1
|
Li S, Mi T, Jin L, Liu Y, Zhang Z, Wang J, Wu X, Ren C, Wang Z, Kong X, Liu J, Luo J, He D. Integrative analysis with machine learning identifies diagnostic and prognostic signatures in neuroblastoma based on differentially DNA methylated enhancers between INSS stage 4 and 4S neuroblastoma. J Cancer Res Clin Oncol 2024; 150:148. [PMID: 38512513 PMCID: PMC10957705 DOI: 10.1007/s00432-024-05650-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/10/2024] [Indexed: 03/23/2024]
Abstract
INTRODUCTION Accumulating evidence demonstrates that aberrant methylation of enhancers is crucial in gene expression profiles across several cancers. However, the latent effect of differently expressed enhancers between INSS stage 4S and 4 neuroblastoma (NB) remains elusive. METHODS We utilized the transcriptome and methylation data of stage 4S and 4 NB patients to perform Enhancer Linking by Methylation/Expression Relationships (ELMER) analysis, discovering a differently expressed motif within 67 enhancers between stage 4S and 4 NB. Harnessing the 67 motif genes, we established the INSS stage related signature (ISRS) by amalgamating 12 and 10 distinct machine learning (ML) algorithms across 113 and 101 ML combinations to precisely diagnose stage 4 NB among all NB patients and to predict the prognosis of NB patients. Based on risk scores calculated by prognostic ISRS, patients were categorized into high and low-risk groups according to median risk score. We conducted comprehensive comparisons between two risk groups, in terms of clinical applications, immune microenvironment, somatic mutations, immunotherapy, chemotherapy and single-cell analysis. Ultimately, we empirically validated the differential expressions of two ISRS model genes, CAMTA2 and FOXD1, through immunochemistry staining. RESULTS Through leave-one-out cross-validation, in both feature selection and model construction, we selected the random forest algorithm to diagnose stage 4 NB, and Enet algorithm to develop prognostic ISRS, due to their highest average C-index across five NB cohorts. After validations, the ISRS demonstrated a stable predictive capability, outperforming the previously published NB signatures and several clinic variables. We stratified NB patients into high and low-risk group based on median risk score, which showed the low-risk group with a superior survival outcome, an abundant immune infiltration, a decreased mutation landscape, and an enhanced sensitivity to immunotherapy. Single-cell analysis between two risk groups reveals biologically cellular variations underlying ISRS. Finally, we verified the significantly higher protein levels of CAMTA2 and FOXD1 in stage 4S NB, as well as their protective prognosis value in NB. CONCLUSION Based on multi-omics data and ML algorithms, we successfully developed the ISRS to enable accurate diagnosis and prognostic stratification in NB, which shed light on molecular mechanisms of spontaneous regression and clinical utilization of ISRS.
Collapse
Affiliation(s)
- Shan Li
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, No. 136, Yuzhong District, Chongqing, 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Tao Mi
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, No. 136, Yuzhong District, Chongqing, 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Liming Jin
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, No. 136, Yuzhong District, Chongqing, 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yimeng Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, No. 136, Yuzhong District, Chongqing, 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhaoxia Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, No. 136, Yuzhong District, Chongqing, 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jinkui Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, No. 136, Yuzhong District, Chongqing, 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xin Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, No. 136, Yuzhong District, Chongqing, 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Chunnian Ren
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, No. 136, Yuzhong District, Chongqing, 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhaoying Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, No. 136, Yuzhong District, Chongqing, 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xiangpan Kong
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, No. 136, Yuzhong District, Chongqing, 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jiayan Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, No. 136, Yuzhong District, Chongqing, 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Junyi Luo
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, No. 136, Yuzhong District, Chongqing, 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Dawei He
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, No. 136, Yuzhong District, Chongqing, 400014, China.
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, China.
