1
|
Li Z, Yi H, Zheng X, Zhu Y, Lu B, Zhang N, Ma Z, Liu X, Yang X, Chang Y, Wu X. Toxoplasma gondii infection is associated with schizophrenia from the perspectives of seroepidemiology and serum metabolomics in Hunan Province, China. Microb Pathog 2024; 195:106880. [PMID: 39181191 DOI: 10.1016/j.micpath.2024.106880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Toxoplasma gondii (T.gondii) can influence the host's neurotransmission, central immune responses, and brain structure, potentially impacting the onset and development of various psychiatric disorders such as schizophrenia. We employed Electrochemiluminescence Immunoassay (ECLIA) to measure anti-Toxoplasma antibodies in 451 schizophrenic patients and 478 individuals from the general population in Hunan, China. The incidence rate of T.gondii infection in schizophrenic patients (8.87 %) was higher than that in the general population (3.77 %). A significant difference was observed among females, but not in males. Age-stratified analysis revealed significant differences in the 21-40 and 41-60 age groups. The two populations had no significant difference in the antibody titer for T. gondii infection. Additionally, the profile of circulating metabolites in the serum of schizophrenic patients with or without T. gondii infection was examined using non-targeted metabolomics assay. A total of 68 metabolites were differentially expressed between Toxoplasma-positive and Toxoplasma-negative groups, potentially mediating the connection between T. gondii infection and schizophrenia. Our research suggests that schizophrenic patients are susceptible to T. gondii infection with distinct metabolic program.
Collapse
Affiliation(s)
- Zhuolin Li
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Huimin Yi
- Xiangtan Fifth People's Hospital, Hunan, China
| | - Xingxing Zheng
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yiting Zhu
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Bin Lu
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Ni Zhang
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Zhenrong Ma
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xianshu Liu
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xuexian Yang
- Department of Molecular Genetic and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Yunfeng Chang
- Department of Forensic Medicine Science, Xiangya School of Basic Medicine, Central South University, Changsha, 410013, Hunan, China.
| | - Xiang Wu
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
2
|
Natallia L, Dama A, Gorica E, Darya K, Peña-Corona SI, Cortés H, Santini A, Büsselberg D, Leyva-Gómez G, Sharifi-Rad J. Genipin's potential as an anti-cancer agent: from phytochemical origins to clinical prospects. Med Oncol 2024; 41:186. [PMID: 38918260 DOI: 10.1007/s12032-024-02429-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
This comprehensive review delves into the multifaceted aspects of genipin, a bioactive compound derived from medicinal plants, focusing on its anti-cancer potential. The review begins by detailing the sources and phytochemical properties of genipin, underscoring its significance in traditional medicine and its transition into contemporary cancer research. It then explores the intricate relationship between genipin's chemical structure and its observed anti-cancer activity, highlighting the molecular underpinnings contributing to its therapeutic potential. This is complemented by a thorough analysis of preclinical studies, which investigates genipin's efficacy against various cancer cell lines and its mechanisms of action at the cellular level. A crucial component of the review is the examination of genipin's bioavailability and pharmacokinetics, providing insights into how the compound is absorbed, distributed, metabolized, and excreted in the body. Then, this review offers a general and updated overview of the anti-cancer studies of genipin and its derivatives based on its basic molecular mechanisms, induction of apoptosis, inhibition of cell proliferation, and disruption of cancer cell signaling pathways. We include information that complements the genipin study, such as toxicity data, and we differentiate this review by including commercial status, disposition, and regulation. Also, this review of genipin stands out for incorporating information on proposals for a technological approach through its load in nanotechnology to improve its bioavailability. The culmination of this information positions genipin as a promising candidate for developing novel anti-cancer drugs capable of supplementing or enhancing current cancer therapies.
Collapse
Affiliation(s)
- Lapava Natallia
- Medicine Standardization Department of Vitebsk State Medical University, Vitebsk, Republic of Belarus.
| | - Aida Dama
- Department of Pharmacy, Faculty of Medical Sciences, Albanian University, Zogu I Blvd., 1001, Tirana, Albania
| | - Era Gorica
- Department of Pharmacy, Faculty of Medical Sciences, Albanian University, Zogu I Blvd., 1001, Tirana, Albania
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, 8952, Schlieren, Zürich, Switzerland
| | - Karaliova Darya
- Medicine Standardization Department of Vitebsk State Medical University, Vitebsk, Republic of Belarus
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico, Mexico
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy.
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico.
| | - Javad Sharifi-Rad
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Zhang G, Zhou X, Feng Q, Ke W, Pan J, Zhang H, Luan Y, Lei B. Nerolidol reduces depression-like behavior in mice and suppresses microglia activation by down-regulating DNA methyltransferase 1. Neuroreport 2024; 35:457-465. [PMID: 38526920 DOI: 10.1097/wnr.0000000000002029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Modern medicine has unveiled that essential oil made from Aquilaria possesses sedative and hypnotic effects. Among the chemical components in Aquilaria, nerolidol, a natural sesquiterpene alcohol, has shown promising effects. This study aimed to unravel the potential of nerolidol in treating depression. Chronic unpredictable mild stress (CUMS) was utilized to induce depression-like behavior in mice, and open field test, sucrose preference, and tail suspension test was conducted. The impacts of nerolidol on the inflammatory response, microglial activation, and DNA methyltransferase 1 (DNMT1) were assessed. To study the regulatory role of DNMT1, lipopolysaccharide (LPS) was used to treat BV2 cells, followed by the evaluation of cell viability and DNMT1 level. Additionally, the influence of DNMT1 overexpression on BV2 cell activation was determined. Behavioral analysis revealed that nerolidol reduced depression-like behavior in mice. Nerolidol reduced the levels of inflammatory factors and microglial activation caused by CUMS. Nerolidol treatment was found to reduce DNMT1 levels in mouse brain tissue and it also decrease the LPS-induced increase in DNMT1 levels in BV2 cells. DNMT1 overexpression reversed the impacts of nerolidol on the inflammation response and cell activation. This study underscores the potential of nerolidol in reducing CUMS-induced depressive-like behavior and inhibiting microglial activation by downregulating DNMT1. These findings offer valuable insights into the potential of nerolidol as a therapeutic option for depression.
