1
|
Pappas F, Johnsson M, Andersson G, Debes PV, Palaiokostas C. Sperm DNA methylation landscape and its links to male fertility in a non-model teleost using EM-seq. Heredity (Edinb) 2025:10.1038/s41437-025-00756-y. [PMID: 40097595 DOI: 10.1038/s41437-025-00756-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 03/19/2025] Open
Abstract
Differential DNA methylation due to epigenetic phenomena is crucial in regulating gene expression. Understanding the consequences of such differential expression on sperm quality parameters may provide insights into the underlying mechanisms of male reproductive success. Nonetheless, male fertility in fish remains understudied despite its critical importance to overall reproductive success in nature and captivity. This study investigated the DNA methylation landscape in spermatozoa of domesticated Arctic charr (Salvelinus alpinus) and its associations with sperm quality parameters. Computer assisted-semen analysis (CASA) was performed in 47 sperm samples of farmed Arctic charr, followed by enzymatic methylation sequencing (EM-seq). Our results showed that the DNA of Arctic charr sperm is highly methylated (mean value of ~86%), though variations were observed in genomic features involved in gene regulation. Methylation at variable CpG sites exhibited regional correlation decaying by physical distance, while methylation similarities among individuals were strongly coupled with genetic variation and mirrored pedigree structure. Comethylation network analyses for promoters, CpG islands and first introns revealed genomic modules significantly correlated with sperm quality traits (p < 0.05; Bonferroni adjusted), with distinct patterns suggesting a resource trade-off between sperm concentration and kinematics. Furthermore, annotation and gene-set enrichment analysis highlighted biological mechanisms related to spermatogenesis, cytoskeletal regulation, and mitochondrial function, all vital to sperm physiology. These findings suggest that DNA methylation is a critical and fundamental factor influencing male fertility in Arctic charr, providing insights into the underlying mechanisms of male reproductive success.
Collapse
Affiliation(s)
- Fotis Pappas
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Martin Johnsson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Göran Andersson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Paul V Debes
- Department of Aquaculture and Fish Biology, Hólar University, Sauðárkrókur, Iceland
| | - Christos Palaiokostas
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
2
|
Ruiz E, Leprieur F, Sposito G, Lüthi M, Schmidlin M, Panfili J, Pellissier L, Albouy C. Environmental DNA Epigenetics Accurately Predicts the Age of Cultured Fish Larvae. Ecol Evol 2025; 15:e70645. [PMID: 39944907 PMCID: PMC11821287 DOI: 10.1002/ece3.70645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 02/19/2025] Open
Abstract
While acquiring age information is crucial for efficient stock management and biodiversity conservation, traditional aging methods fail to offer a universal, non-invasive, and precise way of estimating a wild animal's age. DNA methylation from tissue DNA (tDNA) was recently proposed as a method to overcome these issues and showed more accurate results than telomere-length-based age assessments. Here, we used environmental DNA (eDNA) for the first time as a template for age estimation, focusing on the larval phase (10-24 days post-hatch) of cultured Dicentrarchus labrax (seabass), a species of major economic and conservation interest. Using third-generation sequencing, we were able to directly detect various modification types (e.g., cytosine and adenosine methylation in all contexts) across the whole genome using amplification-free nanopore sequencing. However, aging sites were only present in the mitogenome, which could be a specific feature of eDNA methylation or the consequence of better DNA protection within mitochondria. By considering qualitative and quantitative information about aging sites according to an objective model selection framework, our epigenetic clock reached a cross-validated accuracy of 2.6 days (Median Absolute Error). Such performances are higher than those of previous clocks, notably for adult seabass even when scaling MAE to the age range, which could be linked to a more dynamic epigenome during early life stages. Overall, our pilot study proposes new methods to determine the potential of eDNA for simultaneous age and biodiversity assessments, although robust validation of our preliminary results along with methodological developments are needed before field applications can be envisaged.
Collapse
Affiliation(s)
- Eliot Ruiz
- MARBEC, Univ Montpellier, IRD, IFREMER, CNRSMontpellierFrance
| | - Fabien Leprieur
- MARBEC, Univ Montpellier, IRD, IFREMER, CNRSMontpellierFrance
| | - Gérard Sposito
- Mediterranean Coastal Environment StationUniversity of MontpellierSèteFrance
| | - Martina Lüthi
- Department of Environmental Systems Science, Ecosystems and Landscape Evolution, Institute of Terrestrial EcosystemsETH ZürichZürichSwitzerland
- Land Change Science Research UnitSwiss Federal Research Institute WSLBirmensdorfSwitzerland
| | - Michel Schmidlin
- Department of Environmental Systems Science, Ecosystems and Landscape Evolution, Institute of Terrestrial EcosystemsETH ZürichZürichSwitzerland
- Land Change Science Research UnitSwiss Federal Research Institute WSLBirmensdorfSwitzerland
| | - Jacques Panfili
- MARBEC, Univ Montpellier, IRD, IFREMER, CNRSMontpellierFrance
| | - Loïc Pellissier
- Department of Environmental Systems Science, Ecosystems and Landscape Evolution, Institute of Terrestrial EcosystemsETH ZürichZürichSwitzerland
- Land Change Science Research UnitSwiss Federal Research Institute WSLBirmensdorfSwitzerland
| | - Camille Albouy
- Department of Environmental Systems Science, Ecosystems and Landscape Evolution, Institute of Terrestrial EcosystemsETH ZürichZürichSwitzerland
- Land Change Science Research UnitSwiss Federal Research Institute WSLBirmensdorfSwitzerland
| |
Collapse
|
3
|
Valdivieso A, Morga B, Degremont L, Mege M, Courtay G, Dorant Y, Escoubas JM, Gawra J, de Lorgeril J, Mitta G, Cosseau C, Vidal-Dupiol J. DNA methylation landscapes before and after Pacific Oyster Mortality Syndrome are different within and between resistant and susceptible Magallana gigas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178385. [PMID: 39799647 DOI: 10.1016/j.scitotenv.2025.178385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/12/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
Pacific oysters face recurring outbreaks of Pacific Oyster Mortality Syndrome (POMS), a polymicrobial multifactorial disease. Although this interaction is increasingly understood, the role of epigenetics (e.g., DNA methylation) appears to be of fundamental importance because of its ability to shape oyster resistance/susceptibility and respond to environmental triggers, including infections. In this context, we comprehensively characterized basal (no infection) and POMS-induced changes in the methylome of resistant and susceptible oysters, focusing on the gills and mantle. Our analysis identified differentially methylated regions (DMRs) that revealed distinct methylation patterns uniquely associated with the susceptible or resistant phenotypes in each tissue. Enrichment analysis of genes bearing DMRs highlighted that these epigenetic changes were specifically linked to immunity, signaling, metabolism, and transport. Notably, 31 genes with well-known immune functions were differentially methylated after POMS, with contrasting methylation patterns between the phenotypes. Based on the methylome differences between phenotypes, we identified a set of candidate epibiomarkers that could characterize whether an oyster is resistant or susceptible (1998 candidates) and whether a site has been exposed to POMS (164 candidates). Overall, the findings provide a deeper understanding of the molecular interactions between oysters and POMS infection, opening new questions about the broader implications of epigenetic mechanisms in host-pathogen dynamics and offering promising strategies for mitigating the impacts of this devastating disease. Beyond its biological aspects, this study provides insights into potential epigenetic biomarkers for POMS disease management and targets for enhancing oyster health and productivity.