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
2
|
Veschi V, Durinck K, Thiele CJ, Speleman F. Neuroblastoma Epigenetic Landscape: Drugging Opportunities. PEDIATRIC ONCOLOGY 2024:71-95. [DOI: 10.1007/978-3-031-51292-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
van Heerden J, van den Akker M, Verlooy J, Van Roy N, Laureys G, Norga K. Dilemmas in the Management of an Infant with Neuroblastoma Metastasized to the Muscles. Case Rep Oncol 2023; 16:558-567. [PMID: 37900821 PMCID: PMC10601722 DOI: 10.1159/000531433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/01/2023] [Indexed: 10/31/2023] Open
Abstract
The risk stratification of infants with metastatic neuroblastoma (NB) has evolved over time from stage 4/M or IVs/4S/MS/Ms according to various staging systems. Despite these developments for some genetic aberrations, the prognostic value and the impact of soft tissue metastases in infants are not fully understood, nor well described in the different classification systems, hampering the definitions to uniformly treat patients and predict prognosis. A literature review on staging of infants with M/MS disease was performed at the occasion of the diagnosis of NB in an 8-month-old boy who presented with atypical metastatic sites in soft tissue and an aberrant tumor biology. The definitions of stage 4/4S/4s/M/MS/Ms were evaluated and compared to enable tumor risk stratification and inform management. International NB groups use different criteria for defining stage of infants with metastasized NB, resulting in differences in management. Limited literature is available on soft tissue metastases, especially muscular metastases, and is poorly incorporated into management guidelines mainly due to the lack of data. The uncertain prognosis of rare genetic aberrancies may add to the difficulties in treatment decisions. In some rare cases of NB in infants, the international treatment classification is not sufficient for staging and treatment decisions. Based on tumor progression, biology of unknown significance and a lack of evidence to classify a child under 12 months with NB and multiple muscular metastases, the patient was treated as stage 4/M and intermediate-risk protocols with a favorable outcome.
Collapse
Affiliation(s)
- Jaques van Heerden
- Department of Pediatric Haematology and Oncology, Antwerp University Hospital, Antwerp, Belgium
| | - Machiel van den Akker
- Department of Pediatric Haematology and Oncology, Antwerp University Hospital, Antwerp, Belgium
| | - Joris Verlooy
- Department of Pediatric Haematology and Oncology, Antwerp University Hospital, Antwerp, Belgium
| | - Nadine Van Roy
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Geneviève Laureys
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Pediatric Haematology, Oncology and Stem cell transplantation, Ghent University Hospital, Ghent, Belgium
| | - Koen Norga
- Department of Pediatric Haematology and Oncology, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
4
|
Oku Y, Madia F, Lau P, Paparella M, McGovern T, Luijten M, Jacobs MN. Analyses of Transcriptomics Cell Signalling for Pre-Screening Applications in the Integrated Approach for Testing and Assessment of Non-Genotoxic Carcinogens. Int J Mol Sci 2022; 23:ijms232112718. [PMID: 36361516 PMCID: PMC9659232 DOI: 10.3390/ijms232112718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 12/03/2022] Open
Abstract
With recent rapid advancement of methodological tools, mechanistic understanding of biological processes leading to carcinogenesis is expanding. New approach methodologies such as transcriptomics can inform on non-genotoxic mechanisms of chemical carcinogens and can be developed for regulatory applications. The Organisation for the Economic Cooperation and Development (OECD) expert group developing an Integrated Approach to the Testing and Assessment (IATA) of Non-Genotoxic Carcinogens (NGTxC) is reviewing the possible assays to be integrated therein. In this context, we review the application of transcriptomics approaches suitable for pre-screening gene expression changes associated with phenotypic alterations that underlie the carcinogenic processes for subsequent prioritisation of downstream test methods appropriate to specific key events of non-genotoxic carcinogenesis. Using case studies, we evaluate the potential of gene expression analyses especially in relation to breast cancer, to identify the most relevant approaches that could be utilised as (pre-) screening tools, for example Gene Set Enrichment Analysis (GSEA). We also consider how to address the challenges to integrate gene panels and transcriptomic assays into the IATA, highlighting the pivotal omics markers identified for assay measurement in the IATA key events of inflammation, immune response, mitogenic signalling and cell injury.
Collapse
Affiliation(s)
- Yusuke Oku
- The Organisation for Economic Cooperation and Development (OECD), 2 Rue Andre Pascal, 75016 Paris, France
- Correspondence: (Y.O.); (M.N.J.)
| | - Federica Madia
- European Commission, Joint Research Centre (JRC), Via Enrico Fermi, 2749, 21027 Ispra, Italy
| | - Pierre Lau
- Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Martin Paparella
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innbruck, Austria
| | - Timothy McGovern
- US Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, MD 20901, USA
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, Bilthoven, 3721 MA Utrecht, The Netherlands
| | - Miriam N. Jacobs
- Centre for Radiation, Chemical and Environmental Hazard (CRCE), Public Health England (PHE), Chilton OX11 0RQ, Oxfordshire, UK
- Correspondence: (Y.O.); (M.N.J.)