Collapse
Affiliation(s)
- Guangcai Zhang
- Rehabilitation Department, Hainan Medical College Affiliated Traditional Chinese Medicine Hospital, Guangzhou University of Traditional Chinese Medicine Affiliated Hainan Traditional Chinese Medicine Hospital, Hainan Traditional Chinese Medicine Hospital, Haikou, Hainan
| | - Xiaohui Zhou
- Rehabilitation Department, Hainan Medical College Affiliated Traditional Chinese Medicine Hospital, Guangzhou University of Traditional Chinese Medicine Affiliated Hainan Traditional Chinese Medicine Hospital, Hainan Traditional Chinese Medicine Hospital, Haikou, Hainan
| | - Qifan Feng
- Rehabilitation Department, Hainan Medical College Affiliated Traditional Chinese Medicine Hospital, Guangzhou University of Traditional Chinese Medicine Affiliated Hainan Traditional Chinese Medicine Hospital, Hainan Traditional Chinese Medicine Hospital, Haikou, Hainan
| | - Weihua Ke
- Rehabilitation Department, Hainan Medical College Affiliated Traditional Chinese Medicine Hospital, Guangzhou University of Traditional Chinese Medicine Affiliated Hainan Traditional Chinese Medicine Hospital, Hainan Traditional Chinese Medicine Hospital, Haikou, Hainan
- Graduate School, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiahui Pan
- Rehabilitation Department, Hainan Medical College Affiliated Traditional Chinese Medicine Hospital, Guangzhou University of Traditional Chinese Medicine Affiliated Hainan Traditional Chinese Medicine Hospital, Hainan Traditional Chinese Medicine Hospital, Haikou, Hainan
| | - Haiying Zhang
- Rehabilitation Department, Hainan Medical College Affiliated Traditional Chinese Medicine Hospital, Guangzhou University of Traditional Chinese Medicine Affiliated Hainan Traditional Chinese Medicine Hospital, Hainan Traditional Chinese Medicine Hospital, Haikou, Hainan
| | - Yixian Luan
- Rehabilitation Department, Hainan Medical College Affiliated Traditional Chinese Medicine Hospital, Guangzhou University of Traditional Chinese Medicine Affiliated Hainan Traditional Chinese Medicine Hospital, Hainan Traditional Chinese Medicine Hospital, Haikou, Hainan
| | - Beibei Lei
- Rehabilitation Department, Hainan Medical College Affiliated Traditional Chinese Medicine Hospital, Guangzhou University of Traditional Chinese Medicine Affiliated Hainan Traditional Chinese Medicine Hospital, Hainan Traditional Chinese Medicine Hospital, Haikou, Hainan
- Graduate School, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Bhuvaneshwar K, Gusev Y. Translational bioinformatics and data science for biomarker discovery in mental health: an analytical review. Brief Bioinform 2024; 25:bbae098. [PMID: 38493340 PMCID: PMC10944574 DOI: 10.1093/bib/bbae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/23/2024] [Accepted: 02/18/2024] [Indexed: 03/18/2024] Open
Abstract
Translational bioinformatics and data science play a crucial role in biomarker discovery as it enables translational research and helps to bridge the gap between the bench research and the bedside clinical applications. Thanks to newer and faster molecular profiling technologies and reducing costs, there are many opportunities for researchers to explore the molecular and physiological mechanisms of diseases. Biomarker discovery enables researchers to better characterize patients, enables early detection and intervention/prevention and predicts treatment responses. Due to increasing prevalence and rising treatment costs, mental health (MH) disorders have become an important venue for biomarker discovery with the goal of improved patient diagnostics, treatment and care. Exploration of underlying biological mechanisms is the key to the understanding of pathogenesis and pathophysiology of MH disorders. In an effort to better understand the underlying mechanisms of MH disorders, we reviewed the major accomplishments in the MH space from a bioinformatics and data science perspective, summarized existing knowledge derived from molecular and cellular data and described challenges and areas of opportunities in this space.
Collapse
Affiliation(s)
- Krithika Bhuvaneshwar
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University, Washington DC, 20007, USA
| | - Yuriy Gusev
- Innovation Center for Biomedical Informatics (ICBI), Georgetown University, Washington DC, 20007, USA
| |
Collapse
|
5
|
Behl T, Rana T, Sehgal A, Sharma N, Albarrati A, Albratty M, Makeen HA, Najmi A, Verma R, Bungau SG. Exploring the multifocal role of phytoconstituents as antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110693. [PMID: 36509251 DOI: 10.1016/j.pnpbp.2022.110693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Depression is the most prevalent and devastating neuropsychiatric disorder. There are several conventional antidepressants used for the treatment of depression. But due to their undesired adverse effects, patient compliance is very poor. Thus, developing novel medications for the treatment of depression is a critical strategic priority for meeting therapeutic demands. Current research is looking for alternatives to traditional antidepressants to reduce undesired side effects and increase efficacy. Phytoconstituents provide a wide research range in antidepressant treatments. In the present article, we have conducted a comprehensive assessment of neurological evidence, which supports the usefulness of phytoconstituents in the treatment of the depressive disorder. Secondary plant metabolites including alkaloids, polyphenols, glycosides, saponins, and terpenoids were found to exhibit antidepressant action. Most of the phytoconstituents were found to mediate their antidepressant effect through the upregulation of brain-derived neurotrophic factor (BDNF), serotonin, noradrenaline, and dopamine. Some were also found to exert antidepressant effects by inhibiting the monoamine oxidase (MAO) activity and hypothalamic-pituitary-adrenal (HPA) axis overactivity.
