1
|
Llontop N, Mancilla C, Ojeda-Provoste P, Torres AK, Godoy A, Tapia-Rojas C, Kerr B. The methyl-CpG-binding protein 2 (Mecp2) regulates the hypothalamic mitochondrial function and white adipose tissue lipid metabolism. Life Sci 2025; 366-367:123478. [PMID: 39983816 DOI: 10.1016/j.lfs.2025.123478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/03/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
OBJECTIVE The neuroepigenetic factor Mecp2 regulates gene expression and is thought to play a crucial role in energy homeostasis. Body weight is regulated at the hypothalamic level, where mitochondrial energy metabolism is necessary for its proper functioning, allowing the hypothalamus to respond to peripheral signals to maintain energy balance and modulate energy expenditure through the sympathetic nervous system. Since the mechanism by which genetic and environmental factors contribute to regulating energy balance is unclear, this study aims to understand the contribution of gene-environment interaction to maintaining energy balance and how its disruption alters hypothalamic cellular energy production, impacting the control of systemic metabolism. METHODS We used a mouse model of epigenetic disruption (Mecp2-null) to evaluate the impact of Mecp2 deletion on systemic and hypothalamic metabolism using physiological and cellular approaches. RESULTS Our study shows that the previously reported body weight gain in mice lacking the expression of Mecp2 is preceded by a hypothalamic mitochondrial dysfunction that disrupts hypothalamic function, leading to a dysfunctional communication between the hypothalamus and adipose tissue, thus impairing lipid metabolism. Our study has revealed three crucial aspects of the contribution of this critical epigenetic factor pivotal for a proper gene-environment interaction: i) Mecp2 drives a molecular mechanism to maintain cellular energy homeostasis, which is necessary for the proper functioning of the hypothalamus. ii) Mecp2 is necessary to maintain lipid metabolism in adipose tissue. iii) Mecp2 is a molecular bridge linking hypothalamic cellular energy metabolism and adipose tissue lipid metabolism. CONCLUSIONS Our results show that Mecp2 regulates the hypothalamic mitochondrial function and white adipose tissue lipid metabolism and probably alters the communication between these two tissues, which is critical for corporal energy homeostasis maintenance.
Collapse
Affiliation(s)
- Nuria Llontop
- Laboratory of Neuroendocrinology and Metabolism, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile; Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile
| | | | | | - Angie K Torres
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba, 8580702 Santiago, Chile
| | - Alejandro Godoy
- Laboratory of Endocrinology and Tumor Metabolism, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile; Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba, 8580702 Santiago, Chile.
| | - Bredford Kerr
- Laboratory of Neuroendocrinology and Metabolism, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510157, Chile.
| |
Collapse
|
2
|
Santos L, Behrens L, Barbosa C, Tiefensee-Ribeiro C, Rosa-Silva H, Somensi N, Brum PO, Silveira AK, Rodrigues MS, de Oliveira J, Gelain DP, Almeida RF, Moreira JCF. Histone 3 Trimethylation Patterns are Associated with Resilience or Stress Susceptibility in a Rat Model of Major Depression Disorder. Mol Neurobiol 2024; 61:5718-5737. [PMID: 38225513 DOI: 10.1007/s12035-024-03912-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/23/2023] [Indexed: 01/17/2024]
Abstract
Major Depressive Disorder (MDD) is a severe and multifactorial psychiatric condition. Evidence has shown that environmental factors, such as stress, significantly explain MDD pathophysiology. Studies have hypothesized that changes in histone methylation patterns are involved in impaired glutamatergic signaling. Based on this scenario, this study aims to investigate histone 3 involvement in depression susceptibility or resilience in MDD pathophysiology by investigating cellular and molecular parameters related to i) glutamatergic neurotransmission, ii) astrocytic functioning, and iii) neurogenesis. For this, we subjected male Wistar rats to the Chronic Unpredictable Mild Stress (CUMS) model of depression. We propose that by evaluating the sucrose consumption, open field, and object recognition test performance from animals submitted to CUMS, it is possible to predict with high specificity rats with susceptibility to depressive-like phenotype and resilient to the depressive-like phenotype. We also demonstrated, for the first time, that patterns of H3K4me3, H3K9me3, H3K27me3, and H3K36me3 trimethylation are strictly associated with the resilient or susceptible to depressive-like phenotype in a brain-region-specific manner. Additionally, susceptible animals have reduced DCx and GFAP and resilient animals present increase of AQP-4 immunoreactivity. Together, these results provide evidence that H3 trimethylations are related to the development of the resilient or susceptible to depressive-like phenotype, contributing to further advances in the pathophysiology of MDD and the discovery of mechanisms behind resilience.
