally invasive method.
Collapse
Affiliation(s)
| | - Sylvia Tschida
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Julia Berner
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Stephanie Lilja
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | | | - Berit Hippe
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
- HealthBioCare GmbH, Vienna, Austria
| | - Petra Rust
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | | |
Collapse
|
15
|
Barouti Z, Heidari-Beni M, Shabanian-Boroujeni A, Mohammadzadeh M, Pahlevani V, Poursafa P, Mohebpour F, Kelishadi R. Effects of DNA methylation on cardiometabolic risk factors: a systematic review and meta-analysis. Arch Public Health 2022; 80:150. [PMID: 35655232 PMCID: PMC9161587 DOI: 10.1186/s13690-022-00907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 05/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background Epigenetic changes, especially DNA methylation have a main role in regulating cardiometabolic disorders and their risk factors. This study provides a review of the current evidence on the association between methylation of some genes (LINE1, ABCG1, SREBF1, PHOSPHO1, ADRB3, and LEP) and cardiometabolic risk factors. Methods A systematic literature search was conducted in electronic databases including Web of Science, PubMed, EMBASE, Google Scholar and Scopus up to end of 2020. All observational human studies (cross-sectional, case–control, and cohort) were included. Studies that assessed the effect of DNA methylation on cardiometabolic risk factors were selected. Results Among 1398 articles, eight studies and twenty-one studies were included in the meta-analysis and the systematic review, respectively. Our study showed ABCG1 and LINE1 methylation were positively associated with blood pressure (Fisher’s zr = 0.07 (0.06, 0.09), 95% CI: 0.05 to 0.08). Methylation in LINE1, ABCG1, SREBF1, PHOSPHO1 and ADRB3 had no significant association with HDL levels (Fisher’s zr = − 0.05 (− 0.13, 0.03), 95% CI:-0.12 to 0.02). Positive association was existed between LINE1, ABCG1 and LEP methylation and LDL levels (Fisher’s zr = 0.13 (0.04, 0.23), 95% CI: 0.03 to 0.23). Moreover, positive association was found between HbA1C and ABCG1 methylation (Fisher’s zr = 0.11 (0.09, 0.13), 95% CI: 0.09 to 0.12). DNA methylation of LINE1, ABCG1 and SREBF1 genes had no significant association with glucose levels (Fisher’s zr = 0.01 (− 0.12, 0.14), 95% CI:-0.12 to 0.14). Conclusion This meta-analysis showed that DNA methylation was associated with some cardiometabolic risk factors including LDL-C, HbA1C, and blood pressure. Registration Registration ID of the protocol on PROSPERO is CRD42020207677.
Collapse
|
16
|
Olive Oil Improves While Trans Fatty Acids Further Aggravate the Hypomethylation of LINE-1 Retrotransposon DNA in an Environmental Carcinogen Model. Nutrients 2022; 14:nu14040908. [PMID: 35215560 PMCID: PMC8878525 DOI: 10.3390/nu14040908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/08/2023] Open
Abstract
DNA methylation is an epigenetic mechanism that is crucial for mammalian development and genomic stability. Aberrant DNA methylation changes have been detected not only in malignant tumor tissues; the decrease of global DNA methylation levels is also characteristic for aging. The consumption of extra virgin olive oil (EVOO) as part of a balanced diet shows preventive effects against age-related diseases and cancer. On the other hand, consuming trans fatty acids (TFA) increases the risk of cardiovascular diseases as well as cancer. The aim of the study was to investigate the LINE-1 retrotransposon (L1-RTP) DNA methylation pattern in liver, kidney, and spleen of mice as a marker of genetic instability. For that, mice were fed with EVOO or TFA and were pretreated with environmental carcinogen 7,12-dimethylbenz[a]anthracene (DMBA)-a harmful substance known to cause L1-RTP DNA hypomethylation. Our results show that DMBA and its combination with TFA caused significant L1-RTP DNA hypomethylation compared to the control group via inhibition of DNA methyltransferase (DNMT) enzymes. EVOO had the opposite effect by significantly decreasing DMBA and DMBA + TFA-induced hypomethylation, thereby counteracting their effects.
Collapse
|
17
|
Pradhan RK, Ramakrishna W. Transposons: Unexpected players in cancer. Gene 2022; 808:145975. [PMID: 34592349 DOI: 10.1016/j.gene.2021.145975] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/19/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022]
Abstract
Transposons are repetitive DNA sequences encompassing about half of the human genome. They play a vital role in genome stability maintenance and contribute to genomic diversity and evolution. Their activity is regulated by various mechanisms considering the deleterious effects of these mobile elements. Various genetic risk factors and environmental stress conditions affect the regulatory pathways causing alteration of transposon expression. Our knowledge of the biological role of transposons is limited especially in various types of cancers. Retrotransposons of different types (LTR-retrotransposons, LINEs and SINEs) regulate a plethora of genes that have a role in cell reprogramming, tumor suppression, cell cycle, apoptosis, cell adhesion and migration, and DNA repair. The regulatory mechanisms of transposons, their deregulation and different mechanisms underlying transposon-mediated carcinogenesis in humans focusing on the three most prevalent types, lung, breast and colorectal cancers, were reviewed. The modes of regulation employed include alternative splicing, deletion, insertion, duplication in genes and promoters resulting in upregulation, downregulation or silencing of genes.
Collapse
|
18
|
Tost J. Current and Emerging Technologies for the Analysis of the Genome-Wide and Locus-Specific DNA Methylation Patterns. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:395-469. [DOI: 10.1007/978-3-031-11454-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Issah I, Arko-Mensah J, Rozek LS, Zarins KR, Agyekum TP, Dwomoh D, Basu N, Batterman S, Robins TG, Fobil JN. Global DNA (LINE-1) methylation is associated with lead exposure and certain job tasks performed by electronic waste workers. Int Arch Occup Environ Health 2021; 94:1931-1944. [PMID: 34148106 DOI: 10.1007/s00420-021-01733-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/28/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE This study assessed the associations between blood and urine levels of toxic metals; cadmium (Cd) and lead (Pb), and methylation levels of the LINE-1 gene among e-waste and control populations in Ghana. METHODS The study enrolled 100 male e-waste workers and 51 all-male non-e-waste workers or controls. The concentrations of Cd and Pb were measured in blood and urine using inductively coupled plasma mass spectrometry, while LINE1 methylation levels were assessed by pyrosequencing of bisulfite-converted DNA extracted from whole blood. Single and multiple metals linear regression models were used to determine the associations between metals and LINE1 DNA methylation. RESULTS Blood lead (BPb) and urine lead (UPb) showed higher median concentrations among the e-waste workers than the controls (76.82 µg/L vs 40.25 µg/L, p ≤ 0.001; and 6.89 µg/L vs 3.43 µg/L, p ≤ 0.001, respectively), whereas blood cadmium (BCd) concentration was lower in the e-waste workers compared to the controls (0.59 µg/L vs 0.81 µg/L, respectively, p = 0.003). There was no significant difference in LINE1 methylation between the e-waste and controls (85.16 ± 1.32% vs 85.17 ± 1.11%, p = 0.950). In our single metal linear regression models, BPb was significantly inversely associated with LINE1 methylation in the control group (βBPb = - 0.027, 95% CI - 0.045, - 0.010, p = 0.003). In addition, a weak association between BPb and LINE1 was observed in the multiple metals analysis in the e-waste worker group (βBPb = - 0.005, 95% CI - 0.011, 0.000, p = 0.058). CONCLUSION Continuous Pb exposure may interfere with LINE1 methylation, leading to epigenetic alterations, thus serving as an early epigenetic marker for future adverse health outcomes.
Collapse
Affiliation(s)
- Ibrahim Issah
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Legon, P.O. Box LG13, Accra, Ghana.
| | - John Arko-Mensah
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Legon, P.O. Box LG13, Accra, Ghana
| | - Laura S Rozek
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Katie R Zarins
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Thomas P Agyekum
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Legon, P.O. Box LG13, Accra, Ghana
| | - Duah Dwomoh
- Department of Biostatistics, School of Public Health, University of Ghana, P.O. Box LG13, Accra, Ghana
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - Stuart Batterman
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Thomas G Robins
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Julius N Fobil
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, Legon, P.O. Box LG13, Accra, Ghana
| |
Collapse
|
20
|
Gharipour M, Mani A, Amini Baghbahadorani M, de Souza Cardoso CK, Jahanfar S, Sarrafzadegan N, de Oliveira C, Silveira EA. How Are Epigenetic Modifications Related to Cardiovascular Disease in Older Adults? Int J Mol Sci 2021; 22:9949. [PMID: 34576113 PMCID: PMC8470616 DOI: 10.3390/ijms22189949] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/16/2022] Open
Abstract
The rate of aging has increased globally during recent decades and has led to a rising burden of age-related diseases such as cardiovascular disease (CVD). At the molecular level, epigenetic modifications have been shown recently to alter gene expression during the life course and impair cellular function. In this regard, several CVD risk factors, such as lifestyle and environmental factors, have emerged as key factors in epigenetic modifications within the cardiovascular system. In this study, we attempted to summarized recent evidence related to epigenetic modification, inflammation response, and CVD in older adults as well as the effect of lifestyle modification as a preventive strategy in this age group. Recent evidence showed that lifestyle and environmental factors may affect epigenetic mechanisms, such as DNA methylation, histone acetylation, and miRNA expression. Several substances or nutrients such as selenium, magnesium, curcumin, and caffeine (present in coffee and some teas) could regulate epigenetics. Similarly, physical inactivity, alcohol consumption, air pollutants, psychological stress, and shift working are well-known modifiers of epigenetic patterns. Understanding the exact ways that lifestyle and environmental factors could affect the expression of genes could help to influence the time of incidence and severity of aging-associated diseases. This review highlighted that a healthy lifestyle throughout the life course, such as a healthy diet rich in fibers, vitamins, and essential elements, and specific fatty acids, adequate physical activity and sleep, smoking cessation, and stress control, could be useful tools in preventing epigenetic changes that lead to impaired cardiovascular function.