Collapse
Affiliation(s)
- Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Uttarakhand, India.
| | - Tarapati Rana
- Chitkara College of Pharmacy, Chitkara University, Punjab, India; Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India
| | - Ali Albarrati
- Rehabilitation Health Sciences, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Raman Verma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania; Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
| |
Collapse
|
6
|
Wang H, Yang Y, Pei G, Wang Z, Chen N. Neurotrophic basis to the pathogenesis of depression and phytotherapy. Front Pharmacol 2023; 14:1182666. [PMID: 37089920 PMCID: PMC10115971 DOI: 10.3389/fphar.2023.1182666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
Depression is a major neuropsychiatric disease that considerably impacts individuals’ psychosocial function and life quality. Neurotrophic factors are now connected to the pathogenesis of depression, while the definitive neurotrophic basis remains elusive. Besides, phytotherapy is alternative to conventional antidepressants that may minimize undesirable adverse reactions. Thus, further research into the interaction between neurotrophic factors and depression and phytochemicals that repair neurotrophic factors deficit is highly required. This review highlighted the implication of neurotrophic factors in depression, with a focus on the brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), vascular endothelial growth factor (VEGF), and nerve growth factor (NGF), and detailed the antidepressant activities of various phytochemicals targeting neurotrophic factors. Additionally, we presented future opportunities for novel diagnostic and therapeutic strategies for depression and provided solutions to challenges in this area to accelerate the clinical translation of neurotrophic factors for the treatment of depression.
Collapse
Affiliation(s)
- Huiqin Wang
- Hunan University of Chinese Medicine and Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, Hunan, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yantao Yang
- Hunan University of Chinese Medicine and Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, Hunan, China
| | - Gang Pei
- Hunan University of Chinese Medicine and Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, Hunan, China
| | - Zhenzhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Naihong Chen
- Hunan University of Chinese Medicine and Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, Hunan, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Naihong Chen,
| |
Collapse
|
7
|
Wu Y, Hao Y, Yu G, Li L, Wang S, Li X, Zhang Z, Zou S, Liu Z, Fan P, Shi Y. Quantitative proteomics reveals the therapeutic effects of RFAP against depression via pathway regulation of long-term depression and potentiation. Heliyon 2023; 9:e13429. [PMID: 36873540 PMCID: PMC9976212 DOI: 10.1016/j.heliyon.2023.e13429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/18/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Ethnopharmacological relevance RFAP is a compound extraction complex of four Traditional Chinese Medicine (TCM), including the dry bark of Paeonia lactiflora Pall. (Radix Paeoniae Alba), Gardenia jasminoides J. Ellis (Fructus Gardeniae), Albizia julibrissin Durazz. (Albizia julibrissin Durazz), and Paeonia × suffruticosa Andrews (Peony bark). Not only RFAP but also the individual ingredients have been commonly used for the treatment of depression in the clinic. However, the underlying mechanism of pharmacology is difficult to interpret since its holistic and multidrug nature. Aim of the study This study aimed to elucidate the potential antidepressant mechanism of RFAP in the treatment of chronic unpredictable mild stress (CUMS) rats' model via the quantitative proteomics approach. Materials and methods We established the CUMS rats' model and evaluated the efficacy of RFAP using multiple behavior assays, including the sugar preference test, open field test, and forced swimming test. Then label-free quantitative proteomics analyses were performed to evaluate the integrated changes of proteome profiling in control, CUMS, RFAP low dose, and RFAP high dose groups. Finally, we validated the critical changed proteins in the pathways of long-term depression and potentiation via RT-PCR and Western blotting assays. Results We successfully established the CUMS rats' model. The behavior assays indicated that the rats demonstrated a tendency to behavioral despair after four weeks. Label-free quantitative proteomics showed that 107 proteins were significantly upregulated and 163 proteins were downregulated in the CUMS group compared to the control group. These differentially expressed proteins were involved in long-term potentiation, long-term depression, nervous system development, neuronal synaptic structural constituent of ribosome, ATP metabolic process, learning or memory, and cellular lipid metabolic process. RFAP treatment partially restored the differentially expressed protein profile. The protective effect of RFAP on behavioral assessment were consistent with the results of proteomics. Conclusions The results indicated that RFAP exerted a synergistic effect on CUMS by regulating long-term inhibition and potentiation-related proteins.