Collapse
Affiliation(s)
- Lucas Santos
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Luiza Behrens
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Camila Barbosa
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Camila Tiefensee-Ribeiro
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Helen Rosa-Silva
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Nauana Somensi
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pedro Ozorio Brum
- Max Perutz Labs, Vienna BioCenter, University of Vienna, Vienna, Austria
| | - Alexandre Kleber Silveira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Matheus Scarpatto Rodrigues
- Laboratório de Investigação de Desordens Metabólicas e Doenças Neurodegenerativas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jade de Oliveira
- Laboratório de Investigação de Desordens Metabólicas e Doenças Neurodegenerativas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniel Pens Gelain
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roberto F Almeida
- Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - José Cláudio Fonseca Moreira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
3
|
Zacharjasz J, Sztachera M, Smuszkiewicz M, Piwecka M. Micromanaging the neuroendocrine system - A review on miR-7 and the other physiologically relevant miRNAs in the hypothalamic-pituitary axis. FEBS Lett 2024; 598:1557-1575. [PMID: 38858179 DOI: 10.1002/1873-3468.14948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024]
Abstract
The hypothalamic-pituitary axis is central to the functioning of the neuroendocrine system and essential for regulating physiological and behavioral homeostasis and coordinating fundamental body functions. The expanding line of evidence shows the indispensable role of the microRNA pathway in regulating the gene expression profile in the developing and adult hypothalamus and pituitary gland. Experiments provoking a depletion of miRNA maturation in the context of the hypothalamic-pituitary axis brought into focus a prominent involvement of miRNAs in neuroendocrine functions. There are also a few individual miRNAs and miRNA families that have been studied in depth revealing their crucial role in mediating the regulation of fundamental processes such as temporal precision of puberty timing, hormone production, fertility and reproduction capacity, and energy balance. Among these miRNAs, miR-7 was shown to be hypothalamus-enriched and the top one highly expressed in the pituitary gland, where it has a profound impact on gene expression regulation. Here, we review miRNA profiles, knockout phenotypes, and miRNA interaction (targets) in the hypothalamic-pituitary axis that advance our understanding of the roles of miRNAs in mammalian neurosecretion and related physiology.
Collapse
Affiliation(s)
- Julian Zacharjasz
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Marta Sztachera
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Michał Smuszkiewicz
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Monika Piwecka
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
4
|
Marzola P, Melzer T, Pavesi E, Gil-Mohapel J, Brocardo PS. Exploring the Role of Neuroplasticity in Development, Aging, and Neurodegeneration. Brain Sci 2023; 13:1610. [PMID: 38137058 PMCID: PMC10741468 DOI: 10.3390/brainsci13121610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023] Open
Abstract
Neuroplasticity refers to the ability of the brain to reorganize and modify its neural connections in response to environmental stimuli, experience, learning, injury, and disease processes. It encompasses a range of mechanisms, including changes in synaptic strength and connectivity, the formation of new synapses, alterations in the structure and function of neurons, and the generation of new neurons. Neuroplasticity plays a crucial role in developing and maintaining brain function, including learning and memory, as well as in recovery from brain injury and adaptation to environmental changes. In this review, we explore the vast potential of neuroplasticity in various aspects of brain function across the lifespan and in the context of disease. Changes in the aging brain and the significance of neuroplasticity in maintaining cognitive function later in life will also be reviewed. Finally, we will discuss common mechanisms associated with age-related neurodegenerative processes (including protein aggregation and accumulation, mitochondrial dysfunction, oxidative stress, and neuroinflammation) and how these processes can be mitigated, at least partially, by non-invasive and non-pharmacologic lifestyle interventions aimed at promoting and harnessing neuroplasticity.
Collapse
Affiliation(s)
- Patrícia Marzola
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Thayza Melzer
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Eloisa Pavesi
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| | - Joana Gil-Mohapel
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
| | - Patricia S. Brocardo
- Department of Morphological Sciences and Graduate Neuroscience Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, SC, Brazil; (P.M.); (T.M.); (E.P.)
