1
|
Bashir B, Sethi P, Panda S, Manikyam HK, Vishwas S, Singh SK, Singh K, Jain D, Chaitanya MVNL, Coutinho HDM. Unravelling the epigenetic based mechanism in discovery of anticancer phytomedicine: Evidence based studies. Cell Signal 2025; 131:111743. [PMID: 40107479 DOI: 10.1016/j.cellsig.2025.111743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Epigenetic mechanisms play a crucial role in the normal development and maintenance of tissue-specific gene expression patterns in mammals. Disruption of these processes can result in changes to gene function and the transformation of cells into a malignant state. Cancer is characterized by widespread alterations in the epigenetic landscape, revealing that it involves not only genetic mutations but also epigenetic abnormalities. Recent progress in the field of cancer epigenetics has demonstrated significant reprogramming of various components of the epigenetic machinery in cancer, such as DNA methylation, modifications to histones, positioning of nucleosomes, and the expression of non-coding RNAs, particularly microRNAs. The ability to reverse epigenetic abnormalities has given rise to the hopeful field of epigenetic therapy, which has shown advancement with the recent approval by the FDA of three drugs targeting epigenetic mechanisms for the treatment of cancer. In the present manuscript, a comprehensive review has been presented about the role of understanding the epigenetic link between cancer and mechanisms by which phytomedicine offers treatment avenues. Further, this review deciphers the significance of natural products in the identification of epigenetic therapeutics, the diversity of their molecular targets, the use of nanotechnology, and the creation of new strategies for overcoming the inherent clinical challenges associated with developing these drug leads.
Collapse
Affiliation(s)
- Bushra Bashir
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Pranshul Sethi
- Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University, Gajraula, Uttar Pradesh, India
| | - Satyajit Panda
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Cuttack, Odisha 754202, India
| | - Hemanth Kumar Manikyam
- Department of Chemistry, Faculty of science, North East Frontier Technical University, Arunachal Pradesh 791001, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India
| | - Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Divya Jain
- Department of Microbiology, School of Applied and Life sciences, Uttaranchal University, Dehradun, Uttarakhand 248007, India.
| | - M V N L Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144402, India.
| | | |
Collapse
|
2
|
Deng Y, Li Y, Cao H. BRD9 promotes the malignant phenotype of thyroid cancer by activating the MAPK/ERK pathway. Anticancer Drugs 2025; 36:359-373. [PMID: 39903580 PMCID: PMC11969370 DOI: 10.1097/cad.0000000000001694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 02/06/2025]
Abstract
Thyroid cancer is one of the most common endocrine gland malignancies in China. During gene transcription, the bromodomain and extraterminal domain (BET) proteins perform epigenome interpretation tasks. Bromodomain-containing protein 9 (BRD9) is one of the BET family members. Increasing evidence has implicated that BRD9 plays significant roles in multiple malignancies. However, its role in thyroid cancer is still not fully understood. In this research, our results demonstrated that high expression of BRD9 can facilitate the malignant phenotype of thyroid cancer cell lines, while low expression of BRD9 can impede the malignant phenotype of thyroid cancer cell lines. Pharmacologically, I-BRD9 treatment inhibits the proliferation and promotes the rate of apoptosis in thyroid cancer cell lines. Moreover, our results also revealed that BRD9 promoted xenograft tumor growth. In addition, our study showed that the expression of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated protein kinase (ERK) pathway-related proteins was decreased in BRD9 knockdown thyroid cancer cells, such as Raf, ERK, p-ERK, c-Fos, and c-Myc, which could be significantly reversed by overexpressing the BRD9 in different thyroid cancer cells. After the specific inhibitor of ERK (SCH772984) was applied to thyroid cancer cells (BCPAP cells) overexpressing the BRD9 gene, the results suggested that SCH772984 reverses the high expression of MAPK/ERK pathway-associated protein in BCPAP cells (over-expression BRD9 cells). In conclusion, this study demonstrated that BRD9 was highly expressed in serum and malignant tumor tissues of thyroid cancer patients and further promoted the development of the malignant phenotype of thyroid cancer by activating the MAPK/ERK signaling pathway.
Collapse
Affiliation(s)
- Yingcheng Deng
- Department of Anatomy, Hunan Traditional Chinese Medical College, Zhuzhou
| | - Yilin Li
- Department of Breast and Thyroid Surgery, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Hong Cao
- Department of Breast and Thyroid Surgery, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
3
|
Ren H, Tang Y, Zhang D. The emerging role of protein L-lactylation in metabolic regulation and cell signalling. Nat Metab 2025; 7:647-664. [PMID: 40175761 DOI: 10.1038/s42255-025-01259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/03/2025] [Indexed: 04/04/2025]
Abstract
L-Lactate has emerged as a crucial metabolic intermediate, moving beyond its traditional view as a mere waste product. The recent discovery of L-lactate-driven protein lactylation as a post-translational modification has unveiled a pathway that highlights the role of lactate in cellular signalling. In this Perspective, we explore the enzymatic and metabolic mechanisms underlying protein lactylation and its impacts on both histone and non-histone proteins in the contexts of physiology and diseases. We discuss growing evidence suggesting that this modification regulates a wide range of cellular functions and is involved in various physiological and pathological processes, such as cell-fate determination, development, cardiovascular diseases, cancer and autoimmune disorders. We propose that protein lactylation acts as a pivotal mechanism, integrating metabolic and signalling pathways to enable cellular adaptation, and highlight its potential as a therapeutic target in various diseases.
Collapse
Affiliation(s)
- Haowen Ren
- State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
| | - Yuwei Tang
- State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
- Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Di Zhang
- State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
4
|
Edaibis R, Akel R, Shin JA. Beyond small molecules: advancing MYC-targeted cancer therapies through protein engineering. Transcription 2025; 16:67-85. [PMID: 39878458 PMCID: PMC11970745 DOI: 10.1080/21541264.2025.2453315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
Protein engineering has emerged as a powerful approach toward the development of novel therapeutics targeting the MYC/MAX/E-box network, an active driver of >70% of cancers. The MYC/MAX heterodimer regulates numerous genes in our cells by binding the Enhancer box (E-box) DNA site and activating the transcription of downstream genes. Traditional small molecules that inhibit MYC face significant limitations that include toxic effects, drug delivery challenges, and resistance. Recent advances in protein engineering offer promising alternatives by creating protein-based drugs that directly disrupt the MYC/MAX dimerization interface and/or MYC/MAX's binding to specific DNA targets. Designed DNA binding proteins like Omomyc, DuoMyc, ME47, MEF, and Mad inhibit MYC activity through specific dimerization, sequestration, and DNA-binding mechanisms. Compared to small molecules, these engineered proteins can offer superior specificity and efficacy and provide a potential pathway for overcoming the limitations of traditional cancer therapies. The success of these protein therapeutics highlights the importance of protein engineering in developing cancer treatments.
Collapse
Affiliation(s)
- Rama Edaibis
- Department of Chemistry, University of Toronto, Mississauga, ON, Canada
| | - Raneem Akel
- Department of Chemistry, University of Toronto, Mississauga, ON, Canada
| | - Jumi A. Shin
- Department of Chemistry, University of Toronto, Mississauga, ON, Canada
| |
Collapse
|
5
|
Lv J, Wang Y, Lv J, Zheng C, Zhang X, Wan L, Zhang J, Liu F, Zhang H. Pifithrin-μ sensitizes mTOR-activated liver cancer to sorafenib treatment. Cell Death Dis 2025; 16:42. [PMID: 39863613 PMCID: PMC11762308 DOI: 10.1038/s41419-025-07332-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 12/10/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025]
Abstract
TSC2, a suppressor of mTOR, is inactivated in up to 20% of HBV-associated liver cancer. This subtype of liver cancer is associated with aggressive behavior and early recurrence after hepatectomy. Being the first targeted regimen for advanced liver cancer, sorafenib has limited efficacy in HBV-positive patients. In this study, we observed that mTOR-activated cells, due to the loss of either TSC2 or PTEN, were insensitive to the treatment of sorafenib. Mechanistically, HSP70 enhanced the interaction between active mTOR-potentiated CREB1 and CREBBP to boost the transcription of the antioxidant response regulator SESN3. In return, elevated SESN3 enhanced cellular antioxidant capacity and rendered cells resistant to sorafenib. Pifithrin-μ, an HSP70 inhibitor, synergized with sorafenib in the induction of ferroptosis in mTOR-activated liver cancer cells and suppression of TSC2-deficient hepatocarcinogenesis. Our findings highlight the pivotal role of the mTOR-CREB1-SESN3 axis in sorafenib resistance of liver cancer and pave the way for combining pifithrin-μ and sorafenib for the treatment of mTOR-activated liver cancer.
Collapse
Affiliation(s)
- Jiarui Lv
- Department of Organ Transplantation and Hepatobiliary Surgery, Key Laboratory of Organ Transplantation of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanan Wang
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiacheng Lv
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Cuiting Zheng
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyu Zhang
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Radiology, State Key Laboratory of Complex, Severe and Rare Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College and Peking Union Medical College Hospital, Beijing, China
| | - Linyan Wan
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Gastroenterology, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Jiayang Zhang
- Department of Breast Oncology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital and Institute, Beijing, China
| | - Fangming Liu
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongbing Zhang
- Department of Organ Transplantation and Hepatobiliary Surgery, Key Laboratory of Organ Transplantation of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
6
|
Thangavelu L, Altamimi ASA, Ghaboura N, Babu MA, Roopashree R, Sharma P, Pal P, Choudhary C, Prasad GVS, Sinha A, Balaraman AK, Rawat S. Targeting the p53-p21 axis in liver cancer: Linking cellular senescence to tumor suppression and progression. Pathol Res Pract 2024; 263:155652. [PMID: 39437639 DOI: 10.1016/j.prp.2024.155652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Liver cancer is a major health epidemic worldwide, mainly due to its high mortality rates and limited treatment options. The association of cellular senescence to tumorigenesis and the cancer hallmarks remains a subject of interest in cancer biology. The p53-p21 signalling axis is an important regulator in restoring the cell's balance by supporting tumor suppression and tumorigenesis in liver cancer. We review the novel molecular mechanisms that p53 and its downstream effector, p21, employ to induce cellular senescence, making it last longer, and halt the proliferation of damaged hepatocytes to become tumorous cells. We also examine how dysregulation of this pathway contributes to HCC pathogenesis, proliferation, survival, acquired resistance to apoptosis, and increased invasiveness. Furthermore, we comprehensively describe the molecular cross-talk between the p53-p21 signalling axis and major cell cycle signalling pathways, including Wnt/β-catenin, PI3K/Akt, and TGF-β in liver cancer and provide an overview of promising candidates for chemoprevention and future therapeutic strategies. This review article explores the roles of the p53-p21 pathway in liver cancer, examining its function in promoting cellular senescence under normal conditions and its potential role in cancer progression. It also highlights novel therapeutic drugs and drug targets within the pathway and discusses the implications for treatment strategies and prognosis in liver cancer.
Collapse
Affiliation(s)
- Lakshmi Thangavelu
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA UNIVERSITY, Mathura, UP 281406, India.
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Pawan Sharma
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Pusparghya Pal
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Chhavi Choudhary
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali, Punjab 140307, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Aashna Sinha
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya, Selangor 63000, Malaysia
| | - Sushama Rawat
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| |
Collapse
|
7
|
Vartak R, Patel K. Targeted nanoliposomes of oncogenic protein degraders: Significant inhibition of tumor in lung-cancer bearing mice. J Control Release 2024; 376:502-517. [PMID: 39406280 DOI: 10.1016/j.jconrel.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/29/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
With 60 % of non-small cell lung cancer (NSCLC) expressing epidermal growth factor receptor (EGFR), it has been explored as an important therapeutic target for lung tumors. However, even the well-established EGFR inhibitors tend to promptly develop resistance over time. Moreover, strategies that could impede resistance development and be advantageous for both EGFR-Tyrosine kinase inhibitor (TKI)-sensitive and mutant NSCLC patients are constrained. Based on the critical relationship between EGFR, c-MYC, and Kirsten rat sarcoma virus (K-Ras), simultaneous degradation of EGFR and Bromodomain-containing protein 4 (BRD4) using "Proteolysis Targeting Chimeras (PROTACs)" could be a promising approach. PROTACs are emerging class of oncoprotein degraders but very challanging to deliver in vivo. Compared to individual IC50s, strong synergism was observed at 1:1 ratio of BPRO and EPRO in NSCLC cell lines with diverse mutation. Significant inhibition of cell growth with higher cellular apoptosis was observed in 2D and 3D-based cell assays in nanomolar concentrations. EGFR activation assay revealed 47.60 % EGFR non-expressing cells confirming EGFR-degrading potential of EPRO. A lung cancer specific nanoliposomal formulation of EGFR and BRD4-degrading PROTACs (EPRO and BPRO) was prepared and characetrized. Successful encapsulation of the two highly lipophilic molecules was achieved in EGFR-targeting nanoliposomal carriers (T-BEPRO) using a modified hydration technique. T-BEPRO revealed a particle size of 109.22 ± 0.266 nm with enhanced cellular uptake and activity. Remarkably, parenterally delivered T-BEPRO in tumor-bearing mice showed a substantially higher % tumor growth inhibition (TGI) of 77.6 % with long-lasting tumor inhibitory potential as opposed to individual drugs.