| |
Collapse
|
5
|
Jiménez C, Antonelli R, Nadal-Ribelles M, Devis-Jauregui L, Latorre P, Solé C, Masanas M, Molero-Valenzuela A, Soriano A, Sánchez de Toledo J, Llobet-Navas D, Roma J, Posas F, de Nadal E, Gallego S, Moreno L, Segura MF. Structural disruption of BAF chromatin remodeller impairs neuroblastoma metastasis by reverting an invasiveness epigenomic program. Mol Cancer 2022; 21:175. [PMID: 36057593 PMCID: PMC9440539 DOI: 10.1186/s12943-022-01643-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/24/2022] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Epigenetic programming during development is essential for determining cell lineages, and alterations in this programming contribute to the initiation of embryonal tumour development. In neuroblastoma, neural crest progenitors block their course of natural differentiation into sympathoadrenergic cells, leading to the development of aggressive and metastatic paediatric cancer. Research of the epigenetic regulators responsible for oncogenic epigenomic networks is crucial for developing new epigenetic-based therapies against these tumours. Mammalian switch/sucrose non-fermenting (mSWI/SNF) ATP-dependent chromatin remodelling complexes act genome-wide translating epigenetic signals into open chromatin states. The present study aimed to understand the contribution of mSWI/SNF to the oncogenic epigenomes of neuroblastoma and its potential as a therapeutic target. METHODS Functional characterisation of the mSWI/SNF complexes was performed in neuroblastoma cells using proteomic approaches, loss-of-function experiments, transcriptome and chromatin accessibility analyses, and in vitro and in vivo assays. RESULTS Neuroblastoma cells contain three main mSWI/SNF subtypes, but only BRG1-associated factor (BAF) complex disruption through silencing of its key structural subunits, ARID1A and ARID1B, impairs cell proliferation by promoting cell cycle blockade. Genome-wide chromatin remodelling and transcriptomic analyses revealed that BAF disruption results in the epigenetic repression of an extensive invasiveness-related expression program involving integrins, cadherins, and key mesenchymal regulators, thereby reducing adhesion to the extracellular matrix and the subsequent invasion in vitro and drastically inhibiting the initiation and growth of neuroblastoma metastasis in vivo. CONCLUSIONS We report a novel ATPase-independent role for the BAF complex in maintaining an epigenomic program that allows neuroblastoma invasiveness and metastasis, urging for the development of new BAF pharmacological structural disruptors for therapeutic exploitation in metastatic neuroblastoma.
Collapse
Affiliation(s)
- Carlos Jiménez
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Roberta Antonelli
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Mariona Nadal-Ribelles
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Laura Devis-Jauregui
- Molecular Mechanisms and Experimental Therapy in Oncology-Oncobell Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Spain
| | - Pablo Latorre
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carme Solé
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marc Masanas
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Adrià Molero-Valenzuela
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Aroa Soriano
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Josep Sánchez de Toledo
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Catalan Institute of Oncology, L'Hospitalet de Llobregat, Spain
| | - David Llobet-Navas
- Molecular Mechanisms and Experimental Therapy in Oncology-Oncobell Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Spain.,Low Prevalence Tumors. Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Roma
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Francesc Posas
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Eulàlia de Nadal
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Soledad Gallego
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Paediatric Oncology and Haematology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Lucas Moreno
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Paediatric Oncology and Haematology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Miguel F Segura
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.
| |
Collapse
|
6
|
Gonzalez Malagon SG, Liu KJ. Linking neural crest development to neuroblastoma pathology. Development 2022; 149:276149. [DOI: 10.1242/dev.200331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Although rare, childhood (paediatric) cancers are a major cause of death in young children. Unlike many adult cancers, paediatric cancers, such as neuroblastoma (NB), are developmental diseases that rarely show genetic predispositions. NB is the most common extracranial solid tumour in children, accounting for ∼15% of paediatric cancer deaths. This heterogeneous cancer arises from undifferentiated neural crest-derived progenitor cells. As neural crest cells are multipotent and migratory, they are often considered the embryonic paradigm of cancer stem cells. However, very little is known about the events that trigger tumour initiation and progression. Here, we discuss recent insights into sympathoadrenal lineage specification, as well as genetic factors associated with NB. With this in mind, we consider the molecular underpinnings of NB in the context of developmental trajectories of the neural crest lineage. This allows us to compare distinct subtypes of the disease and gene-function interactions during sensitive phases of neural crest development.