Collapse
Affiliation(s)
- Alejandro Valdivieso
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - Benjamin Morga
- Ifremer, ASIM, Adaptation Santé des Invertébrés Marins, La Tremblade, France
| | - Lionel Degremont
- Ifremer, ASIM, Adaptation Santé des Invertébrés Marins, La Tremblade, France
| | - Mickaël Mege
- Ifremer, ASIM, Adaptation Santé des Invertébrés Marins, La Tremblade, France
| | - Gaëlle Courtay
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - Yann Dorant
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France; Université Polynesie Francaise, ILM, IRD, Ifremer, F-98719 Tahiti, French Polynesia, France
| | - Jean-Michel Escoubas
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - Janan Gawra
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France; IDAEA-CSIC, Jordi Girona 18, Barcelona, 08034, Spain
| | - Julien de Lorgeril
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, Entropie, Nouméa, Nouvelle-Calédonie, France
| | - Guillaume Mitta
- Université Polynesie Francaise, ILM, IRD, Ifremer, F-98719 Tahiti, French Polynesia, France
| | - Celine Cosseau
- IHPE, Univ Perpignan Via Domitia, CNRS, IFREMER, Univ Montpellier, Perpignan, France
| | - Jeremie Vidal-Dupiol
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France.
| |
Collapse
|
4
|
Balard A, Baltazar-Soares M, Eizaguirre C, Heckwolf MJ. An epigenetic toolbox for conservation biologists. Evol Appl 2024; 17:e13699. [PMID: 38832081 PMCID: PMC11146150 DOI: 10.1111/eva.13699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 06/05/2024] Open
Abstract
Ongoing climatic shifts and increasing anthropogenic pressures demand an efficient delineation of conservation units and accurate predictions of populations' resilience and adaptive potential. Molecular tools involving DNA sequencing are nowadays routinely used for these purposes. Yet, most of the existing tools focusing on sequence-level information have shortcomings in detecting signals of short-term ecological relevance. Epigenetic modifications carry valuable information to better link individuals, populations, and species to their environment. Here, we discuss a series of epigenetic monitoring tools that can be directly applied to various conservation contexts, complementing already existing molecular monitoring frameworks. Focusing on DNA sequence-based methods (e.g. DNA methylation, for which the applications are readily available), we demonstrate how (a) the identification of epi-biomarkers associated with age or infection can facilitate the determination of an individual's health status in wild populations; (b) whole epigenome analyses can identify signatures of selection linked to environmental conditions and facilitate estimating the adaptive potential of populations; and (c) epi-eDNA (epigenetic environmental DNA), an epigenetic-based conservation tool, presents a non-invasive sampling method to monitor biological information beyond the mere presence of individuals. Overall, our framework refines conservation strategies, ensuring a comprehensive understanding of species' adaptive potential and persistence on ecologically relevant timescales.
Collapse
Affiliation(s)
- Alice Balard
- School of Biological and Behavioural Sciences Queen Mary University of London London UK
| | | | - Christophe Eizaguirre
- School of Biological and Behavioural Sciences Queen Mary University of London London UK
| | - Melanie J Heckwolf
- Department of Ecology Leibniz Centre for Tropical Marine Research Bremen Germany
| |
Collapse
|
5
|
Guirandy N, Simon O, Geffroy B, Daffe G, Daramy F, Houdelet C, Gonzalez P, Pierron F. Gamma irradiation-induced offspring masculinization is associated with epigenetic changes in female zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115790. [PMID: 38086259 DOI: 10.1016/j.ecoenv.2023.115790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024]
Abstract
Sex ratio variation is a key topic in ecology, because of its direct effects on population dynamics and thus, on animal conservation strategies. Among factors affecting sex ratio, types of sex determination systems have a central role, since some species could have a sex determined by genetic factors, environmental factors or a mix of those two. Yet, most studies on the factors affecting sex determination have focused on temperature or endocrine-disrupting chemicals (EDCs), and much less is known regarding other factors. Exposure to gamma irradiation was found to trigger offspring masculinization in zebrafish. Here we aimed at deciphering the potential mechanisms involved, by focusing on stress (i.e. cortisol) and epigenetic regulation of key genes involved in sex differentiation in fish. Cortisol levels in exposed and control (F0) zebrafish females' gonads were similar. However, irradiation increased the DNA methylation level of foxl2a and cyp19a1a in females of the F0 and F1 generation, respectively, while no effects were detected in testis. Overall, our results suggest that parental exposure could alter offspring sex ratio, at least in part by inducing methylation changes in ovaries.
Collapse
Affiliation(s)
- Noëmie Guirandy
- IRSN/PSE-ENV/SRTE/LECO, Centre de Cadarache-B.P. 3 - Bat 183, 13115 St Paul Lez Durance, France.
| | - Olivier Simon
- IRSN/PSE-ENV/SRTE/LECO, Centre de Cadarache-B.P. 3 - Bat 183, 13115 St Paul Lez Durance, France
| | - Benjamin Geffroy
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Guillemine Daffe
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Flore Daramy
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Camille Houdelet
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Patrice Gonzalez
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| | - Fabien Pierron
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
| |
Collapse
|
6
|
Valdivieso A, Caballero-Huertas M, Moraleda-Prados J, Piferrer F, Ribas L. Exploring the Effects of Rearing Densities on Epigenetic Modifications in the Zebrafish Gonads. Int J Mol Sci 2023; 24:16002. [PMID: 37958987 PMCID: PMC10647740 DOI: 10.3390/ijms242116002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Rearing density directly impacts fish welfare, which, in turn, affects productivity in aquaculture. Previous studies have indicated that high-density rearing during sexual development in fish can induce stress, resulting in a tendency towards male-biased sex ratios in the populations. In recent years, research has defined the relevance of the interactions between the environment and epigenetics playing a key role in the final phenotype. However, the underlying epigenetic mechanisms of individuals exposed to confinement remain elucidated. By using zebrafish (Danio rerio), the DNA methylation promotor region and the gene expression patterns of six genes, namely dnmt1, cyp19a1a, dmrt1, cyp11c1, hsd17b1, and hsd11b2, involved in the DNA maintenance methylation, reproduction, and stress were assessed. Zebrafish larvae were subjected to two high-density conditions (9 and 66 fish/L) during two periods of overlapping sex differentiation of this species (7 to 18 and 18 to 45 days post-fertilization, dpf). Results showed a significant masculinization in the populations of fish subjected to high densities from 18 to 45 dpf. In adulthood, the dnmt1 gene was differentially hypomethylated in ovaries and its expression was significantly downregulated in the testes of fish exposed to high-density. Further, the cyp19a1a gene showed downregulation of gene expression in the ovaries of fish subjected to elevated density, as previously observed in other studies. We proposed dnmt1 as a potential testicular epimarker and the expression of ovarian cyp19a1a as a potential biomarker for predicting stress originated from high densities during the early stages of development. These findings highlight the importance of rearing densities by long-lasting effects in adulthood conveying cautions for stocking protocols in fish hatcheries.
Collapse
Affiliation(s)
- Alejandro Valdivieso
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, 34090 Montpellier, France
| | - Marta Caballero-Huertas
- CIRAD, UMR ISEM, 34398 Montpellier, France;
- ISEM, Université de Montpellier, CIRAD, CNRS, IRD, EPHE, 34090 Montpellier, France
| | - Javier Moraleda-Prados
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), 08003 Barcelona, Spain; (J.M.-P.); (F.P.)
| | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), 08003 Barcelona, Spain; (J.M.-P.); (F.P.)
| | - Laia Ribas
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (ICM-CSIC), 08003 Barcelona, Spain; (J.M.-P.); (F.P.)
| |
Collapse
|
7
|
Sun D, Yu H, Li Q. Starvation-induced changes in sex ratio involve alterations in sex-related gene expression and methylation in Pacific oyster Crassostrea gigas. Comp Biochem Physiol B Biochem Mol Biol 2023; 267:110863. [PMID: 37164224 DOI: 10.1016/j.cbpb.2023.110863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/06/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
Aquatic animals are subject to varying degrees of starvation stress in their natural habitats due to food limitations. Consequently, starvation is a crucial environmental factor for sex determination in many species; however, limited research has been conducted on the effects of starvation on sex determination in shellfish. Here, four full sibling families of Pacific oysters were established and subjected to starvation stress. The results demonstrated that starvation caused the sex ratio (female to male) to change from 1:0.78 to 1:1.44 and resulted in a delay in gonadal development. Further studies revealed that the expression levels of DNA methylation-related genes Dnmt1 (DNA methyltransferase 1), Dnmt3a/b (DNA methyltransferase 3a/b) and Tet3 (tet methylcytosine dioxygenase 3) decreased under starvation stress. Conversely, the upregulation of Dmrt1 (doublesex and mab-3 related transcription factor 1), a gene typically associated with males, in females suggests that the increased proportion of males may be linked to starvation-induced high expression of this particular gene. In addition, the gene Dgkd (diacylglycerol kinase delta), which is involved in the regulation of second messenger protein kinase C, was differentially methylated between males and females, with the methylation level of this gene gradually increasing with male development, while the methylation level of this gene decreased under starvation stress. Correlation analysis of Dgkd methylation levels with expression levels showed a negative correlation between DNA methylation and gene expression. Finally dual fluorescence reporter experiments confirmed that DNA methylation suppressed Dgkd expression in vitro. In summary, the results suggest that starvation may regulate Dgkd gene expression through DNA methylation and thus affect Dmrt1 expression, thereby causing sex reversal in the Pacific oyster. The outcomes resolved how environmental factors are involved in sex reversal from an epigenetic perspective and provided a theoretical basis for sex control breeding in the Pacific oyster.