Collapse
Affiliation(s)
- Richa Vartak
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Ketan Patel
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
8
|
Bollmann LM, Lange F, Hamacher A, Biermann L, Schäker-Hübner L, Hansen FK, Kassack MU. Triple Combination of Entinostat, a Bromodomain Inhibitor, and Cisplatin Is a Promising Treatment Option for Bladder Cancer. Cancers (Basel) 2024; 16:3374. [PMID: 39409994 PMCID: PMC11476342 DOI: 10.3390/cancers16193374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/16/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Cisplatin is part of the first-line treatment of advanced urothelial carcinoma. Cisplatin resistance is a major problem but may be overcome by combination treatments such as targeting epigenetic aberrances. Here, we investigated the effect of the class I HDACi entinostat and bromodomain inhibitors (BETis) on the potency of cisplatin in two pairs of sensitive and cisplatin-resistant bladder cancer cell lines. Cisplatin-resistant J82cisR and T24 LTT were 3.8- and 24-fold more resistant to cisplatin compared to the native cell lines J82 and T24. In addition, a hybrid compound (compound 20) comprising structural features of an HDACi and a BETi was investigated. RESULTS We found complete (J82cisR) or partial (T24 LTT) reversal of chemoresistance upon combination of entinostat, JQ1, and cisplatin. The same was found for the BETis JQ35 and OTX015, both in clinical trials, and for compound 20. The combinations were highly synergistic (Chou Talalay analysis) and increased caspase-mediated apoptosis accompanied by enhanced expression of p21, Bim, and FOXO1. Notably, the combinations were at least 4-fold less toxic in non-cancer cell lines HBLAK and HEK293. CONCLUSIONS The triple combination of entinostat, a BETi, and cisplatin is highly synergistic, reverses cisplatin resistance, and may thus serve as a novel therapeutic approach for bladder cancer.
Collapse
Affiliation(s)
- Lukas M. Bollmann
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany; (L.M.B.)
| | - Friedrich Lange
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany; (L.M.B.)
| | - Alexandra Hamacher
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany; (L.M.B.)
| | - Lukas Biermann
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany; (L.M.B.)
| | - Linda Schäker-Hübner
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany (F.K.H.)
| | - Finn K. Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany (F.K.H.)
| | - Matthias U. Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany; (L.M.B.)
| |
Collapse
|
9
|
Sun H, Qiu J, Qiu J. Epigenetic regulation of innate lymphoid cells. Eur J Immunol 2024; 54:e2350379. [PMID: 38824666 DOI: 10.1002/eji.202350379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024]
Abstract
Innate lymphoid cells (ILCs) lack antigen-specific receptors and are considered the innate arm of the immune system, phenotypically and functionally mirroring CD4+ helper T cells. ILCs are categorized into groups 1, 2, and 3 based on transcription factors and cytokine expression. ILCs predominantly reside in mucosal tissues and play important roles in regional immune responses. The development and function of ILC subsets are controlled by both transcriptional and epigenetic mechanisms, which have been extensively studied in recent years. Epigenetic regulation refers to inheritable changes in gene expression that occur without affecting DNA sequences. This mainly includes chromatin status, histone modifications, and DNA methylation. In this review, we summarize recent discoveries on epigenetic mechanisms regulating ILC development and function, and how these regulations affect disease progression under pathological conditions. Although the ablation of specific epigenetic regulators can cause global changes in corresponding epigenetic modifications to the chromatin, only partial genes with altered epigenetic modifications change their mRNA expression, resulting in specific outcomes in cell differentiation and function. Therefore, elucidating epigenetic mechanisms underlying the regulation of ILCs will provide potential targets for the diagnosis and treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Hanxiao Sun
- Department of Laboratory Medicine, Department of Blood Transfusion, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinxin Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
10
|
Gazzillo E, Colarusso E, Giordano A, Chini MG, Potenza M, Hofstetter RK, Iorizzi M, Werz O, Lauro G, Bifulco G. Repositioning of Small Molecules through the Inverse Virtual Screening in silico Tool: Case of Benzothiazole-Based Inhibitors of Soluble Epoxide Hydrolase (sEH). Chempluschem 2024; 89:e202400234. [PMID: 38753468 DOI: 10.1002/cplu.202400234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Computational techniques accelerate drug discovery by identifying bioactive compounds for specific targets, optimizing molecules with moderate activity, or facilitating the repositioning of inactive items onto new targets. Among them, the Inverse Virtual Screening (IVS) approach is aimed at the evaluation of one or a small set of molecules against a panel of targets for addressing target identification. In this work, a focused library of benzothiazole-based compounds was re-investigated by IVS. Four items, originally synthesized and tested on bromodomain-containing protein 9 (BRD9) but yielding poor binding, were critically re-analyzed, disclosing only a partial fit with 3D structure-based pharmacophore models, which, in the meanwhile, were developed for this target. Afterwards, these compounds were re-evaluated through IVS on a panel of proteins involved in inflammation and cancer, identifying soluble epoxide hydrolase (sEH) as a putative interacting target. Three items were subsequently confirmed as able to interfere with sEH activity, leading to inhibition percentages spanning from 70 % up to 30 % when tested at 10 μM. Finally, one benzothiazole-based compound emerged as the most promising inhibitor featuring an IC50 in the low micromolar range (IC50=6.62±0.13 μM). Our data confirm IVS as a predictive tool for accelerating the target identification and repositioning processes.
Collapse
Affiliation(s)
- Erica Gazzillo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
- PhD Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Ester Colarusso
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Assunta Giordano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
- Institute of Biomolecular Chemistry (ICB), Consiglio Nazionale delle Ricerche (CNR), Via Campi Flegrei 34, Pozzuoli, I-80078, Italy
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, C.da Fonte Lappone, Pesche, 86090, Italy
| | - Marianna Potenza
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Robert Klaus Hofstetter
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, Jena, 07743, Germany
| | - Maria Iorizzi
- Department of Biosciences and Territory, University of Molise, C.da Fonte Lappone, Pesche, 86090, Italy
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, Jena, 07743, Germany
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| |
Collapse
|
11
|
Patil S, Cremosnik G, Dötsch L, Flegel J, Schulte B, Maier KC, Žumer K, Cramer P, Janning P, Sievers S, Ziegler S, Waldmann H. The Pseudo-Natural Product Tafbromin Selectively Targets the TAF1 Bromodomain 2. Angew Chem Int Ed Engl 2024; 63:e202404645. [PMID: 38801173 DOI: 10.1002/anie.202404645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Phenotypic assays detect small-molecule bioactivity at functionally relevant cellular sites, and inherently cover a variety of targets and mechanisms of action. They can uncover new small molecule-target pairs and may give rise to novel biological insights. By means of an osteoblast differentiation assay which employs a Hedgehog (Hh) signaling agonist as stimulus and which monitors an endogenous marker for osteoblasts, we identified a pyrrolo[3,4-g]quinoline (PQ) pseudo-natural product (PNP) class of osteogenesis inhibitors. The most potent PQ, termed Tafbromin, impairs canonical Hh signaling and modulates osteoblast differentiation through binding to the bromodomain 2 of the TATA-box binding protein-associated factor 1 (TAF1). Tafbromin is the most selective TAF1 bromodomain 2 ligand and promises to be an invaluable tool for the study of biological processes mediated by TAF1(2) bromodomains.
Collapse
Affiliation(s)
- Sohan Patil
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund, 44227, Germany
| | - Gregor Cremosnik
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund, 44227, Germany
| | - Lara Dötsch
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund, 44227, Germany
- Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, Dortmund, 44227, Germany
| | - Jana Flegel
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund, 44227, Germany
| | - Britta Schulte
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund, 44227, Germany
| | - Kerstin C Maier
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077, Göttingen, Germany
| | - Kristina Žumer
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077, Göttingen, Germany
| | - Patrick Cramer
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077, Göttingen, Germany
| | - Petra Janning
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund, 44227, Germany
| | - Sonja Sievers
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund, 44227, Germany
| | - Slava Ziegler
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund, 44227, Germany
| | - Herbert Waldmann
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, Dortmund, 44227, Germany
- Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, Dortmund, 44227, Germany
| |
Collapse
|
12
|
Hashimoto M, Masuda T, Nakano Y, Tobo T, Saito H, Koike K, Takahashi J, Abe T, Ando Y, Ozato Y, Hosoda K, Higuchi S, Hisamatsu Y, Toshima T, Yonemura Y, Hata T, Uemura M, Eguchi H, Doki Y, Mori M, Mimori K. Tumor suppressive role of the epigenetic master regulator BRD3 in colorectal cancer. Cancer Sci 2024; 115:1866-1880. [PMID: 38494600 PMCID: PMC11145117 DOI: 10.1111/cas.16129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 03/19/2024] Open
Abstract
Bromodomain and extraterminal domain (BET) family proteins are epigenetic master regulators of gene expression via recognition of acetylated histones and recruitment of transcription factors and co-activators to chromatin. Hence, BET family proteins have emerged as promising therapeutic targets in cancer. In this study, we examined the functional role of bromodomain containing 3 (BRD3), a BET family protein, in colorectal cancer (CRC). In vitro and vivo analyses using BRD3-knockdown or BRD3-overexpressing CRC cells showed that BRD3 suppressed tumor growth and cell cycle G1/S transition and induced p21 expression. Clinical analysis of CRC datasets from our hospital or The Cancer Genome Atlas revealed that BET family genes, including BRD3, were overexpressed in tumor tissues. In immunohistochemical analyses, BRD3 was observed mainly in the nucleus of CRC cells. According to single-cell RNA sequencing in untreated CRC tissues, BRD3 was highly expressed in malignant epithelial cells, and cell cycle checkpoint-related pathways were enriched in the epithelial cells with high BRD3 expression. Spatial transcriptomic and single-cell RNA sequencing analyses of CRC tissues showed that BRD3 expression was positively associated with high p21 expression. Furthermore, overexpression of BRD3 combined with knockdown of, a driver gene in the BRD family, showed strong inhibition of CRC cells in vitro. In conclusion, we demonstrated a novel tumor suppressive role of BRD3 that inhibits tumor growth by cell cycle inhibition in part via induction of p21 expression. BRD3 activation might be a novel therapeutic approach for CRC.
Collapse
Affiliation(s)
- Masahiro Hashimoto
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaJapan
| | - Takaaki Masuda
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
| | - Yusuke Nakano
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaJapan
| | - Taro Tobo
- Department of PathologyKyushu University Beppu HospitalBeppuJapan
| | - Hideyuki Saito
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
| | - Kensuke Koike
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
| | | | - Tadashi Abe
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
| | - Yuki Ando
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
| | - Yuki Ozato
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaJapan
| | - Kiyotaka Hosoda
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
| | - Satoshi Higuchi
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaJapan
| | | | - Takeo Toshima
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
| | - Yusuke Yonemura
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
| | - Tsuyoshi Hata
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaJapan
| | - Mamoru Uemura
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaJapan
| | - Hidetoshi Eguchi
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaJapan
| | - Yuichiro Doki
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaJapan
| | - Masaki Mori
- Tokai University School of MedicineIseharaJapan
| | - Koshi Mimori
- Department of SurgeryKyushu University Beppu HospitalBeppuJapan
| |
Collapse
|
13
|
Missong H, Joshi R, Khullar N, Thareja S, Navik U, Bhatti GK, Bhatti JS. Nutrient-epigenome interactions: Implications for personalized nutrition against aging-associated diseases. J Nutr Biochem 2024; 127:109592. [PMID: 38325612 DOI: 10.1016/j.jnutbio.2024.109592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Aging is a multifaceted process involving genetic and environmental interactions often resulting in epigenetic changes, potentially leading to aging-related diseases. Various strategies, like dietary interventions and calorie restrictions, have been employed to modify these epigenetic landscapes. A burgeoning field of interest focuses on the role of microbiota in human health, emphasizing system biology and computational approaches. These methods help decipher the intricate interplay between diet and gut microbiota, facilitating the creation of personalized nutrition strategies. In this review, we analysed the mechanisms related to nutritional interventions while highlighting the influence of dietary strategies, like calorie restriction and intermittent fasting, on microbial composition and function. We explore how gut microbiota affects the efficacy of interventions using tools like multi-omics data integration, network analysis, and machine learning. These tools enable us to pinpoint critical regulatory elements and generate individualized models for dietary responses. Lastly, we emphasize the need for a deeper comprehension of nutrient-epigenome interactions and the potential of personalized nutrition informed by individual genetic and epigenetic profiles. As knowledge and technology advance, dietary epigenetics stands on the cusp of reshaping our strategy against aging and related diseases.
