1
|
Louise J, Deussen AR, Dodd JM. Data processing choices can affect findings in differential methylation analyses: an investigation using data from the LIMIT RCT. PeerJ 2023; 11:e14786. [PMID: 36755865 PMCID: PMC9901304 DOI: 10.7717/peerj.14786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023] Open
Abstract
Objective A wide array of methods exist for processing and analysing DNA methylation data. We aimed to perform a systematic comparison of the behaviour of these methods, using cord blood DNAm from the LIMIT RCT, in relation to detecting hypothesised effects of interest (intervention and pre-pregnancy maternal BMI) as well as effects known to be spurious, and known to be present. Methods DNAm data, from 645 cord blood samples analysed using Illumina 450K BeadChip arrays, were normalised using three different methods (with probe filtering undertaken pre- or post- normalisation). Batch effects were handled with a supervised algorithm, an unsupervised algorithm, or adjustment in the analysis model. Analysis was undertaken with and without adjustment for estimated cell type proportions. The effects estimated included intervention and BMI (effects of interest in the original study), infant sex and randomly assigned groups. Data processing and analysis methods were compared in relation to number and identity of differentially methylated probes, rankings of probes by p value and log-fold-change, and distributions of p values and log-fold-change estimates. Results There were differences corresponding to each of the processing and analysis choices. Importantly, some combinations of data processing choices resulted in a substantial number of spurious 'significant' findings. We recommend greater emphasis on replication and greater use of sensitivity analyses.
Collapse
Affiliation(s)
- Jennie Louise
- Discipline of Obstetrics & Gynaecology and The Robinson Research Institute, The University of Adelaide, Adelaide, Australia,Adelaide Health Technology Asseessment, The University of Adelaide, Adelaide, Australia
| | - Andrea R. Deussen
- Discipline of Obstetrics & Gynaecology and The Robinson Research Institute, The University of Adelaide, Adelaide, Australia
| | - Jodie M. Dodd
- Discipline of Obstetrics & Gynaecology and The Robinson Research Institute, The University of Adelaide, Adelaide, Australia,Department of Perinatal Medicine, Women’s and Babies Division, The Women’s and Children’s Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Phillips RV, Wei L, Cardenas A, Hubbard AE, McHale CM, Vermeulen R, Wei H, Smith MT, Zhang L, Lan Q, Rothman N. Epigenome-wide association studies of occupational exposure to benzene and formaldehyde. Epigenetics 2022; 17:2259-2277. [PMID: 36017556 PMCID: PMC9665125 DOI: 10.1080/15592294.2022.2115604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 11/03/2022] Open
Abstract
Sufficient evidence supports a relationship between certain myeloid neoplasms and exposure to benzene or formaldehyde. DNA methylation could underlie benzene- and formaldehyde-induced health outcomes, but data in exposed human populations are limited. We conducted two cross-sectional epigenome-wide association studies (EWAS), one in workers exposed to benzene and another in workers exposed to formaldehyde. Using HumanMethylation450 BeadChips, we investigated differences in blood cell DNA methylation among 50 benzene-exposed subjects and 48 controls, and among 31 formaldehyde-exposed subjects and 40 controls. We performed CpG-level and regional-level analyses. In the benzene EWAS, we found genome-wide significant alterations, i.e., FWER-controlled P-values <0.05, in the mean and variance of methylation at 22 and 318 CpG sites, respectively, and in mean methylation of a large genomic region. Pathway analysis of genes corresponding to benzene-associated differential methylation sites revealed an impact on the AMPK signalling pathway. In formaldehyde-exposed subjects compared to controls, 9 CpGs in the DUSP22 gene promoter had genome-wide significant decreased methylation variability and a large region of the HOXA5 promoter with 44 CpGs was hypomethylated. Our findings suggest that DNA methylation may contribute to the pathogenesis of diseases related to benzene and formaldehyde exposure. Aberrant expression and methylation of HOXA5 previously has been shown to be clinically significant in myeloid leukaemias. The tumour suppressor gene DUSP22 is a potential biomarker of exposure to formaldehyde, and irregularities have been associated with multiple exposures and diseases.
Collapse
Affiliation(s)
- Rachael V. Phillips
- School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Linqing Wei
- School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Andres Cardenas
- School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Alan E. Hubbard
- School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Cliona M. McHale
- School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Roel Vermeulen
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Universiteit Utrecht (UU), Utrecht, The Netherlands
| | - Hu Wei
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, NCI, NIH, DHHS, Bethesda, MD, USA
| | - Martyn T. Smith
- School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Luoping Zhang
- School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, NCI, NIH, DHHS, Bethesda, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, Occupational and Environmental Epidemiology Branch, NCI, NIH, DHHS, Bethesda, MD, USA
| |
Collapse
|
3
|
Todtenhaupt P, van Pel M, Roest AAW, Heijmans BT. Mesenchymal stromal cells as a tool to unravel the developmental origins of disease. Trends Endocrinol Metab 2022; 33:614-627. [PMID: 35902331 DOI: 10.1016/j.tem.2022.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/09/2022] [Accepted: 06/26/2022] [Indexed: 10/16/2022]
Abstract
The intrauterine environment can induce alterations of the epigenome that have a lasting impact on disease risk. Current human studies in the field focus on a single epigenetic mark, DNA methylation, measured in blood. For in-depth mechanistic insight into the developmental origins of disease, it will be crucial to consider innovative tissue types. Mesenchymal stromal cells (MSCs) may serve as a novel tool to investigate the full epigenome beyond DNA methylation, to explore other omics levels, and to perform functional assays. Moreover, MSCs can be differentiated into multiple cell types and thereby mimic otherwise inaccessible cell types. A first wave of studies supports the potential of MSCs and illustrates how the innovative use of this cell type may be incorporated in birth cohorts.
Collapse
Affiliation(s)
- Pia Todtenhaupt
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands; Neonatology, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Melissa van Pel
- NecstGen, Leiden, The Netherlands; Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Arno A W Roest
- Pediatric Cardiology, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Bastiaan T Heijmans
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
4
|
Lu T, Cardenas A, Perron P, Hivert MF, Bouchard L, Greenwood CMT. Detecting cord blood cell type-specific epigenetic associations with gestational diabetes mellitus and early childhood growth. Clin Epigenetics 2021; 13:131. [PMID: 34174944 PMCID: PMC8236204 DOI: 10.1186/s13148-021-01114-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Epigenome-wide association studies (EWAS) have provided opportunities to understand the role of epigenetic mechanisms in development and pathophysiology of many chronic diseases. However, an important limitation of conventional EWAS is that profiles of epigenetic variability are often obtained in samples of mixed cell types. Here, we aim to assess whether changes in cord blood DNA methylation (DNAm) associated with gestational diabetes mellitus (GDM) exposure and early childhood growth markers occur in a cell type-specific manner. RESULTS We analyzed 275 cord blood samples collected at delivery from a prospective pre-birth cohort with genome-wide DNAm profiled by the Illumina MethylationEPIC array. We estimated proportions of seven common cell types in each sample using a cord blood-specific DNAm reference panel. Leveraging a recently developed approach named CellDMC, we performed cell type-specific EWAS to identify CpG loci significantly associated with GDM, or 3-year-old body mass index (BMI) z-score. A total of 1410 CpG loci displayed significant cell type-specific differences in methylation level between 23 GDM cases and 252 controls with a false discovery rate < 0.05. Gene Ontology enrichment analysis indicated that LDL transportation emerged from CpG specifically identified from B-cells DNAm analyses and the mitogen-activated protein kinase pathway emerged from CpG specifically identified from natural killer cells DNAm analyses. In addition, we identified four and six loci associated with 3-year-old BMI z-score that were specific to CD8+ T-cells and monocytes, respectively. By performing genome-wide permutation tests, we validated that most of our detected signals had low false positive rates. CONCLUSION Compared to conventional EWAS adjusting for the effects of cell type heterogeneity, the proposed approach based on cell type-specific EWAS could provide additional biologically meaningful associations between CpG methylation, prenatal maternal GDM or 3-year-old BMI. With careful validation, these findings may provide new insights into the pathogenesis, programming, and consequences of related childhood metabolic dysregulation. Therefore, we propose that cell type-specific analyses are worth cautious explorations.
Collapse
Affiliation(s)
- Tianyuan Lu
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
- Quantitative Life Sciences Program, McGill University, Montréal, QC, Canada
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health and Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Patrice Perron
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier, Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Marie-France Hivert
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA, USA
| | - Luigi Bouchard
- Centre de Recherche du Centre Hospitalier, Universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medical Biology, Centre Intégré Universitaire de Santé et de Services Sociaux Saguenay-Lac-Saint-Jean - Hôpital Universitaire de Chicoutimi, Saguenay, QC, Canada
| | - Celia M T Greenwood
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada.
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada.
- Department of Human Genetics, McGill University, Montréal, QC, Canada.
- Gerald Bronfman Department of Oncology, McGill University, Montréal, QC, Canada.
| |
Collapse
|
5
|
Groleau M, White F, Cardenas A, Perron P, Hivert MF, Bouchard L, Jacques PÉ. Comparative epigenome-wide analysis highlights placenta-specific differentially methylated regions. Epigenomics 2021; 13:357-368. [PMID: 33661023 DOI: 10.2217/epi-2020-0271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aim: The placenta undergoes DNA methylation (DNAm) programming that is unique compared with all other fetal tissues. We aim to decipher some of the physiologic roles of the placenta by comparing its DNAm profile with that of another fetal tissue. Materials & methods: We performed a comparative analysis of genome-wide DNAm of 444 placentas paired with cord blood samples collected at birth. Gene ontology term analyses were conducted on the resulting differentially methylated regions. Results: Genomic regions upstream of transcription start sites showing lower DNAm in the placenta were enriched with terms related to miRNA functions and genes encoding G-protein-coupled receptors. Conclusion: These results highlight genomic regions that are differentially methylated in the placenta in contrast to fetal blood.