Collapse
Affiliation(s)
- Mojgan Gharipour
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran;
| | - Arya Mani
- Cardiovascular Research Center, Department of Internal Medicine, and Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Mona Amini Baghbahadorani
- Interventional Cardiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran;
| | - Camila Kellen de Souza Cardoso
- School of Social Sciences and Health, Nutrition Course, Pontifical Catholic University of Goias, Goiânia 74605-010, Brazil;
| | - Shayesteh Jahanfar
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MI 02111, USA;
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran;
- Faculty of Medicine, School of Population and Public Health, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Cesar de Oliveira
- Department of Epidemiology & Public Health, Institute of Epidemiology & Health Care, University College London, London WC1E 6BT, UK;
| | - Erika Aparecida Silveira
- Department of Epidemiology & Public Health, Institute of Epidemiology & Health Care, University College London, London WC1E 6BT, UK;
- Graduate Program in Health Sciences, Faculty of Medicine, Federal University of Goiás, Goiânia 74690-900, Brazil
| |
Collapse
|
21
|
Lopez-Pascual A, Trayhurn P, Martínez JA, González-Muniesa P. Oxygen in Metabolic Dysfunction and Its Therapeutic Relevance. Antioxid Redox Signal 2021; 35:642-687. [PMID: 34036800 DOI: 10.1089/ars.2019.7901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: In recent years, a number of studies have shown altered oxygen partial pressure at a tissue level in metabolic disorders, and some researchers have considered oxygen to be a (macro) nutrient. Oxygen availability may be compromised in obesity and several other metabolism-related pathological conditions, including sleep apnea-hypopnea syndrome, the metabolic syndrome (which is a set of conditions), type 2 diabetes, cardiovascular disease, and cancer. Recent Advances: Strategies designed to reduce adiposity and its accompanying disorders have been mainly centered on nutritional interventions and physical activity programs. However, novel therapies are needed since these approaches have not been sufficient to counteract the worldwide increasing rates of metabolic disorders. In this regard, intermittent hypoxia training and hyperoxia could be potential treatments through oxygen-related adaptations. Moreover, living at a high altitude may have a protective effect against the development of abnormal metabolic conditions. In addition, oxygen delivery systems may be of therapeutic value for supplying the tissue-specific oxygen requirements. Critical Issues: Precise in vivo methods to measure oxygenation are vital to disentangle some of the controversies related to this research area. Further, it is evident that there is a growing need for novel in vitro models to study the potential pathways involved in metabolic dysfunction to find appropriate therapeutic targets. Future Directions: Based on the existing evidence, it is suggested that oxygen availability has a key role in obesity and its related comorbidities. Oxygen should be considered in relation to potential therapeutic strategies in the treatment and prevention of metabolic disorders. Antioxid. Redox Signal. 35, 642-687.
Collapse
Affiliation(s)
- Amaya Lopez-Pascual
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,Neuroendocrine Cell Biology, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Paul Trayhurn
- Obesity Biology Unit, University of Liverpool, Liverpool, United Kingdom.,Clore Laboratory, The University of Buckingham, Buckingham, United Kingdom
| | - J Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain.,Precision Nutrition and Cardiometabolic Health, IMDEA Food, Madrid Institute for Advanced Studies, Madrid, Spain
| | - Pedro González-Muniesa
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain
| |
Collapse
|
22
|
Vasilyev SA, Markov AV, Vasilyeva OY, Tolmacheva EN, Zatula LA, Sharysh DV, Zhigalina DI, Demeneva VV, Lebedev IN. Method of targeted bisulfite massive parallel sequencing of the human LINE-1 retrotransposon promoter. MethodsX 2021; 8:101445. [PMID: 34434857 PMCID: PMC8374674 DOI: 10.1016/j.mex.2021.101445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/05/2021] [Indexed: 11/29/2022] Open
Abstract
The methylation index of the LINE-1 promoter is one of the most commonly used markers for assessing the global level of genome methylation in various human cells and tissues. We developed an NGS-based protocol for DNA methylation analysis of the LINE-1 retrotransposon promoter. This approach allows assessment of the DNA methylation index of 19 CpG sites in the LINE-1 promoter that have the highest tissue- or tumor-specific variability. The method provides a DNA methylation profile for analyzing either the methylation index of each CpG site independently or the mean DNA methylation index across the LINE-1 promoter. The results obtained using the developed method corresponded well to the level of methylation assessed using a commercially available kit for DNA pyrosequencing. In addition, our method provides much more information: 1) the DNA methylation profile of a significant part of the LINE-1 promoter and 2) the level of DNA methylation at individual LINE-1 loci in the genome. The method of targeted bisulfite massive parallel sequencing of the human LINE-1 retrotransposon promoter can be used in large-scale studies of the global level of genome methylation in normal human cells or tumors. To accomplish this, we modified the targeted massive parallel sequencing method based on 16S Metagenomic Sequencing Library Preparation protocol (Illumina, USA) by:Introduction of the stage of bisulfite conversion of DNA. Development of specific primers for the LINE-1 sequence.
Collapse
Affiliation(s)
- Stanislav A Vasilyev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russia
| | - Anton V Markov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russia
| | - Oksana Yu Vasilyeva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russia
| | - Ekaterina N Tolmacheva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russia
| | | | - Diana V Sharysh
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russia
| | - Daria I Zhigalina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russia
| | - Victoria V Demeneva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russia
| | - Igor N Lebedev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Tomsk, Russia
| |
Collapse
|
23
|
Environmental and occupational exposures associated with male infertility. ACTA ACUST UNITED AC 2021; 72:101-113. [PMID: 34187108 PMCID: PMC8265198 DOI: 10.2478/aiht-2021-72-3510] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 05/01/2021] [Indexed: 12/30/2022]
Abstract
The upsurge in male infertility over the last two decades, possibly due to environmental exposure, has raised significant interest, particularly boosted by reports from fertility clinics, which showed that chronic diseases and hereditary or other medical conditions might only partially explain current incidence of male infertility. Both environmental and occupational settings may have a significant role in exposure to complex mixtures of endocrine disruptors (ED), which play a major role in fertility disorders. The aim of this review is to give an insight into the current knowledge on exposure settings which may be associated with male infertility. Our study relied on a systematic search of PubMed, Scopus, and Web of Science for articles published between January 2000 and September 2020. It showed that some well documented factors associated with male infertility include smoking, and physiological disturbances or chronic diseases such as obesity and diabetes, which in turn, may also reflect lifestyle choices and environmental exposures, especially to EDs such as phthalates, bisphenols, pesticides, and flame retardants. However, the number of studies on the aetiology of male infertility is still too low in comparison with the size of affected population. Occupational health follow-ups and medical surveillance do not collect any data on male infertility, even though ED chemicals are part of many technological processes.
Collapse
|
24
|
Awada Z, Bouaoun L, Nasr R, Tfayli A, Cuenin C, Akika R, Boustany RM, Makoukji J, Tamim H, Zgheib NK, Ghantous A. LINE-1 methylation mediates the inverse association between body mass index and breast cancer risk: A pilot study in the Lebanese population. ENVIRONMENTAL RESEARCH 2021; 197:111094. [PMID: 33839117 DOI: 10.1016/j.envres.2021.111094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/28/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Lebanon is among the top countries worldwide in combined incidence and mortality of breast cancer, which raises concern about risk factors peculiar to this country. The underlying molecular mechanisms of breast cancer require elucidation, particularly epigenetics, which is recognized as a molecular sensor to environmental exposures. PURPOSE We aim to explore whether DNA methylation levels of AHRR (marker of cigarette smoking), SLC1A5 and TXLNA (markers of alcohol consumption), and LINE-1 (a genome-wide repetitive retrotransposon) can act as molecular mediators underlying putative associations between breast cancer risk and pertinent extrinsic (tobacco smoking and alcohol consumption) and intrinsic factors [age and body mass index (BMI)]. METHODS This is a cross-sectional pilot study which includes breast cancer cases (N = 65) and controls (N = 54). DNA methylation levels were measured using bisulfite pyrosequencing on available peripheral blood samples (N = 119), and Multivariate Imputation by Chained Equations (MICE) was used to impute missing DNA methylation values in remaining samples. Multiple mediation analysis was performed to assess direct and indirect (via DNA methylation) effects of intrinsic and extrinsic factors on breast cancer risk. RESULTS In relation to exposure, AHRR hypo-methylation was associated with cigarette but not waterpipe smoking, suggesting potentially different biomarkers of these two forms of tobacco use; SLC1A5 and TXLNA methylation were not associated with alcohol consumption; LINE-1 methylation was inversely associated with BMI (β-value [95% confidence interval (CI)] = -0.04 [-0.07, -0.02]), which remained significant after adjustment for age, smoking and alcohol consumption. In relation to breast cancer, there was no detectable association between AHRR, SLC1A5 or TXLNA methylation and cancer risk, but LINE-1 methylation was significantly higher in breast cancer cases when compared to controls (mean ± SD: 72.00 ± 0.66 versus 70.89 ± 0.73, P = 4.67 × 10-14). This difference remained significant after adjustment for confounders (odds ratio (OR) [95% CI] = 9.75[3.74, 25.39]). Moreover, LINE-1 hypo-methylation mediated 83% of the inverse effect of BMI on breast cancer risk. CONCLUSION This pilot study demonstrates that alterations in blood LINE-1 methylation mediate the inverse effect of BMI on breast cancer risk. This warrants large scale studies and stratification based on clinic-pathological types of breast cancer.