Collapse
Affiliation(s)
- Hemi Missong
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Riya Joshi
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Naina Khullar
- Department of Zoology, Mata Gujri College, Fatehgarh Sahib, Punjab, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
14
|
Gupta A, Purohit R. Identification of potent BRD4-BD1 inhibitors using classical and steered molecular dynamics based free energy analysis. J Cell Biochem 2024; 125:e30532. [PMID: 38317535 DOI: 10.1002/jcb.30532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/08/2024] [Accepted: 01/26/2024] [Indexed: 02/07/2024]
Abstract
In the present work a combination of traditional and steered molecular dynamics based techniques were employed to identify potential inhibitors against the human BRD4 protein (BRD4- BD1); an established drug target for multiple illnesses including various malignancies. Quinoline derivatives that were synthesized in-house were tested for their potential as new BRD4-BD1 inhibitors. Initially molecular docking experiments were performed to determine the binding poses of BRD4-BD1 inhibitors. To learn more about the thermodynamics of inhibitor binding to the BRD4-BD1 active site, the Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) free energy calculations were conducted afterwards. The findings of the MM-PBSA analysis were further reinforced by performing steered umbrella sampling simulations which revealed crucial details about the binding/unbinding process of the most potent quinoline derivatives at the BRD4-BD1 active site. We report a novel quinoline derivative which can be developed into a fully functional BRD4-BD1 inhibitor after experimental validation. The identified compound (4 g) shows better properties than the standard BRD4-BD1 inhibitors considered in the study. The study also highlights the crucial role of Gln78, Phe79, Trp81, Pro82, Phe83, Gln84, Gln85, Val87, Leu92, Leu94, Tyr97, Met105, Cys136, Asn140, Ile146 and Met149 in inhibitor binding. The study provides a possible lead candidate and key amino acids involved in inhibitor recognition and binding at the active site of BRD4-BD1 protein. The findings might be of significance to medicinal chemists involved in the development of potent BRD4-BD1 inhibitors.
Collapse
Affiliation(s)
- Ashish Gupta
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
15
|
Orlacchio A, Muzyka S, Gonda TA. Epigenetic therapeutic strategies in pancreatic cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 383:1-40. [PMID: 38359967 DOI: 10.1016/bs.ircmb.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid malignancies, characterized by its aggressiveness and metastatic potential, with a 5-year survival rate of only 8-11%. Despite significant improvements in PDAC treatment and management, therapeutic alternatives are still limited. One of the main reasons is its high degree of intra- and inter-individual tumor heterogeneity which is established and maintained through a complex network of transcription factors and epigenetic regulators. Epigenetic drugs, have shown promising preclinical results in PDAC and are currently being evaluated in clinical trials both for their ability to sensitize cancer cells to cytotoxic drugs and to counteract the immunosuppressive characteristic of PDAC tumor microenvironment. In this review, we discuss the current status of epigenetic treatment strategies to overcome molecular and cellular PDAC heterogeneity in order to improve response to therapy.
Collapse
Affiliation(s)
- Arturo Orlacchio
- Division of Gastroenterology and Hepatology, New York University, New York, NY, United States
| | - Stephen Muzyka
- Division of Gastroenterology and Hepatology, New York University, New York, NY, United States
| | - Tamas A Gonda
- Division of Gastroenterology and Hepatology, New York University, New York, NY, United States.
| |
Collapse
|
16
|
Barman S, Bardhan I, Padhan J, Sudhamalla B. Integrated virtual screening and MD simulation approaches toward discovering potential inhibitors for targeting BRPF1 bromodomain in hepatocellular carcinoma. J Mol Graph Model 2024; 126:108642. [PMID: 37797430 DOI: 10.1016/j.jmgm.2023.108642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive and life-threatening cancers. Although multiple treatment options are available, the prognosis of HCC patients is poor due to metastasis and drug resistance. Hence, discovering novel targets is essential for better therapeutic development for HCC. In this study, we used the cancer genome atlas (TCGA) dataset to analyze the expression of bromodomain-containing proteins in HCC, as bromodomains are emerging attractive therapeutic targets. Our analysis identified BRPF1 as the most highly upregulated gene in HCC among the 43 bromodomain-containing genes. Upregulation of BRPF1 was significantly associated with poorer patient survival. Therefore, targeting BRPF1 may be an approach for HCC treatment. Previously, several potential inhibitors of BRPF1 bromodomain have been discovered. However, due to the limited clinical success of the current inhibitors, we aim to search for new inhibitors with high affinity and specificity for the BRPF1 bromodomain. In this study, we utilized high-throughput virtual screening methods to screen synthetic and natural compound databases against the BRPF1 bromodomain. In addition, we used machine learning-based QSAR modeling to predict the IC50 values of the selected BRPF1 bromodomain inhibitors. Extensive MD simulations were used to calculate the binding free energies of BRPF1 bromodomain and inhibitor complexes. Using this approach, we identified four lead scaffolds with a similar or better binding affinity towards the BRPF1 bromodomain than the previously reported inhibitors. Overall, this study discovered some promising compounds that have the potential to act as potent BRPF1 bromodomain inhibitors.
Collapse
Affiliation(s)
- Soumen Barman
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, West Bengal, India
| | - Ishita Bardhan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, West Bengal, India
| | - Jyotirmayee Padhan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, West Bengal, India
| | - Babu Sudhamalla
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, West Bengal, India.
| |
Collapse
|
17
|
Ahuja P, Yadav R, Goyal S, Yadav C, Ranga S, Kadian L. Targeting epigenetic deregulations for the management of esophageal carcinoma: recent advances and emerging approaches. Cell Biol Toxicol 2023; 39:2437-2465. [PMID: 37338772 DOI: 10.1007/s10565-023-09818-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
Ranking from seventh in incidence to sixth in mortality, esophageal carcinoma is considered a severe malignancy of food pipe. Later-stage diagnosis, drug resistance, and a high mortality rate contribute to its lethality. Esophageal squamous cell carcinoma and esophageal adenocarcinoma are the two main histological subtypes of esophageal carcinoma, with squamous cell carcinoma alone accounting for more than eighty percent of its cases. While genetic anomalies are well known in esophageal cancer, accountability of epigenetic deregulations is also being explored for the recent two decades. DNA methylation, histone modifications, and functional non-coding RNAs are the crucial epigenetic players involved in the modulation of different malignancies, including esophageal carcinoma. Targeting these epigenetic aberrations will provide new insights into the development of biomarker tools for risk stratification, early diagnosis, and effective therapeutic intervention. This review discusses different epigenetic alterations, emphasizing the most significant developments in esophageal cancer epigenetics and their potential implication for the detection, prognosis, and treatment of esophageal carcinoma. Further, the preclinical and clinical status of various epigenetic drugs has also been reviewed.
Collapse
Affiliation(s)
- Parul Ahuja
- Department of Genetics, Maharshi Dayanand University, (Haryana), Rohtak, 124001, India
| | - Ritu Yadav
- Department of Genetics, Maharshi Dayanand University, (Haryana), Rohtak, 124001, India.
| | - Sandeep Goyal
- Department of Internal Medicine, Pt. B.D, Sharma University of Health Sciences, (Haryana), Rohtak, 124001, India
| | - Chetna Yadav
- Department of Genetics, Maharshi Dayanand University, (Haryana), Rohtak, 124001, India
| | - Shalu Ranga
- Department of Genetics, Maharshi Dayanand University, (Haryana), Rohtak, 124001, India
| | - Lokesh Kadian
- Department of Dermatology, School of Medicine, Indiana University, Indianapolis, Indiana, 46202, USA
| |
Collapse
|
18
|
Mohammed A, Waddell MB, Sutkeviciute I, Danda A, Philips SJ, Lang W, Slavish PJ, Kietlinska SJ, Kaulage M, Das S, Ansari AZ. Domain-Selective BET Ligands Yield Next-Generation Synthetic Genome Readers/Regulators with Nonidentical Cellular Functions. J Am Chem Soc 2023:10.1021/jacs.3c06297. [PMID: 37923569 PMCID: PMC11957383 DOI: 10.1021/jacs.3c06297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
SynTEF1, a prototype synthetic genome reader/regulator (SynGR), was designed to target GAA triplet repeats and restore the expression of frataxin (FXN) in Friedreich's ataxia patients. It achieves this complex task by recruiting BRD4, via a pan-BET ligand (JQ1), to the GAA repeats by using a sequence-selective DNA-binding polyamide. When bound to specific genomic loci in this way, JQ1 functions as a chemical prosthetic for acetyl-lysine residues that are natural targets of the two tandem bromodomains (BD1 and BD2) in bromo- and extra-terminal domain (BET) proteins. As next-generation BET ligands were disclosed, we tested a select set with improved physicochemical, pharmacological, and bromodomain-selective properties as substitutes for JQ1 in the SynGR design. Here, we report two unexpected findings: (1) SynGRs bearing pan-BET or BD2-selective ligands license transcription at the FXN locus, whereas those bearing BD1-selective ligands do not, and (2) rather than being neutral or inhibitory, an untethered BD1-selective ligand (GSK778) substantively enhances the activity of all active SynGRs. The failure of BD1-selective SynGRs to recruit BRD4/BET proteins suggests that rather than functioning as "epigenetic/chromatin mimics," active SynGRs mimic the functions of natural transcription factors in engaging BET proteins through BD2 binding. Moreover, the enhanced activity of SynGRs upon cotreatment with the BD1-selective ligand suggests that natural transcription factors compete for a limited pool of nonchromatin-bound BET proteins, and blocking BD1 directs pan-BET ligands to more effectively engage BD2. Taken together, SynGRs as chemical probes provide unique insights into the molecular recognition principles utilized by natural factors to precisely regulate gene expression, and they guide the design of more sophisticated synthetic gene regulators with greater therapeutic potential.
Collapse
Affiliation(s)
- Ashraf Mohammed
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - M Brett Waddell
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Ieva Sutkeviciute
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Adithi Danda
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Steven J. Philips
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Walter Lang
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - P. Jake Slavish
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Sandra J. Kietlinska
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Mangesh Kaulage
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Sourav Das
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Aseem Z. Ansari
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
19
|
Wahi A, Manchanda N, Jain P, Jadhav HR. Targeting the epigenetic reader "BET" as a therapeutic strategy for cancer. Bioorg Chem 2023; 140:106833. [PMID: 37683545 DOI: 10.1016/j.bioorg.2023.106833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Bromodomain and extraterminal (BET) proteins have the ability to bind to acetylated lysine residues present in both histones and non-histone proteins. This binding is facilitated by the presence of tandem bromodomains. The regulatory role of BET proteins extends to chromatin dynamics, cellular processes, and disease progression. The BET family comprises of BRD 2, 3, 4 and BRDT. The BET proteins are a class of epigenetic readers that regulate the transcriptional activity of a multitude of genes that are involved in the pathogenesis of cancer. Thus, targeting BET proteins has been identified as a potentially efficacious approach for the treatment of cancer. BET inhibitors (BETis) are known to interfere with the binding of BET proteins to acetylated lysine residues of chromatin, thereby leading to the suppression of transcription of several genes, including oncogenic transcription factors. Here in this review, we focus on role of Bromodomain and extra C-terminal (BET) proteins in cancer progression. Furthermore, numerous small-molecule inhibitors with pan-BET activity have been documented, with certain compounds currently undergoing clinical assessment. However, it is apparent that the clinical effectiveness of the present BET inhibitors is restricted, prompting the exploration of novel technologies to enhance their clinical outcomes and mitigate undesired adverse effects. Thus, strategies like development of selective BET-BD1, & BD2 inhibitors, dual and acting BET are also presented in this review and attempts to cover the chemistry needed for proper establishment of designed molecules into BRD have been made. Moreover, the review attempts to summarize the details of research till date and proposes a space for future development of BET inhibitor with diminished side effects. It can be concluded that discovery of isoform selective BET inhibitors can be a way forward in order to develop BET inhibitors with negligible side effects.