Collapse
Affiliation(s)
- Marika Groleau
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Frédérique White
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, 94720-7360, USA
| | - Patrice Perron
- Département de Médecine, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada.,Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| | - Marie-France Hivert
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada.,Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA, 02115, USA.,Diabetes Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Luigi Bouchard
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada.,Department of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada.,Department of Medical Biology, CIUSSS Saguenay-Lac-Saint-Jean, Hôpital de Chicoutimi, Saguenay, Québec, G7H 7K9, Canada
| | - Pierre-Étienne Jacques
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada.,Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| |
Collapse
|
6
|
Feng H, Jin P, Wu H. Disease prediction by cell-free DNA methylation. Brief Bioinform 2020; 20:585-597. [PMID: 29672679 DOI: 10.1093/bib/bby029] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/06/2018] [Indexed: 12/24/2022] Open
Abstract
Disease diagnosis using cell-free DNA (cfDNA) has been an active research field recently. Most existing approaches perform diagnosis based on the detection of sequence variants on cfDNA; thus, their applications are limited to diseases associated with high mutation rate such as cancer. Recent developments start to exploit the epigenetic information on cfDNA, which could have substantially wider applications. In this work, we provide thorough reviews and discussions on the statistical method developments and data analysis strategies for using cfDNA epigenetic profiles, in particular DNA methylation, to construct disease diagnostic models. We focus on two important aspects: marker selection and prediction model construction, under different scenarios. We perform simulations and real data analysis to compare different approaches, and provide recommendations for data analysis.
Collapse
Affiliation(s)
- Hao Feng
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA 30322, USA
| |
Collapse
|
7
|
Kato M, Natarajan R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat Rev Nephrol 2020; 15:327-345. [PMID: 30894700 DOI: 10.1038/s41581-019-0135-6] [Citation(s) in RCA: 356] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The development and progression of diabetic kidney disease (DKD), a highly prevalent complication of diabetes mellitus, are influenced by both genetic and environmental factors. DKD is an important contributor to the morbidity of patients with diabetes mellitus, indicating a clear need for an improved understanding of disease aetiology to inform the development of more efficacious treatments. DKD is characterized by an accumulation of extracellular matrix, hypertrophy and fibrosis in kidney glomerular and tubular cells. Increasing evidence shows that genes associated with these features of DKD are regulated not only by classical signalling pathways but also by epigenetic mechanisms involving chromatin histone modifications, DNA methylation and non-coding RNAs. These mechanisms can respond to changes in the environment and, importantly, might mediate the persistent long-term expression of DKD-related genes and phenotypes induced by prior glycaemic exposure despite subsequent glycaemic control, a phenomenon called metabolic memory. Detection of epigenetic events during the early stages of DKD could be valuable for timely diagnosis and prompt treatment to prevent progression to end-stage renal disease. Identification of epigenetic signatures of DKD via epigenome-wide association studies might also inform precision medicine approaches. Here, we highlight the emerging role of epigenetics and epigenomics in DKD and the translational potential of candidate epigenetic factors and non-coding RNAs as biomarkers and drug targets for DKD.
Collapse
Affiliation(s)
- Mitsuo Kato
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Diabetes Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| |
Collapse
|
8
|
Abstract
IMPORTANCE Higher overall leukocyte counts in women may be associated with increased risk of breast cancer, but the association of specific leukocyte subtypes with breast cancer risk remains unknown. OBJECTIVE To determine associations between circulating leukocyte subtypes and risk of breast cancer. DESIGN, SETTING, AND PARTICIPANTS Between 2003 and 2009, the Sister Study enrolled 50 884 women who had a sister previously diagnosed with breast cancer but were themselves breast cancer free. A case-cohort subsample was selected in July 2014 from the full Sister Study cohort. Blood samples were obtained at baseline, and women were followed up through October 2016. Data analysis was performed in April 2019. MAIN OUTCOMES AND MEASURES The main outcome was the development of breast cancer in women. Whole-blood DNA methylation was measured, and methylation values were deconvoluted using the Houseman method to estimate proportions of 6 leukocyte subtypes (B cells, natural killer cells, CD8+ and CD4+ T cells, monocytes, and granulocytes). Leukocyte subtype proportions were dichotomized at their population median value, and Cox proportional hazard models were used to estimate associations with breast cancer. RESULTS Among 2774 non-Hispanic white women included in the analysis (mean [SD] age at enrollment, 56.6 [8.8] years), 1295 women were randomly selected from the full cohort (of whom 91 developed breast cancer) along with an additional 1479 women who developed breast cancer during follow-up (mean [SD] time to diagnosis, 3.9 [2.2] years). Circulating proportions of B cells were positively associated with later breast cancer (hazard ratio [HR], 1.17; 95% CI, 1.01-1.36; P = .04). Among women who were premenopausal at blood collection, the association between B cells and breast cancer was significant (HR, 1.38; 95% CI, 1.05-1.82; P = .02), and an inverse association for circulating proportions of monocytes was found (HR, 0.75; 95% CI, 0.57-0.99; P = .05). Among all women, associations between leukocyte subtypes and breast cancer were time dependent: higher monocyte proportions were associated with decreased near-term risk (within 1 year of blood collection, HR, 0.62; 95% CI, 0.43-0.89; P = .01), whereas higher B cell proportions were associated with increased risk 4 or more years after blood collection (HR, 1.38; 95% CI, 1.15-1.67; P = .001). CONCLUSIONS AND RELEVANCE Circulating leukocyte profiles may be altered before clinical diagnoses of breast cancer and may be time-dependent markers for breast cancer risk, particularly among premenopausal women.
Collapse
Affiliation(s)
- Jacob K. Kresovich
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Katie M. O’Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Clarice R. Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Jack A. Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
- Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
9
|
Gervin K, Salas LA, Bakulski KM, van Zelm MC, Koestler DC, Wiencke JK, Duijts L, Moll HA, Kelsey KT, Kobor MS, Lyle R, Christensen BC, Felix JF, Jones MJ. Systematic evaluation and validation of reference and library selection methods for deconvolution of cord blood DNA methylation data. Clin Epigenetics 2019; 11:125. [PMID: 31455416 PMCID: PMC6712867 DOI: 10.1186/s13148-019-0717-y] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Umbilical cord blood (UCB) is commonly used in epigenome-wide association studies of prenatal exposures. Accounting for cell type composition is critical in such studies as it reduces confounding due to the cell specificity of DNA methylation (DNAm). In the absence of cell sorting information, statistical methods can be applied to deconvolve heterogeneous cell mixtures. Among these methods, reference-based approaches leverage age-appropriate cell-specific DNAm profiles to estimate cellular composition. In UCB, four reference datasets comprising DNAm signatures profiled in purified cell populations have been published using the Illumina 450 K and EPIC arrays. These datasets are biologically and technically different, and currently, there is no consensus on how to best apply them. Here, we systematically evaluate and compare these datasets and provide recommendations for reference-based UCB deconvolution. RESULTS We first evaluated the four reference datasets to ascertain both the purity of the samples and the potential cell cross-contamination. We filtered samples and combined datasets to obtain a joint UCB reference. We selected deconvolution libraries using two different approaches: automatic selection using the top differentially methylated probes from the function pickCompProbes in minfi and a standardized library selected using the IDOL (Identifying Optimal Libraries) iterative algorithm. We compared the performance of each reference separately and in combination, using the two approaches for reference library selection, and validated the results in an independent cohort (Generation R Study, n = 191) with matched Fluorescence-Activated Cell Sorting measured cell counts. Strict filtering and combination of the references significantly improved the accuracy and efficiency of cell type estimates. Ultimately, the IDOL library outperformed the library from the automatic selection method implemented in pickCompProbes. CONCLUSION These results have important implications for epigenetic studies in UCB as implementing this method will optimally reduce confounding due to cellular heterogeneity. This work provides guidelines for future reference-based UCB deconvolution and establishes a framework for combining reference datasets in other tissues.
Collapse
Affiliation(s)
- Kristina Gervin
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, School of Pharmacy, University of Oslo, Oslo, Norway
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, USA
| | - Kelly M Bakulski
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Menno C van Zelm
- Department of Immunology and Pathology, Central Clinical School, Monash University and The Alfred Hospital, Melbourne, Australia
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Devin C Koestler
- Department of Biostatistics, University of Kansas Medical Center, Kansas, KS, USA
| | - John K Wiencke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Liesbeth Duijts
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Division of Neonatology, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Henriëtte A Moll
- Department of Pediatrics, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Karl T Kelsey
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Michael S Kobor
- Department of Medical Genetics, University of British Columbia, and BC Children's Hospital Research Institute, Vancouver, Canada
| | - Robert Lyle
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, USA
- Department of Molecular and Systems Biology, and Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, USA
- Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, USA
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Meaghan J Jones
- Department of Biochemistry and Medical Genetics, University of Manitoba, and Children's Hospital Research Institute of Manitoba, Winnipeg, Canada.
| |
Collapse
|
10
|
Matthews SG, McGowan PO. Developmental programming of the HPA axis and related behaviours: epigenetic mechanisms. J Endocrinol 2019; 242:T69-T79. [PMID: 30917340 DOI: 10.1530/joe-19-0057] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 12/22/2022]
Abstract
It has been approximately 30 years since the seminal discoveries of David Barker and his colleagues, and research is beginning to unravel the mechanisms that underlie developmental programming. The early environment of the embryo, foetus and newborn have been clearly linked to altered hypothalamic-pituitary-adrenal (HPA) function and related behaviours through the juvenile period and into adulthood. A number of recent studies have shown that these effects can pass across multiple generations. The HPA axis is highly responsive to the environment, impacts both central and peripheral systems and is critical to health in a wide variety of contexts. Mechanistic studies in animals are linking early exposures to adversity with changes in gene regulatory mechanisms, including modifications of DNA methylation and altered levels of miRNA. Similar associations are emerging from recent human studies. These findings suggest that epigenetic mechanisms represent a fundamental link between adverse early environments and developmental programming of later disease. The underlying biological mechanisms that connect the perinatal environment with modified long-term health outcomes represent an intensive area of research. Indeed, opportunities for early interventions must identify the relevant environmental factors and their molecular targets. This new knowledge will likely assist in the identification of individuals who are at risk of developing poor outcomes and for whom early intervention is most effective.