Collapse
Affiliation(s)
- Dongfang Sun
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
8
|
Sun D, Yu H, Li Q. Early gonadal differentiation is associated with the antagonistic action of Foxl2 and Dmrt1l in the Pacific oyster. Comp Biochem Physiol B Biochem Mol Biol 2023; 265:110831. [PMID: 36681266 DOI: 10.1016/j.cbpb.2023.110831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
As the second largest phylum in the zoological kingdom next to arthropods, the mechanism of gonadal differentiation in mollusca is quite complex. Currently, although much has been carried out on gonadal differentiation in the Pacific oyster, there is still unknown information that needs to be further explored. Here, analysis of the Foxl2 and Dmrt1l expression in samples at different development periods of male and female gonads as well as in annual gonad samples revealed that Log10 (Foxl2/Dmrt1l) values were an effective method for sex identification in oysters. In differentiated gonadal tissue, Log10 (Foxl2/Dmrt1l) values greater than 2 were females and less than 1 for males. Subsequent sequential sampling of the same individuals verified that Log10 (Foxl2/Dmrt1l) values greater than 2 for resting gonads would develop as females and less than 1 would develop as males in the future. Relative expression analysis of Foxl2 and Dmrt1l in the annual samples revealed a negative correlation between Log10 (Foxl2) and Log10 (Dmrt1l). Double fluorescence reporter validation results showed that DMRT1L protein was able to bind the Foxl2 promoter and repress its activity with a weak dosage effect. Antagonism between Dmrt1l and Foxl2 is therefore not restricted to vertebrates, and the competing regulatory networks are of great significance in the maintenance of gonadal sex in oysters after sexual differentiation. This study provides novel ideas and insights into the study of early gonadal differentiation in the adult oyster.
Collapse
Affiliation(s)
- Dongfang Sun
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
9
|
Valdivieso A, Anastasiadi D, Ribas L, Piferrer F. Development of epigenetic biomarkers for the identification of sex and thermal stress in fish using DNA methylation analysis and machine learning procedures. Mol Ecol Resour 2023; 23:453-470. [PMID: 36305237 PMCID: PMC10098837 DOI: 10.1111/1755-0998.13725] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 01/04/2023]
Abstract
The sex ratio is a key ecological demographic parameter crucial for population viability. However, the epigenetic mechanisms operating during gonadal development regulating gene expression and the sex ratio remain poorly understood. Moreover, there is interest in the development of epigenetic markers associated with a particular phenotype or as sentinels of environmental effects. Here, we profiled DNA methylation and gene expression of 10 key genes related to sex development and stress, including steroidogenic enzymes, and growth and transcription factors. We provide novel information on the sex-related differences and on the influence of elevated temperature on these genes in zebrafish, a species with mixed genetic and environmental influences on sex ratios. We identified both positive (e.g., amh, cyp11c and hsd11b2) and negative (e.g., cyp11a1 and dmrt1) correlations in unexposed males, and negative correlation (amh) in exposed females between DNA methylation and gene expression levels. Further, we combined DNA methylation analysis with machine learning procedures and found a series of informative CpGs capable not only of correctly identifying sex (based on cyp19a1a DNA methylation levels) but also of identifying whether males and females had been exposed to abnormally elevated temperature when young (based on amh and foxl2a DNA methylation levels, respectively). This was achieved in the absence of conspicuous morphological alterations of the gonads. These DNA methylation-based epigenetic biomarkers represent molecular resources that can correctly recapitulate past thermal history and pave the way for similar findings in other species to assess potential ecological effects of environmental disturbances in the context of climate change.
Collapse
Affiliation(s)
- Alejandro Valdivieso
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Montpellier, France
| | - Dafni Anastasiadi
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,The New Zealand Institute for Plant and Food Research Limited, Nelson, New Zealand
| | - Laia Ribas
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
10
|
Liu Z, Zhou T, Gao D. Genetic and epigenetic regulation of growth, reproduction, disease resistance and stress responses in aquaculture. Front Genet 2022; 13:994471. [PMID: 36406125 PMCID: PMC9666392 DOI: 10.3389/fgene.2022.994471] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
Major progress has been made with genomic and genetic studies in aquaculture in the last decade. However, research on epigenetic regulation of aquaculture traits is still at an early stage. It is apparent that most, if not all, aquaculture traits are regulated at both genetic and epigenetic levels. This paper reviews recent progress in understanding of genetic and epigenetic regulation of important aquaculture traits such as growth, reproduction, disease resistance, and stress responses. Although it is challenging to make generalized statements, DNA methylation is mostly correlated with down-regulation of gene expression, especially when at promoters and enhancers. As such, methylation of growth factors and their receptors is negatively correlated with growth; hypomethylation of genes important for stress tolerance is correlated with increased stress tolerance; hypomethylation of genes important for male or female sex differentiation leads to sex differentiation into males or females, respectively. It is apparent that environmental regulation of aquaculture traits is mediated at the level of epigenetic regulation, and such environment-induced epigenetic changes appeared to be intergenerationally inherited, but evidences for transgenerational inheritance are still limited.
Collapse
Affiliation(s)
- Zhanjiang Liu
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, United States,*Correspondence: Zhanjiang Liu,
| | - Tao Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Dongya Gao
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
11
|
Valdivieso A, Wilson CA, Amores A, da Silva Rodrigues M, Nóbrega RH, Ribas L, Postlethwait JH, Piferrer F. Environmentally-induced sex reversal in fish with chromosomal vs. polygenic sex determination. ENVIRONMENTAL RESEARCH 2022; 213:113549. [PMID: 35618011 PMCID: PMC9620983 DOI: 10.1016/j.envres.2022.113549] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Sex ratio depends on sex determination mechanisms and is a key demographic parameter determining population viability and resilience to natural and anthropogenic stressors. There is increasing evidence that the environment can alter sex ratio even in genetically sex-determined species (GSD), as elevated temperature can cause female-to-male sex reversal (neomales). Alarmingly, neomales are being discovered in natural populations of several fish, amphibian and reptile species worldwide. Understanding the basis of neomale development is important for conservation biology. Among GSD species, it is unknown whether those with chromosomal sex determination (CSD), the most common system, will better resist the influence of high temperature than those with polygenic sex determination (PSD). Here, we compared the effects of elevated temperature in two wild zebrafish strains, Nadia (NA) and Ekkwill (EKW), which have CSD with a ZZ/ZW system, against the AB laboratory strain, which has PSD. First, we uncovered novel sex genotypes and the results showed that, at control temperature, the masculinization rate roughly doubled with the addition of each Z chromosome, while some ZW and WW fish of the wild strains became neomales. Surprisingly, we found that at elevated temperatures WW fish were just as likely as ZW fish to become neomales and that all strains were equally susceptible to masculinization. These results demonstrate that the Z chromosome is not essential for male development and that the dose of W buffers masculinization at the control temperature but not at elevated temperature. Furthermore, at the elevated temperature the testes of neomales, but not of normal males, contained more spermatozoa than at the control temperature. Our results show in an unprecedented way that, in a global warming scenario, CSD species may not necessarily be better protected against the masculinizing effect of elevated temperature than PSD species, and reveal genotype-by-temperature interactions in male sex determination and spermatogenesis.