Collapse
Affiliation(s)
- Zainab Awada
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon; International Agency for Research on Cancer, Lyon, France
| | | | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| | - Arafat Tfayli
- Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| | - Cyrille Cuenin
- International Agency for Research on Cancer, Lyon, France
| | - Reem Akika
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| | - Rose-Mary Boustany
- Department of Biochemistry and Molecular Genetics, American University of Beirut Faculty of Medicine, Beirut, Lebanon; Department of Neurology, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| | - Joelle Makoukji
- Department of Biochemistry and Molecular Genetics, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| | - Hani Tamim
- Department of Internal Medicine and Clinical Research Institute, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| | - Nathalie K Zgheib
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon.
| | - Akram Ghantous
- International Agency for Research on Cancer, Lyon, France.
| |
Collapse
|
25
|
Hussey B, Steel RP, Gyimah B, Reynolds JC, Taylor IM, Lindley MR, Mastana S. DNA methylation of tumour necrosis factor (TNF) alpha gene is associated with specific blood fatty acid levels in a gender-specific manner. Mol Genet Genomic Med 2021; 9:e1679. [PMID: 33818919 PMCID: PMC8683629 DOI: 10.1002/mgg3.1679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 01/22/2023] Open
Abstract
Background Fatty acids, specifically polyunsaturated fatty acids (PUFAs) play an important role in inflammation and its resolution, however, their interaction with the epigenome is relatively unexplored. Here we investigate the relationship between circulating blood fatty acids and the DNA methylation of the cytokine encoding gene tumour necrosis factor (TNF, OMIM 191160). Methods Using a cross‐sectional study approach, we collected blood samples from adults (N=88 (30 males, 58 females); 18–74 years old) for DNA methylation pyrosequencing analysis at four sites in TNF exon 1 and gas‐chromatography mass‐spectrometry analysis of the fatty acid profile of dried blood spots (DBS). Results Methylation levels of TNF exon 1 are significantly correlated with specific fatty acids in a gender‐specific manner. In the males the PUFAs Docosahexaenoic Acid (DHA) and Arachidonic Acid (AA) were positively associated with TNF methylation, as was the saturated fatty acid (SFA) Stearic Acid; in contrast, mono‐unsaturated fatty acids (MUFAs) had a negative association. In the females, omega‐6 PUFA γ‐Linolenic acid (GLA) was negatively correlated with TNF methylation; Adrenic acid and Eicosadienoic Acid were positively correlated with TNF methylation. Conclusion These results suggest that one way that fatty acids interact with the inflammation is through altered methylation profiles of cytokine genes; thus, providing potential therapeutic targets for nutritional and health interventions.
Collapse
Affiliation(s)
- Bethan Hussey
- Translational Chemical Biology (TCB) Research Group, Loughborough, University, Loughborough, UK.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Richard P Steel
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,School of Social Sciences, Nottingham Trent University, Nottingham, UK
| | - Boakye Gyimah
- Translational Chemical Biology (TCB) Research Group, Loughborough, University, Loughborough, UK.,Department of Chemistry, Loughborough University, Loughborough, UK
| | - James C Reynolds
- Translational Chemical Biology (TCB) Research Group, Loughborough, University, Loughborough, UK.,Department of Chemistry, Loughborough University, Loughborough, UK
| | - Ian M Taylor
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Martin R Lindley
- Translational Chemical Biology (TCB) Research Group, Loughborough, University, Loughborough, UK.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Sarabjit Mastana
- Translational Chemical Biology (TCB) Research Group, Loughborough, University, Loughborough, UK.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
26
|
Paredes-Céspedes DM, Rojas-García AE, Medina-Díaz IM, Ramos KS, Herrera-Moreno JF, Barrón-Vivanco BS, González-Arias CA, Bernal-Hernández YY. Environmental and socio-cultural impacts on global DNA methylation in the indigenous Huichol population of Nayarit, Mexico. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4472-4487. [PMID: 32940839 DOI: 10.1007/s11356-020-10804-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Alterations of global DNA methylation have been evaluated in several studies worldwide; however, Long Interspersed Nuclear Elements-1 (LINE-1) methylation in genetically conserved populations such as indigenous communities have not, to our knowledge, been reported. The aim of this study was to evaluate the relationship between LINE-1 methylation patterns and factors such as pesticide exposure and socio-cultural characteristics in the Indigenous Huichol Population of Nayarit, Mexico. A cross-sectional study was conducted in 140 Huichol indigenous individuals. A structured questionnaire was used to determine general and anthropometric characteristics, diet, harmful habits, and pesticide exposure. DNA methylation was determined by pyrosequencing of bisulfite-treated DNA. A lower level of LINE-1 methylation was found in the indigenous population when compared to a Mestizo population previously studied by our group. This difference might be due to the influence of the genetic admixture and differing dietary and lifestyle habits. The males in the indigenous population exhibited increased LINE-1 methylation in comparison to the females. Sex and alcohol consumption showed positive associations with LINE-1 methylation, while weight, current work in the field, current pesticide usage, and folate intake exhibited negative associations with LINE-1 methylation. The results suggest that ethnicity, as well as other internal and environmental factors, might influence LINE-1 methylation.
Collapse
Affiliation(s)
- Diana Marcela Paredes-Céspedes
- Posgrado en Ciencias Biológico Agropecuarias, Unidad Académica de Agricultura, Km. 9 Carretera Tepic-Compostela, Xalisco, Nayarit, México
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. C.P, 6300, Tepic, Nayarit, México
| | - Aurora Elizabeth Rojas-García
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. C.P, 6300, Tepic, Nayarit, México
| | - Irma Martha Medina-Díaz
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. C.P, 6300, Tepic, Nayarit, México
| | - Kenneth S Ramos
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, 121 W. Holcombe Blvd, Houston, TX, 77030 m EE,UU, USA
| | - José Francisco Herrera-Moreno
- Posgrado en Ciencias Biológico Agropecuarias, Unidad Académica de Agricultura, Km. 9 Carretera Tepic-Compostela, Xalisco, Nayarit, México
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. C.P, 6300, Tepic, Nayarit, México
| | - Briscia Socorro Barrón-Vivanco
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. C.P, 6300, Tepic, Nayarit, México
| | - Cyndia Azucena González-Arias
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. C.P, 6300, Tepic, Nayarit, México
| | - Yael Yvette Bernal-Hernández
- Laboratorio de Contaminación y Toxicología Ambiental, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura s/n. C.P, 6300, Tepic, Nayarit, México.
| |
Collapse
|
27
|
Fachim HA, Siddals K, Malipatil N, Donn RP, Moreno GYC, Dalton CF, Adam S, Soran H, Gibson JM, Heald AH. Lifestyle intervention in individuals with impaired glucose regulation affects Caveolin-1 expression and DNA methylation. Adipocyte 2020; 9:96-107. [PMID: 32125224 PMCID: PMC7153542 DOI: 10.1080/21623945.2020.1732513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aims: We investigated whether a lifestyle intervention could influence expression and DNA methylation of diabetes-related genes in patients with impaired glucose regulation (IGR), the results were compared to bariatric surgery, considering it an intensive change. Methods: Twenty participants with IGR had adipose tissue biopsy and blood collected pre- and post-lifestyle (6 months) intervention; 12 obese patients had subcutaneous fat taken before and after bariatric surgery. RNA/DNA was extracted from all samples and underwent qPCR. DNA was bisulphite converted and 12 CpG sites of Caveolin-1 (CAV1) promoter were pyrosequenced. Results: lifestyle intervention resulted in opposite direction changes in fat tissue and blood for CAV1 expression and DNA methylation and these changes were correlated between tissues, while no significative differences were found in CAV1 expression after bariatric surgery. Conclusions: Our findings suggest a role for CAV1 in modulating adipocyte function as a consequence of lifestyle changes, as exercises and diet. These results may provide insights into new therapeutic targets for diabetes prevention.
Collapse
Affiliation(s)
- Helene A. Fachim
- Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Department of Diabetes and Endocrinology, Salford Royal NHS Foundation Trust, Salford, UK
| | - Kirk Siddals
- Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Department of Diabetes and Endocrinology, Salford Royal NHS Foundation Trust, Salford, UK
| | - Nagaraj Malipatil
- Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Department of Diabetes and Endocrinology, Salford Royal NHS Foundation Trust, Salford, UK
| | - Rachelle P Donn
- Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Gabriela YC Moreno
- Dirección General de Calidad y Educación en Salud, Secretaría de Salud, Mexico City, Mexico
| | - Caroline F Dalton
- Biomolecular Science Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Safwaan Adam
- Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Department of Endocrinology, The Christie NHS Foundation Trust, Manchester, UK
- Department of Endocrinology, Diabetes and Metabolism, Manchester Royal Infirmary, Manchester, UK
| | - Handrean Soran
- Department of Endocrinology, Diabetes and Metabolism, Manchester Royal Infirmary, Manchester, UK
- Lipoprotein Research Group, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Core Technology Facility, Manchester, UK
| | - J Martin Gibson
- Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Department of Diabetes and Endocrinology, Salford Royal NHS Foundation Trust, Salford, UK
| | - Adrian H Heald
- Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Department of Diabetes and Endocrinology, Salford Royal NHS Foundation Trust, Salford, UK
| |
Collapse
|
28
|
Maugeri A, Barchitta M. How Dietary Factors Affect DNA Methylation: Lesson from Epidemiological Studies. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E374. [PMID: 32722411 PMCID: PMC7466216 DOI: 10.3390/medicina56080374] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023]
Abstract
Over the past decades, DNA methylation has been proposed as a molecular mechanism underlying the positive or negative effects of diet on human health. Despite the number of studies on this topic is rapidly increasing, the relationship between dietary factors, changes in DNA methylation and health outcomes remains unclear. In this review, we summarize the literature from observational studies (cross-sectional, retrospective, or prospective) which examined the association of dietary factors (nutrients, foods, and dietary patterns) with DNA methylation markers among diseased or healthy people during the lifetime. Next, we discuss the methodological pitfalls by examining strengths and limitations of published studies. Finally, we close with a discussion on future challenges of this field of research, raising the need for large-size prospective studies evaluating the association between diet and DNA methylation in health and diseases for appropriate public health strategies.
Collapse
Affiliation(s)
- Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, 95123 Catania, Italy;
| | | |
Collapse
|
29
|
Amenyah SD, McMahon A, Ward M, Deane J, McNulty H, Hughes CF, Strain JJ, Horigan G, Purvis J, Walsh CP, Lees-Murdock DJ. Riboflavin supplementation alters global and gene-specific DNA methylation in adults with the MTHFR 677 TT genotype. Biochimie 2020; 173:17-26. [PMID: 32334045 DOI: 10.1016/j.biochi.2020.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/03/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022]
Abstract
DNA methylation is important in regulating gene expression and genomic stability while aberrant DNA methylation is associated with disease. Riboflavin (FAD) is a cofactor for methylenetetrahydrofolate reductase (MTHFR), a critical enzyme in folate recycling, which generates methyl groups for homocysteine remethylation to methionine, the pre-cursor to the universal methyl donor S-adenosylmethionine (SAM). A polymorphism (C677T) in MTHFR results in decreased MTHFR activity and increased homocysteine concentration. Previous studies demonstrated that riboflavin modulates this phenotype in homozygous adults (MTHFR 677 TT genotype), however, DNA methylation was not considered. This study examined DNA methylation, globally and at key MTHFR regulatory sites, in adults stratified by MTHFR genotype and the effect of riboflavin supplementation on DNA methylation in individuals with the 677 TT genotype. Samples were accessed from participants, screened for the MTHFR C677T polymorphism, who participated in observational (n = 80) and targeted riboflavin (1.6 mg/day) RCTs (n = 80). DNA methylation at LINE-1 and key regulatory regions of the MTHFR locus were analysed by pyrosequencing in peripheral blood leukocytes. LINE-1 (+1.6%; p = 0.011) and MTHFR south shelf (+4.7%, p < 0.001) were significantly hypermethylated in individuals with the MTHFR 677 TT compared to CC genotype. Riboflavin supplementation resulted in decreased global methylation, albeit only significant at one CpG. A significant reduction in DNA methylation at the MTHFR north shore (-1.2%, p < 0.001) was also observed in TT adults following intervention with riboflavin. This provides the first RCT evidence that DNA methylation may be modulated by riboflavin in adults with the MTHFR 677 TT genotype.