Collapse
Affiliation(s)
- Sandra Guadalupe Gonzalez Malagon
- Biomedical Research Institute, Foundation for Research and Technology, University of Ioannina Campus 1 , 45115 Ioannina , Greece
- School of Health Sciences and Institute of Biosciences, University Research Centre, University of Ioannina 2 Department of Biological Applications and Technology , , 45110 Ioannina , Greece
| | - Karen J. Liu
- Centre for Craniofacial and Regenerative Biology, King's College London 3 , London SE1 9RT , UK
| |
Collapse
|
7
|
Abstract
Neuroblastoma (NB) is a pediatric cancer of the sympathetic nervous system and one of the most common solid tumors in infancy. Amplification of MYCN, copy number alterations, numerical and segmental chromosomal aberrations, mutations, and rearrangements on a handful of genes, such as ALK, ATRX, TP53, RAS/MAPK pathway genes, and TERT, are attributed as underlying causes that give rise to NB. However, the heterogeneous nature of the disease-along with the relative paucity of recurrent somatic mutations-reinforces the need to understand the interplay of genetic factors and epigenetic alterations in the context of NB. Epigenetic mechanisms tightly control gene expression, embryogenesis, imprinting, chromosomal stability, and tumorigenesis, thereby playing a pivotal role in physio- and pathological settings. The main epigenetic alterations include aberrant DNA methylation, disrupted patterns of posttranslational histone modifications, alterations in chromatin composition and/or architecture, and aberrant expression of non-coding RNAs. DNA methylation and demethylation are mediated by DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) proteins, respectively, while histone modifications are coordinated by histone acetyltransferases and deacetylases (HATs, HDACs), and histone methyltransferases and demethylases (HMTs, HDMs). This article focuses predominately on the crosstalk between the epigenome and NB, and the implications it has on disease diagnosis and treatment.
Collapse
Affiliation(s)
- Irfete S Fetahu
- St. Anna Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria.
| | - Sabine Taschner-Mandl
- St. Anna Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria.
| |
Collapse
|
8
|
Parodi S, Ognibene M, Haupt R, Pezzolo A. The Over-Expression of E2F3 Might Serve as Prognostic Marker for Neuroblastoma Patients with Stage 4S Disease. Diagnostics (Basel) 2020; 10:diagnostics10050315. [PMID: 32429447 PMCID: PMC7277942 DOI: 10.3390/diagnostics10050315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/27/2022] Open
Abstract
Stage 4S neuroblastoma is a childhood cancer occurring in infants (<12 months at diagnosis) with metastases limited to liver, skin, and bone marrow (<10%). It is associated with an excellent outcome, due to its notable ability to undergo spontaneous regression without any therapeutic intervention. However, a subgroup of patients is doomed to relapse and eventually to die in spite of aggressive therapies. Stage 4S neuroblastoma shows characteristic hypermethylation of genes involved in the telomere maintenance, indicating that the dysregulation of these genes might serve as prognostic marker. The retinoblastoma tumor suppressor protein (RB)-E2F transcription factors pathway is one of the critical tumor-suppressor/oncogene pathways involved in regulating telomerase expression. We have interrogated in silicopublic neuroblastoma databases for regulators involved in the RB-E2F pathway especially for E2F factors themselves, and we identified the E2F transcription factor 3 (E2F3) expression as a potential prognostic marker in stage 4S neuroblastoma. In order to confirm this finding, we screened 38 paraffin-embedded tissue samples stage 4S neuroblastoma for E2F3 protein expression using immunofluorescence, and we observed that augmented expression was strongly associated with impaired event-free survival. These results indicate that E2F3 expression might serve as prognostic marker in patients with stage 4S disease.
Collapse
Affiliation(s)
- Stefano Parodi
- U.O. Epidemiologia e Biostatistica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
- Correspondence: (S.P.); (A.P.); Tel.: +39-010-56363531 (S.P.); Fax: +39-010-3779820 (A.P.)
| | - Marzia Ognibene
- U.O.C. Laboratorio Cellule Staminali Post Natali e Terapie Cellulari, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
| | - Riccardo Haupt
- U.O. Epidemiologia e Biostatistica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
| | - Annalisa Pezzolo
- U.O.C. Laboratorio Cellule Staminali Post Natali e Terapie Cellulari, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
- Correspondence: (S.P.); (A.P.); Tel.: +39-010-56363531 (S.P.); Fax: +39-010-3779820 (A.P.)
| |
Collapse
|
9
|
Liu J, Wu XW, Hao XW, Duan YH, Wu LL, Zhao J, Zhou XJ, Zhu CZ, Wei B, Dong Q. Spontaneous regression of stage III neuroblastoma: A case report. World J Clin Cases 2020; 8:436-443. [PMID: 32047796 PMCID: PMC7000927 DOI: 10.12998/wjcc.v8.i2.436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/05/2019] [Accepted: 12/22/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Neuroblastoma (NB) is the most common type of extracranial solid tumour in children. The overall prognosis of NB is poor, but at the same time, NB shows significant clinical diversity. NB can demonstrate spontaneous regression or can differentiate into benign ganglioneuroma. CASE SUMMARY This study retrospectively analyzed the clinical data of a patient with spontaneous regression of stage III NB who was admitted in May 2015. Studies of the spontaneous regression of NB published from October 1946 to September 2019 were retrieved through PubMed. The clinical manifestations, diagnosis, treatment, and follow-up results were analysed. CONCLUSION Spontaneous regression of stage III NB is rare in the clinic. The report of this case is an important supplement to the study of the spontaneous regression of NB.