Collapse
Affiliation(s)
- Alejandro Valdivieso
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | | | - Angel Amores
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Maira da Silva Rodrigues
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, São Paulo, Brazil
| | - Rafael Henrique Nóbrega
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, São Paulo, Brazil
| | - Laia Ribas
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | | | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain.
| |
Collapse
|
12
|
Yao M, Zhang S, Lu Q, Chen X, Zhang SY, Kong Y, Zhao J. Fishing for fish environmental DNA: Ecological applications, methodological considerations, surveying designs, and ways forward. Mol Ecol 2022; 31:5132-5164. [PMID: 35972241 DOI: 10.1111/mec.16659] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 12/15/2022]
Abstract
Vast global declines of freshwater and marine fish diversity and population abundance pose serious threats to both ecosystem sustainability and human livelihoods. Environmental DNA (eDNA)-based biomonitoring provides robust, efficient, and cost-effective assessment of species occurrences and population trends in diverse aquatic environments. Thus, it holds great potential for improving conventional surveillance frameworks to facilitate fish conservation and fisheries management. However, the many technical considerations and rapid developments underway in the eDNA arena can overwhelm researchers and practitioners new to the field. Here, we systematically analysed 416 fish eDNA studies to summarize research trends in terms of investigated targets, research aims, and study systems, and reviewed the applications, rationales, methodological considerations, and limitations of eDNA methods with an emphasis on fish and fisheries research. We highlighted how eDNA technology may advance our knowledge of fish behaviour, species distributions, population genetics, community structures, and ecological interactions. We also synthesized the current knowledge of several important methodological concerns, including the qualitative and quantitative power eDNA has to recover fish biodiversity and abundance, and the spatial and temporal representations of eDNA with respect to its sources. To facilitate ecological applications implementing fish eDNA techniques, recent literature was summarized to generate guidelines for effective sampling in lentic, lotic, and marine habitats. Finally, we identified current gaps and limitations, and pointed out newly emerging research avenues for fish eDNA. As methodological optimization and standardization improve, eDNA technology should revolutionize fish monitoring and promote biodiversity conservation and fisheries management that transcends geographic and temporal boundaries.
Collapse
Affiliation(s)
- Meng Yao
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Shan Zhang
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Qi Lu
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Xiaoyu Chen
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Si-Yu Zhang
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Yueqiao Kong
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Jindong Zhao
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
13
|
Temperature-Biased miRNA Expression Patterns during European Sea Bass (Dicentrarchus labrax) Development. Int J Mol Sci 2022; 23:ijms231911164. [PMID: 36232462 PMCID: PMC9570215 DOI: 10.3390/ijms231911164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022] Open
Abstract
Environmental effects and, particularly, temperature changes have been demonstrated to influence the activity, function, and well-being of teleosts. Temperature may change seasonally in the wild, and in captivity under aquaculture operations. Moreover, climate change is expected to shift temperature profiles worldwide. MicroRNAs (miRNA) are important temperature-sensitive gene-expression regulators acting at the post-transcriptional level. They are known to be key regulators in development, reproduction, and immune responses. Therefore, early larval development of the European sea bass (Dicentrarchus labrax), one of the most extensively cultured species in Mediterranean aquaculture, was investigated at early rearing temperatures, i.e., 15, 17.5, and 20 °C, in regard to the impact of temperatures on miRNAs through sncRNA high-throughput sequencing but also at the phenotypic level in terms of growth, sex, vision, and skeletal deformities. Expression profiling revealed stage- and temperature-specific miRNA expression targeting genes with roles in reproduction and immune response mainly at the flexion and all-fins stages. Similar stage- and temperature-specific results were also observed concerning the number of rod cells and lower jaw elongation. The present work presents for the first time highly promising results on the influence of early rearing temperature at the post-transcriptional level during European sea bass development, with a putative impact on reproduction and immune response, as well as regarding teleost vision and larval development.
Collapse
|
14
|
Integrated Analyses of DNA Methylation and Gene Expression of Rainbow Trout Muscle under Variable Ploidy and Muscle Atrophy Conditions. Genes (Basel) 2022; 13:genes13071151. [PMID: 35885934 PMCID: PMC9319582 DOI: 10.3390/genes13071151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Rainbow trout, Oncorhynchus mykiss, is an important cool, freshwater aquaculture species used as a model for biological research. However, its genome reference has not been annotated for epigenetic markers affecting various biological processes, including muscle growth/atrophy. Increased energetic demands during gonadogenesis/reproduction provoke muscle atrophy in rainbow trout. We described DNA methylation and its associated gene expression in atrophying muscle by comparing gravid, diploid females to sterile, triploid females. Methyl Mini-seq and RNA-Seq were simultaneously used to characterize genome-wide DNA methylation and its association with gene expression in rainbow trout muscle. Genome-wide enrichment in the number of CpGs, accompanied by depleted methylation levels, was noticed around the gene transcription start site (TSS). Hypermethylation of CpG sites within ±1 kb on both sides of TSS (promoter and gene body) was weakly/moderately associated with reduced gene expression. Conversely, hypermethylation of the CpG sites in downstream regions of the gene body +2 to +10 kb was weakly associated with increased gene expression. Unlike mammalian genomes, rainbow trout gene promotors are poor in CpG islands, at <1% compared to 60%. No signs of genome-wide, differentially methylated (DM) CpGs were observed due to the polyploidy effect; only 1206 CpGs (0.03%) were differentially methylated, and these were primarily associated with muscle atrophy. Twenty-eight genes exhibited differential gene expression consistent with methylation levels of 31 DM CpGs. These 31 DM CpGs represent potential epigenetic markers of muscle atrophy in rainbow trout. The DM CpG-harboring genes are involved in apoptosis, epigenetic regulation, autophagy, collagen metabolism, cell membrane functions, and Homeobox proteins. Our study also identified genes explaining higher water content and modulated glycolysis previously shown as characteristic biochemical signs of rainbow trout muscle atrophy associated with sexual maturation. This study characterized DNA methylation in the rainbow trout genome and its correlation with gene expression. This work also identified novel epigenetic markers associated with muscle atrophy in fish/lower vertebrates.
Collapse
|
15
|
Li P, Chen J, Zhu C, Pan Z, Li Q, Wei H, Wang G, Cheng W, Fu B, Sun Y. DNA Methylation Difference between Female and Male Ussuri Catfish ( Pseudobagrus ussuriensis) in Brain and Gonad Tissues. Life (Basel) 2022; 12:874. [PMID: 35743904 PMCID: PMC9228513 DOI: 10.3390/life12060874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 11/27/2022] Open
Abstract
DNA methylation has been found to be involved in sex determination and differentiation in many aquaculture species. The Ussuri catfish (Pseudobagrus ussuriensis) is a popular aquaculture fish in China with high economic value in which male-biased sex dimorphism was observed in terms of body size and body weight. In this study, DNA methylation-sensitive RAD sequencing (Methyl-RAD) was used to explore the epigenetic difference between adult male and female samples in brain and gonad tissues. In brain tissues, 5,442,496 methylated cytosine sites were found and 9.94% of these sites were from symmetric CCGG or CCWGG sites. Among these sites, 321 differential DNA methylation sites (DMSs) in 171 genes were identified, while in gonad tissues, 4,043,053 methylated cytosines sites were found in total and 11.70% of them were from CCGG or CCWGG. Among these sites, 78 differential DNA methylation sites were found which were located in 64 genes. We also found several sex-determination genes among these differential methylated genes, such as amh, gsdf and hsd11b2 in brain tissues and slco3a1, socs2 and trim47 in gonad tissues. These results provided evidence for understanding the function of DNA methylation in the sex differentiation in Pseudobagrus ussuriensis, which further deepens the relationship between gene regulation and epigenetics.
Collapse
Affiliation(s)
- Pei Li
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430207, China; (P.L.); (J.C.); (Q.L.); (H.W.); wh (G.W.); (W.C.)
| | - Jian Chen
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430207, China; (P.L.); (J.C.); (Q.L.); (H.W.); wh (G.W.); (W.C.)
| | - Chuankun Zhu
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian 223300, China; (C.Z.); (Z.P.)
| | - Zhengjun Pan
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian 223300, China; (C.Z.); (Z.P.)
| | - Qing Li
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430207, China; (P.L.); (J.C.); (Q.L.); (H.W.); wh (G.W.); (W.C.)
| | - Huijie Wei
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430207, China; (P.L.); (J.C.); (Q.L.); (H.W.); wh (G.W.); (W.C.)
| | - Guiying Wang
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430207, China; (P.L.); (J.C.); (Q.L.); (H.W.); wh (G.W.); (W.C.)
| | - Weiwei Cheng
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430207, China; (P.L.); (J.C.); (Q.L.); (H.W.); wh (G.W.); (W.C.)
| | - Beide Fu
- Ruibiao (Wuhan) Biotechnology Co., Ltd., Wuhan 430074, China;
| | - Yanhong Sun
- Fisheries Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430207, China; (P.L.); (J.C.); (Q.L.); (H.W.); wh (G.W.); (W.C.)
| |
Collapse
|
16
|
Yang Y, Zhou T, Liu Y, Tian C, Bao L, Wang W, Zhang Y, Liu S, Shi H, Tan S, Gao D, Dunham RA, Liu Z. Identification of an Epigenetically Marked Locus within the Sex Determination Region of Channel Catfish. Int J Mol Sci 2022; 23:ijms23105471. [PMID: 35628283 PMCID: PMC9171582 DOI: 10.3390/ijms23105471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
Channel catfish has an XY sex determination system. However, the X and Y chromosomes harbor an identical gene content of 950 genes each. In this study, we conducted comparative analyses of methylome and transcriptome of genetic males and genetic females before gonadal differentiation to provide insights into the mechanisms of sex determination. Differentially methylated CpG sites (DMCs) were predominantly identified on the sex chromosome, most notably within the sex determination region (SDR), although the overall methylation profiles across the entire genome were similar between genetic males and females. The drastic differences in methylation were located within the SDR at nucleotide position 14.0–20.3 Mb of the sex chromosome, making this region an epigenetically marked locus within the sex determination region. Most of the differentially methylated CpG sites were hypermethylated in females and hypomethylated in males, suggesting potential involvement of methylation modification in sex determination in channel catfish. Along with the differential methylation in the SDR, a number of differentially expressed genes within the SDR were also identified between genetic males and females, making them potential candidate genes for sex determination and differentiation in channel catfish.