Collapse
Affiliation(s)
- Abhishek Wahi
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, Delhi, New Delhi 110017, India
| | - Namish Manchanda
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, Delhi, New Delhi 110017, India
| | - Priti Jain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, Delhi, New Delhi 110017, India.
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-Pilani Campus, Vidya Vihar Pilani, Rajasthan 333031, India
| |
Collapse
|
20
|
Patnaik E, Madu C, Lu Y. Epigenetic Modulators as Therapeutic Agents in Cancer. Int J Mol Sci 2023; 24:14964. [PMID: 37834411 PMCID: PMC10573652 DOI: 10.3390/ijms241914964] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Epigenetics play a crucial role in gene regulation and cellular processes. Most importantly, its dysregulation can contribute to the development of tumors. Epigenetic modifications, such as DNA methylation and histone acetylation, are reversible processes that can be utilized as targets for therapeutic intervention. DNA methylation inhibitors disrupt DNA methylation patterns by inhibiting DNA methyltransferases. Such inhibitors can restore normal gene expression patterns, and they can be effective against various forms of cancer. Histone deacetylase inhibitors increase histone acetylation levels, leading to altered gene expressions. Like DNA methylation inhibitors, histone methyltransferase inhibitors target molecules involved in histone methylation. Bromodomain and extra-terminal domain inhibitors target proteins involved in gene expression. They can be effective by inhibiting oncogene expression and inducing anti-proliferative effects seen in cancer. Understanding epigenetic modifications and utilizing epigenetic inhibitors will offer new possibilities for cancer research.
Collapse
Affiliation(s)
- Eshaan Patnaik
- Department of Biology, Memphis University School, Memphis, TN 38119, USA;
| | - Chikezie Madu
- Departments of Biological Sciences, University of Memphis, Memphis, TN 38152, USA;
| | - Yi Lu
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
21
|
Lu T, Zhang J, Xu-Monette ZY, Young KH. The progress of novel strategies on immune-based therapy in relapsed or refractory diffuse large B-cell lymphoma. Exp Hematol Oncol 2023; 12:72. [PMID: 37580826 PMCID: PMC10424456 DOI: 10.1186/s40164-023-00432-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/30/2023] [Indexed: 08/16/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) can be cured with standard front-line immunochemotherapy, whereas nearly 30-40% of patients experience refractory or relapse. For several decades, the standard treatment strategy for fit relapsed/refractory (R/R) DLBCL patients has been high-dose chemotherapy followed by autologous hematopoietic stem cell transplant (auto-SCT). However, the patients who failed in salvage treatment or those ineligible for subsequent auto-SCT have dismal outcomes. Several immune-based therapies have been developed, including monoclonal antibodies, antibody-drug conjugates, bispecific T-cell engaging antibodies, chimeric antigen receptor T-cells, immune checkpoint inhibitors, and novel small molecules. Meanwhile, allogeneic SCT and radiotherapy are still necessary for disease control for fit patients with certain conditions. In this review, to expand clinical treatment options, we summarize the recent progress of immune-related therapies and prospect the future indirections in patients with R/R DLBCL.
Collapse
Affiliation(s)
- Tingxun Lu
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, 214122, China
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jie Zhang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, 214122, China
| | - Zijun Y Xu-Monette
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Durham, NC, 27710, USA
| | - Ken H Young
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Durham, NC, 27710, USA.
| |
Collapse
|
22
|
Li M, Liu M, Han W, Wang Z, Han D, Patalano S, Macoska JA, Balk SP, He HH, Corey E, Gao S, Cai C. LSD1 Inhibition Disrupts Super-Enhancer-Driven Oncogenic Transcriptional Programs in Castration-Resistant Prostate Cancer. Cancer Res 2023; 83:1684-1698. [PMID: 36877164 PMCID: PMC10192194 DOI: 10.1158/0008-5472.can-22-2433] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/18/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
The lysine demethylase LSD1 (also called KDM1A) plays important roles in promoting multiple malignancies including both hematologic cancers and solid tumors. LSD1 targets histone and nonhistone proteins and can function as a transcriptional corepressor or coactivator. LSD1 has been reported to act as a coactivator of androgen receptor (AR) in prostate cancer and to regulate the AR cistrome via demethylation of its pioneer factor FOXA1. A deeper understanding of the key oncogenic programs targeted by LSD1 could help stratify prostate cancer patients for treatment with LSD1 inhibitors, which are currently under clinical investigation. In this study, we performed transcriptomic profiling in an array of castration-resistant prostate cancer (CRPC) xenograft models that are sensitive to LSD1 inhibitor treatment. Impaired tumor growth by LSD1 inhibition was attributed to significantly decreased MYC signaling, and MYC was found to be a consistent target of LSD1. Moreover, LSD1 formed a network with BRD4 and FOXA1 and was enriched at super-enhancer regions exhibiting liquid-liquid phase separation. Combining LSD1 inhibitors with BET inhibitors exhibited strong synergy in disrupting the activities of multiple drivers in CRPC, thereby inducing significant growth repression of tumors. Importantly, the combination treatment showed superior effects than either inhibitor alone in disrupting a subset of newly identified CRPC-specific super-enhancers. These results provide mechanistic and therapeutic insights for cotargeting two key epigenetic factors and could be rapidly translated in the clinic for CRPC patients. SIGNIFICANCE LSD1 drives prostate cancer progression by activating super-enhancer-mediated oncogenic programs, which can be targeted with the combination of LSD1 and BRD4 inhibitors to suppress the growth of CRPC.
Collapse
Affiliation(s)
- Muqing Li
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
| | - Mingyu Liu
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
| | - Wanting Han
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
- Human Biology Division, Fred Hutchinson Cancer Center, Washington 98109, USA
| | - Zifeng Wang
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
| | - Dong Han
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
| | - Susan Patalano
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
| | - Jill A. Macoska
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
| | - Steven P. Balk
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Housheng Hansen He
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G1L7, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, M5G1L7, Canada
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington 98195, USA
| | - Shuai Gao
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York 10595, USA
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, USA
| | - Changmeng Cai
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
| |
Collapse
|
23
|
Ortiz-Barahona V, Soler M, Davalos V, García-Prieto CA, Janin M, Setien F, Fernández-Rebollo I, Bech-Serra JJ, De La Torre C, Guil S, Villanueva A, Zhang PH, Yang L, Guarnacci M, Schumann U, Preiss T, Balaseviciute U, Montal R, Llovet JM, Esteller M. Epigenetic inactivation of the 5-methylcytosine RNA methyltransferase NSUN7 is associated with clinical outcome and therapeutic vulnerability in liver cancer. Mol Cancer 2023; 22:83. [PMID: 37173708 PMCID: PMC10176850 DOI: 10.1186/s12943-023-01785-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/08/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND RNA modifications are important regulators of transcript activity and an increasingly emerging body of data suggests that the epitranscriptome and its associated enzymes are altered in human tumors. METHODS Combining data mining and conventional experimental procedures, NSUN7 methylation and expression status was assessed in liver cancer cell lines and primary tumors. Loss-of-function and transfection-mediated recovery experiments coupled with RNA bisulfite sequencing and proteomics determined the activity of NSUN7 in downstream targets and drug sensitivity. RESULTS In this study, the initial screening for genetic and epigenetic defects of 5-methylcytosine RNA methyltransferases in transformed cell lines, identified that the NOL1/NOP2/Sun domain family member 7 (NSUN7) undergoes promoter CpG island hypermethylation-associated with transcriptional silencing in a cancer-specific manner. NSUN7 epigenetic inactivation was common in liver malignant cells and we coupled bisulfite conversion of cellular RNA with next-generation sequencing (bsRNA-seq) to find the RNA targets of this poorly characterized putative RNA methyltransferase. Using knock-out and restoration-of-function models, we observed that the mRNA of the coiled-coil domain containing 9B (CCDC9B) gene required NSUN7-mediated methylation for transcript stability. Most importantly, proteomic analyses determined that CCDC9B loss impaired protein levels of its partner, the MYC-regulator Influenza Virus NS1A Binding Protein (IVNS1ABP), creating sensitivity to bromodomain inhibitors in liver cancer cells exhibiting NSUN7 epigenetic silencing. The DNA methylation-associated loss of NSUN7 was also observed in primary liver tumors where it was associated with poor overall survival. Interestingly, NSUN7 unmethylated status was enriched in the immune active subclass of liver tumors. CONCLUSION The 5-methylcytosine RNA methyltransferase NSUN7 undergoes epigenetic inactivation in liver cancer that prevents correct mRNA methylation. Furthermore, NSUN7 DNA methylation-associated silencing is associated with clinical outcome and distinct therapeutic vulnerability.
Collapse
Affiliation(s)
- Vanessa Ortiz-Barahona
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Catalonia, 08916, Spain
| | - Marta Soler
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Catalonia, 08916, Spain
| | - Veronica Davalos
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Catalonia, 08916, Spain
| | - Carlos A García-Prieto
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Catalonia, 08916, Spain
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Catalonia, Spain
| | - Maxime Janin
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Catalonia, 08916, Spain
| | - Fernando Setien
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Catalonia, 08916, Spain
| | - Irene Fernández-Rebollo
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Catalonia, 08916, Spain
| | - Joan J Bech-Serra
- Proteomics Unit, Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Catalonia, 08916, Spain
| | - Carolina De La Torre
- Proteomics Unit, Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Catalonia, 08916, Spain
| | - Sonia Guil
- Regulatory RNA and Chromatin Group, Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Catalonia, 08916, Spain
- Germans Trias i Pujol Health Science Research Institute, Barcelona, Catalonia, Spain
| | - Alberto Villanueva
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Pei-Hong Zhang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Marco Guarnacci
- Shine-Dalgarno Centre for RNA Innovation, Australian National University, Canberra, Australia
| | - Ulrike Schumann
- Shine-Dalgarno Centre for RNA Innovation, Australian National University, Canberra, Australia
| | - Thomas Preiss
- Shine-Dalgarno Centre for RNA Innovation, Australian National University, Canberra, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst (Sydney), Queensland, NSW, 2010, Australia
| | - Ugne Balaseviciute
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, University of Barcelona, Catalonia, Spain
| | - Robert Montal
- Hospital Arnau de Vilanova, IRBLleida, University of Lleida (UdL), Catalonia, Spain
| | - Josep M Llovet
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, University of Barcelona, Catalonia, Spain
- ICAHN School of Medicine at Mount Sinai, New York, NY, USA
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, 08010, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Catalonia, 08916, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, 08010, Spain.
- Centro de Investigacion Biomedica en Red Cancer, Madrid, 28029, Spain.
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Catalonia, 08907, Spain.
| |
Collapse
|
24
|
Iturrioz-Rodríguez N, Sampron N, Matheu A. Current advances in temozolomide encapsulation for the enhancement of glioblastoma treatment. Theranostics 2023; 13:2734-2756. [PMID: 37284445 PMCID: PMC10240814 DOI: 10.7150/thno.82005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/20/2023] [Indexed: 06/08/2023] Open
Abstract
Glioblastoma is the most common and lethal brain tumor in adults. The incorporation of temozolomide (TMZ) into the standard treatment has increased the overall survival rate of glioblastoma patients. Since then, significant advances have been made in understanding the benefits and limitations of TMZ. Among the latter, the unspecific toxicity of TMZ, poor solubility, and hydrolyzation are intrinsic characteristics, whereas the presence of the blood-brain barrier and some tumor properties, such as molecular and cellular heterogeneity and therapy resistance, have limited the therapeutic effects of TMZ in treating glioblastoma. Several reports have revealed that different strategies for TMZ encapsulation in nanocarriers overcome those limitations and have shown that they increase TMZ stability, half-life, biodistribution, and efficacy, offering the promise for future nanomedicine therapies in handling glioblastoma. In this review, we analyze the different nanomaterials used for the encapsulation of TMZ to improve its stability, blood half-life and efficacy, paying special attention to polymer- and lipid-based nanosystems. To improve TMZ drug resistance, present in up to 50% of patients, we detail TMZ combined therapeutic with i) other chemotherapies, ii) inhibitors, iii) nucleic acids, iv) photosensitizers and other nanomaterials for photodynamic therapy, photothermal therapy, and magnetic hyperthermia, v) immunotherapy, and vi) other less explored molecules. Moreover, we describe targeting strategies, such as passive targeting, active targeting to BBB endothelial cells, glioma cells, and glioma cancer stem cells, and local delivery, where TMZ has demonstrated an improved outcome. To finish our study, we include possible future research directions that could help decrease the time needed to move from bench to bedside.