Collapse
Affiliation(s)
- Sophia D Amenyah
- Genomic Medicine Research Group, Ulster University, Coleraine, Northern Ireland, United Kingdom; Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Amy McMahon
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Mary Ward
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Jennifer Deane
- Genomic Medicine Research Group, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Helene McNulty
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Catherine F Hughes
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - J J Strain
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Geraldine Horigan
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - John Purvis
- Department of Cardiology, Altnagelvin Area Hospital, Londonderry, Northern Ireland, United Kingdom
| | - Colum P Walsh
- Genomic Medicine Research Group, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Diane J Lees-Murdock
- Genomic Medicine Research Group, Ulster University, Coleraine, Northern Ireland, United Kingdom.
| |
Collapse
|
30
|
Xu J, Tsai CW, Chang WS, Han Y, Bau DT, Pettaway CA, Gu J. Methylation of global DNA repeat LINE-1 and subtelomeric DNA repeats D4Z4 in leukocytes is associated with biochemical recurrence in African American prostate cancer patients. Carcinogenesis 2019; 40:1055-1060. [PMID: 30874286 DOI: 10.1093/carcin/bgz061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/06/2019] [Accepted: 03/12/2019] [Indexed: 11/13/2022] Open
Abstract
Global DNA methylation may play important roles in cancer etiology and prognosis. The goal of this study is to investigate whether the methylation of long interspersed nucleotide elements (LINE-1) and subtelomeric DNA repeats D4Z4 in leukocyte DNA is associated with aggressive prostate cancer (PCa) in African Americans. We measured DNA methylation levels of LINE-1 and D4Z4 in 306 African American (AA) PCa patients using pyrosequencing and compared their methylation levels among clinical variables. We further applied multivariate Cox proportional hazards model and Kaplan-Meier survival function and log-rank tests to assess the association between DNA methylation and biochemical recurrence (BCR). Overall, there was no significant difference of the methylation levels of LINE-1 and D4Z4 among patients with different clinical and epidemiological characteristics. However, the methylation of LINE-1 and D4Z4 was associated with BCR. Patients with lower LINE-1 methylation and higher D4Z4 methylation exhibited markedly increased risks of BCR with adjusted hazard ratios of 3.34 (95% confidence interval, 1.32-8.45) and 4.12 (95% confidence interval, 1.32-12.86), respectively, and significantly shorter BCR-free survival times. Our results suggest that lower global DNA methylation and higher subtelomeric region methylation may predict worse prognosis in localized AA PCa patients.
Collapse
Affiliation(s)
- Junfeng Xu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chia-Wen Tsai
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Shin Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Yuyan Han
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Da-Tian Bau
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Curtis A Pettaway
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
31
|
Roberson PA, Romero MA, Osburn SC, Mumford PW, Vann CG, Fox CD, McCullough DJ, Brown MD, Roberts MD. Skeletal muscle LINE-1 ORF1 mRNA is higher in older humans but decreases with endurance exercise and is negatively associated with higher physical activity. J Appl Physiol (1985) 2019; 127:895-904. [PMID: 31369326 DOI: 10.1152/japplphysiol.00352.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The long interspersed nuclear element-1 (L1) is a retrotransposon that constitutes 17% of the human genome and is associated with various diseases and aging. Estimates suggest that ~100 L1 copies are capable of copying and pasting into other regions of the genome. Herein, we examined if skeletal muscle L1 markers are affected by aging or an acute bout of cycling exercise in humans. Apparently healthy younger (23 ± 3 y, n = 15) and older participants (58 ± 8 y, n = 15) donated a vastus lateralis biopsy before 1 h of cycling exercise (PRE) at ~70% of heart rate reserve. Second (2 h) and third (8 h) postexercise muscle biopsies were also obtained. L1 DNA and mRNA expression were quantified using three primer sets [5' untranslated region (UTR), L1.3, and ORF1]. 5'UTR and L1.3 DNA methylation as well as ORF1 protein expression were also quantified. PRE 5'UTR, ORF1, or L1.3 DNA were not different between age groups (P > 0.05). ORF1 mRNA was greater in older versus younger participants (P = 0.014), and cycling lowered this marker at 2 h versus PRE (P = 0.027). 5'UTR and L1.3 DNA methylation were higher in younger versus older participants (P < 0.05). Accelerometry data collected during a 2-wk period before the exercise bout indicated higher moderate-to-vigorous physical activity (MVPA) levels per day was associated with lower PRE ORF1 mRNA in all participants (r = -0.398, P = 0.032). In summary, skeletal muscle ORF1 mRNA is higher in older apparently healthy humans, which may be related to lower DNA methylation patterns. ORF1 mRNA is also reduced with endurance exercise and is negatively associated with higher daily MVPA levels.NEW & NOTEWORTHY The long interspersed nuclear element-1 (L1) gene is highly abundant in the genome and encodes for an autonomous retrotransposon, which is capable of copying and pasting itself into other portions of the genome. This is the first study in humans to demonstrate that certain aspects of skeletal muscle L1 activity are altered with aging. Additionally, this is the first study in humans to demonstrate that L1 ORF1 mRNA levels decrease after a bout of endurance exercise, regardless of age.
Collapse
Affiliation(s)
| | | | | | | | | | - Carlton D Fox
- School of Kinesiology, Auburn University, Auburn, Alabama
| | - Danielle J McCullough
- School of Kinesiology, Auburn University, Auburn, Alabama.,Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine Auburn Campus, Auburn, Alabama
| | | | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama.,Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine Auburn Campus, Auburn, Alabama
| |
Collapse
|
32
|
Hunter DJ, James L, Hussey B, Wadley AJ, Lindley MR, Mastana SS. Impact of aerobic exercise and fatty acid supplementation on global and gene-specific DNA methylation. Epigenetics 2019; 14:294-309. [PMID: 30764736 DOI: 10.1080/15592294.2019.1582276] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lifestyle interventions, including exercise and dietary supplementation, can modify DNA methylation and exert health benefits; however, the underlying mechanisms are poorly understood. Here we investigated the impact of acute aerobic exercise and the supplementation of omega-3 polyunsaturated fatty acids (n-3 PUFA) and extra virgin olive oil (EVOO) on global and gene-specific (PPARGC1A, IL6 and TNF) DNA methylation, and DNMT mRNA expression in leukocytes of disease-free individuals. Eight trained male cyclists completed an exercise test before and after a four-week supplementation of n-3 PUFA and EVOO in a double-blind, randomised, repeated measures design. Exercise triggered global hypomethylation (Pre 79.2%; Post 78.7%; p = 0.008), alongside, hypomethylation (Pre 6.9%; Post 6.3%; p < 0.001) and increased mRNA expression of PPARGC1A (p < 0.001). Associations between PPARGC1A methylation and exercise performance were also detected. An interaction between supplement and trial was detected for a single CpG of IL6 indicating increased DNA methylation following n-3 PUFA and decreased methylation following EVOO (p = 0.038). Global and gene-specific DNA methylation associated with markers of inflammation and oxidative stress. The supplementation of EVOO reduced DNMT1 mRNA expression compared to n-3 PUFA supplementation (p = 0.048), whereas, DNMT3a (p = 0.018) and DNMT3b (p = 0.046) mRNA expression were decreased following exercise. In conclusion, we demonstrate that acute exercise and dietary supplementation of n-3 PUFAs and EVOO induce DNA methylation changes in leukocytes, potentially via the modulation of DNMT mRNA expression. Future studies are required to further elucidate the impact of lifestyle interventions on DNA methylation.
Collapse
Affiliation(s)
- David John Hunter
- a Translational Chemical Biology Research Group, School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK.,b National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK
| | - Lynsey James
- a Translational Chemical Biology Research Group, School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK.,b National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK
| | - Bethan Hussey
- a Translational Chemical Biology Research Group, School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK.,b National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK
| | - Alex J Wadley
- b National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK.,c University Hospitals of Leicester NHS Trust, Infirmary Square , Leicester , UK
| | - Martin R Lindley
- a Translational Chemical Biology Research Group, School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK.,b National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK
| | - Sarabjit S Mastana
- a Translational Chemical Biology Research Group, School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK.,b National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK
| |
Collapse
|
33
|
Lopes LL, Bressan J, Peluzio MDCG, Hermsdorff HHM. LINE-1 in Obesity and Cardiometabolic Diseases: A Systematic Review. J Am Coll Nutr 2019; 38:478-484. [PMID: 30862304 DOI: 10.1080/07315724.2018.1553116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Epigenetic mechanisms may play an important role in the etiology of obesity and cardiometabolic diseases, by activating or silencing the related-genes. Scientific evidence has suggested that LINE-1 methylation is associated with body composition and obesity-related diseases, including insulin resistance, type 2 diabetes mellitus, and cardiovascular disease (CVD). It also has been evaluated as predictor of weight loss. The studies' results are still conflicting, and positive and negative associations have been found to LINE-1 methylation regarding adiposity and cardiometabolic markers. Overall, this review presents observational (cross-sectional and longitudinal) studies and interventions (diet, exercises, and bariatric surgery) that evaluated the relationship of the LINE-1 methylation with obesity, weight loss, dyslipidemias, hypertension, insulin resistance, CVD, and metabolic syndrome. TEACHING POINTS Epigenetic mechanisms may play an important role in the etiology of obesity and cardiometabolic diseases. Many studies have related methylation of LINE-1 with cardiometabolic diseases; however, the results are still controversial. The relationship between the etiology of chronic diseases and the methylation of LINE-1 is not fully elucidated. With advances in epigenetic studies, related mechanisms may be early biomarkers in weight change and cardiometabolic risk.