Collapse
Affiliation(s)
- Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (Y.Y.); (T.Z.); (Y.L.); (C.T.); (L.B.); (W.W.); (Y.Z.); (S.L.); (H.S.); (S.T.); (R.A.D.)
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (Y.Y.); (T.Z.); (Y.L.); (C.T.); (L.B.); (W.W.); (Y.Z.); (S.L.); (H.S.); (S.T.); (R.A.D.)
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (Y.Y.); (T.Z.); (Y.L.); (C.T.); (L.B.); (W.W.); (Y.Z.); (S.L.); (H.S.); (S.T.); (R.A.D.)
| | - Changxu Tian
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (Y.Y.); (T.Z.); (Y.L.); (C.T.); (L.B.); (W.W.); (Y.Z.); (S.L.); (H.S.); (S.T.); (R.A.D.)
| | - Lisui Bao
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (Y.Y.); (T.Z.); (Y.L.); (C.T.); (L.B.); (W.W.); (Y.Z.); (S.L.); (H.S.); (S.T.); (R.A.D.)
| | - Wenwen Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (Y.Y.); (T.Z.); (Y.L.); (C.T.); (L.B.); (W.W.); (Y.Z.); (S.L.); (H.S.); (S.T.); (R.A.D.)
| | - Yu Zhang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (Y.Y.); (T.Z.); (Y.L.); (C.T.); (L.B.); (W.W.); (Y.Z.); (S.L.); (H.S.); (S.T.); (R.A.D.)
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (Y.Y.); (T.Z.); (Y.L.); (C.T.); (L.B.); (W.W.); (Y.Z.); (S.L.); (H.S.); (S.T.); (R.A.D.)
| | - Huitong Shi
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (Y.Y.); (T.Z.); (Y.L.); (C.T.); (L.B.); (W.W.); (Y.Z.); (S.L.); (H.S.); (S.T.); (R.A.D.)
| | - Suxu Tan
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (Y.Y.); (T.Z.); (Y.L.); (C.T.); (L.B.); (W.W.); (Y.Z.); (S.L.); (H.S.); (S.T.); (R.A.D.)
| | - Dongya Gao
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY 13244, USA; (D.G.); (Z.L.)
| | - Rex A. Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; (Y.Y.); (T.Z.); (Y.L.); (C.T.); (L.B.); (W.W.); (Y.Z.); (S.L.); (H.S.); (S.T.); (R.A.D.)
| | - Zhanjiang Liu
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY 13244, USA; (D.G.); (Z.L.)
- Correspondence:
| |
Collapse
|
17
|
DNA methylation differences between male and female gonads of the oyster reveal the role of epigenetics in sex determination. Gene 2022; 820:146260. [PMID: 35121028 DOI: 10.1016/j.gene.2022.146260] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/14/2022] [Accepted: 01/27/2022] [Indexed: 11/22/2022]
Abstract
DNA methylation involved in sex determination mechanism by regulating gene expression related to sex determination networks are common in vertebrates. However, the mechanism linking epigenetics in invertebrates and sex determination has remained elusive. Here, methylome of the male and female gonads in the oyster Crassostrea gigas were conducted to explore the role of epigenetics in invertebrate sex determination. Comparative analysis of gonadal DNA methylation of females and males revealed that male gonads displayed a higher level of DNA methylation and a greater number of hypermethylated genes. Luxury genes presented hypomethylation, while housekeeping genes got hypermethylation. Genes in the conserved signaling pathways, rather than the key master genes in the sex determination pathway, were the major targets of substantial DNA methylation modification. The negative correlation of expression and promoter methylation in the diacylglycerol kinase delta gene (Dgkd) - a ubiquitously expressed gene - indicated DNA methylation may fine turn the expression of Dgkd and be involved in the process of sex determination. Dgkd can be used as an epigenetic marker to distinguish male C. gigas based on the different methylation regions in the promoter region. The results suggest that DNA methylation mechanisms played potential functional impacts in the sex determination in oysters, which is helpful to deepen the understanding of sex determination in invertebrate.
Collapse
|
18
|
Abstract
To date, genomic prediction has been conducted in about 20 aquaculture species, with a preference for intra-family genomic selection (GS). For every trait under GS, the increase in accuracy obtained by genomic estimated breeding values instead of classical pedigree-based estimation of breeding values is very important in aquaculture species ranging from 15% to 89% for growth traits, and from 0% to 567% for disease resistance. Although the implementation of GS in aquaculture is of little additional investment in breeding programs already implementing sib testing on pedigree, the deployment of GS remains sparse, but could be boosted by adaptation of cost-effective imputation from low-density panels. Moreover, GS could help to anticipate the effect of climate change by improving sustainability-related traits such as production yield (e.g., carcass or fillet yields), feed efficiency or disease resistance, and by improving resistance to environmental variation (tolerance to temperature or salinity variation). This chapter synthesized the literature in applications of GS in finfish, crustaceans and molluscs aquaculture in the present and future breeding programs.
Collapse
Affiliation(s)
- François Allal
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Palavas-les-Flots, France.
| | - Nguyen Hong Nguyen
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| |
Collapse
|
19
|
Kaitetzidou E, Gilfillan GD, Antonopoulou E, Sarropoulou E. Sex-biased dynamics of three-spined stickleback (Gasterosteus aculeatus) gene expression patterns. Genomics 2021; 114:266-277. [PMID: 34933072 DOI: 10.1016/j.ygeno.2021.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/17/2021] [Accepted: 12/05/2021] [Indexed: 11/28/2022]
Abstract
The study of the differences between sexes presents an excellent model to unravel how phenotypic variation is achieved from a similar genetic background. Sticklebacks are of particular interest since evidence of a heteromorphic chromosome pair has not always been detected. The present study investigated sex-biased mRNA and small non-coding RNA (sncRNA) expression patterns in the brain, adipose tissues, and gonads of the three-spined stickleback. The sncRNA analysis indicated that regulatory functions occurred mainly in the gonads. Alleged miRNA-mRNA interactions were established and a mapping bias of differential expressed transcripts towards chromosome 19 was observed. Key players previously shown to control sex determination and differentiation in other fish species but also genes like gapdh were among the transcripts identified. This is the first report in the three-spined stickleback demonstrating tissue-specific expression comprising both mRNA and sncRNA between sexes, emphasizing the importance of mRNA-miRNA interactions as well as new presumed genes not yet identified to have gender-specific roles.