| |
Collapse
|
5
|
Danoff JS, Ramos EN, Hinton TD, Perkeybile AM, Graves AJ, Quinn GC, Lightbody-Cimer AR, Gordevičius J, Milčiūtė M, Brooke RT, Carter CS, Bales KL, Erisir A, Connelly JJ. Father's care uniquely influences male neurodevelopment. Proc Natl Acad Sci U S A 2023; 120:e2308798120. [PMID: 37487074 PMCID: PMC10400995 DOI: 10.1073/pnas.2308798120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/21/2023] [Indexed: 07/26/2023] Open
Abstract
Mammalian infants depend on parental care for survival, with numerous consequences for their behavioral development. We investigated the epigenetic and neurodevelopmental mechanisms mediating the impact of early biparental care on development of alloparenting behavior, or caring for offspring that are not one's own. We find that receiving high parental care early in life leads to slower epigenetic aging of both sexes and widespread male-specific differential expression of genes related to synaptic transmission and autism in the nucleus accumbens. Examination of parental care composition indicates that high-care fathers promote a male-specific increase in excitatory synapses and increases in pup retrieval behavior as juveniles. Interestingly, females raised by high-care fathers have the opposite behavioral response and display fewer pup retrievals. These results support the concept that neurodevelopmental trajectories are programmed by different features of early-life parental care and reveal that male neurodevelopmental processes are uniquely sensitive to care by fathers.
Collapse
Affiliation(s)
- Joshua S. Danoff
- Department of Psychology, University of Virginia, Charlottesville, VA22904
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA22904
| | - Erin N. Ramos
- Department of Psychology, University of Virginia, Charlottesville, VA22904
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA22904
| | - Taylor D. Hinton
- Department of Psychology, University of Virginia, Charlottesville, VA22904
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA22904
| | - Allison M. Perkeybile
- Department of Psychology, University of Virginia, Charlottesville, VA22904
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA22904
| | - Andrew J. Graves
- Department of Psychology, University of Virginia, Charlottesville, VA22904
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA22904
| | - Graham C. Quinn
- Department of Psychology, University of Virginia, Charlottesville, VA22904
| | | | | | - Milda Milčiūtė
- Epigenetic Clock Development Foundation, Torrance, CA90502
| | | | - C. Sue Carter
- Department of Psychology, University of Virginia, Charlottesville, VA22904
| | - Karen L. Bales
- Department of Psychology, University of California, Davis, CA95616
| | - Alev Erisir
- Department of Psychology, University of Virginia, Charlottesville, VA22904
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA22904
| | - Jessica J. Connelly
- Department of Psychology, University of Virginia, Charlottesville, VA22904
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA22904
| |
Collapse
|
6
|
Faraji J, Lotfi H, Moharrerie A, Jafari SY, Soltanpour N, Tamannaiee R, Marjani K, Roudaki S, Naseri F, Moeeini R, Metz GAS. Regional Differences in BDNF Expression and Behavior as a Function of Sex and Enrichment Type: Oxytocin Matters. Cereb Cortex 2022; 32:2985-2999. [PMID: 35059698 DOI: 10.1093/cercor/bhab395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 01/03/2025] Open
Abstract
The early environment is critical to brain development, but the relative contribution of physical versus social stimulation is unclear. Here, we investigated in male and female rats the response to early physical and social environmental enrichment in relation to oxytocin (OT) and brain-derived neurotrophic factor (BDNF) expression. The findings show that males and females respond differently to prolonged sensorimotor stimulation from postnatal days 21-110 in terms of functional, structural, and molecular changes in the hippocampus versus medial prefrontal cortex (mPFC). Physical enrichment promoted motor and cognitive functions and hippocampal BDNF mRNA and protein expression in both sexes. Combined physical and social enrichment, however, promoted functional and structural gain in females. These changes were accompanied by elevated plasma oxytocin (OT) levels and BDNF mRNA expression in the mPFC, while the hippocampus was not affected. Administration of an OT antagonist in females blocked the beneficial effects of enrichment and led to reduced cortical BDNF signaling. These findings suggest that an OT-based mechanism selectively stimulates a region-specific BDNF response which is dependent on the type of experience.