Collapse
Affiliation(s)
- Stephen G Matthews
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Departments of Obstetrics & Gynaecology and Medicine, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Patrick O McGowan
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Biological Sciences and Center for Environmental Epigenetics and Development, University of Toronto, Scarborough, Ontario, Canada
- Department of Cell and Systems Biology, Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Bergens MA, Pittman GS, Thompson IJB, Campbell MR, Wang X, Hoyo C, Bell DA. Smoking-associated AHRR demethylation in cord blood DNA: impact of CD235a+ nucleated red blood cells. Clin Epigenetics 2019; 11:87. [PMID: 31182156 PMCID: PMC6558773 DOI: 10.1186/s13148-019-0686-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/24/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Numerous studies have demonstrated that DNA methylation levels in the aryl hydrocarbon receptor repressor (AHRR) gene measured in cord blood are significantly associated with prenatal tobacco smoke exposure and can be used as a fetal exposure biomarker. The mechanism driving this demethylation has not been determined and it is unclear if all cord blood cell types are impacted. Nucleated red blood cells (nRBCs/CD235a+ cells) are developmentally immature RBCs that display genome-wide hypomethylation and are observed at increased frequency in the cord blood of smoking mothers. We tested if AHRR methylation levels in CD235a+ nRBCs or nRBC counts influenced AHRR methylation in whole cord blood. METHODS Cord blood was collected from smoking (n = 34) and nonsmoking (n = 19) mothers and DNA was prepared from whole cord blood, isolated CD235a+ nRBCs, and CD14+ monocytes. AHRR methylation in cord blood DNA was measured using Illumina 850K arrays (cg05575921, chr5:373378). Pyrosequencing was used to compare methylation levels among cord blood, CD235a+, and CD14+ cells. We measured nRBC percentages using conventional complete blood counts and estimated percent nRBCs by a deconvolution model. RESULTS Methylation levels in AHRR were significantly lower in nRBCs relative to whole cord blood and CD14+ monocytes. While AHRR methylation levels in the cell types were significantly correlated across all subjects, methylation values at the chr5:373378 CpG averaged 14.6% lower in nRBCs (range 0.4 to 24.8%; p = 3.8E-13) relative to CD14+, with nonsmokers showing a significantly greater hypomethylation (- 4.1%, p = 1.8E-02). Methylation level at the AHRR chr5:373378 CpG was strongly associated with self-reported smoking in both CD14+ monocytes (t test p = 5.7E-09) and nRBCs (p = 4.8E-08), as well as cotinine levels (regression p = 1.1E-07 and p = 3.6E-04, respectively). For subjects with whole blood 850K data, robust linear regression models adjusting for estimated cell type composition, either including nRBCs counts or estimates, modestly increased the association between smoking and cg05575921 methylation. CONCLUSIONS Prenatal smoke exposure was highly significantly associated with AHRR methylation in cord blood, CD14+ monocytes, and CD235a+ nRBCs. AHRR methylation levels in nRBCs and nRBC counts had minimal effect on cord blood methylation measurements. However, regression models using estimated nRBCs or actual nRBC counts outperformed those lacking these covariates.
Collapse
Affiliation(s)
- Matthew A. Bergens
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| | - Gary S. Pittman
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| | - Isabel J. B. Thompson
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| | - Michelle R. Campbell
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| | - Xuting Wang
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| | - Cathrine Hoyo
- Epidemiology and Environmental Epigenomics Laboratory, North Carolina State University, Raleigh, NC 27695 USA
| | - Douglas A. Bell
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709 USA
| |
Collapse
|
12
|
Ma B, Allard C, Bouchard L, Perron P, Mittleman MA, Hivert MF, Liang L. Locus-specific DNA methylation prediction in cord blood and placenta. Epigenetics 2019; 14:405-420. [PMID: 30885044 DOI: 10.1080/15592294.2019.1588685] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
DNA methylation is known to be responsive to prenatal exposures, which may be a part of the mechanism linking early developmental exposures to future chronic diseases. Many studies use blood to measure DNA methylation, yet we know that DNA methylation is tissue specific. Placenta is central to fetal growth and development, but it is rarely feasible to collect this tissue in large epidemiological studies; on the other hand, cord blood samples are more accessible. In this study, based on paired samples of both placenta and cord blood tissues from 169 individuals, we investigated the methylation concordance between placenta and cord blood. We then employed a machine-learning-based model to predict locus-specific DNA methylation levels in placenta using DNA methylation levels in cord blood. We found that methylation correlation between placenta and cord blood is lower than other tissue pairs, consistent with existing observations that placenta methylation has a distinct pattern. Nonetheless, there are still a number of CpG sites showing robust association between the two tissues. We built prediction models for placenta methylation based on cord blood data and documented a subset of 1,012 CpG sites with high correlation between measured and predicted placenta methylation levels. The resulting list of CpG sites and prediction models could help to reveal the loci where internal or external influences may affect DNA methylation in both placenta and cord blood, and provide a reference data to predict the effects on placenta in future study even when the tissue is not available in an epidemiological study.
Collapse
Affiliation(s)
- Baoshan Ma
- a College of Information Science and Technology , Dalian Maritime University , Dalian , Liaoning Province , China
| | - Catherine Allard
- b Centre de Recherche du Center Hospitalier Universitaire de Sherbrooke , Sherbrooke , Quebec , Canada
| | - Luigi Bouchard
- b Centre de Recherche du Center Hospitalier Universitaire de Sherbrooke , Sherbrooke , Quebec , Canada.,c Department of Biochemistry, Faculty of Medicine and Health Sciences , Université de Sherbrooke , Sherbrooke , Quebec , Canada.,d ECOGENE-21 Biocluster , CSSS de Chicoutimi , Chicoutimi , Quebec , Canada
| | - Patrice Perron
- b Centre de Recherche du Center Hospitalier Universitaire de Sherbrooke , Sherbrooke , Quebec , Canada.,e Department of Medicine, Faculty of Medicine and Life Sciences , Université de Sherbrooke , Sherbrooke , Quebec , Canada
| | - Murray A Mittleman
- f Department of Epidemiology , Harvard T.H. Chan School of Public Health , Boston , MA , USA.,g Cardiovascular Epidemiology Research Unit , Beth Israel Deaconess Medical Center , Boston , MA , USA
| | - Marie-France Hivert
- b Centre de Recherche du Center Hospitalier Universitaire de Sherbrooke , Sherbrooke , Quebec , Canada.,e Department of Medicine, Faculty of Medicine and Life Sciences , Université de Sherbrooke , Sherbrooke , Quebec , Canada.,h Department of Population Medicine , Harvard Pilgrim Health Care Institute, Harvard Medical School , Boston , MA , USA.,i Diabetes Unit , Massachusetts General Hospital , Boston , MA , USA
| | - Liming Liang
- f Department of Epidemiology , Harvard T.H. Chan School of Public Health , Boston , MA , USA.,j Department of Biostatistics , Harvard T.H. Chan School of Public Health , Boston , MA , USA
| |
Collapse
|
13
|
Epigenetic age acceleration is associated with allergy and asthma in children in Project Viva. J Allergy Clin Immunol 2019; 143:2263-2270.e14. [PMID: 30738172 DOI: 10.1016/j.jaci.2019.01.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Epigenetic clocks have been suggested to capture one feature of the complexity between aging and the epigenome. However, little is known about the epigenetic clock in childhood allergy and asthma. OBJECTIVE We sought to examine associations of DNA methylation age (DNAmAge) and epigenetic age acceleration with childhood allergy and asthma. METHODS We calculated DNAmAge and age acceleration at birth, early childhood, and midchildhood based on the IlluminaHumanMethylation450BeadChip in Project Viva. We evaluated epigenetic clock associations with allergy and asthma using covariate-adjusted linear and logistic regressions. We attempted to replicate our findings in the Genetics of Asthma in Costa Rica Study. RESULTS At midchildhood (mean age, 7.8 years) in Project Viva, DNAmAge and age acceleration were cross-sectionally associated with greater total serum IgE levels and greater odds of atopic sensitization. Every 1-year increase in intrinsic epigenetic age acceleration was associated with a 1.22 (95% CI, 1.07-1.39), 1.17 (95% CI, 1.03-1.34), and 1.29 (95% CI, 1.12-1.49) greater odds of atopic sensitization and environmental and food allergen sensitization. DNAmAge and extrinsic epigenetic age acceleration were also cross-sectionally associated with current asthma at midchildhood. DNAmAge and age acceleration at birth and early childhood were not associated with midchildhood allergy or asthma. The midchildhood association between age acceleration and atopic sensitization were replicated in an independent data set. CONCLUSIONS Because the epigenetic clock might reflect immune and developmental components of biological aging, our study suggests pathways through which molecular epigenetic mechanisms of immunity, development, and maturation can interact along the age axis and associate with childhood allergy and asthma by midchildhood.