Collapse
Affiliation(s)
- Elisavet Kaitetzidou
- Institute for Marine Biology, Biotechnology, and Aquaculture, Hellenic Centre for Marine Research, Greece
| | - Gregor D Gilfillan
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Efthimia Antonopoulou
- Department of Zoology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Greece
| | - Elena Sarropoulou
- Institute for Marine Biology, Biotechnology, and Aquaculture, Hellenic Centre for Marine Research, Greece.
| |
Collapse
|
20
|
Geffroy B, Besson M, Sánchez-Baizán N, Clota F, Goikoetxea A, Sadoul B, Ruelle F, Blanc MO, Parrinello H, Hermet S, Blondeau-Bidet E, Pratlong M, Piferrer F, Vandeputte M, Allal F. Unraveling the genotype by environment interaction in a thermosensitive fish with a polygenic sex determination system. Proc Natl Acad Sci U S A 2021; 118:e2112660118. [PMID: 34880131 PMCID: PMC8685686 DOI: 10.1073/pnas.2112660118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 01/03/2023] Open
Abstract
In most animals, sex determination occurs at conception, when sex chromosomes are segregated following Mendelian laws. However, in multiple reptiles and fishes, this genetic sex can be overridden by external factors after fertilization or birth. In some species, the genetic sex may also be governed by multiple genes, further limiting our understanding of sex determination in such species. We used the European sea bass (Dicentrarchus labrax) as a model and combined genomic (using a single nucleotide polymorphism chip) and transcriptomic (RNA-Sequencing) approaches to thoroughly depict this polygenic sex determination system and its interaction with temperature. We estimated genetic sex tendency (eGST), defined as the estimated genetic liability to become a given sex under a liability threshold model for sex determination, which accurately predicts the future phenotypic sex. We found evidence that energetic pathways, concerning the regulation of lipids and glucose, are involved in sex determination and could explain why females tend to exhibit higher energy levels and improved growth compared to males. Besides, early exposure to high-temperature up-regulated sox3, followed by sox9a in individuals with intermediate eGST, but not in individuals showing highly female-biased eGST, providing the most parsimonious explanation for temperature-induced masculinization. This gonadal state was maintained likely by DNA methylation and the up-regulation of several genes involved in histone modifications, including jmjd1c Overall, we describe a sex determination system resulting from continuous genetic and environmental influences in an animal. Our results provide significant progress in our understanding of the mechanisms underlying temperature-induced masculinization in fish.
Collapse
Affiliation(s)
- Benjamin Geffroy
- MARBEC Université de Montpellier, CNRS, Ifremer, IRD, Palavas-les-Flots, France;
| | - Mathieu Besson
- SYSAAF, Station LPGP/INRAE, 35042 Rennes, France
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | - Núria Sánchez-Baizán
- Institut de Ciències del Mar, Spanish National Research Council, Barcelona, Spain
| | - Frederic Clota
- MARBEC Université de Montpellier, CNRS, Ifremer, IRD, Palavas-les-Flots, France
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | | | - Bastien Sadoul
- MARBEC Université de Montpellier, CNRS, Ifremer, IRD, Palavas-les-Flots, France
- ESE, Ecology and Ecosystem Health, Institut Agro, INRAE, Rennes, France
| | - François Ruelle
- Laboratoire Service d'Expérimentations Aquacoles, Ifremer, Palavas-les-Flots, France
| | - Marie-Odile Blanc
- Laboratoire Service d'Expérimentations Aquacoles, Ifremer, Palavas-les-Flots, France
| | - Hugues Parrinello
- MGX, BCM, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Sophie Hermet
- MARBEC Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Eva Blondeau-Bidet
- MARBEC Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Marine Pratlong
- MGX, BCM, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Francesc Piferrer
- Institut de Ciències del Mar, Spanish National Research Council, Barcelona, Spain
| | - Marc Vandeputte
- MARBEC Université de Montpellier, CNRS, Ifremer, IRD, Palavas-les-Flots, France
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | - François Allal
- MARBEC Université de Montpellier, CNRS, Ifremer, IRD, Palavas-les-Flots, France
| |
Collapse
|
21
|
Anastasiadi D, Venney CJ, Bernatchez L, Wellenreuther M. Epigenetic inheritance and reproductive mode in plants and animals. Trends Ecol Evol 2021; 36:1124-1140. [PMID: 34489118 DOI: 10.1016/j.tree.2021.08.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022]
Abstract
Epigenetic inheritance is another piece of the puzzle of nongenetic inheritance, although the prevalence, sources, persistence, and phenotypic consequences of heritable epigenetic marks across taxa remain unclear. We systematically reviewed over 500 studies from the past 5 years to identify trends in the frequency of epigenetic inheritance due to differences in reproductive mode and germline development. Genetic, intrinsic (e.g., disease), and extrinsic (e.g., environmental) factors were identified as sources of epigenetic inheritance, with impacts on phenotype and adaptation depending on environmental predictability. Our review shows that multigenerational persistence of epigenomic patterns is common in both plants and animals, but also highlights many knowledge gaps that remain to be filled. We provide a framework to guide future studies towards understanding the generational persistence and eco-evolutionary significance of epigenomic patterns.
Collapse
Affiliation(s)
- Dafni Anastasiadi
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten St, Nelson 7010, New Zealand
| | - Clare J Venney
- Institut de Biologie Intégrative des Systèmes (IBIS), Département de Biologie, Université Laval, 1030 Avenue de la Médecine, G1V 0A6, Québec, QC, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative des Systèmes (IBIS), Département de Biologie, Université Laval, 1030 Avenue de la Médecine, G1V 0A6, Québec, QC, Canada
| | - Maren Wellenreuther
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten St, Nelson 7010, New Zealand; School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland 1010, New Zealand.
| |
Collapse
|
22
|
Papadaki M, Mandalakis M, Anastasiou TI, Pouli M, Asderis M, Katharios P, Papandroulakis N, Mylonas CC. Histological evaluation of sex differentiation and early sex identification in hatchery-produced greater amberjack (Seriola dumerili) reared in sea cages. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1777-1792. [PMID: 34515893 DOI: 10.1007/s10695-021-01007-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
The histological process of gonadal differentiation, together with the endocrine changes of sex steroid hormones and some of their precursors, was studied in hatchery-produced greater amberjack Seriola dumerili from 101 until 408 days post-hatching (dph), with samplings conducted every 50 days. Histological processing showed that sex differentiation began at 101 dph with the formation of the ovarian cavity in females, while the presumptive males did not yet contain any germ cells in their gonad. At 150 dph, we observed the first germ cells in the developing testes. Sex differentiation in almost all sampled individuals was complete at 408 dph. No size dimorphism was observed between the sexes, and the sex ratio was 1:1, suggesting that there was no influence of early rearing in captivity on sex differentiation. Plasma concentrations of adrenosterone (Ad), androstenedione (Δ4), 11-ketotestosterone (11ΚΤ), testosterone (Τ), estradiol (Ε2), progesterone (P4) and 17,20β-dihydroxy-4-pregnen-3-one (17,20βP) were measured in males and females with the use of liquid chromatography tandem mass spectrometry (LC-MS/MS) to examine their role in the sex differentiation process. From the seven hormones, the only one that exhibited differences between the sexes was 11-KT and the plasma 11-KT concentration was found to be a useful indication of greater amberjack sex. Variations were observed in the mean values of Ad, Δ4, 11-KT, T, P4 and 17,20βP over time in one or both sexes, indicating their involvement in the sex differentiation process.
Collapse
Affiliation(s)
- Maria Papadaki
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, 71003, Heraklion, Crete, Greece
- Department of Biology, University of Crete, P.O. Box 2208, 71409, Heraklion, Crete, Greece
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, 71003, Heraklion, Crete, Greece
| | - Thekla I Anastasiou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, 71003, Heraklion, Crete, Greece
| | - Marina Pouli
- Department of Biology, University of Crete, P.O. Box 2208, 71409, Heraklion, Crete, Greece
| | - Michalis Asderis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, 71003, Heraklion, Crete, Greece
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, 71003, Heraklion, Crete, Greece
| | - Nikos Papandroulakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, 71003, Heraklion, Crete, Greece
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, 71003, Heraklion, Crete, Greece.
| |
Collapse
|
23
|
Han J, Hu Y, Qi Y, Yuan C, Naeem S, Huang D. High temperature induced masculinization of zebrafish by down-regulation of sox9b and esr1 via DNA methylation. J Environ Sci (China) 2021; 107:160-170. [PMID: 34412779 DOI: 10.1016/j.jes.2021.01.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 05/15/2023]
Abstract
Elevated temperature could influence the sex differentiation by altering the expression of sex-related genes in fish. However, the underlying mechanisms by which the gene expression is altered remain poorly understood. Here, we aimed to explore the role of DNA methylation in sex differentiation of zebrafish (Danio rerio) in response to elevated temperature. The results showed that high temperature (33°C) exposure of fish from 20 to 30 days post fertilization (dpf), compared to normal temperature (28°C), resulted in male-biased sex ratio and decreased expression of female-related genes including cyp19a1a, sox9b and esr1. Meanwhile, the expressions of DNA methyltransferases dnmt3a1 and dnmt3a2, and the DNA methylation levels in sox9b and esr1 promoter were significantly increased by high temperature, strongly implying that DNA methylation is involved in high temperature-induced masculinization of zebrafish. Co-treatment with 5-aza-2'-deoxycytidine (a DNA methylation inhibitor) attenuated the high temperature-induced masculinizing effect, recovered the expression of esr1 and sox9b, suppressed the transcription of dnmt3a1 and dnmt3a2, and decreased the methylation of esr1 and sox9b promoter, further confirming that DNA methylation plays an important role in high temperature-induced masculinization of zebrafish. Furthermore, the methylation of sox9b promoter decreased the enrichment of transcription factor CREB (cAMP-responsive element binding proteins). Overall, these findings suggest that high temperature induce masculinization of zebrafish by down-regulation of female-related genes via DNA methylation, providing a new insight in understanding the epigenetic mechanism of thermal-mediated sex differentiation in fish.