Collapse
Affiliation(s)
- Jamshid Faraji
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge T1K3M4, Canada
- Faculty of Nursing and Midwifery, Golestan University of Medical Sciences, Gorgan 4918936316, Iran
| | - Hamid Lotfi
- Department of Psychology, Islamic Azad University, Tonekabon 4684161167, Iran
| | - Alireza Moharrerie
- Department of Anatomy, Golestan University of Medical Sciences, Gorgan 4918936316, Iran
| | - S Yaghoob Jafari
- Faculty of Nursing and Midwifery, Golestan University of Medical Sciences, Gorgan 4918936316, Iran
| | - Nasrin Soltanpour
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge T1K3M4, Canada
| | - Rosa Tamannaiee
- Department of Behavioural Studies, Avicenna Institute of Neuroscience, Yazd 4467330219, Iran
| | - Kameran Marjani
- Department of Behavioural Studies, Avicenna Institute of Neuroscience, Yazd 4467330219, Iran
| | - Shabnam Roudaki
- Department of Behavioural Studies, Avicenna Institute of Neuroscience, Yazd 4467330219, Iran
| | | | - Reza Moeeini
- Department of Behavioural Studies, Avicenna Institute of Neuroscience, Yazd 4467330219, Iran
| | - Gerlinde A S Metz
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge T1K3M4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge T1K3M4, Canada
| |
Collapse
|
7
|
O’Geen H, Tomkova M, Combs JA, Tilley EK, Segal D. Determinants of heritable gene silencing for KRAB-dCas9 + DNMT3 and Ezh2-dCas9 + DNMT3 hit-and-run epigenome editing. Nucleic Acids Res 2022; 50:3239-3253. [PMID: 35234927 PMCID: PMC8989539 DOI: 10.1093/nar/gkac123] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 11/12/2022] Open
Abstract
Precision epigenome editing has gained significant attention as a method to modulate gene expression without altering genetic information. However, a major limiting factor has been that the gene expression changes are often transient, unlike the life-long epigenetic changes that occur frequently in nature. Here, we systematically interrogate the ability of CRISPR/dCas9-based epigenome editors (Epi-dCas9) to engineer persistent epigenetic silencing. We elucidated cis regulatory features that contribute to the differential stability of epigenetic reprogramming, such as the active transcription histone marks H3K36me3 and H3K27ac strongly correlating with resistance to short-term repression and resistance to long-term silencing, respectively. H3K27ac inversely correlates with increased DNA methylation. Interestingly, the dependance on H3K27ac was only observed when a combination of KRAB-dCas9 and targetable DNA methyltransferases (DNMT3A-dCas9 + DNMT3L) was used, but not when KRAB was replaced with the targetable H3K27 histone methyltransferase Ezh2. In addition, programmable Ezh2/DNMT3A + L treatment demonstrated enhanced engineering of localized DNA methylation and was not sensitive to a divergent chromatin state. Our results highlight the importance of local chromatin features for heritability of programmable silencing and the differential response to KRAB- and Ezh2-based epigenetic editing platforms. The information gained in this study provides fundamental insights into understanding contextual cues to more predictably engineer persistent silencing.
Collapse
Affiliation(s)
| | - Marketa Tomkova
- Genome Center, University of California, Davis, CA 95616, USA
| | | | - Emma K Tilley
- Genome Center, University of California, Davis, CA 95616, USA
| | - David J Segal
- Genome Center, University of California, Davis, CA 95616, USA
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
8
|
Sanacora G, Yan Z, Popoli M. The stressed synapse 2.0: pathophysiological mechanisms in stress-related neuropsychiatric disorders. Nat Rev Neurosci 2022; 23:86-103. [PMID: 34893785 DOI: 10.1038/s41583-021-00540-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 12/25/2022]
Abstract
Stress is a primary risk factor for several neuropsychiatric disorders. Evidence from preclinical models and clinical studies of depression have revealed an array of structural and functional maladaptive changes, whereby adverse environmental factors shape the brain. These changes, observed from the molecular and transcriptional levels through to large-scale brain networks, to the behaviours reveal a complex matrix of interrelated pathophysiological processes that differ between sexes, providing insight into the potential underpinnings of the sex bias of neuropsychiatric disorders. Although many preclinical studies use chronic stress protocols, long-term changes are also induced by acute exposure to traumatic stress, opening a path to identify determinants of resilient versus susceptible responses to both acute and chronic stress. Epigenetic regulation of gene expression has emerged as a key player underlying the persistent impact of stress on the brain. Indeed, histone modification, DNA methylation and microRNAs are closely involved in many aspects of the stress response and reveal the glutamate system as a key player. The success of ketamine has stimulated a whole line of research and development on drugs directly or indirectly targeting glutamate function. However, the challenge of translating the emerging understanding of stress pathophysiology into effective clinical treatments remains a major challenge.
Collapse
Affiliation(s)
- Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Department of Pharmaceutical Sciences, University of Milano, Milan, Italy.