Collapse
|
14
|
Guyatt AL, Brennan RR, Burrows K, Guthrie PAI, Ascione R, Ring SM, Gaunt TR, Pyle A, Cordell HJ, Lawlor DA, Chinnery PF, Hudson G, Rodriguez S. A genome-wide association study of mitochondrial DNA copy number in two population-based cohorts. Hum Genomics 2019; 13:6. [PMID: 30704525 PMCID: PMC6357493 DOI: 10.1186/s40246-018-0190-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/27/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Mitochondrial DNA copy number (mtDNA CN) exhibits interindividual and intercellular variation, but few genome-wide association studies (GWAS) of directly assayed mtDNA CN exist. We undertook a GWAS of qPCR-assayed mtDNA CN in the Avon Longitudinal Study of Parents and Children (ALSPAC) and the UK Blood Service (UKBS) cohort. After validating and harmonising data, 5461 ALSPAC mothers (16-43 years at mtDNA CN assay) and 1338 UKBS females (17-69 years) were included in a meta-analysis. Sensitivity analyses restricted to females with white cell-extracted DNA and adjusted for estimated or assayed cell proportions. Associations were also explored in ALSPAC children and UKBS males. RESULTS A neutrophil-associated locus approached genome-wide significance (rs709591 [MED24], β (change in SD units of mtDNA CN per allele) [SE] - 0.084 [0.016], p = 1.54e-07) in the main meta-analysis of adult females. This association was concordant in magnitude and direction in UKBS males and ALSPAC neonates. SNPs in and around ABHD8 were associated with mtDNA CN in ALSPAC neonates (rs10424198, β [SE] 0.262 [0.034], p = 1.40e-14), but not other study groups. In a meta-analysis of unrelated individuals (N = 11,253), we replicated a published association in TFAM (β [SE] 0.046 [0.017], p = 0.006), with an effect size much smaller than that observed in the replication analysis of a previous in silico GWAS. CONCLUSIONS In a hypothesis-generating GWAS, we confirm an association between TFAM and mtDNA CN and present putative loci requiring replication in much larger samples. We discuss the limitations of our work, in terms of measurement error and cellular heterogeneity, and highlight the need for larger studies to better understand nuclear genomic control of mtDNA copy number.
Collapse
Affiliation(s)
- Anna L. Guyatt
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Rebecca R. Brennan
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle, UK
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Kimberley Burrows
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Philip A. I. Guthrie
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Raimondo Ascione
- Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Susan M. Ring
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Tom R. Gaunt
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle, UK
| | | | - Debbie A. Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Patrick F. Chinnery
- Department of Clinical Neurosciences and MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle, UK
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Santiago Rodriguez
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
15
|
Wang XM, Tian FY, Fan LJ, Xie CB, Niu ZZ, Chen WQ. Comparison of DNA methylation profiles associated with spontaneous preterm birth in placenta and cord blood. BMC Med Genomics 2019; 12:1. [PMID: 30606219 PMCID: PMC6318854 DOI: 10.1186/s12920-018-0466-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/21/2018] [Indexed: 11/13/2022] Open
Abstract
Background The etiology and mechanism of spontaneous preterm birth (sPTB) are still unclear. Accumulating evidence has documented that various environmental exposure scenarios may cause maternal and fetal epigenetic changes, which initiates the focus on whether epigenetics can contribute to the occurrence of sPTB. Therefore, we conducted the current study to examine and compare the DNA methylation changes associated with sPTB in placenta and cord blood. Methods This hospital-based case-control study was carried out at three Women and Children’s hospitals in South China, where 32 spontaneous preterm births and 16 term births were recruited. Genome-wide DNA methylation profiles of the placenta and cord blood from these subjects were measured using the Illumina HumanMethylation EPIC BeadChip, and sPTB-associated differential methylated CpG sites were identified using limma regression model, after controlling for major maternal and infant confounders. Further Gene Ontology analysis was performed with PANTHER in order to assess different functional enrichment of the sPTB-associated genes in placenta and cord blood. Results After controlling for potential confounding factors, one differentially methylated position (DMP) in placenta and 31 DMPs in cord blood were found significantly associated with sPTB (Bonferroni corrected p < 0.05). The sPTB-associated CpG sites in placenta were mapped to genes that showed higher enrichment on biological processes including biological regulation, multicellular organismal process, and especially response to stimulus, while those in cord blood were mapped to genes that had higher enrichment on biological processes concerning cellular process, localization, and particularly metabolic process. Conclusion Findings of this study indicated that DNA methylation alteration in both placenta and cord blood are associated with sPTB, yet the DNA methylation modification patterns may appear differently in placenta and cord blood. Electronic supplementary material The online version of this article (10.1186/s12920-018-0466-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xi-Meng Wang
- Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment, Guangdong Provincial Key Laboratory of Food, Nutrition and Health. School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fu-Ying Tian
- Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment, Guangdong Provincial Key Laboratory of Food, Nutrition and Health. School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Li-Jun Fan
- Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment, Guangdong Provincial Key Laboratory of Food, Nutrition and Health. School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chuan-Bo Xie
- Department of Cancer Prevention Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No 21 Qingcaigang, Jianshe Road 6, Guangzhou, 510600, Guangdong, China
| | - Zhong-Zheng Niu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, State University of New York at Buffalo, 265 Farber Hall, Buffalo, NY, 14214, USA
| | - Wei-Qing Chen
- Department of Medical Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Assessment, Guangdong Provincial Key Laboratory of Food, Nutrition and Health. School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China. .,Department of Information Management, Xinhua College, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
16
|
Tian FY, Rifas-Shiman SL, Cardenas A, Baccarelli AA, DeMeo DL, Litonjua AA, Rich-Edwards JW, Gillman MW, Oken E, Hivert MF. Maternal corticotropin-releasing hormone is associated with LEP DNA methylation at birth and in childhood: an epigenome-wide study in Project Viva. Int J Obes (Lond) 2018; 43:1244-1255. [PMID: 30464231 PMCID: PMC6529291 DOI: 10.1038/s41366-018-0249-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/22/2018] [Accepted: 09/26/2018] [Indexed: 12/19/2022]
Abstract
Background: Corticotropin-releasing hormone (CRH) plays a central role in regulating the secretion of cortisol which controls a wide range of biological processes. Fetuses overexposed to cortisol have increased risks of disease in later life. DNA methylation may be the underlying association between prenatal cortisol exposure and health effects. We investigated associations between maternal CRH levels and epigenome-wide DNA methylation of cord blood in offsprings and evaluated whether these associations persisted into mid-childhood. Methods: We investigated mother-child pairs enrolled in the prospective Project Viva pre-birth cohort. We measured DNA methylation in 257 umbilical cord blood samples using the HumanMethylation450 Bead Chip. We tested associations of maternal CRH concentration with cord blood cells DNA methylation, adjusting the model for maternal age at enrollment, education, maternal race/ethnicity, pre-pregnancy body mass index, parity, gestational age at delivery, child sex, and cell-type composition in cord blood. We further examined the persistence of associations between maternal CRH levels and DNA methylation in children’s blood cells collected at mid-childhood (N = 239, age: 6.7–10.3 years) additionally adjusting for the children’s age at blood drawn. Results: Maternal CRH levels are associated with DNA methylation variability in cord blood cells at 96 individual CpG sites (False Discovery Rate < 0.05). Among the 96 CpG sites, we identified 3 CpGs located near the LEP gene. Regional analyses confirmed the association between maternal CRH and DNA methylation near LEP. Moreover, higher maternal CRH levels were associated with higher blood-cell DNA methylation of the promoter region of LEP in mid-childhood (P < 0.05, β = 0.64, SE = 0.30). Conclusion: In our cohort, maternal CRH was associated with DNA methylation levels in newborns at multiple loci, notably in the LEP gene promoter. The association between maternal CRH and LEP DNA methylation levels persisted into mid-childhood.
Collapse
Affiliation(s)
- Fu-Ying Tian
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA.,Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sheryl L Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Andres Cardenas
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Augusto A Litonjua
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Janet W Rich-Edwards
- Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Matthew W Gillman
- Environmental Influences on Child Health Outcomes (ECHO) Office of the Director, National Institutes of Health, Department of Health and Human Services, Rockville, MD, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA. .,Diabetes Research Center, Massachusetts General Hospital, 50 Staniford Street, Boston, MA, USA. .,Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada. .,Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
17
|
Lin X, Tan JYL, Teh AL, Lim IY, Liew SJ, MacIsaac JL, Chong YS, Gluckman PD, Kobor MS, Cheong CY, Karnani N. Cell type-specific DNA methylation in neonatal cord tissue and cord blood: a 850K-reference panel and comparison of cell types. Epigenetics 2018; 13:941-958. [PMID: 30232931 PMCID: PMC6284779 DOI: 10.1080/15592294.2018.1522929] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Accounting for cellular heterogeneity is essential in neonatal epigenome-wide association studies (EWAS) performed on heterogeneous tissues, such as umbilical cord tissue (CT) or cord blood (CB). Using a reference-panel-based statistical approach, the cell type composition of heterogeneous tissues can be estimated by comparison of whole tissue DNA methylation profiles with cell type-specific DNA methylation signatures. Currently, there is no adequate DNA methylation reference panel for CT, and existing CB panels have been generated on lower coverage Infinium HumanMethylation450 arrays. In this study, we generate a reference panel for CT and improve available CB panels by using the higher coverage Infinium MethylationEPIC arrays. We performed DNA methylation profiling of 9 cell types isolated from CT and CB samples from 14 neonates. In addition to these cell types, we profiled DNA methylation of unfractionated CT and CB. Cell type composition of these unfractionated tissue samples, as estimated by our reference panels, was in agreement with that obtained by flow cytometry. Expectedly, DNA methylation profiles from CT and CB were distinct, reflecting their mesenchymal and hematopoietic stem cell origins. Variable CpGs from both unfractionated CT and its isolated cell types were more likely to be located in open seas and intronic regions than those in CB. Cell type specific CpGs in CT were enriched in intercellular matrix pathways, while those from CB were enriched in immune-related pathways. This study provides an open source reference panel for estimation and adjustment of cellular heterogeneity in CT and CB, and broadens the scope of tissue utilization assessed in future neonatal EWAS studies.