Collapse
Affiliation(s)
- Jie Liu
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
- Department of Pediatric Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241000, Anhui Province, China
| | - Xiong-Wei Wu
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Xi-Wei Hao
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Yu-He Duan
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Ling-Ling Wu
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Jing Zhao
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Xian-Jun Zhou
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Cheng-Zhan Zhu
- Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, Qingdao 266000, Shandong Province, China
| | - Bin Wei
- Shandong Key Laboratory of Digital Medicine and Computer Assisted Surgery, Qingdao 266000, Shandong Province, China
| | - Qian Dong
- Department of Pediatric Surgery, Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| |
Collapse
|
10
|
Shatara M, Xavier AC, Dombkowski A, Cukovic D, Poulik JM, Altinok D, Ge Y, Taub JW. Monozygotic twins with neuroblastoma MS have a similar molecular profile: a case of twin-to-twin metastasis. Br J Cancer 2019; 121:890-893. [PMID: 31601961 PMCID: PMC6889264 DOI: 10.1038/s41416-019-0594-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/20/2019] [Accepted: 09/10/2019] [Indexed: 12/24/2022] Open
Abstract
Fetoplacental neuroblastoma metastasis has been postulated as a mechanism accounting for concordant cases where one twin develops a primary tumour and the second twin manifests the disease without an identifiable primary site. These tumours may originate and spread concomitantly due to the same genetic background shared by monozygotic twins. This study investigated the molecular profile of stage MS neuroblastoma presenting concomitantly in monozygotic twins. Comparative genomic hybridisation (aCGH) was done for each of the twin liver tumour and peripheral blood samples at diagnosis. Comparison of copy-number variation (CNV) regions revealed a set of CNVs that were common to both tumour specimens and not apparent in the blood. The CNV signature in both twins’ tumours was highly similar, suggesting a common clonal origin. Additional findings included large deletion of chromosome 10 and amplification of chromosome 17. Notably, both liver samples had amplification of a short region involving DEIN (chromosome 4q34.1). Similar CNVs strongly support a common clonal origin and metastatic spread from one twin to the other. DEIN is a long-coding RNA (IncRNA) that has been found highly expressed in stage MS neuroblastoma and is likely involved in biological processes such as cell migration and metastasis.
Collapse
Affiliation(s)
- Margaret Shatara
- Carman and Ann Adams Department of Pediatrics, Children's Hospital of Michigan/Wayne State University School of Medicine, Detroit, MI, USA.
| | - Ana C Xavier
- Division of Hematology/Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alan Dombkowski
- Carman and Ann Adams Department of Pediatrics, Children's Hospital of Michigan/Wayne State University School of Medicine, Detroit, MI, USA
| | - Daniela Cukovic
- Carman and Ann Adams Department of Pediatrics, Children's Hospital of Michigan/Wayne State University School of Medicine, Detroit, MI, USA
| | - Janet M Poulik
- Carman and Ann Adams Department of Pediatrics, Children's Hospital of Michigan/Wayne State University School of Medicine, Detroit, MI, USA
| | - Deniz Altinok
- Carman and Ann Adams Department of Pediatrics, Children's Hospital of Michigan/Wayne State University School of Medicine, Detroit, MI, USA
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jeffrey W Taub
- Carman and Ann Adams Department of Pediatrics, Children's Hospital of Michigan/Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
11
|
5-Methylcytosine and 5-Hydroxymethylcytosine Signatures Underlying Pediatric Cancers. EPIGENOMES 2019; 3:epigenomes3020009. [PMID: 34968232 PMCID: PMC8594703 DOI: 10.3390/epigenomes3020009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 12/12/2022] Open
Abstract
In addition to the genetic variations, recent evidence has shown that DNA methylation of both 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) underlies the pathogenesis of pediatric cancer. Given the high mortality rate, there is an urgent need to study the mechanisms contributing to the pathogenicity of pediatric cancer. Over the past decades, next-generation sequencing (NGS) has enabled us to perform genome-wide screening to study the complex regulatory mechanisms of 5mC and 5hmC underlying pediatric tumorigenesis. To shed light on recent developments on pediatric cancer predisposition and tumor progression, here we discuss the role of both genome-wide and locus-specific dysregulation of 5mC and 5hmC in hematopoiesis malignancy and neuroblastoma, the most common types of pediatric cancer, together with their therapeutic potential.