| |
Collapse
|
9
|
Serafini G, Trabucco A, Corsini G, Escelsior A, Amerio A, Aguglia A, Nasrallah H, Amore M. The potential of microRNAs as putative biomarkers in major depressive disorder and suicidal behavior. Biomark Neuropsychiatry 2021. [DOI: 10.1016/j.bionps.2021.100035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
10
|
Ortega MA, Alvarez-Mon MA, García-Montero C, Fraile-Martinez O, Lahera G, Monserrat J, Muñoz-Merida L, Mora F, Rodríguez-Jiménez R, Fernandez-Rojo S, Quintero J, Álvarez-Mon M. MicroRNAs as Critical Biomarkers of Major Depressive Disorder: A Comprehensive Perspective. Biomedicines 2021; 9:biomedicines9111659. [PMID: 34829888 PMCID: PMC8615526 DOI: 10.3390/biomedicines9111659] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/23/2022] Open
Abstract
Major Depressive Disorder (MDD) represents a major global health concern, a body-mind malady of rising prevalence worldwide nowadays. The complex network of mechanisms involved in MDD pathophysiology is subjected to epigenetic changes modulated by microRNAs (miRNAs). Serum free or vesicles loaded miRNAs have starred numerous publications, denoting a key role in cell-cell communication, systematically and in brain structure and neuronal morphogenesis, activity and plasticity. Upregulated or downregulated expression of these signaling molecules may imply the impairment of genes implicated in pathways of MDD etiopathogenesis (neuroinflammation, brain-derived neurotrophic factor (BDNF), neurotransmitters, hypothalamic-pituitary-adrenal (HPA) axis, oxidative stress, circadian rhythms...). In addition, these miRNAs could serve as potential biomarkers with diagnostic, prognostic and predictive value, allowing to classify severity of the disease or to make decisions in clinical management. They have been considered as promising therapy targets as well and may interfere with available antidepressant treatments. As epigenetic malleable regulators, we also conclude emphasizing lifestyle interventions with physical activity, mindfulness and diet, opening the door to new clinical management considerations.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain; (F.M.); (S.F.-R.); (J.Q.)
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
- Correspondence:
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis Muñoz-Merida
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
| | - Fernando Mora
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain; (F.M.); (S.F.-R.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Roberto Rodríguez-Jiménez
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
- Institute for Health Research Hospital 12 de Octubre (imas 12), CIBERSAM, 28041 Madrid, Spain
| | - Sonia Fernandez-Rojo
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain; (F.M.); (S.F.-R.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Javier Quintero
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain; (F.M.); (S.F.-R.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain
| |
Collapse
|
11
|
Onaka T, Takayanagi Y. The oxytocin system and early-life experience-dependent plastic changes. J Neuroendocrinol 2021; 33:e13049. [PMID: 34713517 PMCID: PMC9286573 DOI: 10.1111/jne.13049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023]
Abstract
Early-life experience influences social and emotional behaviour in adulthood. Affiliative tactile stimuli in early life facilitate the development of social and emotional behaviour, whereas early-life adverse stimuli have been shown to increase the risk of various diseases in later life. On the other hand, oxytocin has been shown to have organizational actions during early-life stages. However, the detailed mechanisms of the effects of early-life experience and oxytocin remain unclear. Here, we review the effects of affiliative tactile stimuli during the neonatal period and neonatal oxytocin treatment on the activity of the oxytocin-oxytocin receptor system and social or emotional behaviour in adulthood. Both affiliative tactile stimuli and early-life adverse stimuli in the neonatal period acutely activate the oxytocin-oxytocin receptor system in the brain but modulate social behaviour and anxiety-related behaviour apparently in an opposite direction in adulthood. Accumulating evidence suggests that affiliative tactile stimuli and exogenous application of oxytocin in early-life stages induce higher activity of the oxytocin-oxytocin receptor system in adulthood, although the effects are dependent on experimental procedures, sex, dosages and brain regions examined. On the other hand, early-life stressful stimuli appear to induce reduced activity of the oxytocin-oxytocin receptor system, possibly leading to adverse actions in adulthood. It is possible that activation of a specific oxytocin system can induce beneficial actions against early-life maltreatments and thus could be used for the treatment of developmental psychiatric disorders.