Collapse
Affiliation(s)
- Xinyi Lin
- a Singapore Institute for Clinical Sciences , A*STAR , Singapore.,b Duke-NUS Medical School , Singapore
| | - Jane Yi Lin Tan
- a Singapore Institute for Clinical Sciences , A*STAR , Singapore
| | - Ai Ling Teh
- a Singapore Institute for Clinical Sciences , A*STAR , Singapore
| | - Ives Yubin Lim
- a Singapore Institute for Clinical Sciences , A*STAR , Singapore
| | - Samantha J Liew
- a Singapore Institute for Clinical Sciences , A*STAR , Singapore
| | - Julia L MacIsaac
- c Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics , University of British Columbia , Vancouver , BC , Canada
| | - Yap Seng Chong
- a Singapore Institute for Clinical Sciences , A*STAR , Singapore.,d Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine , National University of Singapore , Singapore
| | - Peter D Gluckman
- a Singapore Institute for Clinical Sciences , A*STAR , Singapore.,e Centre for Human Evolution, Adaptation and Disease, Liggins Institute , University of Auckland , Auckland , New Zealand
| | - Michael S Kobor
- c Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics , University of British Columbia , Vancouver , BC , Canada
| | | | - Neerja Karnani
- a Singapore Institute for Clinical Sciences , A*STAR , Singapore.,f Department of Biochemistry, Yong Loo Lin School of Medicine , National University of Singapore , Singapore
| |
Collapse
|
18
|
Commodore A, Mukherjee N, Chung D, Svendsen E, Vena J, Pearce J, Roberts J, Arshad SH, Karmaus W. Frequency of heavy vehicle traffic and association with DNA methylation at age 18 years in a subset of the Isle of Wight birth cohort. ENVIRONMENTAL EPIGENETICS 2018; 4:dvy028. [PMID: 30697444 PMCID: PMC6343046 DOI: 10.1093/eep/dvy028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 05/08/2023]
Abstract
Assessment of changes in DNA methylation (DNA-m) has the potential to identify adverse environmental exposures. To examine DNA-m among a subset of participants (n = 369) in the Isle of Wight birth cohort who reported variable near resident traffic frequencies. We used self-reported frequencies of heavy vehicles passing by the homes of study subjects as a proxy measure for TRAP, which were: never, seldom, 10 per day, 1-9 per hour and >10 per hour. Methylation of cytosine-phosphate-guanine (CpG) dinucleotide sequences in the DNA was assessed from blood samples collected at age 18 years (n = 369) in the F1 generation. We conducted an epigenome wide association study to examine CpGs related to the frequency of heavy vehicles passing by subjects' homes, and employed multiple linear regression models to assess potential associations. We repeated some of these analysis in the F2 generation (n = 140). Thirty-five CpG sites were associated with heavy vehicular traffic. After adjusting for confounders, we found 23 CpGs that were more methylated, and 11 CpGs that were less methylated with increasing heavy vehicular traffic frequency among all subjects. In the F2 generation, 2 of 31 CpGs were associated with traffic frequencies and the direction of the effect was the same as in the F1 subset while differential methylation of 7 of 31 CpG sites correlated with gene expression. Our findings reveal differences in DNA-m in participants who reported higher heavy vehicular traffic frequencies when compared to participants who reported lower frequencies.
Collapse
Affiliation(s)
- A Commodore
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - N Mukherjee
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN 38152, USA
| | - D Chung
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - E Svendsen
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - J Vena
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - J Pearce
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - J Roberts
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - S H Arshad
- Faculty of Medicine, University of Southampton, Southampton, UK
- The David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
| | - W Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
19
|
BayesCCE: a Bayesian framework for estimating cell-type composition from DNA methylation without the need for methylation reference. Genome Biol 2018; 19:141. [PMID: 30241486 PMCID: PMC6151042 DOI: 10.1186/s13059-018-1513-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 08/20/2018] [Indexed: 11/10/2022] Open
Abstract
We introduce a Bayesian semi-supervised method for estimating cell counts from DNA methylation by leveraging an easily obtainable prior knowledge on the cell-type composition distribution of the studied tissue. We show mathematically and empirically that alternative methods which attempt to infer cell counts without methylation reference only capture linear combinations of cell counts rather than provide one component per cell type. Our approach allows the construction of components such that each component corresponds to a single cell type, and provides a new opportunity to investigate cell compositions in genomic studies of tissues for which it was not possible before.
Collapse
|
20
|
Peng C, den Dekker M, Cardenas A, Rifas-Shiman SL, Gibson H, Agha G, Harris MH, Coull BA, Schwartz J, Litonjua AA, DeMeo DL, Hivert MF, Gilman MW, Sagiv SK, de Kluizenaar Y, Felix JF, Jaddoe VW, Oken E, Duijts L, Gold DR, Baccarelli AA. Residential Proximity to Major Roadways at Birth, DNA Methylation at Birth and Midchildhood, and Childhood Cognitive Test Scores: Project Viva(Massachusetts, USA). ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:97006. [PMID: 30226399 PMCID: PMC6375460 DOI: 10.1289/ehp2034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/06/2018] [Accepted: 08/15/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Epigenetic variability is hypothesized as a regulatory pathway through which prenatal exposures may influence child development and health. OBJECTIVE We sought to examine the associations of residential proximity to roadways at birth and epigenome-wide DNA methylation. We also assessed associations of differential methylation with child cognitive outcomes. METHODS We estimated residential proximity to roadways at birth using a geographic information system (GIS) and cord blood methylation using Illumina's HumanMethylation450-array in 482 mother-child pairs in Project Viva. We identified individual CpGs associated with residential-proximity-to-roadways at birth using robust linear regression [[Formula: see text]]. We also estimated association between proximity-to-roadways at birth and methylation of the same sites in blood samples collected at age 7-11 y ([Formula: see text]). We ran the same analyses in the Generation R Study for replication ([Formula: see text]). In Project Viva, we investigated associations of differential methylation at birth with midchildhood cognition using linear regression. RESULTS Living closer to major roadways at birth was associated with higher cord blood (and-more weakly-midchildhood blood) methylation of four sites in LAMB2. For each halving of residential-proximity-to-major-roadways, we observed a 0.82% increase in DNA methylation at cg05654765 [95% confidence interval (CI): (0.54%, 1.10%)], 0.88% at cg14099457 [95% CI: (0.56%, 1.19%)], 0.19% at cg03732535 [95% CI: (0.11%, 0.28)], and 1.08% at cg02954987 [95% CI: (0.65%, 1.51%)]. Higher cord blood methylation of these sites was associated with lower midchildhood nonverbal cognitive scores. Our results did not replicate in the Generation R Study. CONCLUSIONS Our discovery results must be interpreted with caution, given that they were not replicated in a separate cohort. However, living close to major roadways at birth was associated with cord blood methylation of sites in LAMB2-a gene known to be linked to axonal development-in our U.S. cohort. Higher methylation of these sites associated with lower nonverbal cognitive scores at age 7-11 y in the same children. https://doi.org/10.1289/EHP2034.