Collapse
|
12
|
The roles played by the MYCN, Trk, and ALK genes in neuroblastoma and neural development. Surg Today 2019; 49:721-727. [PMID: 30848386 DOI: 10.1007/s00595-019-01790-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 01/20/2019] [Indexed: 12/23/2022]
Abstract
Neuroblastoma is one of the most frequent, yet distinctive and challenging childhood tumors. The uniqueness of this tumor depends on its biological markers, which classify neuroblastomas into favorable and unfavorable, with 5-year survival rates ranging from almost 100-30%. In this review, we focus on some biological factors that play major roles in neuroblastoma: MYCN, Trk, and ALK. The MYCN and Trk family genes have been studied for decades and are known to be crucial for the tumorigenesis and progression of neuroblastoma. ALK gene mutations have been recognized recently to be responsible for familial neuroblastomas. Each factor plays an important role in normal neural development, regulating cell proliferation or differentiation by activating several signaling pathways, and interacting with each other. These factors have been studied not only as prognostic factors, but also as targets of neuroblastoma therapy, and some clinical trials are ongoing. We review the basic aspects of MYCN, Trk, and ALK in both neural development and in neuroblastoma.
Collapse
|
13
|
Delloye-Bourgeois C, Castellani V. Hijacking of Embryonic Programs by Neural Crest-Derived Neuroblastoma: From Physiological Migration to Metastatic Dissemination. Front Mol Neurosci 2019; 12:52. [PMID: 30881286 PMCID: PMC6405627 DOI: 10.3389/fnmol.2019.00052] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
In the developing organism, complex molecular programs orchestrate the generation of cells in adequate numbers, drive them to migrate along the correct pathways towards appropriate territories, eliminate superfluous cells, and induce terminal differentiation of survivors into the appropriate cell-types. Despite strict controls constraining developmental processes, malignancies can emerge in still immature organisms. This is the case of neuroblastoma (NB), a highly heterogeneous disease, predominantly affecting children before the age of 5 years. Highly metastatic forms represent half of the cases and are diagnosed when disseminated foci are detectable. NB arise from a transient population of embryonic cells, the neural crest (NC), and especially NC committed to the establishment of the sympatho-adrenal tissues. The NC is generated at the dorsal edge of the neural tube (NT) of the vertebrate embryo, under the action of NC specifier gene programs. NC cells (NCCs) undergo an epithelial to mesenchymal transition, and engage on a remarkable journey in the developing embryo, contributing to a plethora of cell-types and tissues. Various NCC sub-populations and derived lineages adopt specific migratory behaviors, moving individually as well as collectively, exploiting the different embryonic substrates they encounter along their path. Here we discuss how the specific features of NCC in development are re-iterated during NB metastatic behaviors.
Collapse
Affiliation(s)
- Céline Delloye-Bourgeois
- University of Lyon, University of Lyon 1 Claude Bernard Lyon 1, NeuroMyoGene Institute, CNRS UMR5310, INSERM U1217, Lyon, France
| | - Valérie Castellani
- University of Lyon, University of Lyon 1 Claude Bernard Lyon 1, NeuroMyoGene Institute, CNRS UMR5310, INSERM U1217, Lyon, France
| |
Collapse
|
14
|
Twist CJ, Naranjo A, Schmidt ML, Tenney SC, Cohn SL, Meany HJ, Mattei P, Adkins ES, Shimada H, London WB, Park JR, Matthay KK, Maris JM. Defining Risk Factors for Chemotherapeutic Intervention in Infants With Stage 4S Neuroblastoma: A Report From Children's Oncology Group Study ANBL0531. J Clin Oncol 2018; 37:115-124. [PMID: 30444686 DOI: 10.1200/jco.18.00419] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Infants with stage 4S neuroblastoma usually have favorable outcomes with observation or minimal chemotherapy. However, young infants with symptoms secondary to massive hepatomegaly or with unfavorable tumor biology are at high risk of death. Our aim was to improve outcomes for patients with symptomatic and/or unfavorable biology 4S neuroblastoma with a uniform treatment approach using a biology- and response-based algorithm. PATIENTS AND METHODS The subset of patients with 4S disease with MYCN-not amplified tumors with impaired or impending organ dysfunction, or with unfavorable histology and/or diploid DNA index, were eligible. Patients were assigned to receive two, four, or eight cycles of chemotherapy on the basis of histology, diploid DNA index, chromosome arm 1p or 11q loss of heterozygosity (LOH) status, and symptoms. RESULTS Forty-nine eligible patients were enrolled: 41 were symptomatic and 28 had unfavorable biology. Seventeen patients (symptomatic, favorable biology) were assigned two cycles, 21 patients (any unfavorable biologic feature without 1p or 11q LOH) were assigned four cycles, and 11 patients (unfavorable biology including 1p and/or 11q LOH [n = 7] or symptomatic with unknown biology [n = 4]), were assigned eight cycles. The 3-year overall survival was 81.4% ± 5.8%. Eight of nine deaths were in patients younger than 2 months of age at diagnosis (median, 9 days [range, 1 to 68 days]): five acute deaths were a result of hepatomegaly and associated toxicities; two were a result of late relapse in patients with unfavorable biology; and two were a result of treatment complications. No deaths occurred after protocol-mandated pre-emptive treatment of infants younger than 2 months with hepatomegaly, regardless of symptoms. A new scoring algorithm for emergent chemotherapy in patients with 4S disease was developed on the basis of this experience. CONCLUSION The outcome for 4S neuroblastoma can be improved with pre-emptive chemotherapy for evolving hepatomegaly or other baseline comorbidities in infants younger than 2 months of age.