Collapse
Affiliation(s)
- Tatsushi Onaka
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityTochigiJapan
| | - Yuki Takayanagi
- Division of Brain and NeurophysiologyDepartment of PhysiologyJichi Medical UniversityTochigiJapan
| |
Collapse
|
12
|
Early life and adult stress promote sex dependent changes in hypothalamic miRNAs and environmental enrichment prevents stress-induced miRNA and gene expression changes in rats. BMC Genomics 2021; 22:701. [PMID: 34583641 PMCID: PMC8480023 DOI: 10.1186/s12864-021-08003-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The hypothalamus plays a key role in the stress response. While early life stress (ELS) increases susceptibility to psychiatric disorders including major depressive disorder (MDD), acute stress during adulthood can also precipitate MDD after ELS. AIM Here, we tested the expression of miRNAs following ELS and susceptibility to depression-like behavior and whether sex or acute stress exacerbates this response. We also tested whether environmental enrichment (Enr) promotes early life and adult behavioral stress resilience and its effect on hypothalamic miRNA and gene expression. Following rat maternal separation (MS) as an ELS model, Enr from weaning through adulthood, and restraint (RS) as acute adult stress, we tested both animal behavior and miRNA expression in the hypothalamus. Target genes and their enrichment and ontology were analyzed using bioinformatic tools. Target gene expression changes were tested using qPCR, and miRNA promoter methylation was studied using methylated-DNA immunoprecipitation qPCR. RESULTS MS, Enr, RS, and sex altered hypothalamic miRNAs, including several previously reported in MS literature: miRs-29, - 124, - 132, - 144, - 504. Sex had a significant effect on the greatest number of miRNAs. Also, Enr reversed downregulation of miR-29b-1-5p and -301b-3p in MS. qPCR showed that MAPK6 and MMP19, targets of miR-301b-3p, were upregulated in MS and reversed by Enr. Additionally, miR-219a was hypermethylated in MS coinciding with decreased miR-219a expression. CONCLUSIONS This study found that sex plays a critical role in the hypothalamic miRNA response to both ELS and acute stress, with males expressing greater changes following postnatal stress. Moreover, enrichment significantly altered behavior as well as hypothalamic miRNA expression and their gene targets. Because of its role as the initiator of the autonomic stress response and connection to hedonic and motivational behavior, the hypothalamic miRNA landscape may significantly alter both the short and long-term behavioral response to stress.
Collapse
|
13
|
Abstract
Animal and humans exposed to stress early in life are more likely to suffer from long-term behavioral, mental health, metabolic, immune, and cardiovascular health consequences. The hypothalamus plays a nodal role in programming, controlling, and regulating stress responses throughout the life course. Epigenetic reprogramming in the hippocampus and the hypothalamus play an important role in adapting genome function to experiences and exposures during the perinatal and early life periods and setting up stable phenotypic outcomes. Epigenetic programming during development enables one genome to express multiple cell type identities. The most proximal epigenetic mark to DNA is a covalent modification of the DNA itself by enzymatic addition of methyl moieties. Cell-type-specific DNA methylation profiles are generated during gestational development and define cell and tissue specific phenotypes. Programming of neuronal phenotypes and sex differences in the hypothalamus is achieved by developmentally timed rearrangement of DNA methylation profiles. Similarly, other stations in the life trajectory such as puberty and aging involve predictable and scheduled reorganization of DNA methylation profiles. DNA methylation and other epigenetic marks are critical for maintaining cell-type identity in the brain, across the body, and throughout life. Data that have emerged in the last 15 years suggest that like its role in defining cell-specific phenotype during development, DNA methylation might be involved in defining experiential identities, programming similar genes to perform differently in response to diverse experiential histories. Early life stress impact on lifelong phenotypes is proposed to be mediated by DNA methylation and other epigenetic marks. Epigenetic marks, as opposed to genetic mutations, are reversible by either pharmacological or behavioral strategies and therefore offer the potential for reversing or preventing disease including behavioral and mental health disorders. This chapter discusses data testing the hypothesis that DNA methylation modulations of the HPA axis mediate the impact of early life stress on lifelong behavioral and physical phenotypes.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
14
|
Alberry B, Laufer BI, Chater-Diehl E, Singh SM. Epigenetic Impacts of Early Life Stress in Fetal Alcohol Spectrum Disorders Shape the Neurodevelopmental Continuum. Front Mol Neurosci 2021; 14:671891. [PMID: 34149355 PMCID: PMC8209299 DOI: 10.3389/fnmol.2021.671891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/30/2021] [Indexed: 12/24/2022] Open
Abstract
Neurodevelopment in humans is a long, elaborate, and highly coordinated process involving three trimesters of prenatal development followed by decades of postnatal development and maturation. Throughout this period, the brain is highly sensitive and responsive to the external environment, which may provide a range of inputs leading to positive or negative outcomes. Fetal alcohol spectrum disorders (FASD) result from prenatal alcohol exposure (PAE). Although the molecular mechanisms of FASD are not fully characterized, they involve alterations to the regulation of gene expression via epigenetic marks. As in the prenatal stages, the postnatal period of neurodevelopment is also sensitive to environmental inputs. Often this sensitivity is reflected in children facing adverse conditions, such as maternal separation. This exposure to early life stress (ELS) is implicated in the manifestation of various behavioral abnormalities. Most FASD research has focused exclusively on the effect of prenatal ethanol exposure in isolation. Here, we review the research into the effect of prenatal ethanol exposure and ELS, with a focus on the continuum of epigenomic and transcriptomic alterations. Interestingly, a select few experiments have assessed the cumulative effect of prenatal alcohol and postnatal maternal separation stress. Regulatory regions of different sets of genes are affected by both treatments independently, and a unique set of genes are affected by the combination of treatments. Notably, epigenetic and gene expression changes converge at the clustered protocadherin locus and oxidative stress pathway. Functional studies using epigenetic editing may elucidate individual contributions of regulatory regions for hub genes and further profiling efforts may lead to the development of non-invasive methods to identify children at risk. Taken together, the results favor the potential to improve neurodevelopmental outcomes by epigenetic management of children born with FASD using favorable postnatal conditions with or without therapeutic interventions.