Collapse
Affiliation(s)
- Jiangyuan Han
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yan Hu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Cong Yuan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Sajid Naeem
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dejun Huang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China..
| |
Collapse
|
24
|
Piferrer F. Epigenetic mechanisms in sex determination and in the evolutionary transitions between sexual systems. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200110. [PMID: 34247505 PMCID: PMC8273503 DOI: 10.1098/rstb.2020.0110] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The hypothesis that epigenetic mechanisms of gene expression regulation have two main roles in vertebrate sex is presented. First, and within a given generation, by contributing to the acquisition and maintenance of (i) the male or female function once during the lifetime in individuals of gonochoristic species; and (ii) the male and female function in the same individual, either at the same time in simultaneous hermaphrodites, or first as one sex and then as the other in sequential hermaphrodites. Second, if environmental conditions change, epigenetic mechanisms may have also a role across generations, by providing the necessary phenotypic plasticity to facilitate the transition: (i) from one sexual system to another, or (ii) from one sex-determining mechanism to another. Furthermore, if the environmental change lasts enough time, epimutations could facilitate assimilation into genetic changes that stabilize the new sexual system or sex-determining mechanism. Examples supporting these assertions are presented, caveats or difficulties and knowledge gaps identified, and possible ways to test this hypothesis suggested. This article is part of the theme issue ‘Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)’.
Collapse
Affiliation(s)
- Francesc Piferrer
- Institut de Ciències del Mar (ICM), Spanish National Research Council (CSIC), Passeig Marítim, 37-49, 08003 Barcelona, Spain
| |
Collapse
|
25
|
Pierron F, Lorioux S, Héroin D, Daffe G, Etcheverria B, Cachot J, Morin B, Dufour S, Gonzalez P. Transgenerational epigenetic sex determination: Environment experienced by female fish affects offspring sex ratio. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116864. [PMID: 33714788 DOI: 10.1016/j.envpol.2021.116864] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/22/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Sex determination is a complex process that can be influenced by environment in various taxa. Disturbed environments can affect population sex ratios and thus threaten their viability. Emerging evidences support a role of epigenetic mechanisms, notably DNA methylation, in environmental sex determination (ESD). In this work, using zebrafish as model and a transgenerational experiment comprising 4 successive generations, we report a strength link between the promotor methylation level of three genes in female gonads and population sex ratio. One generation of zebrafish was exposed throughout its lifetime to cadmium (Cd), a non-essential metal, at an environmentally relevant concentration. The subsequent generations were not exposed. At the first and the third generation a subset of individuals was exposed to an elevated temperature, a well-known masculinizing factor in zebrafish. While heat was associated to an increase in the methylation level of cyp19a1a gene and population masculinization, foxl2a/dmrt1 methylation levels appeared to be influenced by Cd and fish density leading to offspring feminization. Ancestral Cd exposure indeed led to a progressive feminization of the population over generations and affected the sex plastic response of zebrafish in response to heat. The effect of Cd on the methylation level of foxl2a was observed until the third generation, supporting potential transgenerational inheritance. Our results support (i) a key role of cyp19a1a methylation in SD in zebrafish in response to environmental cues and (ii) the fact that the environment experienced by parents, namely mothers in the present case, can affect their offspring sex ratio via environment-induced DNA methylation changes in gonads.
Collapse
Affiliation(s)
- Fabien Pierron
- Univ. Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600, Pessac, France.
| | - Sophie Lorioux
- Univ. Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600, Pessac, France
| | - Débora Héroin
- Univ. Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600, Pessac, France
| | - Guillemine Daffe
- Univ. Bordeaux, CNRS, INRAE, La Rochelle Univ., UMS 2567 POREA, F-33615, Pessac, France
| | | | - Jérôme Cachot
- Univ. Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600, Pessac, France
| | - Bénédicte Morin
- Univ. Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600, Pessac, France
| | - Sylvie Dufour
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National D'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, 75231, Paris Cedex, 05, France
| | - Patrice Gonzalez
- Univ. Bordeaux, CNRS, EPOC, EPHE, UMR 5805, F-33600, Pessac, France
| |
Collapse
|
26
|
Douhard M, Geffroy B. Males can adjust offspring sex ratio in an adaptive fashion through different mechanisms. Bioessays 2021; 43:e2000264. [PMID: 33594712 DOI: 10.1002/bies.202000264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 01/15/2023]
Abstract
Sex allocation research has primarily focused on offspring sex-ratio adjustment by mothers. Yet, fathers also benefit from producing more of the sex with greater fitness returns. Here, we review the state-of-the art in the study of male-driven sex allocation and, counter to the current paradigm, we propose that males can adaptively influence offspring sex ratio through a wide variety of mechanisms. This includes differential production and motility of X- versus Y-bearing sperms in mammals, variation in seminal fluid composition in haplo-diploid invertebrates, and epigenetic mechanisms in some fish and lizards exhibiting environmental sex determination. Conflicts of interest between mothers and fathers over offspring sex ratios can emerge, although many more studies are needed in this area. While many studies of sex allocation have focused on adaptive explanations with little attention to mechanisms, and vice versa, the integration of these two topics is essential for understanding male-driven sex allocation.
Collapse
Affiliation(s)
- Mathieu Douhard
- Laboratoire de Biométrie & Biologie Evolutive, Université Lyon 1, Villeurbanne, France
| | - Benjamin Geffroy
- MARBEC, Univ Montpellier, Ifremer, CNRS, IRD, Palavas-Les-Flots, France
| |
Collapse
|
27
|
Krick MV, Desmarais E, Samaras A, Guéret E, Dimitroglou A, Pavlidis M, Tsigenopoulos C, Guinand B. Family-effects in the epigenomic response of red blood cells to a challenge test in the European sea bass (Dicentrarchus labrax, L.). BMC Genomics 2021; 22:111. [PMID: 33563212 PMCID: PMC7871408 DOI: 10.1186/s12864-021-07420-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/31/2021] [Indexed: 12/13/2022] Open
Abstract
Abstract Background In fish, minimally invasive blood sampling is widely used to monitor physiological stress with blood plasma biomarkers. As fish blood cells are nucleated, they might be a source a potential new markers derived from ‘omics technologies. We modified the epiGBS (epiGenotyping By Sequencing) technique to explore changes in genome-wide cytosine methylation in the red blood cells (RBCs) of challenged European sea bass (Dicentrarchus labrax), a species widely studied in both natural and farmed environments. Results We retrieved 501,108,033 sequencing reads after trimming, with a mean mapping efficiency of 73.0% (unique best hits). Minor changes in RBC methylome appeared to manifest after the challenge test and a family-effect was detected. Only fifty-seven differentially methylated cytosines (DMCs) close to 51 distinct genes distributed on 17 of 24 linkage groups (LGs) were detected between RBCs of pre- and post-challenge individuals. Thirty-seven of these genes were previously reported as differentially expressed in the brain of zebrafish, most of them involved in stress coping differences. While further investigation remains necessary, few DMC-related genes associated to the Brain Derived Neurotrophic Factor, a protein that favors stress adaptation and fear memory, appear relevant to integrate a centrally produced stress response in RBCs. Conclusion Our modified epiGBS protocol was powerful to analyze patterns of cytosine methylation in RBCs of D. labrax and to evaluate the impact of a challenge using minimally invasive blood samples. This study is the first approximation to identify epigenetic biomarkers of exposure to stress in fish. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07420-9.