Collapse
Affiliation(s)
| | - Nicolas Sampron
- Cellular Oncology group, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Ander Matheu
- Cellular Oncology group, Biodonostia Health Research Institute, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento (CIBERfes), Carlos III Institute, Madrid, Spain
| |
Collapse
|
25
|
Luo G, Liu B, Fu T, Liu Y, Li B, Li N, Geng Q. The Role of Histone Deacetylases in Acute Lung Injury-Friend or Foe. Int J Mol Sci 2023; 24:ijms24097876. [PMID: 37175583 PMCID: PMC10178380 DOI: 10.3390/ijms24097876] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
Acute lung injury (ALI), caused by intrapulmonary or extrapulmonary factors such as pneumonia, shock, and sepsis, eventually disrupts the alveolar-capillary barrier, resulting in diffuse pulmonary oedema and microatasis, manifested by refractory hypoxemia, and respiratory distress. Not only is ALI highly lethal, but even if a patient survives, there are also multiple sequelae. Currently, there is no better treatment than supportive care, and we urgently need to find new targets to improve ALI. Histone deacetylases (HDACs) are epigenetically important enzymes that, together with histone acetylases (HATs), regulate the acetylation levels of histones and non-histones. While HDAC inhibitors (HDACis) play a therapeutic role in cancer, inflammatory, and neurodegenerative diseases, there is also a large body of evidence suggesting the potential of HDACs as therapeutic targets in ALI. This review explores the unique mechanisms of HDACs in different cell types of ALI, including macrophages, pulmonary vascular endothelial cells (VECs), alveolar epithelial cells (AECs), and neutrophils.
Collapse
Affiliation(s)
- Guoqing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bohao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tinglv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Boyang Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
26
|
Ross KE, Zhang G, Akcora C, Lin Y, Fang B, Koomen J, Haura EB, Grimes M. Network models of protein phosphorylation, acetylation, and ubiquitination connect metabolic and cell signaling pathways in lung cancer. PLoS Comput Biol 2023; 19:e1010690. [PMID: 36996232 PMCID: PMC10089347 DOI: 10.1371/journal.pcbi.1010690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/11/2023] [Accepted: 03/11/2023] [Indexed: 04/01/2023] Open
Abstract
We analyzed large-scale post-translational modification (PTM) data to outline cell signaling pathways affected by tyrosine kinase inhibitors (TKIs) in ten lung cancer cell lines. Tyrosine phosphorylated, lysine ubiquitinated, and lysine acetylated proteins were concomitantly identified using sequential enrichment of post translational modification (SEPTM) proteomics. Machine learning was used to identify PTM clusters that represent functional modules that respond to TKIs. To model lung cancer signaling at the protein level, PTM clusters were used to create a co-cluster correlation network (CCCN) and select protein-protein interactions (PPIs) from a large network of curated PPIs to create a cluster-filtered network (CFN). Next, we constructed a Pathway Crosstalk Network (PCN) by connecting pathways from NCATS BioPlanet whose member proteins have PTMs that co-cluster. Interrogating the CCCN, CFN, and PCN individually and in combination yields insights into the response of lung cancer cells to TKIs. We highlight examples where cell signaling pathways involving EGFR and ALK exhibit crosstalk with BioPlanet pathways: Transmembrane transport of small molecules; and Glycolysis and gluconeogenesis. These data identify known and previously unappreciated connections between receptor tyrosine kinase (RTK) signal transduction and oncogenic metabolic reprogramming in lung cancer. Comparison to a CFN generated from a previous multi-PTM analysis of lung cancer cell lines reveals a common core of PPIs involving heat shock/chaperone proteins, metabolic enzymes, cytoskeletal components, and RNA-binding proteins. Elucidation of points of crosstalk among signaling pathways employing different PTMs reveals new potential drug targets and candidates for synergistic attack through combination drug therapy.
Collapse
Affiliation(s)
- Karen E Ross
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Guolin Zhang
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Cuneyt Akcora
- Department of Computer Science and Statistics, University of Manitoba, Winnipeg, Manitoba Canada
| | - Yu Lin
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Bin Fang
- Proteomics & Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - John Koomen
- Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Mark Grimes
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| |
Collapse
|
27
|
Regulation of Cell Plasticity by Bromodomain and Extraterminal Domain (BET) Proteins: A New Perspective in Glioblastoma Therapy. Int J Mol Sci 2023; 24:ijms24065665. [PMID: 36982740 PMCID: PMC10055343 DOI: 10.3390/ijms24065665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
BET proteins are a family of multifunctional epigenetic readers, mainly involved in transcriptional regulation through chromatin modelling. Transcriptome handling ability of BET proteins suggests a key role in the modulation of cell plasticity, both in fate decision and in lineage commitment during embryonic development and in pathogenic conditions, including cancerogenesis. Glioblastoma is the most aggressive form of glioma, characterized by a very poor prognosis despite the application of a multimodal therapy. Recently, new insights are emerging about the glioblastoma cellular origin, leading to the hypothesis that several putative mechanisms occur during gliomagenesis. Interestingly, epigenome dysregulation associated with loss of cellular identity and functions are emerging as crucial features of glioblastoma pathogenesis. Therefore, the emerging roles of BET protein in glioblastoma onco-biology and the compelling demand for more effective therapeutic strategies suggest that BET family members could be promising targets for translational breakthroughs in glioblastoma treatment. Primarily, “Reprogramming Therapy”, which is aimed at reverting the malignant phenotype, is now considered a promising strategy for GBM therapy.
Collapse
|
28
|
Lefi N, Kazachenko AS, Raja M, Issaoui N, Kazachenko AS. Molecular Structure, Spectral Analysis, Molecular Docking and Physicochemical Studies of 3-Bromo-2-hydroxypyridine Monomer and Dimer as Bromodomain Inhibitors. Molecules 2023; 28:2669. [PMID: 36985641 PMCID: PMC10054851 DOI: 10.3390/molecules28062669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
In this paper, both methods (DFT and HF) were used in a theoretical investigation of 3-bromo-2-Hydroxypyridine (3-Br-2HyP) molecules where the molecular structures of the title compound have been optimized. Molecular electrostatic potential (MEP) was computed using the B3LYP/6-311++G(d,p) level of theory. The time-dependent density functional theory (TD-DFT) approach was used to simulate the HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) on the one hand to achieve the frontier orbital gap and on the other hand to calculate the UV-visible spectrum of the compound in gas phase and for different solvents. In addition, electronic localization function and Fukui functions were carried out. Intermolecular interactions were discussed by the topological AIM (atoms in molecules) approach. The thermodynamic functions have been reported with the help of spectroscopic data using statistical methods revealing the correlations between these functions and temperature. To describe the non-covalent interactions, the reduced density gradient (RDG) analysis is performed. To study the biological activity of the compound of the molecule, molecular docking studies were executed on the active sites of BRD2 inhibitors and to explore the hydrogen bond interaction, minimum binding energies with targeted receptors such as PDB ID: 5IBN, 3U5K, 6CD5 were calculated.
Collapse
Affiliation(s)
- Nizar Lefi
- Department of Physics, College of Sciences and Arts in Uglat Asugour, Qassim University, Buraydah 52571, Saudi Arabia
- Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, University of Monastir, Monastir 5079, Tunisia
| | - Aleksandr S. Kazachenko
- Institute of Chemistry and Chemical Technology, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50, Bld. 24, 660036 Krasnoyarsk, Russia
- Department of Organic and Analytical Chemistry, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia
- Department of Biological Chemistry with Courses in Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University, St. Partizan Zheleznyak, Bld. 1, 660022 Krasnoyarsk, Russia
| | - Murugesan Raja
- Department of Physics, Govt. Thirumagal Mills College, Gudiyatham, Vellore 632602, India
| | - Noureddine Issaoui
- Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, University of Monastir, Monastir 5079, Tunisia
| | - Anna S. Kazachenko
- Department of Organic and Analytical Chemistry, Siberian Federal University, pr. Svobodny 79, 660041 Krasnoyarsk, Russia
| |
Collapse
|
29
|
Martella N, Pensabene D, Varone M, Colardo M, Petraroia M, Sergio W, La Rosa P, Moreno S, Segatto M. Bromodomain and Extra-Terminal Proteins in Brain Physiology and Pathology: BET-ing on Epigenetic Regulation. Biomedicines 2023; 11:biomedicines11030750. [PMID: 36979729 PMCID: PMC10045827 DOI: 10.3390/biomedicines11030750] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
BET proteins function as histone code readers of acetylated lysins that determine the positive regulation in transcription of genes involved in cell cycle progression, differentiation, inflammation, and many other pathways. In recent years, thanks to the development of BET inhibitors, interest in this protein family has risen for its relevance in brain development and function. For example, experimental evidence has shown that BET modulation affects neuronal activity and the expression of genes involved in learning and memory. In addition, BET inhibition strongly suppresses molecular pathways related to neuroinflammation. These observations suggest that BET modulation may play a critical role in the onset and during the development of diverse neurodegenerative and neuropsychiatric disorders, such as Alzheimer’s disease, fragile X syndrome, and Rett syndrome. In this review article, we summarize the most recent evidence regarding the involvement of BET proteins in brain physiology and pathology, as well as their pharmacological potential as targets for therapeutic purposes.
Collapse
Affiliation(s)
- Noemi Martella
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Daniele Pensabene
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
- Department of Science, University Roma Tre, Viale Marconi 446, 00146 Rome, Italy
- Laboratory of Neurodevelopment, Neurogenetics and Neuromolecular Biology, IRCCS Santa Lucia Foundation, 64 via del Fosso di Fiorano, 00179 Rome, Italy
| | - Michela Varone
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Mayra Colardo
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Michele Petraroia
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - William Sergio
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, via dei Marsi 78, 00185 Rome, Italy
| | - Sandra Moreno
- Department of Science, University Roma Tre, Viale Marconi 446, 00146 Rome, Italy
- Laboratory of Neurodevelopment, Neurogenetics and Neuromolecular Biology, IRCCS Santa Lucia Foundation, 64 via del Fosso di Fiorano, 00179 Rome, Italy
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
- Correspondence:
| |
Collapse
|
30
|
Dawson MA, Borthakur G, Huntly BJ, Karadimitris A, Alegre A, Chaidos A, Vogl DT, Pollyea DA, Davies FE, Morgan GJ, Glass JL, Kamdar M, Mateos MV, Tovar N, Yeh P, Delgado RG, Basheer F, Marando L, Gallipoli P, Wyce A, Krishnatry AS, Barbash O, Bakirtzi E, Ferron-Brady G, Karpinich NO, McCabe MT, Foley SW, Horner T, Dhar A, Kremer BE, Dickinson M. A Phase I/II Open-Label Study of Molibresib for the Treatment of Relapsed/Refractory Hematologic Malignancies. Clin Cancer Res 2023; 29:711-722. [PMID: 36350312 PMCID: PMC9932578 DOI: 10.1158/1078-0432.ccr-22-1284] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/02/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
PURPOSE Molibresib is a selective, small molecule inhibitor of the bromodomain and extra-terminal (BET) protein family. This was an open-label, two-part, Phase I/II study investigating molibresib monotherapy for the treatment of hematological malignancies (NCT01943851). PATIENTS AND METHODS Part 1 (dose escalation) determined the recommended Phase 2 dose (RP2D) of molibresib in patients with acute myeloid leukemia (AML), Non-Hodgkin lymphoma (NHL), or multiple myeloma. Part 2 (dose expansion) investigated the safety and efficacy of molibresib at the RP2D in patients with relapsed/refractory myelodysplastic syndrome (MDS; as well as AML evolved from antecedent MDS) or cutaneous T-cell lymphoma (CTCL). The primary endpoint in Part 1 was safety and the primary endpoint in Part 2 was objective response rate (ORR). RESULTS There were 111 patients enrolled (87 in Part 1, 24 in Part 2). Molibresib RP2Ds of 75 mg daily (for MDS) and 60 mg daily (for CTCL) were selected. Most common Grade 3+ adverse events included thrombocytopenia (37%), anemia (15%), and febrile neutropenia (15%). Six patients achieved complete responses [3 in Part 1 (2 AML, 1 NHL), 3 in Part 2 (MDS)], and 7 patients achieved partial responses [6 in Part 1 (4 AML, 2 NHL), 1 in Part 2 (MDS)]. The ORRs for Part 1, Part 2, and the total study population were 10% [95% confidence interval (CI), 4.8-18.7], 25% (95% CI, 7.3-52.4), and 13% (95% CI, 6.9-20.6), respectively. CONCLUSIONS While antitumor activity was observed with molibresib, use was limited by gastrointestinal and thrombocytopenia toxicities. Investigations of molibresib as part of combination regimens may be warranted.