Collapse
Affiliation(s)
- Bonnie Alberry
- Department of Biology, Faculty of Science, The University of Western Ontario, London, ON, Canada
| | - Benjamin I Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA, United States.,Genome Center, University of California, Davis, Davis, CA, United States.,MIND Institute, University of California, Davis, Davis, CA, United States
| | - Eric Chater-Diehl
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Shiva M Singh
- Department of Biology, Faculty of Science, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
15
|
Srancikova A, Bacova Z, Bakos J. The epigenetic regulation of synaptic genes contributes to the etiology of autism. Rev Neurosci 2021; 32:791-802. [PMID: 33939901 DOI: 10.1515/revneuro-2021-0014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/12/2021] [Indexed: 12/30/2022]
Abstract
Epigenetic mechanisms greatly affect the developing brain, as well as the maturation of synapses with pervasive, long-lasting consequences on behavior in adults. Substantial evidence exists that implicates dysregulation of epigenetic mechanisms in the etiology of neurodevelopmental disorders. Therefore, this review explains the role of enzymes involved in DNA methylation and demethylation in neurodevelopment by emphasizing changes of synaptic genes and proteins. Epigenetic causes of sex-dependent differences in the brain are analyzed in conjunction with the pathophysiology of autism spectrum disorders. Special attention is devoted to the epigenetic regulation of the melanoma-associated antigen-like gene 2 (MAGEL2) found in Prader-Willi syndrome, which is known to be accompanied by autistic symptoms.
Collapse
Affiliation(s)
- Annamaria Srancikova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Zuzana Bacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | - Jan Bakos
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
- Institute of Physiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
16
|
Lauby SC, Fleming AS, McGowan PO. Beyond maternal care: The effects of extra-maternal influences within the maternal environment on offspring neurodevelopment and later-life behavior. Neurosci Biobehav Rev 2021; 127:492-501. [PMID: 33905789 DOI: 10.1016/j.neubiorev.2021.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 01/26/2023]
Abstract
The early-life maternal environment has a profound and persistent effect on offspring neuroendocrine function, neurotransmitter systems, and behavior. Studies using rodent models suggest that early-life maternal care can influence the 'developmental programming' of offspring in part through altered epigenetic regulation of specific genes. The exploration of epigenetic regulation of these genes as a biological mechanism has been important to our understanding of how animals adapt to their environments and how these developmental trajectories may be altered. However, other non-maternal factors have been shown to act directly, or to interact with maternal care, to influence later-life phenotype. Based on accumulating evidence, including our research, we discuss other important influences on the developmental programming of offspring. We highlight early-life variations in temperature exposure and offspring genotype x environment interactions as prominent examples. We conclude with recommendations for future investigations on how early-life maternal care and extra-maternal influences lead to persistent changes in the brain and behavior of the offspring throughout development.
Collapse
Affiliation(s)
- Samantha C Lauby
- Department of Biological Sciences, University of Toronto Scarborough Campus, Scarborough, ON, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Alison S Fleming
- Department of Psychology, University of Toronto, Toronto, ON, Canada; Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada.
| | - Patrick O McGowan
- Department of Biological Sciences, University of Toronto Scarborough Campus, Scarborough, ON, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
17
|
Mukhopadhyay D, Mussa BM. Identification of Novel Hypothalamic MicroRNAs as Promising Therapeutics for SARS-CoV-2 by Regulating ACE2 and TMPRSS2 Expression: An In Silico Analysis. Brain Sci 2020; 10:E666. [PMID: 32992681 PMCID: PMC7601472 DOI: 10.3390/brainsci10100666] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Neuroinvasion of severe acute respiratory syndrome coronavirus (SARS-CoV) is well documented and, given the similarities between this virus and SARS-CoV-2, it seems that the neurological impairment that is associated with coronavirus disease 2019 (COVID-19) is due to SARS-CoV-2 neuroinvasion. Hypothalamic circuits are exposed to the entry of the virus via the olfactory bulb and interact centrally with crucial respiratory nuclei. Hypothalamic microRNAs are considered as potential biomarkers and modulators for various diseases and future therapeutic targets. The present study aims to investigate the microRNAs that regulate the expression of hypothalamic angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2), essential elements for SARS-CoV-2 cell entry. METHODS To determine potential hypothalamic miRNAs that can directly bind to ACE2 and TMPRSS2, multiple target bioinformatics prediction algorithms were used, including miRBase, Target scan, and miRWalk2.029. RESULTS Our in silico analysis has revealed that, although there are over 5000 hypothalamic miRNAs, around 31 miRNAs and 29 miRNAs have shown binding sites and strong binding capacity against ACE2 and TMPRSS2, respectively. CONCLUSION These novel potential hypothalamic miRNAs can be used to identify new therapeutic targets to treat neurological symptoms in COVID-19 patients via regulation of ACE2 and TMPRSS2 expression.