Collapse
Affiliation(s)
- Yang Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ying Hao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China.,Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Guohua Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Li Li
- Chenland Nutritionals, Inc., Irvine, CA, 92614, USA
| | | | - Xin Li
- Chenland Nutritionals, Inc., Irvine, CA, 92614, USA
| | - Zengliang Zhang
- Traditional Chinese Medicine College, Inner Mongolia Medical University, Jinshan Development Zone Hohhot, Inner Mongolia, 010110, China
| | - Shengcan Zou
- Chenland Nutritionals, Inc., Irvine, CA, 92614, USA
| | - Zimin Liu
- Chenland Nutritionals, Inc., Irvine, CA, 92614, USA
| | - Pengcheng Fan
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing 102206, China
| | - Yuanyuan Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China.,Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, Guangdong, 518118, China
| |
Collapse
|
8
|
Kou Y, Li Z, Yang T, Shen X, Wang X, Li H, Zhou K, Li L, Xia Z, Zheng X, Zhao Y. Therapeutic potential of plant iridoids in depression: a review. PHARMACEUTICAL BIOLOGY 2022; 60:2167-2181. [PMID: 36300881 PMCID: PMC9621214 DOI: 10.1080/13880209.2022.2136206] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/23/2022] [Accepted: 09/25/2022] [Indexed: 05/29/2023]
Abstract
CONTEXT Depression is a mental disorder characterized by low mood, reduced interest, impaired cognitive function, and vegetative symptoms such as sleep disturbances or poor appetite. Iridoids are the active constituents in several Chinese classical antidepressant formulae such as Yueju Pill, Zhi-Zi-Hou-Po Decoction, Zhi-Zi-Chi Decoction, and Baihe Dihuang Decoction. Parallel to their wide usages, iridoids are considered potential lead compounds for the treatment of neurological diseases. OBJECTIVE The review summarizes the therapeutic potential and molecular mechanisms of iridoids in the prevention or treatment of depression and contributes to identifying research gaps in iridoids as potential antidepressant medication. METHODS The following key phrases were sought in PubMed, Google Scholar, Web of Science, and China National Knowledge Internet (CNKI) without time limitation to search all relevant articles with in vivo or in vitro experimental studies as comprehensively as possible: ('iridoid' or 'seciridoid' or 'depression'). This review extracted the experimental data on the therapeutic potential and molecular mechanism of plant-derived iridoids for depression. RESULTS Plant iridoids (i.e., catalpol, geniposide, loganin), and secoiridoids (i.e., morroniside, gentiopicroside, oleuropein, swertiamarin), all showed significant improvement effects on depression. DISCUSSION AND CONCLUSIONS Iridoids exert antidepressant effects by elevating monoamine neurotransmitters, reducing pro-inflammatory factors, inhibiting hypothalamic-pituitary-adrenal (HPA) axis hyperactivity, increasing brain-derived neurotrophic factor (BDNF) and its receptors, and elevating intestinal microbial abundance. Further detailed studies on the pharmacokinetics, bioavailability, and key molecular targets of iridoids are also required in future research, ultimately to provide improvements to current antidepressant medications.
Collapse
Affiliation(s)
- Yaoyao Kou
- Three level Scientific Research Laboratory of National Administration of Traditional Chinese Medicine, Northwest University, Xi’an, PR China
| | - Zhihao Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, PR China
| | - Tong Yang
- Three level Scientific Research Laboratory of National Administration of Traditional Chinese Medicine, Northwest University, Xi’an, PR China
| | - Xue Shen
- Three level Scientific Research Laboratory of National Administration of Traditional Chinese Medicine, Northwest University, Xi’an, PR China
| | - Xin Wang
- Three level Scientific Research Laboratory of National Administration of Traditional Chinese Medicine, Northwest University, Xi’an, PR China
| | - Haopeng Li
- Three level Scientific Research Laboratory of National Administration of Traditional Chinese Medicine, Northwest University, Xi’an, PR China
| | - Kun Zhou
- Three level Scientific Research Laboratory of National Administration of Traditional Chinese Medicine, Northwest University, Xi’an, PR China
| | - Luyao Li
- Three level Scientific Research Laboratory of National Administration of Traditional Chinese Medicine, Northwest University, Xi’an, PR China
| | - Zhaodi Xia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, PR China
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, PR China
| | - Ye Zhao
- Three level Scientific Research Laboratory of National Administration of Traditional Chinese Medicine, Northwest University, Xi’an, PR China
| |
Collapse
|
9
|
Paoli C, Misztak P, Mazzini G, Musazzi L. DNA Methylation in Depression and Depressive-Like Phenotype: Biomarker or Target of Pharmacological Intervention? Curr Neuropharmacol 2022; 20:2267-2291. [PMID: 35105292 PMCID: PMC9890294 DOI: 10.2174/1570159x20666220201084536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 12/29/2022] Open
Abstract
Major depressive disorder (MDD) is a debilitating psychiatric disorder, the third leading global cause of disability. Regarding aetiopathogenetic mechanisms involved in the onset of depressive disorders, the interaction between genetic vulnerability traits and environmental factors is believed to play a major role. Although much is still to be elucidated about the mechanisms through which the environment can interact with genetic background shaping the disease risk, there is a general agreement about a key role of epigenetic marking. In this narrative review, we focused on the association between changes in DNA methylation patterns and MDD or depressive-like phenotype in animal models, as well as mechanisms of response to antidepressant drugs. We discussed studies presenting DNA methylation changes at specific genes of interest and profiling analyses in both patients and animal models of depression. Overall, we collected evidence showing that DNA methylation could not only be considered as a promising epigenetic biomarker of pathology but could also help in predicting antidepressant treatment efficacy. Finally, we discussed the hypothesis that specific changes in DNA methylation signature could play a role in aetiopathogenetic processes as well as in the induction of antidepressant effect.