Collapse
Affiliation(s)
- Lílian L Lopes
- a Department of Nutrition and Health , Universidade Federal de Viçosa (UFV) , Viçosa , Minas Gerais , Brazil
| | - Josefina Bressan
- a Department of Nutrition and Health , Universidade Federal de Viçosa (UFV) , Viçosa , Minas Gerais , Brazil
| | - Maria do Carmo G Peluzio
- a Department of Nutrition and Health , Universidade Federal de Viçosa (UFV) , Viçosa , Minas Gerais , Brazil
| | - Helen Hermana M Hermsdorff
- a Department of Nutrition and Health , Universidade Federal de Viçosa (UFV) , Viçosa , Minas Gerais , Brazil
| |
Collapse
|
34
|
Rozek LS, Virani S, Bellile EL, Taylor JMG, Sartor MA, Zarins KR, Virani A, Cote C, Worden FP, Mark MEP, McLean SA, Duffy SA, Yoo GH, Saba NF, Shin DM, Kucuk O, Wolf GT. Soy Isoflavone Supplementation Increases Long Interspersed Nucleotide Element-1 (LINE-1) Methylation in Head and Neck Squamous Cell Carcinoma. Nutr Cancer 2019; 71:772-780. [PMID: 30862188 PMCID: PMC6513708 DOI: 10.1080/01635581.2019.1577981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/13/2018] [Accepted: 12/26/2018] [Indexed: 12/20/2022]
Abstract
AIM Soy isoflavones have been suggested as epigenetic modulating agents with effects that could be important in carcinogenesis. Hypomethylation of LINE-1 has been associated with head and neck squamous cell carcinoma (HNSCC) development from oral premalignant lesions and with poor prognosis. To determine if neoadjuvant soy isoflavone supplementation could modulate LINE-1 methylation in HNSCC, we undertook a clinical trial. METHODS Thirty-nine patients received 2-3 weeks of soy isoflavone supplements (300 mg/day) orally prior to surgery. Methylation of LINE-1, and 6 other genes was measured by pyrosequencing in biopsy, resection, and whole blood (WB) specimens. Changes in methylation were tested using paired t tests and ANOVA. Median follow up was 45 months. RESULTS LINE-1 methylation increased significantly after soy isoflavone (P < 0.005). Amount of change correlated positively with days of isoflavone taken (P = 0.04). Similar changes were not seen in corresponding WB samples. No significant changes in tumor or blood methylation levels were seen in the other candidate genes. CONCLUSION This is the first demonstration of in vivo increases in tissue-specific global methylation associated with soy isoflavone intake in patients with HNSCC. Prior associations of LINE-1 hypomethylation with genetic instability, carcinogenesis, and prognosis suggest that soy isoflavones maybe potential chemopreventive agents in HNSCC.
Collapse
Affiliation(s)
- Laura S Rozek
- a University of Michigan , Ann Arbor , Michigan, USA
| | - Shama Virani
- a University of Michigan , Ann Arbor , Michigan, USA
| | | | | | | | | | - A Virani
- a University of Michigan , Ann Arbor , Michigan, USA
| | - C Cote
- a University of Michigan , Ann Arbor , Michigan, USA
| | | | | | | | | | - George H Yoo
- c Karmanos Cancer Institute , Wayne State University , Detroit , Michigan 48201, USA
| | - Nabil F Saba
- d Winship Cancer Institute , Emory University , Atlanta , Georgia, USA
| | - Dong M Shin
- d Winship Cancer Institute , Emory University , Atlanta , Georgia, USA
| | - Omer Kucuk
- d Winship Cancer Institute , Emory University , Atlanta , Georgia, USA
| | | |
Collapse
|
35
|
Babić Božović I, Stanković A, Živković M, Vraneković J, Mahulja-Stamenković V, Brajenović-Milić B. Maternal LINE-1 DNA Methylation and Congenital Heart Defects in Down Syndrome. Front Genet 2019; 10:41. [PMID: 30787943 PMCID: PMC6372553 DOI: 10.3389/fgene.2019.00041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/21/2019] [Indexed: 12/18/2022] Open
Abstract
Background: Down syndrome (DS) is one of the most common chromosomal abnormalities associated with congenital heart defects (CHD), with approximately 40 to 60% of cases showing cardiac defects. This study assessed (i) the association between maternal LINE-1 methylation and the occurrence of CHDs in children with DS and (ii) the impact of endogenous maternal factors (MTHFR C677T polymorphism and maternal age) and exogenous maternal factors (cigarette smoking, alcohol intake, medication use, body mass index and dietary habits such as folate intake) on maternal LINE-1 methylation and on the occurrence of CHD in children with DS. Patients and Methods: The study included 90 mothers of children with DS of maternal origin (49% DS-CHD+ mothers/51% DS-CHD− mothers). LINE-1 DNA methylation was analyzed in peripheral blood lymphocytes by quantification of LINE-1 methylation using the MethyLight method. MTHFR C677T polymorphism genotyping was performed using PCR-RFLP. Results: LINE-1 methylation was not significantly different between DS-CHD+ and DS-CHD− mothers (P = 0.997). Combination of MTHFR C677T genotype/diet and BMI were significant independent predictors of LINE-1 DNA methylation in DS-CHD+ mothers (β −0.40, P = 0.01 and β −0.32, P = 0.03, respectively). In the analyzed multivariate model (model P = 0.028), these two factors explained around 72% of the variance in LINE-1 DNA methylation in mothers of children with DS and CHD. The group with the highest BMI (≥30 kg/m2) had significantly lower LINE-1 methylation than the group with normal BMI (Bonferroni post hoc P = 0.03) and the overweight group (Bonferroni post hoc P = 0.04). The lowest LINE-1 DNA methylation values were found in DS-CHD+ mothers with the CT+TT genotype and a low-folate diet; the values were significantly lower than the values in mothers with the CC genotype and a folate-rich diet (Bonferroni post hoc P = 0.04). Conclusion: Association between maternal LINE-1 methylation and CHD in children with DS was not found. Study showed that the MTHFR genotype/diet combination and BMI were significantly associated with LINE-1 methylation in mothers of children with DS-CHD+. These results highlight the need for a multifactorial approach to assess the roles of endogenous and exogenous maternal factors in maternal LINE-1 DNA methylation and the consequent pathologies in children. More extensive studies in a larger sample may help elucidate these relationships.
Collapse
Affiliation(s)
- Ivana Babić Božović
- Department of Medical Biology and Genetics, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Aleksandra Stanković
- Laboratory for Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Maja Živković
- Laboratory for Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Jadranka Vraneković
- Department of Medical Biology and Genetics, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Vesna Mahulja-Stamenković
- Department of Gynaecology and Obstetrics, Clinical Hospital Centre Rijeka, University of Rijeka, Rijeka, Croatia
| | - Bojana Brajenović-Milić
- Department of Medical Biology and Genetics, School of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
36
|
Methamphetamine (MA) Use Induces Specific Changes in LINE-1 Partial Methylation Patterns, Which Are Associated with MA-Induced Paranoia: a Multivariate and Neuronal Network Study. Mol Neurobiol 2018; 56:4258-4272. [PMID: 30302724 DOI: 10.1007/s12035-018-1371-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/27/2018] [Indexed: 12/29/2022]
Abstract
The use of psychoactive substances, including methamphetamine (MA) may cause changes in DNA methylation. The aim of this study was to examine the effects of MA use on long interspersed element-1 (LINE-1) methylation patterns in association with MA-induced paranoia. This study recruited 123 normal controls and 974 MA users, 302 with and 672 without MA-induced paranoia. The Semi-Structured Assessment for Drug Dependence and Alcoholism was used to assess demographic and substance use variables. Patterns of LINE-1 methylation were assessed in peripheral blood mononuclear cells and a combined bisulfite restriction analysis (COBRA) was used to estimate overall LINE-1 methylation (mC) while COBRA classified LINE-alleles into four patterns based on the methylation status of two CpG dinucleotides on each strand from 5' to 3', namely two methylated (mCmC) and two unmethylated (uCuC) CpGs and two types of partially methylated loci (mCuC that is 5'm with 3'u and uCmC that is 5'u with 3'm CpGs). MA users showed higher % mCuC and % mCuC + uCmC levels than controls. Use of solvents and opioids, but not cannabis and alcohol dependence, significantly lowered % uCmC levels, while current smoking significantly increased % uCuC levels. MA-induced paranoia was strongly associated with changes in LINE-1 partial methylation patterns (lowered % uCmC), heavy MA use, lower age at onset of MA use, and alcohol dependence. Women who took contraceptives showed significantly lower LINE-1 % mC and % mCmC and higher % uCuC levels than women without contraceptive use and men. The results show that MA-induced changes in LINE-1 partial methylation patterns are associated with MA-induced paranoia and could explain in part the pathophysiology of this type of psychosis. It is argued that MA-induced neuro-oxidative pathways may have altered LINE-1 partial methylation patterns, which in turn may regulate neuro-oxidative and immune pathways, which may increase risk to develop MA-induced paranoia.
Collapse
|
37
|
Boyne DJ, O'Sullivan DE, Olij BF, King WD, Friedenreich CM, Brenner DR. Physical Activity, Global DNA Methylation, and Breast Cancer Risk: A Systematic Literature Review and Meta-analysis. Cancer Epidemiol Biomarkers Prev 2018; 27:1320-1331. [PMID: 29991518 DOI: 10.1158/1055-9965.epi-18-0175] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/16/2018] [Accepted: 07/04/2018] [Indexed: 11/16/2022] Open
Abstract
The extent to which physical activity reduces breast cancer risk through changes in global DNA methylation is unknown. We systematically identified studies that investigated the association between: (i) physical activity and global DNA methylation; or (ii) global DNA methylation and breast cancer risk. Associations were quantified using random-effects models. Heterogeneity was investigated through subgroup analyses and the Q-test and I 2 statistics. Twenty-four studies were reviewed. We observed a trend between higher levels of physical activity and higher levels of global DNA methylation [pooled standardized mean difference = 0.19; 95% confidence interval (CI), -0.03-0.40; P = 0.09] which, in turn, had a suggestive association with a reduced breast cancer risk (pooled relative risk = 0.70; 95% CI, 0.49-1.02; P = 0.06). In subgroup analyses, a positive association between physical activity and global DNA methylation was observed among studies assessing physical activity over long periods of time (P = 0.02). Similarly, the association between global DNA methylation and breast cancer was statistically significant for prospective cohort studies (P = 0.007). Despite the heterogeneous evidence base, the literature suggests that physical activity reduces the risk of breast cancer through increased global DNA methylation. This study is the first to systematically overview the complete biologic pathway between physical activity, global DNA methylation, and breast cancer. Cancer Epidemiol Biomarkers Prev; 27(11); 1320-31. ©2018 AACR.