Collapse
Affiliation(s)
- Debasmita Mukhopadhyay
- Biomedical & Chemical Engineering Department, American University of Sharjah, Sharjah 26666, UAE;
| | - Bashair M. Mussa
- Basic Medical Science Department, College of Medicine, University of Sharjah, Sharjah 27272, UAE
| |
Collapse
|
18
|
Tavares GA, Torres A, de Souza JA. Early Life Stress and the Onset of Obesity: Proof of MicroRNAs' Involvement Through Modulation of Serotonin and Dopamine Systems' Homeostasis. Front Physiol 2020; 11:925. [PMID: 32848865 PMCID: PMC7399177 DOI: 10.3389/fphys.2020.00925] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/09/2020] [Indexed: 01/12/2023] Open
Abstract
Healthy persons hold a very complex system for controlling energy homeostasis. The system functions on the interconnected way between the nutritional, endocrine, neural, and epigenetic regulation, which includes the microRNAs (miRNAs). Currently, it is well accepted that experiences of early life stress (ELS) carry modification of the central control of feeding behavior, one of the factors controlling energy homeostasis. Recently, studies give us a clue on the modulation of eating behavior, which is one of the main factors associated with the development of obesity. This clue connected the neural control through the serotonin (5HT) and dopamine (DA) systems with the fine regulation of miRNAs. The first pieces of evidence highlight the presence of the miR-16 in the regulation of the serotonin transporter (SERT) as well as the receptors 1a (5HT1A) and 2a (5HT2A). On the other hand, miR-504 is related to the dopamine receptor D2 (DRD2). As our knowledge advance, we expected to discover other important pathways for the regulation of the energy homeostasis. As both neurotransmission systems and miRNAs seem to be sensible to ELS, the aim of this review is to bring new insight about the involvement of miRNAs with a central role in the control of eating behavior focusing on the influences of ELS and regulation of neurotransmission systems.
Collapse
Affiliation(s)
- Gabriel Araujo Tavares
- Nantes Université, INRAE, UMR 1280, PhAN, Nantes, France.,Laboratory of Neuroplasticity and Behavior, Graduate Program of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Amada Torres
- Nantes Université, INRAE, UMR 1280, PhAN, Nantes, France.,Developmental Genetics and Molecular Physiology, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico - Campus Morelos, Cuernavaca, Mexico
| | - Julliet Araujo de Souza
- Laboratory of Neuroplasticity and Behavior, Graduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
19
|
Allen L, Dwivedi Y. MicroRNA mediators of early life stress vulnerability to depression and suicidal behavior. Mol Psychiatry 2020; 25:308-320. [PMID: 31740756 PMCID: PMC6974433 DOI: 10.1038/s41380-019-0597-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/16/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022]
Abstract
Childhood environment can have a profound impact on brain structure and function. Epigenetic mechanisms have been shown to play a critical role in adaptive and maladaptive processes by regulating gene expression without changing the genome. Over the past few years, early life stress (ELS) has been established as a major risk factor for major depression and suicidal behavior along with other psychiatric illnesses in adulthood. In recent years, the emergence of small noncoding RNAs as a mega controller of gene expression has gained attention for their role in various disease processes. Among various noncoding RNAs, microRNAs (miRNAs) are the most studied and well characterized and have emerged as a major regulator of neural plasticity and higher brain functioning. More recently, although limited in number, studies are focusing on how miRNAs can play a role in the maladaptive processes associated with ELS both at adolescent and adult age and whether these processes are critical in developing depression and suicidal behavior. In this review, we critically evaluate how postnatal ELS relates to abnormalities in miRNA expression and functions from both animal and human literature and draw connections from these findings to depression and suicidal behavior later in life.
Collapse
Affiliation(s)
- Lauren Allen
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|