Collapse
Affiliation(s)
- Caterina Paoli
- Department of Medicine and Surgery, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- School of Pharmacy, Pharmacy Unit, University of Camerino, 62032 Camerino, Italy
| | - Paulina Misztak
- Department of Medicine and Surgery, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Giulia Mazzini
- Department of Medicine and Surgery, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Laura Musazzi
- Department of Medicine and Surgery, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
10
|
Adachi N, Sakhri FZ, Ikemoto H, Ohashi Y, Kato M, Inoue T, Hisamitsu T, Sunagawa M. Kamikihito rescued depressive-like behaviors and hippocampus neurogenesis in chronic restraint stress rats. J Tradit Complement Med 2022; 12:172-179. [PMID: 35528472 PMCID: PMC9072803 DOI: 10.1016/j.jtcme.2021.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 06/25/2021] [Accepted: 08/02/2021] [Indexed: 11/18/2022] Open
Abstract
Background and aim Substantial evidence suggests the effectiveness of plant-based medicine in stress-related diseases. Kamikihito (KKT), a Japanese traditional herbal medicine (Kampo), has been used for anemia, insomnia, and anxiety. Recent studies revealed its ameliorating effect on cognitive and memory dysfunction in several animal models. We, therefore, determined whether daily supplementation of KKT has an antidepressant-like effect on the stress-induced behavioral and neurological changes in rats. Experimental procedure The effect of KKT against the stress-induced changes in anxiety- and depressive-like behaviors and hippocampal neurogenesis were determined using a rat model of chronic restraint stress (CRS). KKT was orally administered daily at 300 or 1000 mg/kg during 21 consecutive days of CRS (6 h/day). The effect of CRS and KKT on physiological parameters, including body weight gain, food/water consumptions, plasma corticosterone (CORT) levels, and percentage of adrenal gland weight to body weight, were firstly measured. Anxiety- and depressive-like behaviors in rats were assessed in the open field test (OFT), sucrose preference test (SPT), and forced swimming test (FST). Hippocampal neurogenesis was determined by immunohistochemistry. Results and conclusion CRS for 21 days caused a significant decrease in body weight gain and increase in plasma CORT levels and percentage of adrenal gland weight to body weight, which were rescued by KKT treatment. KKT also suppressed the CRS-induced anxiety- and depressive-like behaviors and impairment of hippocampal neurogenesis. These results suggest that daily treatment of KKT has a protective effect against physiological, neurological, and behavioral changes in a rat model of depression.
Collapse
Key Words
- Antidepressant-like effect
- BDNF, brain-derived neurotrophic factor
- CORT, corticosterone
- CRS, chronic restraint stress
- Chronic restraint stress
- DCX, doublecortin
- DG, dentate gyrus
- DNA, methyltransferase
- FST, forced swimming test
- HPA, hypothalamus-pituitary-adrenal
- Hippocampal neurogenesis
- KKT, Kamikihito
- Kamikihito (加味帰脾湯)
- MAO, monoamine oxidase
- MDD, major depressive disorder
- Major depressive disorder
- NSPCs, neural progenitor/stem cells
- OFT, open field test
- ROS, reactive oxygen species
- SPT, sucrose preference test
Collapse
Affiliation(s)
- Naoki Adachi
- Department of Physiology, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Fatma Zahra Sakhri
- Department of Physiology, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
- Department of Animal Biology, University of Freres Mentouri Constantine-Algeria, 25000, Constantine, Algeria
| | - Hideshi Ikemoto
- Department of Physiology, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Yusuke Ohashi
- Department of Physiology, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Mami Kato
- Department of Physiology, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Tatsuki Inoue
- Department of Physiology, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Tadashi Hisamitsu
- Department of Physiology, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Masataka Sunagawa
- Department of Physiology, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| |
Collapse
|
11
|
Varela RB, Cararo JH, Tye SJ, Carvalho AF, Valvassori SS, Fries GR, Quevedo J. Contributions of epigenetic inheritance to the predisposition of major psychiatric disorders: theoretical framework, evidence, and implications. Neurosci Biobehav Rev 2022; 135:104579. [DOI: 10.1016/j.neubiorev.2022.104579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/10/2022] [Accepted: 02/11/2022] [Indexed: 02/08/2023]
|
12
|
Ran D, Hong W, Yan W, Mengdie W. Properties and molecular mechanisms underlying geniposide-mediated therapeutic effects in chronic inflammatory diseases. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113958. [PMID: 33639206 DOI: 10.1016/j.jep.2021.113958] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/25/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Geniposide (GE) is ubiquitous in nearly 40 species of plants, among which Gardenia jasminoides J. Ellis has the highest content, and has been used ethnopharmacologically to treat chronic inflammatory diseases. As a traditional Chinese medicine, Gardenia jasminoides J. Ellis has a long history of usage in detumescence and sedation, liver protection and cholestasis, hypotension and hemostasis. It is commonly used in the treatment of diabetes, hypertension, jaundice hepatitis, sprain and contusion. As a type of iridoid glycosides extracted from Gardenia jasminoides J. Ellis, GE has many pharmacological effects, such as anti-inflammatory, anti-angiogenesic, anti-oxidative, etc. AIM OF THE REVIEW: In this article, we reviewed the sources, traditional usage, pharmacokinetics, toxicity and therapeutic effect of GE on chronic inflammatory diseases, and discussed its potential regulatory mechanisms and clinical application. RESULTS GE is a common iridoid glycoside in medicinal plants, which has strong activity in the treatment of chronic inflammatory diseases. A large number of in vivo and in vitro experiments confirmed that GE has certain therapeutic value for a variety of chronic inflammation disease. Its mechanism of function is mainly based on its anti-inflammatory, anti-oxidant, neuroprotective properties, as well as regulation of apoptotsis. GE plays a role in the treatment of chronic inflammatory diseases by regulating cell proliferation and apoptosis, realizing the dynamic balance of pro/anti-inflammatory factors, improving the state of oxidative stress, and restoring abnormally expressed inflammation-related pathways. CONCLUSION According to its extensive pharmacological effects, GE is a promising drug for the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Deng Ran