Collapse
Affiliation(s)
- Mark A. Dawson
- Department of Clinical Haematology, Peter MacCallum Cancer Centre, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Anastasios Karadimitris
- Hugh and Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London and Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Adrian Alegre
- Hospital Universitario de La Princesa and Quironsalud, Madrid, Spain
| | - Aristeidis Chaidos
- Hugh and Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London and Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Dan T. Vogl
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Faith E. Davies
- Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York
| | - Gareth J. Morgan
- Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York
| | - Jacob L. Glass
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Manali Kamdar
- University of Colorado School of Medicine, Aurora, Colorado
| | | | - Natalia Tovar
- Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Paul Yeh
- Department of Clinical Haematology, Peter MacCallum Cancer Centre, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Michael Dickinson
- Department of Clinical Haematology, Peter MacCallum Cancer Centre, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
31
|
Ueno M. Exploring Genetic Interactions with Telomere Protection Gene pot1 in Fission Yeast. Biomolecules 2023; 13:biom13020370. [PMID: 36830739 PMCID: PMC9953254 DOI: 10.3390/biom13020370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
The regulation of telomere length has a significant impact on cancer risk and aging in humans. Circular chromosomes are found in humans and are often unstable during mitosis, resulting in genome instability. Some types of cancer have a high frequency of a circular chromosome. Fission yeast is a good model for studying the formation and stability of circular chromosomes as deletion of pot1 (encoding a telomere protection protein) results in rapid telomere degradation and chromosome fusion. Pot1 binds to single-stranded telomere DNA and is conserved from fission yeast to humans. Loss of pot1 leads to viable strains in which all three fission yeast chromosomes become circular. In this review, I will introduce pot1 genetic interactions as these inform on processes such as the degradation of uncapped telomeres, chromosome fusion, and maintenance of circular chromosomes. Therefore, exploring genes that genetically interact with pot1 contributes to finding new genes and/or new functions of genes related to the maintenance of telomeres and/or circular chromosomes.
Collapse
Affiliation(s)
- Masaru Ueno
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8530, Japan; ; Tel.: +81-82-424-7768
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| |
Collapse
|
32
|
Colarusso E, Ceccacci S, Monti MC, Gazzillo E, Giordano A, Chini MG, Ferraro MG, Piccolo M, Ruggiero D, Irace C, Terracciano S, Bruno I, Bifulco G, Lauro G. Identification of 2,4,5-trisubstituted-2,4-dihydro-3H-1,2,4-triazol-3-one-based small molecules as selective BRD9 binders. Eur J Med Chem 2023; 247:115018. [PMID: 36577218 DOI: 10.1016/j.ejmech.2022.115018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Targeting bromodomain-containing protein 9 (BRD9) represents a promising strategy for the development of new agents endowed with anticancer properties. With this aim, a set of 2,4,5-trisubstituted-2,4-dihydro-3H-1,2,4-triazol-3-one-based compounds was investigated following a combined approach that relied on in silico studies, chemical synthesis, biophysical and biological evaluation of the most promising items. The protocol was initially based on molecular docking experiments, accounting a library of 1896 potentially synthesizable items tested in silico against the bromodomain of BRD9. A first set of 21 compounds (1-21) was selected and the binding on BDR9 was assessed through AlphaScreen assays. The obtained results disclosed compounds 17 and 20 able to bind BRD9 in the submicromolar range (IC50 = 0.35 ± 0.18 μM and IC50 = 0.14 ± 0.03 μM, respectively) showing a promising selectivity profile when tested against further nine bromodomains. Taking advantage of 3D structure-based pharmacophore models, additional 10 derivatives were selected in silico for the synthetic step and binding assessment, highlighting seven compounds (22, 23, 25, 26, 28, 29, 31) able to selectively bind BRD9 among different bromodomains. The ability of the identified BRD9 binders to cross artificial membranes in vitro was also assessed, revealing a very good passive permeability profile. Preliminary studies were carried out on a panel of healthy and cancer human cell lines to explore the biological behavior of the selected compounds, disclosing a moderate activity and significant selectivity profile towards leukaemia cells. These results highlighted the applicability of the reported multidisciplinary approach for accelerating the selection of promising items and for driving the chemical synthesis of novel selective BRD9 binders. Moreover, the low molecular weight of the reported 2,4,5-trisubstituted-2,4-dihydro-3H-1,2,4-triazol-3-one-based BRD9 binders suggests the possibility for further exploring the chemical space in order to obtain new analogues with improved potency.
Collapse
Affiliation(s)
- Ester Colarusso
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Sara Ceccacci
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy; PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Maria Chiara Monti
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Erica Gazzillo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy; PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Assunta Giordano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy; Institute of Biomolecular Chemistry (ICB), Consiglio Nazionale Delle Ricerche (CNR), Via Campi Flegrei 34, I-80078, Pozzuoli, Napoli, Italy
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, C.da Fonte Lappone, Pesche, 86090, Italy
| | - Maria Grazia Ferraro
- Department of Pharmacy, School of Medicine and Surgery, University of Naples "Federico II", Via Domenico Montesano 49, Naples, 80131, Italy
| | - Marialuisa Piccolo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples "Federico II", Via Domenico Montesano 49, Naples, 80131, Italy
| | - Dafne Ruggiero
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Carlo Irace
- Department of Pharmacy, School of Medicine and Surgery, University of Naples "Federico II", Via Domenico Montesano 49, Naples, 80131, Italy
| | - Stefania Terracciano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Ines Bruno
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy.
| |
Collapse
|
33
|
Dong J, Wang X. Identification of novel BRD4 inhibitors by pharmacophore screening, molecular docking, and molecular dynamics simulation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Graziani V, Garcia AR, Alcolado LS, Le Guennec A, Henriksson MA, Conte MR. Metabolic rewiring in MYC-driven medulloblastoma by BET-bromodomain inhibition. Sci Rep 2023; 13:1273. [PMID: 36690651 PMCID: PMC9870962 DOI: 10.1038/s41598-023-27375-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 01/02/2023] [Indexed: 01/24/2023] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumour in children. High-risk MB patients harbouring MYC amplification or overexpression exhibit a very poor prognosis. Aberrant activation of MYC markedly reprograms cell metabolism to sustain tumorigenesis, yet how metabolism is dysregulated in MYC-driven MB is not well understood. Growing evidence unveiled the potential of BET-bromodomain inhibitors (BETis) as next generation agents for treating MYC-driven MB, but whether and how BETis may affect tumour cell metabolism to exert their anticancer activities remains unknown. In this study, we explore the metabolic features characterising MYC-driven MB and examine how these are altered by BET-bromodomain inhibition. To this end, we employed an NMR-based metabolomics approach applied to the MYC-driven MB D283 and D458 cell lines before and after the treatment with the BETi OTX-015. We found that OTX-015 triggers a metabolic shift in both cell lines resulting in increased levels of myo-inositol, glycerophosphocholine, UDP-N-acetylglucosamine, glycine, serine, pantothenate and phosphocholine. Moreover, we show that OTX-015 alters ascorbate and aldarate metabolism, inositol phosphate metabolism, phosphatidylinositol signalling system, glycerophospholipid metabolism, ether lipid metabolism, aminoacyl-tRNA biosynthesis, and glycine, serine and threonine metabolism pathways in both cell lines. These insights provide a metabolic characterisation of MYC-driven childhood MB cell lines, which could pave the way for the discovery of novel druggable pathways. Importantly, these findings will also contribute to understand the downstream effects of BETis on MYC-driven MB, potentially aiding the development of new therapeutic strategies to combat medulloblastoma.
Collapse
Affiliation(s)
- Vittoria Graziani
- Department of Microbiology and Tumor Biology, Biomedicum B7, Karolinska Institutet, 171 65, Stockholm, Sweden
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Aida Rodriguez Garcia
- Department of Microbiology and Tumor Biology, Biomedicum B7, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Lourdes Sainero Alcolado
- Department of Microbiology and Tumor Biology, Biomedicum B7, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Adrien Le Guennec
- Centre for Biomolecular Spectroscopy, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Marie Arsenian Henriksson
- Department of Microbiology and Tumor Biology, Biomedicum B7, Karolinska Institutet, 171 65, Stockholm, Sweden.
| | - Maria R Conte
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
35
|
Yadav Y, Barman S, Roy A, Padhan J, Sudhamalla B. Uncovering the Domain-Specific Interactome of the TAF1 Tandem Reader Using Site-Specific Azide-Acetyllysine Photochemistry. Biochemistry 2023; 62:270-280. [PMID: 35786907 DOI: 10.1021/acs.biochem.2c00140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Combinatorial readout of histone post-translational modifications by tandem reader modules mediates crosstalk among different histone modifications. To identify the domain-specific interactome of the tandem reader, we engineered the dual bromodomain of TATA-binding protein-associated factor-1 (TAF1) to carry a photoactivatable unnatural amino acid, 4-azido-l-phenylalanine (AzF), via amber suppressor mutagenesis. Using computational approaches, we modeled the targeted residues of TAF1 with AzF to predict the cross-linking distance between the reactive arylazide and its interacting partner. We developed three photoactivatable TAF1 tandem-bromodomain analogues, viz., Y1403AzF in bromodomain 1 (BD1), W1526AzF in bromodomain 2 (BD2), and Y1403AzF/W1526AzF in both BD1 and BD2. Circular dichroism and a thermal shift assay were used to confirm the structural integrity of the engineered readers. Using the TAF1 tandem-bromodomain analogues, we characterized their histone ligand binding properties by isothermal titration calorimetry and photo-cross-linking experiments. We found that the dual bromodomain of TAF1 independently binds and cross-links to different acetylated histone ligands. We further used the engineered BD1 and BD2 analogues of the TAF1 tandem readers to identify their domain-specific interacting partners at the cellular level. Both BD1 and BD2 independently cross-link to a unique interactome, and importantly, the dual cross-linker carrying TAF1 analogue could capture both BD1- and BD2-specific interactomes. Our work concludes that BD1 and BD2 of the TAF1 tandem reader independently recognize their interacting partners to regulate downstream cellular functions.
Collapse
Affiliation(s)
- Yogita Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, 741246 Nadia, West Bengal, India
| | - Soumen Barman
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, 741246 Nadia, West Bengal, India
| | - Anirban Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, 741246 Nadia, West Bengal, India
| | - Jyotirmayee Padhan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, 741246 Nadia, West Bengal, India
| | - Babu Sudhamalla
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, 741246 Nadia, West Bengal, India
| |
Collapse
|
36
|
Ding M, Shao Y, Sun D, Meng S, Zang Y, Zhou Y, Li J, Lu W, Zhu S. Design, synthesis, and biological evaluation of BRD4 degraders. Bioorg Med Chem 2023; 78:117134. [PMID: 36563515 DOI: 10.1016/j.bmc.2022.117134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Epigenetic proteins are one of the important targets in the current research fields of cancer therapy. A family of bromodomain-containing (BRD) and extra terminal domain (BET) proteins act as epigenetic readers to regulate the expression of key oncogenes and anti-apoptotic proteins. Recently, although BET degraders based on PROTAC technology have achieved significant antitumor effects, the lack of selectivity for BET protein degradation has not been fully addressed. Herein, a series of small molecule BRD4 PROTACs were designed and synthesized. Most of the degraders were effective in inhibiting MM.1S and MV-4-11 cell lines, especially in MV-4-11. Among them, degrader 8b could induce the degradation of BRD4 and exhibited a time- and concentration-dependent depletion manner and there was a significant depletion of BRD4, laying a foundation for effectively treating leukemia and multiple myeloma. Moreover, 8b could also effectively prevent the activation of MRC5 cells by inducing the degradation of BRD4 protein, which preliminarily proves that the BRD4 degrader based on the PROTAC concept has great potential for the treatment of pulmonary fibrosis. Taken together, these findings laid a foundation for BRD4 degraders as an effective strategy for treating related diseases.