Collapse
Affiliation(s)
- Cheng Peng
- 1 Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts, USA
| | - Martijn den Dekker
- 2 The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam , Rotterdam, Netherlands
- 3 Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center Rotterdam , Rotterdam, Netherlands
- 4 Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam , Rotterdam, Netherlands
| | - Andres Cardenas
- 5 Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston, Massachusetts, USA
| | - Sheryl L Rifas-Shiman
- 5 Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston, Massachusetts, USA
| | - Heike Gibson
- 6 Department of Environmental Health, Harvard T. H. Chan School of Public Health , Boston, Massachusetts, USA
| | - Golareh Agha
- 7 Department of Environmental Health Sciences, Columbia University Mailman School of Public Health , New York, USA
| | - Maria H Harris
- 8 Department of Epidemiology, University of California, Berkeley School of Public Health , Berkeley, California, USA
| | - Brent A Coull
- 9 Department of Biostatistics, Harvard T.H Chan School of Public Health , Boston, Massachusetts, USA
| | - Joel Schwartz
- 1 Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts, USA
- 6 Department of Environmental Health, Harvard T. H. Chan School of Public Health , Boston, Massachusetts, USA
| | - Augusto A Litonjua
- 1 Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts, USA
| | - Dawn L DeMeo
- 1 Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts, USA
| | - Marie-France Hivert
- 5 Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston, Massachusetts, USA
- 10 Diabetes Unit, Massachusetts General Hospital , Boston, Massachusetts, USA
| | - Matthew W Gilman
- 5 Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston, Massachusetts, USA
- 11 Environmental Influences on Child Health Outcomes (ECHO) Program, Office of the Director , National Institutes of Health , Bethesda, Maryland, USA
| | - Sharon K Sagiv
- 8 Department of Epidemiology, University of California, Berkeley School of Public Health , Berkeley, California, USA
| | - Yvonne de Kluizenaar
- 12 The Netherlands Organization for Applied Scientific Research (TNO) , Delft, Netherlands
| | - Janine F Felix
- 2 The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam , Rotterdam, Netherlands
- 4 Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam , Rotterdam, Netherlands
- 13 Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam , Rotterdam, Netherlands
| | - Vincent W Jaddoe
- 2 The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam , Rotterdam, Netherlands
- 4 Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam , Rotterdam, Netherlands
- 13 Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam , Rotterdam, Netherlands
| | - Emily Oken
- 5 Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston, Massachusetts, USA
| | - Liesbeth Duijts
- 2 The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam , Rotterdam, Netherlands
- 3 Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center Rotterdam , Rotterdam, Netherlands
- 14 Department of Pediatrics, Division of Neonatology, Erasmus MC, University Medical Center Rotterdam , Rotterdam, Netherlands
| | - Diane R Gold
- 1 Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts, USA
- 6 Department of Environmental Health, Harvard T. H. Chan School of Public Health , Boston, Massachusetts, USA
| | - Andrea A Baccarelli
- 1 Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts, USA
- 7 Department of Environmental Health Sciences, Columbia University Mailman School of Public Health , New York, USA
| |
Collapse
|
21
|
Bauer M. Cell-type-specific disturbance of DNA methylation pattern: a chance to get more benefit from and to minimize cohorts for epigenome-wide association studies. Int J Epidemiol 2018; 47:917-927. [DOI: 10.1093/ije/dyy029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Affiliation(s)
- Mario Bauer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research, UFZ, Permoserst, 15, 04318 Leipzig, Germany
| |
Collapse
|
22
|
Coker ES, Gunier R, Huen K, Holland N, Eskenazi B. DNA methylation and socioeconomic status in a Mexican-American birth cohort. Clin Epigenetics 2018; 10:61. [PMID: 29760810 PMCID: PMC5941629 DOI: 10.1186/s13148-018-0494-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/25/2018] [Indexed: 11/25/2022] Open
Abstract
Background Maternal social environmental stressors during pregnancy are associated with adverse birth and child developmental outcomes, and epigenetics has been proposed as a possible mechanism for such relationships. Methods In a Mexican-American birth cohort of 241 maternal-infant pairs, cord blood samples were measured for repeat element DNA methylation (LINE-1 and Alu). Linear mixed effects regression was used to model associations between indicators of the social environment (low household income and education, neighborhood-level characteristics) and repeat element methylation. Results from a dietary questionnaire were also used to assess the interaction between maternal diet quality and the social environment on markers of repeat element DNA methylation. Results After adjusting for confounders, living in the most impoverished neighborhoods was associated with higher cord blood LINE-1 methylation (β = 0.78, 95%CI 0.06, 1.50, p = 0.03). No other neighborhood-, household-, or individual-level socioeconomic indicators were significantly associated with repeat element methylation. We observed a statistical trend showing that positive association between neighborhood poverty and LINE-1 methylation was strongest in cord blood of infants whose mothers reported better diet quality during pregnancy (pinteraction = 0.12). Conclusion Our findings indicate a small yet unexpected positive association between neighborhood-level poverty during pregnancy and methylation of repetitive element DNA in infant cord blood and that this association is possibly modified by diet quality during pregnancy. However, our null findings for other adverse SES indicators do not provide strong evidence for an adverse association between early-life socioeconomic environment and repeat element DNA methylation in infants.
Collapse
Affiliation(s)
- Eric S. Coker
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA USA
- Berkeley, USA
| | - Robert Gunier
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA USA
- Berkeley, USA
| | - Karen Huen
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA USA
- Richmond, USA
| | - Nina Holland
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA USA
- Richmond, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA USA
- Berkeley, USA
| |
Collapse
|
23
|
Peng C, Cardenas A, Rifas-Shiman SL, Hivert MF, Gold DR, Platts-Mills TA, Lin X, Oken E, Baccarelli AA, Litonjua AA, DeMeo DL. Epigenome-wide association study of total serum immunoglobulin E in children: a life course approach. Clin Epigenetics 2018; 10:55. [PMID: 29692868 PMCID: PMC5905182 DOI: 10.1186/s13148-018-0488-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 04/04/2018] [Indexed: 02/06/2023] Open
Abstract
Background IgE-mediated sensitization may be epigenetically programmed in utero, but early childhood environment may further alter complex traits and disease phenotypes through epigenetic plasticity. However, the epigenomic footprint underpinning IgE-mediated type-I hypersensitivity has not been well-understood, especially under a longitudinal early-childhood life-course framework. Methods We used epigenome-wide DNA methylation (IlluminaHumanMethylation450 BeadChip) in cord blood and mid-childhood peripheral blood to investigate pre- and post-natal methylation marks associated with mid-childhood (age 6.7-10.2) total serum IgE levels in 217 mother-child pairs in Project Viva-a prospective longitudinal pre-birth cohort in eastern Massachusetts, USA. We identified methylation sites associated with IgE using covariate-adjusted robust linear regressions. Results Nineteen methylation marks in cord blood were associated with IgE in mid-childhood (FDR < 0.05) in genes implicated in cell signaling, growth, and development. Among these, two methylation sites (C7orf50, ZAR1) remained robust after the adjustment for the change in DNA methylation from birth to mid-childhood (FDR < 0.05). An analysis of the change in methylation between cord blood and mid-childhood DNA (Δ-DNAm) identified 395 methylation marks in 272 genes associated with mid-childhood IgE (FDR < 0.05), with multiple sites located within ACOT7 (4 sites), EPX (5 sites), EVL (3 sites), KSR1 (4 sites), ZFPM1 (3 sites), and ZNF862 (3 sites). Several of these methylation loci were previously associated with asthma (ADAM19, EPX, IL4, IL5RA, and PRG2). Conclusion This study identified fetally programmed and mid-childhood methylation signals associated with mid-childhood IgE. Epigenetic priming during fetal development and early childhood likely plays an important role in IgE-mediated type-I hypersensitivity.
Collapse
Affiliation(s)
- Cheng Peng
- Channing Division of Network Medicine and the Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, 4th Floor, Boston, MA 02115 USA
| | - Andres Cardenas
- 2Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA USA
| | - Sheryl L Rifas-Shiman
- 2Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA USA
| | - Marie-France Hivert
- 2Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA USA.,3Diabetes Unit, Massachusetts General Hospital, Boston, MA USA
| | - Diane R Gold
- Channing Division of Network Medicine and the Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, 4th Floor, Boston, MA 02115 USA.,4Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA USA
| | - Thomas A Platts-Mills
- 5Division of Allergy and Clinical Immunology, University of Virginia School of Medicine, Charlottesville, VA USA
| | - Xihong Lin
- 6Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA USA
| | - Emily Oken
- 2Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA USA
| | - Andrea A Baccarelli
- 7Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY USA
| | - Augusto A Litonjua
- Channing Division of Network Medicine and the Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, 4th Floor, Boston, MA 02115 USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine and the Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, 4th Floor, Boston, MA 02115 USA
| |
Collapse
|
24
|
Titus AJ, Gallimore RM, Salas LA, Christensen BC. Cell-type deconvolution from DNA methylation: a review of recent applications. Hum Mol Genet 2018; 26:R216-R224. [PMID: 28977446 PMCID: PMC5886462 DOI: 10.1093/hmg/ddx275] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/11/2017] [Indexed: 02/07/2023] Open
Abstract
Recent advances in cell-type deconvolution approaches are adding to our understanding of the biology underlying disease development and progression. DNA methylation (DNAm) can be used as a biomarker of cell types, and through deconvolution approaches, to infer underlying cell type proportions. Cell-type deconvolution algorithms have two main categories: reference-based and reference-free. Reference-based algorithms are supervised methods that determine the underlying composition of cell types within a sample by leveraging differentially methylated regions (DMRs) specific to cell type, identified from DNAm measures of purified cell populations. Reference-free algorithms are unsupervised methods for use when cell-type specific DMRs are not available, allowing scientists to estimate putative cellular proportions or control for potential confounding from cell type. Reference-based deconvolution is typically applied to blood samples and has potentiated our understanding of the relation between immune profiles and disease by allowing estimation of immune cell proportions from archival DNA. Bioinformatic analyses using DNAm to infer immune cell proportions, part of a new field known as Immunomethylomics, provides a new direction for consideration in epigenome wide association studies (EWAS).
Collapse
Affiliation(s)
- Alexander J Titus
- Program in Quantitative Biomedical Sciences.,Department of Epidemiology
| | | | | | - Brock C Christensen
- Department of Epidemiology.,Department of Molecular and Systems Biology.,Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
25
|
Abstract
Even though the importance of epigenetics was first recognized in light of its role in tissue development, an increasing amount of evidence has shown that it also plays an important role in the development and progression of many common diseases. We discuss some recent findings on one representative epigenetic modification, DNA methylation, in some common diseases. While many new risk factors have been identified through the population-based epigenetic epidemiologic studies on the role of epigenetics in common diseases, this relatively new field still faces many unique challenges. Here, we describe those promises and unique challenges of epigenetic epidemiological studies and propose some potential solutions.