Collapse
Affiliation(s)
| | | | - Mary Lou Schmidt
- 3 University of Illinois at Chicago College of Medicine, Chicago, IL
| | | | | | - Holly J Meany
- 5 Children's National Medical Center, Washington, DC
| | - Peter Mattei
- 6 Children's Hospital of Philadelphia, Philadelphia, PA
| | | | | | - Wendy B London
- 9 Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
| | | | - Katherine K Matthay
- 11 University of California San Francisco School of Medicine and UCSF Benioff Children's Hospital, San Francisco, CA
| | - John M Maris
- 6 Children's Hospital of Philadelphia, Philadelphia, PA.,12 Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
15
|
Ram Kumar RM, Schor NF. Methylation of DNA and chromatin as a mechanism of oncogenesis and therapeutic target in neuroblastoma. Oncotarget 2018; 9:22184-22193. [PMID: 29774131 PMCID: PMC5955135 DOI: 10.18632/oncotarget.25084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/21/2018] [Indexed: 12/17/2022] Open
Abstract
Neuroblastoma (NB), a developmental cancer, is often fatal, emphasizing the need to understand its pathogenesis and identify new therapeutic targets. The heterogeneous pathological and clinical phenotype of NB underscores the cryptic biological and genetic features of this tumor that result in outcomes ranging from rapid progression to spontaneous regression. Despite recent genome-wide mutation analyses, most primary NBs do not harbor driver mutations, implicating epigenetically-mediated gene regulatory mechanisms in the initiation and maintenance of NB. Aberrant epigenomic mechanisms, as demonstrated by global changes in DNA methylation signatures, acetylation, re-distribution of histone marks, and change in the chromatin architecture, are hypothesized to play a role in NB oncogenesis. This paper reviews the evidence for, putative mechanisms underlying, and prospects for therapeutic targeting of NB oncogenesis related to DNA methylation.
Collapse
Affiliation(s)
- Ram Mohan Ram Kumar
- Department of Pediatrics and Wilmot Cancer Center, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Nina Felice Schor
- Department of Pediatrics and Wilmot Cancer Center, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Current affiliation: National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
16
|
Origin and initiation mechanisms of neuroblastoma. Cell Tissue Res 2018; 372:211-221. [PMID: 29445860 DOI: 10.1007/s00441-018-2796-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/16/2018] [Indexed: 12/15/2022]
Abstract
Neuroblastoma is an embryonal malignancy that affects normal development of the adrenal medulla and paravertebral sympathetic ganglia in early childhood. Extensive studies have revealed the molecular characteristics of human neuroblastomas, including abnormalities at genome, epigenome and transcriptome levels. However, neuroblastoma initiation mechanisms and even its origin are long-standing mysteries. In this review article, we summarize the current knowledge about normal development of putative neuroblastoma sources, namely sympathoadrenal lineage of neural crest cells and Schwann cell precursors that were recently identified as the source of adrenal chromaffin cells. A plausible origin of enigmatic stage 4S neuroblastoma is also discussed. With regard to the initiation mechanisms, we review genetic abnormalities in neuroblastomas and their possible association to initiation mechanisms. We also summarize evidences of neuroblastoma initiation observed in genetically engineered animal models, in which epigenetic alterations were involved, including transcriptomic upregulation by N-Myc and downregulation by polycomb repressive complex 2. Finally, several in vitro experimental methods are proposed that hopefully will accelerate our comprehension of neuroblastoma initiation. Thus, this review summarizes the state-of-the-art knowledge about the mechanisms of neuroblastoma initiation, which is critical for developing new strategies to cure children with neuroblastoma.