Collapse
Affiliation(s)
- Mengyuan Ding
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Yingying Shao
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Danwen Sun
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Suorina Meng
- University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, PR China; Lingang Laboratory, Shanghai 201203, PR China
| | - Yi Zang
- University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, PR China; Lingang Laboratory, Shanghai 201203, PR China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China
| | - Yubo Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, PR China
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, PR China.
| | - Wei Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China.
| | - Shulei Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China.
| |
Collapse
|
37
|
Viita T, Côté J. The MOZ-BRPF1 acetyltransferase complex in epigenetic crosstalk linked to gene regulation, development, and human diseases. Front Cell Dev Biol 2023; 10:1115903. [PMID: 36712963 PMCID: PMC9873972 DOI: 10.3389/fcell.2022.1115903] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/29/2022] [Indexed: 01/12/2023] Open
Abstract
Acetylation of lysine residues on histone tails is an important post-translational modification (PTM) that regulates chromatin dynamics to allow gene transcription as well as DNA replication and repair. Histone acetyltransferases (HATs) are often found in large multi-subunit complexes and can also modify specific lysine residues in non-histone substrates. Interestingly, the presence of various histone PTM recognizing domains (reader domains) in these complexes ensures their specific localization, enabling the epigenetic crosstalk and context-specific activity. In this review, we will cover the biochemical and functional properties of the MOZ-BRPF1 acetyltransferase complex, underlining its role in normal biological processes as well as in disease progression. We will discuss how epigenetic reader domains within the MOZ-BRPF1 complex affect its chromatin localization and the histone acetyltransferase specificity of the complex. We will also summarize how MOZ-BRPF1 is linked to development via controlling cell stemness and how mutations or changes in expression levels of MOZ/BRPF1 can lead to developmental disorders or cancer. As a last touch, we will review the latest drug candidates for these two proteins and discuss the therapeutic possibilities.
Collapse
Affiliation(s)
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Oncology Division of Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| |
Collapse
|
38
|
Targeting Epigenetic Mechanisms: A Boon for Cancer Immunotherapy. Biomedicines 2023; 11:biomedicines11010169. [PMID: 36672677 PMCID: PMC9855697 DOI: 10.3390/biomedicines11010169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Immunotherapy is rapidly emerging as a promising approach against cancer. In the last decade, various immunological mechanisms have been targeted to induce an increase in the immune response against cancer cells. However, despite promising results, many patients show partial response, resistance, or serious toxicities. A promising way to overcome this is the use of immunotherapeutic approaches, in combination with other potential therapeutic approaches. Aberrant epigenetic modifications play an important role in carcinogenesis and its progression, as well as in the functioning of immune cells. Thus, therapeutic approaches targeting aberrant epigenetic mechanisms and the immune response might provide an effective antitumor effect. Further, the recent development of potent epigenetic drugs and immunomodulators gives hope to this combinatorial approach. In this review, we summarize the synergy mechanism between epigenetic therapies and immunotherapy for the treatment of cancer, and discuss recent advancements in the translation of this approach.
Collapse
|
39
|
Czerwinska P, Mackiewicz AA. Bromodomain (BrD) Family Members as Regulators of Cancer Stemness-A Comprehensive Review. Int J Mol Sci 2023; 24:995. [PMID: 36674511 PMCID: PMC9861003 DOI: 10.3390/ijms24020995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Epigenetic mechanisms involving DNA methylation and chromatin modifications have emerged as critical facilitators of cancer heterogeneity, substantially affecting cancer development and progression, modulating cell phenotypes, and enhancing or inhibiting cancer cell malignant properties. Not surprisingly, considering the importance of epigenetic regulators in normal stem cell maintenance, many chromatin-related proteins are essential to maintaining the cancer stem cell (CSC)-like state. With increased tumor-initiating capacities and self-renewal potential, CSCs promote tumor growth, provide therapy resistance, spread tumors, and facilitate tumor relapse after treatment. In this review, we characterized the epigenetic mechanisms that regulate the acquisition and maintenance of cancer stemness concerning selected epigenetic factors belonging to the Bromodomain (BrD) family of proteins. An increasing number of BrD proteins reinforce cancer stemness, supporting the maintenance of the cancer stem cell population in vitro and in vivo via the utilization of distinct mechanisms. As bromodomain possesses high druggable potential, specific BrD proteins might become novel therapeutic targets in cancers exhibiting de-differentiated tumor characteristics.
Collapse
Affiliation(s)
- Patrycja Czerwinska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Andrzej Adam Mackiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
40
|
Zhang M, Li Y, Zhang Z, Zhang X, Wang W, Song X, Zhang D. BRD4 Protein as a Target for Lung Cancer and Hematological Cancer Therapy: A Review. Curr Drug Targets 2023; 24:1079-1092. [PMID: 37846578 DOI: 10.2174/0113894501269090231012090351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/30/2023] [Accepted: 09/15/2023] [Indexed: 10/18/2023]
Abstract
The BET protein family plays a crucial role in regulating the epigenetic landscape of the genome. Their role in regulating tumor-related gene expression and its impact on the survival of tumor cells is widely acknowledged. Among the BET family constituents, BRD4 is a significant protein. It is a bromodomain-containing protein located at the outer terminal that recognizes histones that have undergone acetylation. It is present in the promoter or enhancer region of the target gene and is responsible for initiating and sustaining the expression of genes associated with tumorigenesis. BRD4 expression is significantly elevated in various tumor types. Research has indicated that BRD4 plays a significant role in regulating various transcription factors and chromatin modification, as well as in repairing DNA damage and preserving telomere function, ultimately contributing to the survival of cancerous cells. The protein BRD4 has a significant impact on antitumor therapy, particularly in the management of lung cancer and hematological malignancies, and the promising potential of BRD4 inhibitors in the realm of cancer prevention and treatment is a topic of great interest. Therefore, BRD4 is considered a promising candidate for prophylaxis and therapy of neoplastic diseases. However, further research is required to fully comprehend the significance and indispensability of BRD4 in cancer and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Mengmeng Zhang
- College of Humanities and Management, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, P.R. China
| | - Yingbo Li
- College of Humanities and Management, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, P.R. China
| | - Zilong Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, P.R. China
| | - Xin Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, P.R. China
| | - Wei Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, P.R. China
| | - Xiaomei Song
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, P.R. China
| | - Dongdong Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, P.R. China
| |
Collapse
|
41
|
Xu C, Zhao S, Cai L. Epigenetic (De)regulation in Prostate Cancer. Cancer Treat Res 2023; 190:321-360. [PMID: 38113006 PMCID: PMC11421856 DOI: 10.1007/978-3-031-45654-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Prostate cancer (PCa) is a heterogeneous disease exhibiting both genetic and epigenetic deregulations. Epigenetic alterations are defined as changes not based on DNA sequence, which include those of DNA methylation, histone modification, and chromatin remodeling. Androgen receptor (AR) is the main driver for PCa and androgen deprivation therapy (ADT) remains a backbone treatment for patients with PCa; however, ADT resistance almost inevitably occurs and advanced diseases develop termed castration-resistant PCa (CRPC), due to both genetic and epigenetic changes. Due to the reversible nature of epigenetic modifications, inhibitors targeting epigenetic factors have become promising anti-cancer agents. In this chapter, we focus on recent studies about the dysregulation of epigenetic regulators crucially involved in the initiation, development, and progression of PCa and discuss the potential use of inhibitors targeting epigenetic modifiers for treatment of advanced PCa.
Collapse
Affiliation(s)
- Chenxi Xu
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shuai Zhao
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ling Cai
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
42
|
Ma L, Li G, Yang T, Zhang L, Wang X, Xu X, Ni H. An inhibitor of BRD4, GNE987, inhibits the growth of glioblastoma cells by targeting C-Myc and S100A16. Cancer Chemother Pharmacol 2022; 90:431-444. [PMID: 36224471 PMCID: PMC9637061 DOI: 10.1007/s00280-022-04483-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/05/2022] [Indexed: 11/11/2022]
Abstract
PURPOSE Among children, glioblastomas (GBMs) are a relatively common type of brain tumor. BRD4 expression was elevated in GBM and negatively correlated with the prognosis of glioma. We investigated the anti-GBM effects of a novel BRD4 inhibitor GNE987. METHODS We evaluated the anti-tumor effect of GNE987 in vitro and in vivo by Western blot, CCK8, flow cytometry detection, clone formation, the size of xenografts, and Ki67 immunohistochemical staining, and combined ChIP-seq with RNA-seq techniques to find its anti-tumor mechanism. RESULTS In vitro experiments showed that GNE987 significantly degraded BRD4, inhibited the proliferation of GBM cells, blocked the cell cycle, and induced apoptosis. Similarly, in vivo experiments, GNE987 also inhibited GBM growth as seen from the size of xenografts and Ki67 immunohistochemical staining. Based on Western blotting, GNE987 can significantly reduce the protein level of C-Myc; meanwhile, we combined ChIP-seq with RNA-seq techniques to confirm that GNE987 downregulated the transcription of S100A16 by disturbing H3K27Ac. Furthermore, we validated that S100A16 is indispensable in GBM growth. CONCLUSION GNE987 may be effective against GBM that targets C-Myc expression and influences S100A16 transcription through downregulation of BRD4.
Collapse
Affiliation(s)
- Liya Ma
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China
| | - Gen Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China
- Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Tianquan Yang
- Department of Neurosurgery, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China
| | - Li Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China
| | - Xinxin Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China
| | - Xiaowen Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China
| | - Hong Ni
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China.
| |
Collapse
|
43
|
Zuo X, Liu D. Mechanism of immunomodulatory drug resistance and novel therapeutic strategies in multiple myeloma. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2022; 27:1110-1121. [PMID: 36121114 DOI: 10.1080/16078454.2022.2124694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The mechanism of immunomodulatory drugs (IMiDs) resistance to multiple myeloma (MM) cells has been gradually demonstrated by recently studies, and some potential novel strategies have been confirmed to have antimyeloma activity and be associated with IMiD activity in MM. METHODS This article searched the Pubmed library, reviewed some recently studies related to IMiD resistance to MM cells and summarized some potent agents to improve IMiD resistance to MM cells. RESULTS Studies have confirmed that cereblon is a primary direct protein target of IMiDs. IRF4 not only is affected by the IKZF protein but also can directly inhibit the expression of BMF and BIM, thereby promoting the survival of MM cells. Additionally, the expression of IRF4 and MYC also plays an important role in three important signaling pathways (Wnt, STAT3 and MAPK/ERK) related to IMiD resistance. Notably, MYC, a downstream factor of IRF4, may be upregulated by BRD4, and upregulation of MYC promotes cell proliferation in MM and disease progression. Recently, some novel therapeutic agents targeting BRD4, a histone modification-related 'reader' of epigenetic marks, or other important factors (e.g. TAK1) in relevant signaling pathways have been developed and they may provide new options for relapse/refractory MM therapy, such as BET inhibitors, CBP/EP300 inhibitors, dual-target BET-CBP/EP300 inhibitors, TAK1 inhibitors, and they may provide new options for relapsed/refractory MM therapy. CONCLUSIONS Accumulated studies have revealed that some key factors associated with the mechanism of IMiD resistance to MM cells. Some agents represent promising new therapeutics of MM to regulate the IRF4/MYC axis by inhibiting BRD4 expression or signaling pathway activation.
Collapse
Affiliation(s)
- Xiaojia Zuo
- Department of Hematology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, People's Republic of China.,Department of Oncology and Hematology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, People's Republic of China.,Guizhou Medical University, Guiyang, People's Republic of China
| | - Dingsheng Liu
- Department of Hematology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
44
|
Multi-Omics Alleviates the Limitations of Panel Sequencing for Cancer Drug Response Prediction. Cancers (Basel) 2022; 14:cancers14225604. [PMID: 36428696 PMCID: PMC9688044 DOI: 10.3390/cancers14225604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Comprehensive genomic profiling using cancer gene panels has been shown to improve treatment options for a variety of cancer types. However, genomic aberrations detected via such gene panels do not necessarily serve as strong predictors of drug sensitivity. In this study, using pharmacogenomics datasets of cell lines, patient-derived xenografts, and ex vivo treated fresh tumor specimens, we demonstrate that utilizing the transcriptome on top of gene panel features substantially improves drug response prediction performance in cancer.
Collapse
|
45
|
Alcitepe İ, Salcin H, Karatekin İ, Kaymaz BT. HDAC inhibitor Vorinostat and BET inhibitor Plx51107 epigenetic agents' combined treatments exert a therapeutic approach upon acute myeloid leukemia cell model. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:257. [PMID: 36224430 DOI: 10.1007/s12032-022-01858-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
Abstract
The process of cancer initiation and development is regulated via the transcriptional expression of cells going under genomic and epigenetic changes. Targeting epigenetic "readers", i.e., bromodomains (BRD) and post-translational modifications of nucleosomal histone proteins regulate gene expression in both cancerous and healthy cells. In this study, the new epigenetic agent BRD inhibitor PLX51107 and histone deacetylase (HDAC) inhibitor SAHA' s (Vorinostat) single/combined applications' reflections were analyzed in case of cell proliferation, cytotoxicity, apoptosis, cell cycle arrest, and finally target gene expression regulation upon both AML and healthy B-lymphocyte cells; HL60 and NCIBL2171, respectively; in vitro. Since mono treatments of either Vorinostat or Plx51107 regulated cellular responses such as growth, proliferation, apoptosis, and cell cycle arrest of tumor cells; their combination treatments exerted accelerated results. We detected that combined treatment of Plx51107 and Vorinostat strengthened effects detected upon leukemic cells for gaining more sensitization to the agents, decreasing cell proliferation, dramatically inducing apoptosis, and cell cycle arrest; thus regulating target gene expressions. We have shown for the first time that the newly analyzed BRD inhibitor Plx51107 could be a promising therapeutic approach for hematological malignancies and its mono or combined usage might support a rapid transition to clinical trials.