Collapse
Affiliation(s)
- Devon J Boyne
- Department of Cancer Epidemiology and Prevention Research, CancerControl Alberta, Alberta Health Services, Calgary, Alberta, Canada.,Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Dylan E O'Sullivan
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Branko F Olij
- Department of Cancer Epidemiology and Prevention Research, CancerControl Alberta, Alberta Health Services, Calgary, Alberta, Canada.,Department of Public Health, Erasmus MC-University Medical Center Rotterdam, the Netherlands
| | - Will D King
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Christine M Friedenreich
- Department of Cancer Epidemiology and Prevention Research, CancerControl Alberta, Alberta Health Services, Calgary, Alberta, Canada.,Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Darren R Brenner
- Department of Cancer Epidemiology and Prevention Research, CancerControl Alberta, Alberta Health Services, Calgary, Alberta, Canada. .,Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
38
|
Aslibekyan S, Agha G, Colicino E, Do AN, Lahti J, Ligthart S, Marioni RE, Marzi C, Mendelson MM, Tanaka T, Wielscher M, Absher DM, Ferrucci L, Franco OH, Gieger C, Grallert H, Hernandez D, Huan T, Iurato S, Joehanes R, Just AC, Kunze S, Lin H, Liu C, Meigs JB, van Meurs JBJ, Moore AZ, Peters A, Prokisch H, Räikkönen K, Rathmann W, Roden M, Schramm K, Schwartz JD, Starr JM, Uitterlinden AG, Vokonas P, Waldenberger M, Yao C, Zhi D, Baccarelli AA, Bandinelli S, Deary IJ, Dehghan A, Eriksson J, Herder C, Jarvelin MR, Levy D, Arnett DK. Association of Methylation Signals With Incident Coronary Heart Disease in an Epigenome-Wide Assessment of Circulating Tumor Necrosis Factor α. JAMA Cardiol 2018; 3:463-472. [PMID: 29617535 PMCID: PMC6100733 DOI: 10.1001/jamacardio.2018.0510] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 02/15/2018] [Indexed: 12/12/2022]
Abstract
Importance Tumor necrosis factor α (TNF-α) is a proinflammatory cytokine with manifold consequences for mammalian pathophysiology, including cardiovascular disease. A deeper understanding of TNF-α biology may enhance treatment precision. Objective To conduct an epigenome-wide analysis of blood-derived DNA methylation and TNF-α levels and to assess the clinical relevance of findings. Design, Setting, and Participants This meta-analysis assessed epigenome-wide associations in circulating TNF-α concentrations from 5 cohort studies and 1 interventional trial, with replication in 3 additional cohort studies. Follow-up analyses investigated associations of identified methylation loci with gene expression and incident coronary heart disease; this meta-analysis included 11 461 participants who experienced 1895 coronary events. Exposures Circulating TNF-α concentration. Main Outcomes and Measures DNA methylation at approximately 450 000 loci, neighboring DNA sequence variation, gene expression, and incident coronary heart disease. Results The discovery cohort included 4794 participants, and the replication study included 816 participants (overall mean [SD] age, 60.7 [8.5] years). In the discovery stage, circulating TNF-α levels were associated with methylation of 7 cytosine-phosphate-guanine (CpG) sites, 3 of which were located in or near DTX3L-PARP9 at cg00959259 (β [SE] = -0.01 [0.003]; P = 7.36 × 10-8), cg08122652 (β [SE] = -0.008 [0.002]; P = 2.24 × 10-7), and cg22930808(β [SE] = -0.01 [0.002]; P = 6.92 × 10-8); NLRC5 at cg16411857 (β [SE] = -0.01 [0.002]; P = 2.14 × 10-13) and cg07839457 (β [SE] = -0.02 [0.003]; P = 6.31 × 10-10); or ABO, at cg13683939 (β [SE] = 0.04 [0.008]; P = 1.42 × 10-7) and cg24267699 (β [SE] = -0.009 [0.002]; P = 1.67 × 10-7), after accounting for multiple testing. Of these, negative associations between TNF-α concentration and methylation of 2 loci in NLRC5 and 1 in DTX3L-14 PARP9 were replicated. Replicated TNF-α-linked CpG sites were associated with 9% to 19% decreased risk of incident coronary heart disease per 10% higher methylation per CpG site (cg16411857: hazard ratio [HR], 0.86; 95% CI, 0.78-1.95; P = .003; cg07839457: HR, 0.89; 95% CI, 0.80-0.94; P = 3.1 × 10-5; cg00959259: HR, 0.91; 95% CI, 0.84-0.97; P = .002; cg08122652: HR, 0.81; 95% CI, 0.74-0.89; P = 2.0 × 10-5). Conclusions and Relevance We identified and replicated novel epigenetic correlates of circulating TNF-α concentration in blood samples and linked these loci to coronary heart disease risk, opening opportunities for validation and therapeutic applications.
Collapse
Affiliation(s)
| | - Golareh Agha
- The Robert N. Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, New York
| | - Elena Colicino
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| | - Anh N. Do
- Department of Epidemiology, University of Alabama, Birmingham
- Now with Mount Sinai School of Medicine, New York, New York
| | - Jari Lahti
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Symen Ligthart
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Riccardo E. Marioni
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Carola Marzi
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Michael M. Mendelson
- Framingham Heart Study, Framingham, Massachusetts
- Boston University School of Medicine, Boston, Massachusetts
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Matthias Wielscher
- Medical Research Council–Public Health England Centre for Environment and Health and Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
| | - Devin M. Absher
- Hudson Alpha Institute for Biotechnology, Huntsville, Alabama
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Oscar H. Franco
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Dena Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland
| | - Tianxiao Huan
- Framingham Heart Study, Framingham, Massachusetts
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Stella Iurato
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Roby Joehanes
- Division of Intramural Research, National Heart, Lung and Blood Institute, Framingham, Massachusetts
- Mathematical and Statistical Computing Laboratory, Center for Information Technology, Bethesda, Maryland
- Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School, Boston, Massachusetts
| | - Allan C. Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sonja Kunze
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Honghuang Lin
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Chunyu Liu
- Framingham Heart Study, Framingham, Massachusetts
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - James B. Meigs
- Division of General Internal Medicine, Massachusetts General Hospital, Boston
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Program in Population and Medical Genetics, Broad Institute, Cambridge, Massachusetts
| | - Joyce B. J. van Meurs
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ann Zenobia Moore
- Longitudinal Study Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Annette Peters
- Medical Research Council–Public Health England Centre for Environment and Health and Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
- Institute of Epidemiology, Helmholtz Zentrum München German Research Centre for Environmental Health, Neuherberg, Germany
- Deutsches Zentrum fur Herz-Kreislauf-Forschung (German Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Technical University Munich, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Katri Räikkönen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Wolfgang Rathmann
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University, Düsseldorf, Germany
| | - Michael Roden
- Department of Endocrinology and Diabetology, Heinrich-Heine University, Düsseldorf, Germany
- Institute for Clinical Diabetology, Düsseldorf, Germany
- German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Katharina Schramm
- Institute of Human Genetics, Technical University Munich, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Joel D. Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - John M. Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, United Kingdom
- Alzheimer Scotland Dementia Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - André G. Uitterlinden
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Pantel Vokonas
- Veterans Affairs Normative Aging Study, VA Boston Healthcare System, Boston, Massachusetts
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Chen Yao
- Framingham Heart Study, Framingham, Massachusetts
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Degui Zhi
- School of Biomedical Informatics, University of Texas Health Science Center, Houston
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| | | | - Ian J. Deary
- Alzheimer Scotland Dementia Research Centre, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Cognitive Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, United Kingdom
- Department of Psychology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Abbas Dehghan
- Medical Research Council–Public Health England Centre for Environment and Health and Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
| | - Johan Eriksson
- Department of General Practice and Primary Health Care, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Christian Herder
- German Center for Diabetes Research, Neuherberg, Germany
- German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marjo-Riitta Jarvelin
- Medical Research Council–Public Health England Centre for Environment and Health and Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
- Center for Life-Course Health Research, Northern Finland Cohort Center, Finland and Biocenter Oulu, University of Oulu, Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
| | - Daniel Levy
- Framingham Heart Study, Framingham, Massachusetts
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
39
|
Relationship between LINE-1 methylation pattern and pesticide exposure in urban sprayers. Food Chem Toxicol 2018; 113:125-133. [DOI: 10.1016/j.fct.2018.01.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/29/2017] [Accepted: 01/22/2018] [Indexed: 10/18/2022]
|
40
|
Cardelli M. The epigenetic alterations of endogenous retroelements in aging. Mech Ageing Dev 2018; 174:30-46. [PMID: 29458070 DOI: 10.1016/j.mad.2018.02.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/05/2018] [Accepted: 02/08/2018] [Indexed: 02/06/2023]
Abstract
Endogenous retroelements, transposons that mobilize through RNA intermediates, include some of the most abundant repetitive sequences of the human genome, such as Alu and LINE-1 sequences, and human endogenous retroviruses. Recent discoveries demonstrate that these mobile genetic elements not only act as intragenomic parasites, but also exert regulatory roles in living cells. The risk of genomic instability represented by endogenous retroelements is normally counteracted by a series of epigenetic control mechanisms which include, among the most important, CpG DNA methylation. Indeed, most of the genomic CpG sites subjected to DNA methylation in the nuclear DNA are carried by these repetitive elements. As other parts of the genome, endogenous retroelements and other transposable elements are subjected to deep epigenetic alterations during aging, repeatedly observed in the context of organismal and cellular senescence, in human and other species. This review summarizes the current status of knowledge about the epigenetic alterations occurring in this large, non-genic portion of the genome in aging and age-related conditions, with a focus on the causes and the possible functional consequences of these alterations.