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| | - Wu Hong
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Wang Yan
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| | - Wang Mengdie
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| |
Collapse
|
13
|
Haq SU, Bhat UA, Kumar A. Prenatal stress effects on offspring brain and behavior: Mediators, alterations and dysregulated epigenetic mechanisms. J Biosci 2021. [DOI: 10.1007/s12038-021-00153-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Chen T, Liu S, Zheng M, Li Y, He L. The effect of geniposide on chronic unpredictable mild stress‐induced depressive mice through
BTK
/
TLR4
/
NF‐κB
and
BDNF
/
TrkB
signaling pathways. Phytother Res 2020; 35:932-945. [DOI: 10.1002/ptr.6846] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Tong Chen
- Department of Pharmacology China Pharmaceutical University Nanjing China
| | - Shengnan Liu
- Department of Pharmacology China Pharmaceutical University Nanjing China
| | - Menglin Zheng
- Department of Pharmacology China Pharmaceutical University Nanjing China
| | - Yixuan Li
- Department of Pharmacology China Pharmaceutical University Nanjing China
| | - Ling He
- Department of Pharmacology China Pharmaceutical University Nanjing China
| |
Collapse
|
15
|
Lei L, Wu X, Gu H, Ji M, Yang J. Differences in DNA Methylation Reprogramming Underlie the Sexual Dimorphism of Behavioral Disorder Caused by Prenatal Stress in Rats. Front Neurosci 2020; 14:573107. [PMID: 33192258 PMCID: PMC7609908 DOI: 10.3389/fnins.2020.573107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
Prenatal stress (PS) can lead to neuroendocrine and emotional disorders later in adolescence. Sexual dimorphism in these neurodevelopmental outcomes have been observed; however, the underlying mechanisms are not fully understood. To address this issue, we investigated whether there are sex differences in epigenetic reprogramming in rats exposed to PS. Pregnant female rats were subjected to chronic restraint stress from gestational day (G)12 to G18. From postnatal day (P)38 to P45, subgroups of offspring including both males and females were subjected to behavioral testing and brain tissue specimens were analyzed by DNA pyrosequencing, western blotting, and Golgi staining to assess changes in methylation pattern of glucocorticoid receptor (GR) gene, expression of DNA methyltransferase (DNMT) and DNA demethylase, and dendrite morphology, respectively. The DNA methyltransferase inhibitor decitabine was administered to rats prior to PS to further evaluate the role of methylation in the sexually dimorphic effects of PS. The results showed that PS increased anxiety-like behavior in offspring, especially in females, while depression-like behavior was increased in male offspring compared to control littermates. The methylation pattern in the promoter region of the GR gene differed between males and females. Sex-specific changes in the expression of DNMTs (DNMT1 and DNMT3a) and DNA demethylase (Tet methylcytosine dioxygenase 2) were also observed. Interestingly, decitabine alleviated the behavioral disorder caused by PS and restored dendrite density and morphology in female but not male rats. These findings suggest that different change patterns of DNMT and demethylase in the two sexes after PS are responsible for the sexually dimorphism, which could have implications for the clinical management of stress-related disorders.
Collapse
Affiliation(s)
- Lei Lei
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinmiao Wu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Hanwen Gu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Muhuo Ji
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianjun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Dong E, Pandey SC. Prenatal stress induced chromatin remodeling and risk of psychopathology in adulthood. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 156:185-215. [PMID: 33461663 PMCID: PMC7864549 DOI: 10.1016/bs.irn.2020.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
New insights into the pathophysiology of psychiatric disorders suggest the existence of a complex interplay between genetics and environment. This notion is supported by evidence suggesting that exposure to stress during pregnancy exerts profound effects on the neurodevelopment and behavior of the offspring and predisposes them to psychiatric disorders later in life. Accumulated evidence suggests that vulnerability to psychiatric disorders may result from permanent negative effects of long-term changes in synaptic plasticity due to altered epigenetic mechanisms (histone modifications and DNA methylation) that lead to condensed chromatin architecture, thereby decreasing the expression of candidate genes during early brain development. In this chapter, we have summarized the literature of clinical studies on psychiatric disorders induced by maternal stress during pregnancy. We also discussed the epigenetic alterations of gene regulations induced by prenatal stress. Because the clinical manifestations of psychiatric disorders are complex, it is obvious that the biological progression of these diseases cannot be studied only in postmortem brains of patients and the use of animal models is required. Therefore, in this chapter, we have introduced a well-established mouse model of prenatal stress (PRS) generated in restrained pregnant dams. The behavioral phenotypes of the offspring (PRS mice) born to the stressed dam and underlying epigenetic changes in key molecules related to synaptic activity were described and highlighted. PRS mice may serve as a useful model for investigating the pathogenesis of psychiatric disorders and may be a useful tool for screening for the potential compounds that may normalize aberrant epigenetic mechanisms induced by prenatal stress.
Collapse
Affiliation(s)
- Erbo Dong
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States.
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States; Jesse Brown VA Medical Center, Chicago, IL, United States
| |
Collapse
|
17
|
Abstract
Depression is one of the most common psychiatric disorders affecting public health. Studies over the past years suggest that the methylations of some specific genes such as BDNF, SLC6A4, and NR3C1 play an important role in the development of depression. Recently, epigenetic evidences suggest that the expression levels of DNA methyltransferases differ in several brain areas including the prefrontal cortex, hippocampus, amygdala, and nucleus accumbens in depression patients and animal models, but the potential link between the expression levels of DNA methylatransferases and the methylations of specific genes needs further investigation to clarify the pathogenesis of depression.