Collapse
Affiliation(s)
| | - Yun Liu
- The Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Correlation between global methylation level of peripheral blood leukocytes and serum C reactive protein level modified by MTHFR polymorphism: a cross-sectional study. BMC Cancer 2018; 18:184. [PMID: 29439678 PMCID: PMC5812223 DOI: 10.1186/s12885-018-4089-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 02/05/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Chronic inflammatory conditions are associated with higher tumor incidence through epigenetic and genetic alterations. Here, we focused on an association between an inflammation marker, C-reactive-protein (CRP), and global DNA methylation levels of peripheral blood leukocytes. METHODS The subjects were 384 healthy Japanese women enrolled as the control group of a case-control study for breast cancer conducted from 2001 to 2005. Global DNA methylation was quantified by Luminometric Methylation Assay (LUMA). RESULTS With adjustment for lifestyle-related factors, including folate intake, the global DNA methylation level of peripheral blood leukocytes was significantly but weakly increased by 0.43% per quartile category for CRP (P for trend = 0.010). Estimated methylation levels stratified by CRP quartile were 70.0%, 70.8%, 71.4%, and 71.3%, respectively. In addition, interaction between polymorphism of MTHFR (rs1801133, known as C677T) and CRP was significant (P for interaction = 0.046); the global methylation level was significantly increased by 0.61% per quartile category for CRP in the CT/TT group (those with the minor allele T, P for trend = 0.001), whereas no association was observed in the CC group (wild type). CONCLUSIONS Our study suggests that CRP concentration is weakly associated with global DNA methylation level. However, this association was observed more clearly in individuals with the minor allele of the MTHFR missense SNP rs1801133. By elucidating the complex mechanism of the regulation of DNA methylation by both acquired and genetic factors, our results may be important for cancer prevention.
Collapse
|
27
|
Kader F, Ghai M, Maharaj L. The effects of DNA methylation on human psychology. Behav Brain Res 2017; 346:47-65. [PMID: 29237550 DOI: 10.1016/j.bbr.2017.12.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/01/2017] [Accepted: 12/05/2017] [Indexed: 01/05/2023]
Abstract
DNA methylation is a fundamental epigenetic modification in the human genome; pivotal in development, genomic imprinting, X inactivation, chromosome stability, gene expression and methylation aberrations are involved in an array of human diseases. Methylation at promoters is associated with transcriptional repression, whereas gene body methylation is generally associated with gene expression. Extrinsic factors such as age, diets and lifestyle affect DNA methylation which consequently alters gene expression. Stress, anxiety, depression, life satisfaction, emotion among numerous other psychological factors also modify DNA methylation patterns. This correlation is frequently investigated in four candidate genes; NR3C1, SLC6A4, BDNF and OXTR, since regulation of these genes directly impact responses to social situations, stress, threats, behaviour and neural functions. Such studies underpin the hypothesis that DNA methylation is involved in deviant human behaviour, psychological and psychiatric conditions. These candidate genes may be targeted in future to assess the correlation between methylation, social experiences and long-term behavioural phenotypes in humans; and may potentially serve as biomarkers for therapeutic intervention.
Collapse
Affiliation(s)
- Farzeen Kader
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000 South Africa.
| | - Meenu Ghai
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000 South Africa.
| | - Leah Maharaj
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000 South Africa.
| |
Collapse
|
28
|
DNA-Methylation and Body Composition in Preschool Children: Epigenome-Wide-Analysis in the European Childhood Obesity Project (CHOP)-Study. Sci Rep 2017; 7:14349. [PMID: 29084944 PMCID: PMC5662763 DOI: 10.1038/s41598-017-13099-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 09/19/2017] [Indexed: 01/16/2023] Open
Abstract
Adiposity and obesity result from the interaction of genetic variation and environmental factors from very early in life, possibly mediated by epigenetic processes. Few Epigenome-Wide-Association-Studies have identified DNA-methylation (DNAm) signatures associated with BMI and body composition in children. Body composition by Bio-Impedance-Analysis and genome-wide DNAm in whole blood were assessed in 374 pre-school children from four European countries. Associations were tested by linear regression adjusted for sex, age, centre, education, 6 WBC-proportions according to Houseman and 30 principal components derived from control probes. Specific DNAm variants were identified to be associated with BMI (212), fat-mass (230), fat-free-mass (120), fat-mass-index (24) and fat-free-mass-index (15). Probes in genes SNED1(IRE-BP1), KLHL6, WDR51A(POC1A), CYTH4-ELFN2, CFLAR, PRDM14, SOS1, ZNF643(ZFP69B), ST6GAL1, C3orf70, CILP2, MLLT4 and ncRNA LOC101929268 remained significantly associated after Bonferroni-correction of P-values. We provide novel evidence linking DNAm with (i) altered lipid and glucose metabolism, (ii) diabetes and (iii) body size and composition in children. Both common and specific epigenetic signatures among measures were also revealed. The causal direction with phenotypic measures and stability of DNAm variants throughout the life course remains unclear and longitudinal analysis in other populations is required. These findings give support for potential epigenetic programming of body composition and obesity.
Collapse
|
29
|
Vangeel EB, Pishva E, Hompes T, van den Hove D, Lambrechts D, Allegaert K, Freson K, Izzi B, Claes S. Newborn genome-wide DNA methylation in association with pregnancy anxiety reveals a potential role for GABBR1. Clin Epigenetics 2017; 9:107. [PMID: 29026448 PMCID: PMC5627482 DOI: 10.1186/s13148-017-0408-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 09/24/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND There is increasing evidence for the role of prenatal stress in shaping offspring DNA methylation and disease susceptibility. In the current study, we aimed to identify genes and pathways associated with pregnancy anxiety using a genome-wide DNA methylation approach. METHODS We selected 22 versus 23 newborns from our Prenatal Early Life Stress (PELS) cohort, exposed to the lowest or highest degree of maternal pregnancy anxiety, respectively. Cord blood genome-wide DNA methylation was assayed using the HumanMethylation450 BeadChip (HM450, n = 45) and candidate gene methylation using EpiTYPER (n = 80). Cortisol levels were measured at 2, 4, and 12 months of age to test infant stress system (re)activity. RESULTS Data showed ten differentially methylated regions (DMR) when comparing newborns exposed to low versus high pregnancy anxiety scores. We validated a top DMR in the GABA-B receptor subunit 1 gene (GABBR1) revealing the association with pregnancy anxiety particularly in male newborns (most significant CpG Pearson R = 0.517, p = 0.002; average methylation Pearson R = 0.332, p = 0.039). Cord blood GABBR1 methylation was associated with infant cortisol levels in response to a routine vaccination at 4 months old. CONCLUSIONS In conclusion, our results show that pregnancy anxiety is associated with differential DNA methylation patterns in newborns and that our candidate gene GABBR1 is associated with infant hypothalamic-pituitary-adrenal axis response to a stressor. Our findings reveal a potential role for GABBR1 methylation in association with stress and provide grounds for further research.
Collapse
Affiliation(s)
- Elise Beau Vangeel
- Department of Neurosciences, Genetic Research About Stress and Psychiatry (GRASP), KU Leuven, Leuven, Belgium
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology (CMVB), KU Leuven, Leuven, Belgium
| | - Ehsan Pishva
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Titia Hompes
- Department of Neurosciences, Genetic Research About Stress and Psychiatry (GRASP), KU Leuven, Leuven, Belgium
- University Psychiatric Center, Leuven, Belgium
| | - Daniel van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Psychiatry, Psychosomatics and Psychotherapy, Laboratory of Translational Neuroscience, University of Wuerzburg, Wuerzburg, Germany
| | - Diether Lambrechts
- Department of Oncology, Laboratory of Translational Genetics, KU Leuven, Leuven, Belgium
- Vesalius Research Center (VRC), VIB, Leuven, Belgium
| | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Intensive Care and Department of Pediatric Surgery, Erasmus MC—Sophia’s Children’s Hospital, Rotterdam, The Netherlands
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology (CMVB), KU Leuven, Leuven, Belgium
| | - Benedetta Izzi
- Department of Epidemiology and Prevention, IRCCS Instituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Stephan Claes
- Department of Neurosciences, Genetic Research About Stress and Psychiatry (GRASP), KU Leuven, Leuven, Belgium
- University Psychiatric Center, Leuven, Belgium
| |
Collapse
|
30
|
Cardenas A, Rifas-Shiman SL, Godderis L, Duca RC, Navas-Acien A, Litonjua AA, DeMeo DL, Brennan KJ, Amarasiriwardena CJ, Hivert MF, Gillman MW, Oken E, Baccarelli AA. Prenatal Exposure to Mercury: Associations with Global DNA Methylation and Hydroxymethylation in Cord Blood and in Childhood. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:087022. [PMID: 28934725 PMCID: PMC5783674 DOI: 10.1289/ehp1467] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/04/2017] [Accepted: 05/19/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Mercury is a global pollutant, and prenatal exposure is associated with adverse health effects. To date, no studies have evaluated the association between prenatal mercury exposure and DNA hydroxymethylation, an epigenetic modification important for tissue differentiation and embryonic development. OBJECTIVES We sought to evaluate the association between prenatal mercury exposure and offspring global DNA methylation and hydroxymethylation at birth and test for persistence of the association in childhood. METHODS Within Project Viva, a U.S. prebirth cohort, we examined associations of maternal second trimester red blood cell mercury (RBC-Hg) concentrations with global 5-hydroxymethylcytosine (%-5hmC) and 5-methylcytosine (%-5mC) DNA content in blood collected at birth (n=306), early childhood (n=68; 2.9 to 4.9 y), and midchildhood (n=260; 6.7 to 10.5 y). RESULTS Median prenatal RBC-Hg concentration was 3.23μg/g [interquartile range (IQR)=3.29]. At birth, median cord blood %-5mC, %-5hmC, and their ratio were 4.95%, 0.22%, and 24.37, respectively. The mean adjusted difference [95% confidence interval (CI)] of blood %-5hmC for a doubling in prenatal RBC-Hg concentration was -0.013% (-0.029, 0.002), -0.031% (-0.056, -0.006), and 0.005% (-0.007, 0.018) at birth, early, and midchildhood, respectively. The corresponding relative adjusted change in the genomic ratio of %-5mC to %-5hmC for a doubling in prenatal RBC-Hg concentration was 4.70% (0.04, 9.58), 22.42% (7.73, 39.11), and 0.73% (-4.18, 5.88) at birth, early, and midchildhood, respectively. No associations were present between prenatal maternal RBC-Hg and %-5mC at any time point. CONCLUSIONS Prenatal mercury exposure was associated with lower %-5hmC genomic content and a corresponding increase in the ratio of %-5mC to %-5hmC in cord blood. This association was persistent in early but not midchildhood blood. Our results demonstrate the potential malleability of epigenetic modifications associated with mercury exposure in utero. https://doi.org/10.1289/EHP1467.