Collapse
Affiliation(s)
- Maurizio Cardelli
- Advanced Technology Center for Aging Research, Scientific Technological Area, Italian National Research Center on Aging (INRCA), via Birarelli 8, 60121 Ancona, Italy.
| |
Collapse
|
41
|
Christensen R, Heitmann BL, Andersen KW, Nielsen OH, Sørensen SB, Jawhara M, Bygum A, Hvid L, Grauslund J, Wied J, Glerup H, Fredberg U, Villadsen JA, Kjær SG, Fallingborg J, Moghadd SAGR, Knudsen T, Brodersen J, Frøjk J, Dahlerup JF, Bojesen AB, Sorensen GL, Thiel S, Færgeman NJ, Brandslund I, Bennike TB, Stensballe A, Schmidt EB, Franke A, Ellinghaus D, Rosenstiel P, Raes J, Boye M, Werner L, Nielsen CL, Munk HL, Nexøe AB, Ellingsen T, Holmskov U, Kjeldsen J, Andersen V. Impact of red and processed meat and fibre intake on treatment outcomes among patients with chronic inflammatory diseases: protocol for a prospective cohort study of prognostic factors and personalised medicine. BMJ Open 2018; 8:e018166. [PMID: 29439003 PMCID: PMC5829767 DOI: 10.1136/bmjopen-2017-018166] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Chronic inflammatory diseases (CIDs) are frequently treated with biological medications, specifically tumour necrosis factor inhibitors (TNFi)). These medications inhibit the pro-inflammatory molecule TNF alpha, which has been strongly implicated in the aetiology of these diseases. Up to one-third of patients do not, however, respond to biologics, and lifestyle factors are assumed to affect treatment outcomes. Little is known about the effects of dietary lifestyle as a prognostic factor that may enable personalised medicine. The primary outcome of this multidisciplinary collaborative study will be to identify dietary lifestyle factors that support optimal treatment outcomes. METHODS AND ANALYSIS This prospective cohort study will enrol 320 patients with CID who are prescribed a TNFi between June 2017 and March 2019. Included among the patients with CID will be patients with inflammatory bowel disease (Crohn's disease and ulcerative colitis), rheumatic disorders (rheumatoid arthritis, axial spondyloarthritis, psoriatic arthritis), inflammatory skin diseases (psoriasis, hidradenitis suppurativa) and non-infectious uveitis. At baseline (pretreatment), patient characteristics will be assessed using patient-reported outcome measures, clinical assessments of disease activity, quality of life and lifestyle, in addition to registry data on comorbidity and concomitant medication(s). In accordance with current Danish standards, follow-up will be conducted 14-16 weeks after treatment initiation. For each disease, evaluation of successful treatment response will be based on established primary and secondary endpoints, including disease-specific core outcome sets. The major outcome of the analyses will be to detect variability in treatment effectiveness between patients with different lifestyle characteristics. ETHICS AND DISSEMINATION The principle goal of this project is to improve the quality of life of patients suffering from CID by providing evidence to support dietary and other lifestyle recommendations that may improve clinical outcomes. The study is approved by the Ethics Committee (S-20160124) and the Danish Data Protecting Agency (2008-58-035). Study findings will be disseminated through peer-reviewed journals, patient associations and presentations at international conferences. TRIAL REGISTRATION NUMBER NCT03173144; Pre-results.
Collapse
Affiliation(s)
- Robin Christensen
- Musculoskeletal Statistics Unit, The Parker Institute, Bispebjerg and Frederiksberg Hospital, Denmark
| | - Berit L Heitmann
- Research Unit for Dietary Studies, The Parker Institute, Bispebjerg and Frederiksberg Hospital, Denmark
- Section for General Medicine, Department of Public Health, University of Copenhagen, Denmark
- National Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Karina Winther Andersen
- Focused Research Unit for Molecular Diagnostic and Clinical Research, IRS-Center Sonderjylland, Hospital of Southern Jutland, Aabenraa, Denmark
- Organ Centre, Hospital of Southern Jutland, Aabenraa, Denmark
| | - Ole Haagen Nielsen
- Department of Gastroenterology D112, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Signe Bek Sørensen
- Focused Research Unit for Molecular Diagnostic and Clinical Research, IRS-Center Sonderjylland, Hospital of Southern Jutland, Aabenraa, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Mohamad Jawhara
- Focused Research Unit for Molecular Diagnostic and Clinical Research, IRS-Center Sonderjylland, Hospital of Southern Jutland, Aabenraa, Denmark
- Organ Centre, Hospital of Southern Jutland, Aabenraa, Denmark
- institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Anette Bygum
- Department of Dermatology and Allergy Centre, Odense University Hospital, Odense, Denmark
| | - Lone Hvid
- Department of Dermatology and Allergy Centre, Odense University Hospital, Odense, Denmark
| | - Jakob Grauslund
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Ophthalmology, Odense University Hospital, Odense, Denmark
| | - Jimmi Wied
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Ophthalmology, Odense University Hospital, Odense, Denmark
| | - Henning Glerup
- Diagnostic Centre, Silkeborg Regional Hospital, Silkeborg, Denmark
| | - Ulrich Fredberg
- Diagnostic Centre, Silkeborg Regional Hospital, Silkeborg, Denmark
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
| | | | - Søren Geill Kjær
- Diagnostic Centre, Silkeborg Regional Hospital, Silkeborg, Denmark
| | - Jan Fallingborg
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Seyed A G R Moghadd
- Department of Internal Medicine, Herning Regional Hospital, Herning, Denmark
| | - Torben Knudsen
- Department of Gastroenterology, Hospital of Southwest Jutland, Esbjerg, Denmark
| | - Jacob Brodersen
- Department of Gastroenterology, Hospital of Southwest Jutland, Esbjerg, Denmark
| | - Jesper Frøjk
- Department of Gastroenterology, Hospital of Southwest Jutland, Esbjerg, Denmark
| | - Jens Frederik Dahlerup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Anders Bo Bojesen
- Focused Research Unit for Molecular Diagnostic and Clinical Research, IRS-Center Sonderjylland, Hospital of Southern Jutland, Aabenraa, Denmark
| | - Grith Lykke Sorensen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Ivan Brandslund
- institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Biochemistry, Lillebaelt Hospital, Vejle, Denmark
| | - Tue Bjerg Bennike
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Erik Berg Schmidt
- Department of Cardiology, Aalborg University Hospital, Ålborg, Denmark
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Jeroen Raes
- Departmentof Microbiology and Immunology, Rega Institute, KU Leuven—University of Leuven, Leuven, Belgium
- VIB, Center for the Biology of Disease, Leuven, Belgium
| | - Mette Boye
- Focused Research Unit for Molecular Diagnostic and Clinical Research, IRS-Center Sonderjylland, Hospital of Southern Jutland, Aabenraa, Denmark
| | - Lars Werner
- The Danish Psoriasis Association, The Danish Psoriasis Association, Tåstrup, Denmark
| | | | - Heidi Lausten Munk
- Diagnostic Centre, Silkeborg Regional Hospital, Silkeborg, Denmark
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
| | | | - Torkell Ellingsen
- Diagnostic Centre, Silkeborg Regional Hospital, Silkeborg, Denmark
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
| | - Uffe Holmskov
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jens Kjeldsen
- Department of Gastroenterology, Odense University Hospital, Odense, Denmark
| | - Vibeke Andersen
- Focused Research Unit for Molecular Diagnostic and Clinical Research, IRS-Center Sonderjylland, Hospital of Southern Jutland, Aabenraa, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
- OPEN, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
42
|
Pirini F, Rodriguez-Torres S, Ayandibu BG, Orera-Clemente M, Gonzalez-de la Vega A, Lawson F, Thorpe RJ, Sidransky D, Guerrero-Preston R. INSIG2 rs7566605 single nucleotide variant and global DNA methylation index levels are associated with weight loss in a personalized weight reduction program. Mol Med Rep 2017; 17:1699-1709. [PMID: 29138870 PMCID: PMC5780113 DOI: 10.3892/mmr.2017.8039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/17/2017] [Indexed: 12/27/2022] Open
Abstract
Single nucleotide polymorphisms associated with lipid metabolism and energy balance are implicated in the weight loss response caused by nutritional interventions. Diet-induced weight loss is also associated with differential global DNA methylation. DNA methylation has been proposed as a predictive biomarker for weight loss response. Personalized biomarkers for successful weight loss may inform clinical decisions when deciding between behavioral and surgical weight loss interventions. The aim of the present study was to investigate the association between global DNA methylation, genetic variants associated with energy balance and lipid metabolism, and weight loss following a non-surgical weight loss regimen. The present study included 105 obese participants that were enrolled in a personalized weight loss program based on their allelic composition of the following five energy balance and lipid metabolism-associated loci: Near insulin-induced gene 2 (INSIG2); melanocortin 4 receptor; adrenoceptor β2; apolipoprotein A5; and G-protein subunit β3. The present study investigated the association between a global DNA methylation index (GDMI), the allelic composition of the five energy balance and lipid metabolism-associated loci, and weight loss during a 12 month program, after controlling for age, sex and body mass index (BMI). The results demonstrated a significant association between the GDMI and near INSIG2 locus, after adjusting for BMI and weight loss, and significant trends were observed when stratifying by gender. In conclusion, a combination of genetic and epigenetic biomarkers may be used to design personalized weight loss interventions, enabling adherence and ensuring improved outcomes for obesity treatment programs. Precision weight loss programs designed based on molecular information may enable the creation of personalized interventions for patients, that use genomic biomarkers for treatment design and for treatment adherence monitoring, thus improving response to treatment.
Collapse
Affiliation(s)
- Francesca Pirini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, I‑47014 Meldola, Italy
| | | | - Bola Grace Ayandibu
- Department of Otolaryngology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - María Orera-Clemente
- Genetic Laboratory, University General Hospital Gregorio Marañón, 28007 Madrid, Spain
| | | | - Fahcina Lawson
- Department of Otolaryngology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Roland J Thorpe
- Johns Hopkins University Centre for Health Disparities Solutions, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - David Sidransky
- Department of Otolaryngology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Rafael Guerrero-Preston
- Department of Otolaryngology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| |
Collapse
|
43
|
Boyne DJ, Friedenreich CM, McIntyre JB, Courneya KS, King WD. Associations between adiposity and repetitive element DNA methylation in healthy postmenopausal women. Epigenomics 2017; 9:1267-1277. [PMID: 28874065 DOI: 10.2217/epi-2017-0047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AIM To describe the association between adiposity and repetitive element DNA methylation in healthy postmenopausal women. PATIENTS & METHODS A cross-sectional study was conducted using baseline information from 289 women who participated in the Alberta Physical Activity and Breast Cancer Prevention trial. RESULTS After adjusting for important confounders, long interspersed nuclear element-1 methylation was positively associated with intra-abdominal fat area (p = 0.03), body fat percent (p = 0.048), fat mass (p = 0.01), waist circumference (p = 0.03), hip circumference (p = 0.001), BMI (p = 0.03), current weight (p = 0.002), weight at age 20 (p = 0.02) and adulthood weight gain (p = 0.03). No significant associations were found between any of the adiposity measures and Alu methylation. CONCLUSION Current and historical adiposity measures are positively associated with long interspersed nuclear element-1 methylation in healthy postmenopausal women.