Collapse
Affiliation(s)
- İlayda Alcitepe
- Medical Biology Department, Ege University Medical School, Izmir, Turkey
| | - Hilal Salcin
- Basic Oncology Department, Ege University Health Science Institute, Izmir, Turkey
| | - İlknur Karatekin
- Medical Biology Department, Ege University Medical School, Izmir, Turkey
| | | |
Collapse
|
46
|
Barman S, Roy A, Padhan J, Sudhamalla B. Molecular Insights into the Recognition of Acetylated Histone Modifications by the BRPF2 Bromodomain. Biochemistry 2022; 61:1774-1789. [PMID: 35976792 DOI: 10.1021/acs.biochem.2c00297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
HBO1 [HAT bound to the origin recognition complex (ORC)], a member of the MYST family of histone acetyltransferases (HATs), was initially identified as a binding partner of ORC that acetylates free histone H3, H4, and nucleosomal H3. It functions as a quaternary complex with the BRPF (BRPF1/2/3) scaffolding protein and two accessory proteins, ING4/5 and Eaf6. Interaction of BRPF2 with HBO1 has been shown to be important for regulating H3K14 acetylation during embryonic development. However, how BRPF2 directs the HBO1 HAT complex to chromatin to regulate its HAT activity toward nucleosomal substrates remains unclear. Our findings reveal novel interacting partners of the BRPF2 bromodomain that recognizes different acetyllysine residues on the N-terminus of histone H4, H3, and H2A and preferentially binds to H4K5ac, H4K8ac, and H4K5acK12ac modifications. In addition, mutational analysis of the BRPF2 bromodomain coupled with isothermal titration calorimetry binding and pull-down assays on the histone substrates identified critical residues responsible for acetyllysine binding. Moreover, the BRPF2 bromodomain could enrich H4K5ac mark-bearing mononucleosomes compared to other acetylated H4 marks. Consistent with this, ChIP-seq analysis revealed that BRPF2 strongly co-localizes with HBO1 at histone H4K5ac and H4K8ac marks near the transcription start sites in the genome. Our study provides novel insights into how the histone binding function of the BRPF2 bromodomain directs the recruitment of the HBO1 HAT complex to chromatin to regulate gene expression.
Collapse
Affiliation(s)
- Soumen Barman
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, Nadia, West Bengal 741246, India
| | - Anirban Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, Nadia, West Bengal 741246, India
| | - Jyotirmayee Padhan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, Nadia, West Bengal 741246, India
| | - Babu Sudhamalla
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
47
|
Karami Fath M, Azargoonjahromi A, Kiani A, Jalalifar F, Osati P, Akbari Oryani M, Shakeri F, Nasirzadeh F, Khalesi B, Nabi-Afjadi M, Zalpoor H, Mard-Soltani M, Payandeh Z. The role of epigenetic modifications in drug resistance and treatment of breast cancer. Cell Mol Biol Lett 2022; 27:52. [PMID: 35764927 PMCID: PMC9238060 DOI: 10.1186/s11658-022-00344-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/24/2022] [Indexed: 02/08/2023] Open
Abstract
Background Breast cancer is defined as a biological and molecular heterogeneous disorder that originates from breast cells. Genetic predisposition is the most important factor giving rise to this malignancy. The most notable mutations in breast cancer occur in the BRCA1 and BRCA2 genes. Owing to disease heterogeneity, lack of therapeutic target, anti-cancer drug resistance, residual disease, and recurrence, researchers are faced with challenges in developing strategies to treat patients with breast cancer. Results It has recently been reported that epigenetic processes such as DNA methylation and histone modification, as well as microRNAs (miRNAs), have potently contributed to the pathophysiology, diagnosis, and treatment of breast cancer. These observations have persuaded researchers to move their therapeutic approaches beyond the genetic framework toward the epigenetic concept. Conclusion Herein we discuss the molecular and epigenetic mechanisms underlying breast cancer progression and resistance as well as various aspects of epigenetic-based therapies as monotherapy and combined with immunotherapy.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Arash Kiani
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Fateme Jalalifar
- School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Parisa Osati
- Chemical Engineering Department, Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fateh Shakeri
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Farhad Nasirzadeh
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Behman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maysam Mard-Soltani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran.
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
48
|
Hua L, Zhang Q, Zhu X, Wang R, You Q, Wang L. Beyond Proteolysis-Targeting Chimeric Molecules: Designing Heterobifunctional Molecules Based on Functional Effectors. J Med Chem 2022; 65:8091-8112. [PMID: 35686733 DOI: 10.1021/acs.jmedchem.2c00316] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, with the successful development of proteolysis-targeting chimeric molecules (PROTACs), the potential of heterobifunctional molecules to contribute to reenvisioning drug design, especially small-molecule drugs, has been increasingly recognized. Inspired by PROTACs, diverse heterobifunctional molecules have been reported to simultaneously bind two or more molecules and bring them into proximity to interaction, such as ribonuclease-recruiting, autophagy-recruiting, lysosome-recruiting, kinase-recruiting, phosphatase-recruiting, glycosyltransferase-recruiting, and acetyltransferase-recruiting chimeras. On the basis of the heterobifunctional principle, more opportunities for advancing drug design by linking potential effectors to a protein of interest (POI) have emerged. Herein, we introduce heterobifunctional molecules other than PROTACs, summarize the limitations of existing molecules, list the main challenges, and propose perspectives for future research directions, providing insight into alternative design strategies based on substrate-proximity-based targeting.
Collapse
Affiliation(s)
- Liwen Hua
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, P. R. China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R.China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, P. R. China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R.China
| | - Xinyue Zhu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, P. R. China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R.China
| | - Ruoning Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, P. R. China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R.China
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, P. R. China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R.China
| |
Collapse
|
49
|
Yellapu NK, Ly T, Sardiu ME, Pei D, Welch DR, Thompson JA, Koestler DC. Synergistic anti-proliferative activity of JQ1 and GSK2801 in triple-negative breast cancer. BMC Cancer 2022; 22:627. [PMID: 35672711 PMCID: PMC9173973 DOI: 10.1186/s12885-022-09690-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) constitutes 10-20% of breast cancers and is challenging to treat due to a lack of effective targeted therapies. Previous studies in TNBC cell lines showed in vitro growth inhibition when JQ1 or GSK2801 were administered alone, and enhanced activity when co-administered. Given their respective mechanisms of actions, we hypothesized the combinatorial effect could be due to the target genes affected. Hence the target genes were characterized for their expression in the TNBC cell lines to prove the combinatorial effect of JQ1 and GSK2801. METHODS RNASeq data sets of TNBC cell lines (MDA-MB-231, HCC-1806 and SUM-159) were analyzed to identify the differentially expressed genes in single and combined treatments. The topmost downregulated genes were characterized for their downregulated expression in the TNBC cell lines treated with JQ1 and GSK2801 under different dose concentrations and combinations. The optimal lethal doses were determined by cytotoxicity assays. The inhibitory activity of the drugs was further characterized by molecular modelling studies. RESULTS Global expression profiling of TNBC cell lines using RNASeq revealed different expression patterns when JQ1 and GSK2801 were co-administered. Functional enrichment analyses identified several metabolic pathways (i.e., systemic lupus erythematosus, PI3K-Akt, TNF, JAK-STAT, IL-17, MAPK, Rap1 and signaling pathways) enriched with upregulated and downregulated genes when combined JQ1 and GSK2801 treatment was administered. RNASeq identified downregulation of PTPRC, MUC19, RNA5-8S5, KCNB1, RMRP, KISS1 and TAGLN (validated by RT-qPCR) and upregulation of GPR146, SCARA5, HIST2H4A, CDRT4, AQP3, MSH5-SAPCD1, SENP3-EIF4A1, CTAGE4 and RNASEK-C17orf49 when cells received both drugs. In addition to differential gene regulation, molecular modelling predicted binding of JQ1 and GSK2801 with PTPRC, MUC19, KCNB1, TAGLN and KISS1 proteins, adding another mechanism by which JQ1 and GSK2801 could elicit changes in metabolism and proliferation. CONCLUSION JQ1-GSK2801 synergistically inhibits proliferation and results in selective gene regulation. Besides suggesting that combinatorial use could be useful therapeutics for the treatment of TNBC, the findings provide a glimpse into potential mechanisms of action for this combination therapy approach.
Collapse
Affiliation(s)
- Nanda Kumar Yellapu
- Department of Biostatistics & Data Science, University of Kansas, Medical Center, KS, Kansas City, USA
- The University of Kansas Cancer Center, Kansas City, KS, USA
| | - Thuc Ly
- The University of Kansas Cancer Center, Kansas City, KS, USA
- Department of Cancer Biology, University of Kansas, Medical Center, KS, Kansas City, USA
| | - Mihaela E Sardiu
- Department of Biostatistics & Data Science, University of Kansas, Medical Center, KS, Kansas City, USA
- The University of Kansas Cancer Center, Kansas City, KS, USA
| | - Dong Pei
- Department of Biostatistics & Data Science, University of Kansas, Medical Center, KS, Kansas City, USA
- The University of Kansas Cancer Center, Kansas City, KS, USA
| | - Danny R Welch
- The University of Kansas Cancer Center, Kansas City, KS, USA
- Department of Cancer Biology, University of Kansas, Medical Center, KS, Kansas City, USA
- Departments of Molecular & Integrative Physiology and Internal Medicine, University of Kansas, Medical Center, KS, Kansas City, USA
| | - Jeffery A Thompson
- Department of Biostatistics & Data Science, University of Kansas, Medical Center, KS, Kansas City, USA.
- The University of Kansas Cancer Center, Kansas City, KS, USA.
| | - Devin C Koestler
- Department of Biostatistics & Data Science, University of Kansas, Medical Center, KS, Kansas City, USA.
- The University of Kansas Cancer Center, Kansas City, KS, USA.
| |
Collapse
|
50
|
Sfera A, Thomas KG, Andronescu CV, Jafri N, Sfera DO, Sasannia S, Zapata-Martín del Campo CM, Maldonado JC. Bromodomains in Human-Immunodeficiency Virus-Associated Neurocognitive Disorders: A Model of Ferroptosis-Induced Neurodegeneration. Front Neurosci 2022; 16:904816. [PMID: 35645713 PMCID: PMC9134113 DOI: 10.3389/fnins.2022.904816] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) comprise a group of illnesses marked by memory and behavioral dysfunction that can occur in up to 50% of HIV patients despite adequate treatment with combination antiretroviral drugs. Iron dyshomeostasis exacerbates HIV-1 infection and plays a major role in Alzheimer's disease pathogenesis. In addition, persons living with HIV demonstrate a high prevalence of neurodegenerative disorders, indicating that HAND provides a unique opportunity to study ferroptosis in these conditions. Both HIV and combination antiretroviral drugs increase the risk of ferroptosis by augmenting ferritin autophagy at the lysosomal level. As many viruses and their proteins exit host cells through lysosomal exocytosis, ferroptosis-driving molecules, iron, cathepsin B and calcium may be released from these organelles. Neurons and glial cells are highly susceptible to ferroptosis and neurodegeneration that engenders white and gray matter damage. Moreover, iron-activated microglia can engage in the aberrant elimination of viable neurons and synapses, further contributing to ferroptosis-induced neurodegeneration. In this mini review, we take a closer look at the role of iron in the pathogenesis of HAND and neurodegenerative disorders. In addition, we describe an epigenetic compensatory system, comprised of bromodomain-containing protein 4 (BRD4) and microRNA-29, that may counteract ferroptosis by activating cystine/glutamate antiporter, while lowering ferritin autophagy and iron regulatory protein-2. We also discuss potential interventions for lysosomal fitness, including ferroptosis blockers, lysosomal acidification, and cathepsin B inhibitors to achieve desirable therapeutic effects of ferroptosis-induced neurodegeneration.
Collapse
Affiliation(s)
- Adonis Sfera
- Patton State Hospital, San Bernardino, CA, United States
- Department of Psychiatry, University of California, Riverside, Riverside, CA, United States
| | | | | | - Nyla Jafri
- Patton State Hospital, San Bernardino, CA, United States
| | - Dan O. Sfera
- Patton State Hospital, San Bernardino, CA, United States
| | | | | | - Jose C. Maldonado
- Department of Medicine, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| |
Collapse
|