Collapse
|
17
|
Durinck K, Speleman F. Epigenetic regulation of neuroblastoma development. Cell Tissue Res 2018; 372:309-324. [PMID: 29350283 DOI: 10.1007/s00441-017-2773-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/16/2017] [Indexed: 02/07/2023]
Abstract
In recent years, technological advances have enabled a detailed landscaping of the epigenome and the mechanisms of epigenetic regulation that drive normal cell function, development and cancer. Rather than merely a structural entity to support genome compaction, we now look at chromatin as a very dynamic and essential constellation that is actively participating in the tight orchestration of transcriptional regulation as well as DNA replication and repair. The unique feature of chromatin flexibility enabling fast switches towards more or less restricted epigenetic cellular states is, not surprisingly, intimately connected to cancer development and treatment resistance, and the central role of epigenetic alterations in cancer is illustrated by the finding that up to 50% of all mutations across cancer entities affect proteins controlling the chromatin status. We summarize recent insights into epigenetic rewiring underlying neuroblastoma (NB) tumor formation ranging from changes in DNA methylation patterns and mutations in epigenetic regulators to global effects on transcriptional regulatory circuits that involve key players in NB oncogenesis. Insights into the disruption of the homeostatic epigenetic balance contributing to developmental arrest of sympathetic progenitor cells and subsequent NB oncogenesis are rapidly growing and will be exploited towards the development of novel therapeutic strategies to increase current survival rates of patients with high-risk NB.
Collapse
Affiliation(s)
- Kaat Durinck
- Center for Medical Genetics, Ghent University, Ghent, Belgium.
| | - Frank Speleman
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Mlakar V, Jurkovic Mlakar S, Lopez G, Maris JM, Ansari M, Gumy-Pause F. 11q deletion in neuroblastoma: a review of biological and clinical implications. Mol Cancer 2017; 16:114. [PMID: 28662712 PMCID: PMC5492892 DOI: 10.1186/s12943-017-0686-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/25/2017] [Indexed: 12/12/2022] Open
Abstract
Deletion of the long arm of chromosome 11 (11q deletion) is one of the most frequent events that occur during the development of aggressive neuroblastoma. Clinically, 11q deletion is associated with higher disease stage and decreased survival probability. During the last 25 years, extensive efforts have been invested to identify the precise frequency of 11q aberrations in neuroblastoma, the recurrently involved genes, and to understand the molecular mechanisms of 11q deletion, but definitive answers are still unclear. In this review, it is our intent to compile and review the evidence acquired to date on 11q deletion in neuroblastoma.
Collapse
Affiliation(s)
- Vid Mlakar
- CANSEARCH Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205, Geneva, Switzerland
| | - Simona Jurkovic Mlakar
- CANSEARCH Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205, Geneva, Switzerland
| | - Gonzalo Lopez
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Marc Ansari
- CANSEARCH Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205, Geneva, Switzerland.,Department of Pediatrics, Onco-Hematology Unit, Geneva University Hospitals, Rue Willy-Donzé 6, 1205, Geneva, Switzerland
| | - Fabienne Gumy-Pause
- CANSEARCH Research Laboratory, Geneva University Medical School, Avenue de la Roseraie 64, 1205, Geneva, Switzerland. .,Department of Pediatrics, Onco-Hematology Unit, Geneva University Hospitals, Rue Willy-Donzé 6, 1205, Geneva, Switzerland.
| |
Collapse
|
19
|
Salazar BM, Balczewski EA, Ung CY, Zhu S. Neuroblastoma, a Paradigm for Big Data Science in Pediatric Oncology. Int J Mol Sci 2016; 18:E37. [PMID: 28035989 PMCID: PMC5297672 DOI: 10.3390/ijms18010037] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/14/2016] [Accepted: 12/17/2016] [Indexed: 12/13/2022] Open
Abstract
Pediatric cancers rarely exhibit recurrent mutational events when compared to most adult cancers. This poses a challenge in understanding how cancers initiate, progress, and metastasize in early childhood. Also, due to limited detected driver mutations, it is difficult to benchmark key genes for drug development. In this review, we use neuroblastoma, a pediatric solid tumor of neural crest origin, as a paradigm for exploring "big data" applications in pediatric oncology. Computational strategies derived from big data science-network- and machine learning-based modeling and drug repositioning-hold the promise of shedding new light on the molecular mechanisms driving neuroblastoma pathogenesis and identifying potential therapeutics to combat this devastating disease. These strategies integrate robust data input, from genomic and transcriptomic studies, clinical data, and in vivo and in vitro experimental models specific to neuroblastoma and other types of cancers that closely mimic its biological characteristics. We discuss contexts in which "big data" and computational approaches, especially network-based modeling, may advance neuroblastoma research, describe currently available data and resources, and propose future models of strategic data collection and analyses for neuroblastoma and other related diseases.
Collapse
Affiliation(s)
- Brittany M Salazar
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA.
| | - Emily A Balczewski
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | - Choong Yong Ung
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | - Shizhen Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|