Collapse
Affiliation(s)
- Andres Cardenas
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston, Massachusetts, USA
| | - Sheryl L Rifas-Shiman
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston, Massachusetts, USA
| | - Lode Godderis
- Department of Public Health and Primary Care, Katholieke Universiteit Leuven , Leuven, Belgium
- IDEWE , External Service for Prevention and Protection at Work, Heverlee, Belgium
| | - Radu-Corneliu Duca
- Department of Public Health and Primary Care, Katholieke Universiteit Leuven , Leuven, Belgium
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University , New York, New York, USA
| | - Augusto A Litonjua
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital , Boston, Massachusetts, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital , Boston, Massachusetts, USA
| | - Kasey J Brennan
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University , New York, New York, USA
| | - Chitra J Amarasiriwardena
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai , New York, New York, USA
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston, Massachusetts, USA
- Diabetes Unit, Massachusetts General Hospital , Boston, Massachusetts, USA
| | - Matthew W Gillman
- Environmental Influences on Child Health Outcomes (ECHO) Program, Office of the Director, National Institutes of Health , Department of Health and Human Services, Bethesda, Maryland, USA
| | - Emily Oken
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute , Boston, Massachusetts, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University , New York, New York, USA
| |
Collapse
|
31
|
Solomon O, Yousefi P, Huen K, Gunier RB, Escudero-Fung M, Barcellos LF, Eskenazi B, Holland N. Prenatal phthalate exposure and altered patterns of DNA methylation in cord blood. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:398-410. [PMID: 28556291 PMCID: PMC6488305 DOI: 10.1002/em.22095] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 05/18/2023]
Abstract
Epigenetic changes such as DNA methylation may be a molecular mechanism through which environmental exposures affect health. Phthalates are known endocrine disruptors with ubiquitous exposures in the general population including pregnant women, and they have been linked with a number of adverse health outcomes. We examined the association between in utero phthalate exposure and altered patterns of cord blood DNA methylation in 336 Mexican-American newborns. Concentrations of 11 phthalate metabolites were analyzed in maternal urine samples collected at 13 and 26 weeks gestation as a measure of fetal exposure. DNA methylation was assessed using the Infinium HumanMethylation 450K BeadChip adjusting for cord blood cell composition. To identify differentially methylated regions (DMRs) that may be more informative than individual CpG sites, we used two different approaches, DMRcate and comb-p. Regional assessment by both methods identified 27 distinct DMRs, the majority of which were in relation to multiple phthalate metabolites. Most of the significant DMRs (67%) were observed for later pregnancy (26 weeks gestation). Further, 51% of the significant DMRs were associated with the di-(2-ethylhexyl) phthalate metabolites. Five individual CpG sites were associated with phthalate metabolite concentrations after multiple comparisons adjustment (FDR), all showing hypermethylation. Genes with DMRs were involved in inflammatory response (IRAK4 and ESM1), cancer (BRCA1 and LASP1), endocrine function (CNPY1), and male fertility (IFT140, TESC, and PRDM8). These results on differential DNA methylation in newborns with prenatal phthalate exposure provide new insights and targets to explore mechanism of adverse effects of phthalates on human health. Environ. Mol. Mutagen. 58:398-410, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Olivia Solomon
- School of Public Health, Center for Environmental Research and Children’s Health (CERCH), University
of California, Berkeley, Berkeley, CA 94720, USA
| | - Paul Yousefi
- School of Public Health, Center for Environmental Research and Children’s Health (CERCH), University
of California, Berkeley, Berkeley, CA 94720, USA
| | - Karen Huen
- School of Public Health, Center for Environmental Research and Children’s Health (CERCH), University
of California, Berkeley, Berkeley, CA 94720, USA
| | - Robert B. Gunier
- School of Public Health, Center for Environmental Research and Children’s Health (CERCH), University
of California, Berkeley, Berkeley, CA 94720, USA
| | - Maria Escudero-Fung
- School of Public Health, Center for Environmental Research and Children’s Health (CERCH), University
of California, Berkeley, Berkeley, CA 94720, USA
| | - Lisa F. Barcellos
- School of Public Health, Center for Environmental Research and Children’s Health (CERCH), University
of California, Berkeley, Berkeley, CA 94720, USA
| | - Brenda Eskenazi
- School of Public Health, Center for Environmental Research and Children’s Health (CERCH), University
of California, Berkeley, Berkeley, CA 94720, USA
| | - Nina Holland
- School of Public Health, Center for Environmental Research and Children’s Health (CERCH), University
of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
32
|
Teschendorff AE, Zheng SC. Cell-type deconvolution in epigenome-wide association studies: a review and recommendations. Epigenomics 2017; 9:757-768. [PMID: 28517979 DOI: 10.2217/epi-2016-0153] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A major challenge faced by epigenome-wide association studies (EWAS) is cell-type heterogeneity. As many EWAS have already demonstrated, adjusting for changes in cell-type composition can be critical when analyzing and interpreting findings from such studies. Because of their importance, a great number of different statistical algorithms, which adjust for cell-type composition, have been proposed. Some of the methods are 'reference based' in that they require a priori defined reference DNA methylation profiles of cell types that are present in the tissue of interest, while other algorithms are 'reference free.' At present, however, it is unclear how best to adjust for cell-type heterogeneity, as this may also largely depend on the type of tissue and phenotype being considered. Here, we provide a critical review of the major existing algorithms for correcting cell-type composition in the context of Illumina Infinium Methylation Beadarrays, with the aim of providing useful recommendations to the EWAS community.
Collapse
Affiliation(s)
- Andrew E Teschendorff
- CAS Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Department of Women's Cancer, University College London, 74 Huntley Street, London WC1E 6AU, UK.,Statistical Cancer Genomics, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| | - Shijie C Zheng
- CAS Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
33
|
Agha G, Hajj H, Rifas-Shiman SL, Just AC, Hivert MF, Burris HH, Lin X, Litonjua AA, Oken E, DeMeo DL, Gillman MW, Baccarelli AA. Birth weight-for-gestational age is associated with DNA methylation at birth and in childhood. Clin Epigenetics 2016; 8:118. [PMID: 27891191 PMCID: PMC5112715 DOI: 10.1186/s13148-016-0285-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/02/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Both higher and lower fetal growth are associated with cardio-metabolic health later in life, suggesting that prenatal developmental programming determines long-term cardiovascular disease risk. Epigenetic mechanisms, which orchestrate fetal growth and development, may offer insight on the early programming of health and disease. We investigated whether birth weight-for-gestational is associated with DNA methylation at birth and mid-childhood, measured via the Infinium 450K array. METHODS/RESULTS Participants were from Project Viva, a pre-birth cohort of pregnant women and their children in Eastern Massachusetts. After exclusion of participants with maternal type 1 or 2 diabetes and gestational age <34 weeks, we used DNA methylation assays from 476 venous umbilical cord blood samples and a subset of 235 who additionally had peripheral blood samples available in mid-childhood (age 7-10 years). Among 392,918 CpG sites analyzed, birth weight-for-gestational age z-score was associated with cord blood DNA methylation at 34 CpGs (false discovery rate P < 0.05), after adjusting for maternal age, race/ethnicity, education, smoking, parity, delivery mode, pre-pregnancy BMI, gestational diabetes status, child sex, and estimated cord blood cell proportions based on a cord blood reference panel. Two of these CpGs were previously reported in epigenome-wide analyses of birth weight, and several other CpGs map to genes relevant to fetal growth and development. Namely, higher birth weight-for-gestational age was associated with higher methylation at four CpGs at the PBX1 locus (e.g., β (95% CI) for lead signal at cg06750897 = 1.9 (1.2, 2.6)), which encodes a transcription factor that regulates embryonic development. Birth weight-for-gestational age was also associated with mid-childhood blood DNA methylation at four of the 34 CpGs identified in cord blood analyses, including sites at the PBX1 locus described. CONCLUSIONS We identified CpG sites where birth weight-for-gestational age was associated with DNA methylation at birth, and for a subset of these sites, birth weight-for-gestational age was also associated with DNA methylation at mid-childhood.
Collapse
Affiliation(s)
- Golareh Agha
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, New York, NY 10032 USA
| | - Hanine Hajj
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA USA
| | - Sheryl L. Rifas-Shiman
- Obesity Prevention Program, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA USA
| | - Allan C. Just
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Marie-France Hivert
- Obesity Prevention Program, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA USA
| | - Heather H. Burris
- Department of Neonatology, Beth Israel Deaconess Medical Center, Department of Pediatrics, Harvard Medical School, Boston, MA USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | | | - Emily Oken
- Obesity Prevention Program, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA USA
| | - Dawn L. DeMeo
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Matthew W. Gillman
- Obesity Prevention Program, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, New York, NY 10032 USA
| |
Collapse
|