Collapse
Affiliation(s)
- Zhenghao Duan
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jie Lu
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
18
|
Badihian N, Daniali SS, Kelishadi R. Transcriptional and epigenetic changes of brain derived neurotrophic factor following prenatal stress: A systematic review of animal studies. Neurosci Biobehav Rev 2019; 117:211-231. [PMID: 31838194 DOI: 10.1016/j.neubiorev.2019.12.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/07/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022]
Abstract
Gestational period plays critical role in neuropsychological development. One of the genes that undergoes changes by prenatal stress (PNS) exposure, is the gene coding brain derived neurotrophic factor (BDNF). Studies have reported different patterns of change following PNS in BDNF, which emphasizes the complexity of the issue. In this review, systematic search of PubMed, Scopus, Web of Science and Cochrane CENTRAL databases was performed. Primary searches resulted in 2132 studies and finally 43 studies were found to meet the inclusion criteria. Transcriptional and epigenetic changes of BDNF gene in the brain were recorded. Decreased or unchanged BDNF total mRNA and BDNF mature protein, with hypermethylation of the coding exons were the most reported changes. However, stress paradigm, gender of the fetus and the day of sacrifice were found to significantly affect the results. Hippocampus and prefrontal cortex are the most vulnerable regions. They can show long lasting and persistent transcriptional and epigenetics changes of BDNF gene following PNS. Further studies evaluating the importance of these findings in humans are essential.
Collapse
Affiliation(s)
- Negin Badihian
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran.
| | - Seyede Shahrbanoo Daniali
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran.
| | - Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran.
| |
Collapse
|
19
|
Melcangi RC, Casarini L, Marino M, Santi D, Sperduti S, Giatti S, Diviccaro S, Grimoldi M, Caruso D, Cavaletti G, Simoni M. Altered methylation pattern of the SRD5A2 gene in the cerebrospinal fluid of post-finasteride patients: a pilot study. Endocr Connect 2019; 8:1118-1125. [PMID: 31272082 PMCID: PMC6652249 DOI: 10.1530/ec-19-0199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/04/2019] [Indexed: 12/16/2022]
Abstract
CONTEXT Post-finasteride syndrome (PFS) occurs in patients with androgenic alopecia after suspension of the finasteride treatment, leading to a large variety of persistent side effects. Despite the severity of the clinical picture, the mechanism underlying the PFS symptoms onset and persistence is still unclear. OBJECTIVE To study whether epigenetic modifications occur in PFS patients. METHODS Retrospective analysis of a multicentric, prospective, longitudinal, case-control clinical trial, enrolling 16 PFS patients, compared to 20 age-matched healthy men. Main outcomes were methylation pattern of SRD5A1 and SRD5A2 promoters and concentration of 11 neuroactive steroids, measured by liquid chromatography-tandem mass spectrometry, in blood and cerebrospinal fluid (CSF) samples. RESULTS SRD5A1 and SRD5A2 methylation analysis was performed in all blood samples (n = 16 PFS patients and n = 20 controls), in 16 CSF samples from PFS patients and in 13 CSF samples from controls. The SRD5A2 promoter was more frequently methylated in CSF of PFS patients compared to controls (56.3 vs 7.7%). No promoter methylation was detected in blood samples in both groups. No methylation occurred in the SRD5A1 promoter of both groups. Unmethylated controls compared to unmethylated SRD5A2 patients showed higher pregnenolone, dihydrotestosterone and dihydroprogesterone, together with lower testosterone CSF levels. Andrological and neurological assessments did not differ between methylated and unmethylated subjects. CONCLUSIONS For the first time, we demonstrate a tissue-specific methylation pattern of SRD5A2 promoter in PFS patients. Although we cannot conclude whether this pattern is prenatally established or induced by finasteride treatment, it could represent an important mechanism of neuroactive steroid levels and behavioural disturbances previously described in PFS.
Collapse
Affiliation(s)
- Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Marino
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniele Santi
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Samantha Sperduti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Maria Grimoldi
- Neurology Division, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
- Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
- Correspondence should be addressed to M Simoni:
| |
Collapse
|
20
|
Zhang CH, Lv X, Du W, Cheng MJ, Liu YP, Zhu L, Hao J. The Akt/mTOR cascade mediates high glucose-induced reductions in BDNF via DNMT1 in Schwann cells in diabetic peripheral neuropathy. Exp Cell Res 2019; 383:111502. [PMID: 31323191 DOI: 10.1016/j.yexcr.2019.111502] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/28/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022]
Abstract
Brain-derived neurotropic factor (BDNF) deficiency in Schwann cells plays an important role in the pathogenesis of diabetic peripheral neuropathy (DPN). Little is known about the mechanism involved in BDNF downregulation in Schwann cells in DPN. In this study, we first confirmed downregulation of BDNF and neurotrophin 3 expression in the sciatic nerves of diabetic mice, which was accompanied by myelin sheath abnormalities. Moreover, in vitro, high glucose was revealed to cause downregulation of BDNF, but not neurotrophin 3, expression in RSC96 cells, which was accompanied by DNA hypermethylation of BDNF promoters I and II. DNMT1 was subsequently revealed to be enhanced at the mRNA and protein levels in high glucose-stimulated RSC96 cells, and inhibition of DNMT1 with 5-Aza treatment or shRNA vector transfection reversed high glucose-induced reductions in BDNF expression. Furthermore, the mTOR and upstream Akt pathways were indicated to mediate high glucose-induced DNMT1 and BDNF expression in RSC96 cells. Taken together, our results suggest that the Akt/mTOR cascade mediates high glucose-induced reductions in BDNF via DNMT1 in Schwann cells in DPN.