Collapse
Affiliation(s)
- Devon J Boyne
- Department of Cancer Epidemiology & Prevention Research, Cancer Control Alberta, Alberta Health Services, Calgary, AB, Canada.,Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christine M Friedenreich
- Department of Cancer Epidemiology & Prevention Research, Cancer Control Alberta, Alberta Health Services, Calgary, AB, Canada.,Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - John B McIntyre
- Translational Laboratory, Department of Pathology & Laboratory Medicine, Tom Baker Cancer Centre, University of Calgary, Calgary, AB, Canada
| | - Kerry S Courneya
- Faculty of Physical Education & Recreation, University of Alberta, Edmonton, AB, Canada
| | - Will D King
- Department of Public Health Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
44
|
Magnet U, Urbanek C, Gaisberger D, Tomeva E, Dum E, Pointner A, Haslberger A. Topical equol preparation improves structural and molecular skin parameters. Int J Cosmet Sci 2017; 39:535-542. [DOI: 10.1111/ics.12408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/30/2017] [Indexed: 12/29/2022]
Affiliation(s)
- U. Magnet
- Department for Nutritional Sciences; University of Vienna; Vienna 1090 Austria
| | - C. Urbanek
- HealthBioCare; Mooslackengasse 17 Vienna 1090 Austria
| | - D. Gaisberger
- HealthBioCare; Mooslackengasse 17 Vienna 1090 Austria
| | - E. Tomeva
- Department for Nutritional Sciences; University of Vienna; Vienna 1090 Austria
| | - E. Dum
- Department for Nutritional Sciences; University of Vienna; Vienna 1090 Austria
| | - A. Pointner
- Department for Nutritional Sciences; University of Vienna; Vienna 1090 Austria
| | - A.G. Haslberger
- Department for Nutritional Sciences; University of Vienna; Vienna 1090 Austria
| |
Collapse
|
45
|
Relationships between Global DNA Methylation in Circulating White Blood Cells and Breast Cancer Risk Factors. J Cancer Epidemiol 2017; 2017:2705860. [PMID: 28484492 PMCID: PMC5397634 DOI: 10.1155/2017/2705860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 02/26/2017] [Accepted: 03/14/2017] [Indexed: 12/21/2022] Open
Abstract
It is not yet clear whether white blood cell DNA global methylation is associated with breast cancer risk. In this review we examine the relationships between multiple breast cancer risk factors and three markers of global DNA methylation: LINE-1, 5-mdC, and Alu. A literature search was conducted using Pubmed up to April 1, 2016, using combinations of relevant outcomes such as “WBC methylation,” “blood methylation,” “blood LINE-1 methylation,” and a comprehensive list of known and suspected breast cancer risk factors. Overall, the vast majority of reports in the literature have focused on LINE-1. There was reasonably consistent evidence across the studies examined that males have higher levels of LINE-1 methylation in WBC DNA than females. None of the other demographic, lifestyle, dietary, or health condition risk factors were consistently associated with LINE-1 DNA methylation across studies. With the possible exception of sex, there was also little evidence that the wide range of breast cancer risk factors we examined were associated with either of the other two global DNA methylation markers: 5-mdC and Alu. One possible implication of the observed lack of association between global WBC DNA methylation and known breast cancer risk factors is that the association between global WBC DNA methylation and breast cancer, if it exists, is due to a disease effect.
Collapse
|
46
|
Knothe C, Shiratori H, Resch E, Ultsch A, Geisslinger G, Doehring A, Lötsch J. Disagreement between two common biomarkers of global DNA methylation. Clin Epigenetics 2016; 8:60. [PMID: 27222668 PMCID: PMC4877994 DOI: 10.1186/s13148-016-0227-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/10/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The quantification of global DNA methylation has been established in epigenetic screening. As more practicable alternatives to the HPLC-based gold standard, the methylation analysis of CpG islands in repeatable elements (LINE-1) and the luminometric methylation assay (LUMA) of overall 5-methylcytosine content in "CCGG" recognition sites are most widely used. Both methods are applied as virtually equivalent, despite the hints that their results only partly agree. This triggered the present agreement assessments. RESULTS Three different human cell types (cultured MCF7 and SHSY5Y cell lines treated with different chemical modulators of DNA methylation and whole blood drawn from pain patients and healthy volunteers) were submitted to the global DNA methylation assays employing LINE-1 or LUMA-based pyrosequencing measurements. The agreement between the two bioassays was assessed using generally accepted approaches to the statistics for laboratory method comparison studies. Although global DNA methylation levels measured by the two methods correlated, five different lines of statistical evidence consistently rejected the assumption of complete agreement. Specifically, a bias was observed between the two methods. In addition, both the magnitude and direction of bias were tissue-dependent. Interassay differences could be grouped based on Bayesian statistics, and these groups allowed in turn to re-identify the originating tissue. CONCLUSIONS Although providing partly correlated measurements of DNA methylation, interchangeability of the quantitative results obtained with LINE-1 and LUMA was jeopardized by a consistent bias between the results. Moreover, the present analyses strongly indicate a tissue specificity of the differences between the two methods.
Collapse
Affiliation(s)
- Claudia Knothe
- />Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Hiromi Shiratori
- />Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Eduard Resch
- />Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Alfred Ultsch
- />DataBionics Research Group, University of Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Gerd Geisslinger
- />Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- />Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Alexandra Doehring
- />Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Jörn Lötsch
- />Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- />Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
47
|
de la Rocha C, Pérez-Mojica JE, León SZD, Cervantes-Paz B, Tristán-Flores FE, Rodríguez-Ríos D, Molina-Torres J, Ramírez-Chávez E, Alvarado-Caudillo Y, Carmona FJ, Esteller M, Hernández-Rivas R, Wrobel K, Wrobel K, Zaina S, Lund G. Associations between whole peripheral blood fatty acids and DNA methylation in humans. Sci Rep 2016; 6:25867. [PMID: 27181711 PMCID: PMC4867649 DOI: 10.1038/srep25867] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/22/2016] [Indexed: 02/08/2023] Open
Abstract
Fatty acids (FA) modify DNA methylation in vitro, but limited information is available on whether corresponding associations exist in vivo and reflect any short-term effect of the diet. Associations between global DNA methylation and FAs were sought in blood from lactating infants (LI; n = 49) and adult males (AMM; n = 12) equally distributed across the three conventional BMI classes. AMM provided multiple samples at 2-hour intervals during 8 hours after either a single Western diet-representative meal (post-prandial samples) or no meal (fasting samples). Lipid/glucose profile, HDAC4 promoter and PDK4 5’UTR methylation were determined in AMM. Multiple regression analysis revealed that global (in LI) and both global and PDK4-specific DNA methylation (in AMM) were positively associated with eicosapentaenoic and arachidonic acid. HDAC4 methylation was inversely associated with arachidonic acid post-prandially in AMM. Global DNA methylation did not show any defined within-day pattern that would suggest a short-term response to the diet. Nonetheless, global DNA methylation was higher in normal weight subjects both post-prandially and in fasting and coincided with higher polyunsaturated relative to monounsaturated and saturated FAs. We show for the first time strong associations of DNA methylation with specific FAs in two human cohorts of distinct age, diet and postnatal development stage.
Collapse
Affiliation(s)
- Carmen de la Rocha
- Department of Genetic Engineering, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV) Irapuato Unit, 36821 Irapuato, Gto., Mexico
| | - J Eduardo Pérez-Mojica
- Department of Genetic Engineering, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV) Irapuato Unit, 36821 Irapuato, Gto., Mexico.,Department of Molecular Biomedicine, CINVESTAV Campus Zacatenco, Mexico D.F., Mexico
| | - Silvia Zenteno-De León
- Department of Genetic Engineering, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV) Irapuato Unit, 36821 Irapuato, Gto., Mexico
| | - Braulio Cervantes-Paz
- Department of Genetic Engineering, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV) Irapuato Unit, 36821 Irapuato, Gto., Mexico
| | - Fabiola E Tristán-Flores
- Department of Genetic Engineering, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV) Irapuato Unit, 36821 Irapuato, Gto., Mexico
| | - Dalia Rodríguez-Ríos
- Department of Genetic Engineering, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV) Irapuato Unit, 36821 Irapuato, Gto., Mexico
| | - Jorge Molina-Torres
- Department of Biochemistry and Biotechnology, CINVESTAV Irapuato Unit, 36821 Irapuato, Gto., Mexico
| | - Enrique Ramírez-Chávez
- Department of Biochemistry and Biotechnology, CINVESTAV Irapuato Unit, 36821 Irapuato, Gto., Mexico
| | - Yolanda Alvarado-Caudillo
- Department of Medical Sciences, Division of Health Sciences, León Campus, University of Guanajuato, Mexico
| | - F Javier Carmona
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | | | - Katarzyna Wrobel
- Department of Chemistry, Division of Natural and Exact Sciences, Guanajuato Campus, University of Guanajuato, Mexico
| | - Kazimierz Wrobel
- Department of Chemistry, Division of Natural and Exact Sciences, Guanajuato Campus, University of Guanajuato, Mexico
| | - Silvio Zaina
- Department of Medical Sciences, Division of Health Sciences, León Campus, University of Guanajuato, Mexico
| | - Gertrud Lund
- Department of Genetic Engineering, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV) Irapuato Unit, 36821 Irapuato, Gto., Mexico
| |
Collapse
|
48
|
Current and Emerging Technologies for the Analysis of the Genome-Wide and Locus-Specific DNA Methylation Patterns. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:343-430. [DOI: 10.1007/978-3-319-43624-1_15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|