Collapse
Affiliation(s)
- Cui-Hong Zhang
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Department of Radiation Oncology, Bethune International Peace Hospital, Shijiazhuang, China
| | - Xin Lv
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Wei Du
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Mei-Juan Cheng
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Ya-Ping Liu
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Lin Zhu
- Department of Electromyogram, The Third Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
21
|
Hack LM, Fries GR, Eyre HA, Bousman CA, Singh AB, Quevedo J, John VP, Baune BT, Dunlop BW. Moving pharmacoepigenetics tools for depression toward clinical use. J Affect Disord 2019; 249:336-346. [PMID: 30802699 PMCID: PMC6763314 DOI: 10.1016/j.jad.2019.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a leading cause of disability worldwide, and over half of patients do not achieve symptom remission following an initial antidepressant course. Despite evidence implicating a strong genetic basis for the pathophysiology of MDD, there are no adequately validated biomarkers of treatment response routinely used in clinical practice. Pharmacoepigenetics is an emerging field that has the potential to combine both genetic and environmental information into treatment selection and further the goal of precision psychiatry. However, this field is in its infancy compared to the more established pharmacogenetics approaches. METHODS We prepared a narrative review using literature searches of studies in English pertaining to pharmacoepigenetics and treatment of depressive disorders conducted in PubMed, Google Scholar, PsychINFO, and Ovid Medicine from inception through January 2019. We reviewed studies of DNA methylation and histone modifications in both humans and animal models of depression. RESULTS Emerging evidence from human and animal work suggests a key role for epigenetic marks, including DNA methylation and histone modifications, in the prediction of antidepressant response. The challenges of heterogeneity of patient characteristics and loci studied as well as lack of replication that have impacted the field of pharmacogenetics also pose challenges to the development of pharmacoepigenetic tools. Additionally, given the tissue specific nature of epigenetic marks as well as their susceptibility to change in response to environmental factors and aging, pharmacoepigenetic tools face additional challenges to their development. LIMITATIONS This is a narrative and not systematic review of the literature on the pharmacoepigenetics of antidepressant response. We highlight key studies pertaining to pharmacoepigenetics and treatment of depressive disorders in humans and depressive-like behaviors in animal models, regardless of sample size or methodology. While we discuss DNA methylation and histone modifications, we do not cover microRNAs, which have been reviewed elsewhere recently. CONCLUSIONS Utilization of genome-wide approaches and reproducible epigenetic assays, careful selection of the tissue assessed, and integration of genetic and clinical information into pharmacoepigenetic tools will improve the likelihood of developing clinically useful tests.
Collapse
Affiliation(s)
- Laura M Hack
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Palo Alto, CA 94305, USA; Sierra Pacific Mental Illness Research Education and Clinical Centers, VA Palo Alto Health Care System, Palo Alto, CA, USA.
| | - Gabriel R Fries
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Harris A Eyre
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Palo Alto, CA 94305, USA; Innovation Institute, Texas Medical Center, Houston, TX, USA; IMPACT SRC, School of Medicine, Deakin University, Geelong, Victoria, Australia; Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia
| | - Chad A Bousman
- Departments of Medical Genetics, Psychiatry, Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Ajeet B Singh
- IMPACT SRC, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Joao Quevedo
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Vineeth P John
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Bernhard T Baune
- Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia
| | - Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
22
|
Zhao B, Sun LK, Jiang X, Zhang Y, Kang J, Meng H, Li H, Su J. Genipin protects against cerebral ischemia-reperfusion injury by regulating the UCP2-SIRT3 signaling pathway. Eur J Pharmacol 2019; 845:56-64. [DOI: 10.1016/j.ejphar.2018.12.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022]
|
23
|
Ding K, Jiang J, Chen L, Xu X. Methylenetetrahydrofolate Dehydrogenase 1 Silencing Expedites the Apoptosis of Non-Small Cell Lung Cancer Cells via Modulating DNA Methylation. Med Sci Monit 2018; 24:7499-7507. [PMID: 30343310 PMCID: PMC6206813 DOI: 10.12659/msm.910265] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/25/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) accounts for about 85% of all types of lung cancer. Methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) is involved in DNA methylation, and DNA methylation is related to tumorigenesis. The role of MTHFD1 in NSCLC was examined in our study. MATERIAL AND METHODS The correlation between the expression of MTHFD1 and the clinicopathological features of patients diagnosed with lung cancer was investigated using the chi-square test. The viability and apoptosis of NCI-H1299 cells was respectively detected using cell counting kit-8 and flow cytometry assays. The expression levels of MTHFD1, apoptosis-related factors and DNA methyltransferase-related factors were assessed by quantitative real-time PCR (qRT-PCR) and western blot assays. RESULTS We found that MTHFD1 expression in the tumor tissues and cells was higher than that of adjacent normal tissues and cells. The survival time of patients with high MTHFD1 expression was shorter than those with low MTHFD1 expression. The expression level of MTHFD1 was related to tumor size, TNM stage, histologic grade, and metastasis, but not linked to gender and age. Besides, si-MTHFD1 significantly decreased the viability of cells in a time-dependent manner, and increased cell apoptosis. When cells were transfected with MTHFD1-siRNA, the levels of surviving and B-cell lymphoma-2 (Bcl-2) were attenuated, while p53 and Bcl-2 associated X protein (Bax) levels were enhanced. Moreover, si-MTHFD1 markedly downregulated the expression levels of DNA methyltransferase 1 (DNMT1), DNMT3a, and DNMT3b. CONCLUSIONS Collectively, our results proved that MTHFD1 silencing obviously reduced the proliferation and enhanced the apoptosis of NSCLC via suppressing DNA methylation.
Collapse
Affiliation(s)
- Ke Ding
- Dispensary of Traditional Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Jianyang Jiang
- Department of Respiration, Quzhou People’s Hospital, Quzhou, Zhejiang, P.R. China
| | - Liang Chen
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Xiaohua Xu
- Department of Respiration, Quzhou People’s Hospital, Quzhou, Zhejiang, P.R. China
| |
Collapse
|
24
|
Hobbs CA, Koyanagi M, Swartz C, Davis J, Maronpot R, Recio L, Hayashi SM. Genotoxicity evaluation of the naturally-derived food colorant, gardenia blue, and its precursor, genipin. Food Chem Toxicol 2018; 118:695-708. [DOI: 10.1016/j.fct.2018.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 11/16/2022]
|