Collapse
Affiliation(s)
- Madoka Vera Krick
- UMR UM CNRS IRD EPHE ISEM- Institut des Sciences de l'Evolution de Montpellier, Montpellier, France
| | - Erick Desmarais
- UMR UM CNRS IRD EPHE ISEM- Institut des Sciences de l'Evolution de Montpellier, Montpellier, France
| | | | - Elise Guéret
- UMR UM CNRS IRD EPHE ISEM- Institut des Sciences de l'Evolution de Montpellier, Montpellier, France.,Univ. Montpellier, CNRS, INSERM, Montpellier, France.,Montpellier GenomiX, France Génomique, Montpellier, France
| | | | - Michalis Pavlidis
- Department of Biology, University of Crete, 70013, Heraklion, Greece
| | - Costas Tsigenopoulos
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), 715 00, Heraklion, Greece
| | - Bruno Guinand
- UMR UM CNRS IRD EPHE ISEM- Institut des Sciences de l'Evolution de Montpellier, Montpellier, France.
| |
Collapse
|
28
|
Moraleda-Prados J, Caballero-Huertas M, Valdivieso A, Joly S, Ji J, Roher N, Ribas L. Epigenetic differences in the innate response after immune stimulation during zebrafish sex differentiation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103848. [PMID: 32888969 DOI: 10.1016/j.dci.2020.103848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Infections are able to trigger epigenetic modifications; however, epigenetic-mediating infections in the immune system in fish is currently unavailable. Within this purpose, zebrafish were immune-stimulated with three lipopolysaccharides (LPS) during sex differentiation. Methylation patterns of three immune genes were studied by a candidate gene approach together with gene expression analysis, and in adulthood, sex ratios were determined. It was shown that the entrance of LPS was through the gills and accumulated in the pronephros. Significant hypomethylation levels of CASP9 and a significant CpG site for IL1β after Pseudomonas aeruginosa LPS exposure were found. No methylation difference was observed for TNFα. Gene expression and correlation data differed among studied genes. Sex ratios showed a feminization in dose and LPS strain-dependent manner. Here, it is provided epigenetic regulatory mechanisms derived by innate response and the first evidence of possible epigenetic interactions between the immune and reproductive systems.
Collapse
Affiliation(s)
- J Moraleda-Prados
- Institut de Ciències del Mar, Spanish National Research Council (CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
| | - M Caballero-Huertas
- Institut de Ciències del Mar, Spanish National Research Council (CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain; Institute of Aquatic Ecology (IEA), Department of Environmental Sciences. Faculty of Sciences, University of Girona (UdG), Campus Montilivi, 17003 Girona, Spain
| | - A Valdivieso
- Institut de Ciències del Mar, Spanish National Research Council (CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
| | - S Joly
- Institut de Ciències del Mar, Spanish National Research Council (CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
| | - J Ji
- Institut de Biotecnologia i Biomedicina (IBB) and Dep. de Biologia Cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain; Department of Marine Science and Engineering, Nanjing Normal University, Nanjing, China
| | - N Roher
- Institut de Biotecnologia i Biomedicina (IBB) and Dep. de Biologia Cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - L Ribas
- Institut de Ciències del Mar, Spanish National Research Council (CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain.
| |
Collapse
|
29
|
Anastasiadi D, Shao C, Chen S, Piferrer F. Footprints of global change in marine life: Inferring past environment based on DNA methylation and gene expression marks. Mol Ecol 2020; 30:747-760. [PMID: 33372368 DOI: 10.1111/mec.15764] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/17/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022]
Abstract
Ocean global warming affects the distribution, life history and physiology of marine life. Extreme events, like marine heatwaves, are increasing in frequency and intensity. During sensitive stages of early fish development, the consequences may be long-lasting and mediated by epigenetic mechanisms. Here, we used European sea bass as a model to study the possible long-lasting effects of a marine heatwave during early development. We measured DNA methylation and gene expression in four tissues (brain, muscle, liver and testis) and detected differentially methylated regions (DMRs). Six genes were differentially expressed and contained DMRs three years after exposure to increased temperature, indicating direct phenotypic consequences and representing persistent changes. Interestingly, nine genes contained DMRs around the same genomic regions across tissues, therefore consisting of common footprints of developmental temperature in environmentally responsive loci. These loci are, to our knowledge, the first metastable epialleles (MEs) described in fish. MEs may serve as biomarkers to infer past life history events linked with persistent consequences. These results highlight the importance of subtle phenotypic changes mediated by epigenetics to extreme weather events during sensitive life stages. Also, to our knowledge, it is the first time the molecular effects of a marine heatwave during the lifetime of individuals are assessed. MEs could be used in surveillance programs aimed at determining the footprints of climate change on marine life. Our study paves the way for the identification of conserved MEs that respond equally to environmental perturbations across species. Conserved MEs would constitute a tool of assessment of global change effects in marine life at a large scale.
Collapse
Affiliation(s)
- Dafni Anastasiadi
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Changwei Shao
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao, China
| | - Songlin Chen
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao, China
| | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
30
|
Vandeputte M, Clota F, Sadoul B, Blanc M, Blondeau‐Bidet E, Bégout M, Cousin X, Geffroy B. Low temperature has opposite effects on sex determination in a marine fish at the larval/postlarval and juvenile stages. Ecol Evol 2020; 10:13825-13835. [PMID: 33391683 PMCID: PMC7771145 DOI: 10.1002/ece3.6972] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/14/2022] Open
Abstract
Temperature-dependent sex determination (TSD) can be observed in multiple reptile and fish species. It is adaptive when varying environmental conditions advantage either males or females. A good knowledge of the thermosensitive period is key to understand how environmental changes may lead to changes in population sex ratio. Here, by manipulating temperature during development, we confirm that cold temperature (16°C) increases the proportion of fish that develop as females in European sea bass (Dicentrarchus labrax) until 56 days posthatching, but show that it has an opposite effect at later stages, with the proportion of males reaching ~90% after 230 days at 16°C. This is the first observation of opposite effects of temperature at different time periods on the sex ratio of a vertebrate. Our results highlight the potential complexity of environmental effects on sex determination.
Collapse
Affiliation(s)
- Marc Vandeputte
- Université Paris‐Saclay, INRAE, AgroParisTechGABIJouy‐en‐JosasFrance
- MARBEC, Univ. Montpellier, CNRS, IfremerIRDPalavas‐les‐FlotsFrance
| | - Frédéric Clota
- Université Paris‐Saclay, INRAE, AgroParisTechGABIJouy‐en‐JosasFrance
- MARBEC, Univ. Montpellier, CNRS, IfremerIRDPalavas‐les‐FlotsFrance
| | - Bastien Sadoul
- MARBEC, Univ. Montpellier, CNRS, IfremerIRDPalavas‐les‐FlotsFrance
| | | | | | | | - Xavier Cousin
- Université Paris‐Saclay, INRAE, AgroParisTechGABIJouy‐en‐JosasFrance
- MARBEC, Univ. Montpellier, CNRS, IfremerIRDPalavas‐les‐FlotsFrance
| | - Benjamin Geffroy
- MARBEC, Univ. Montpellier, CNRS, IfremerIRDPalavas‐les‐FlotsFrance
| |
Collapse
|
31
|
Papadaki M, Kaitetzidou E, Mylonas CC, Sarropoulou E. Non-coding RNA Expression Patterns of Two Different Teleost Gonad Maturation Stages. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:683-695. [PMID: 32876760 DOI: 10.1007/s10126-020-09991-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Non-coding RNAs (ncRNAs) are involved in several different regulatory pathways including reproduction. In teleost fish, efficacious reproduction is heavily dependent on the completion of the reproductive cycle. The presence of ncRNA, however, and their expression dynamics and putative regulatory role in mature and immature gonads have not yet been extensively explored. Therefore, the abundance of ncRNAs in mature and immature female sharpsnout seabream (Diplodus puntazzo) was investigated. The sharpsnout seabream is a rudimentary hermaphrodite which, in captivity, displays dysfunctions in the gonad maturation process. Our analyses revealed a gonad specific read length distribution with two main peaks representing miRNAs (21-26 nt) and PIWI RNA (27-34 nt). Besides, distinct expression patterns for several ncRNA biotypes including microRNAs (miRNAs), PIWI RNAs (piRNAs), and ribosomal RNAs (rRNAs) were detected. Identified miRNA accounted to 938, corresponding to ~ 13% of obtained transcripts. Among the differential expressed ncRNAs, 10 (~ 7%) were annotated as miRNA, out of which 2 were found in higher abundance in immature gonads (miR-125c and miR-24) and 8 (miR-451, miR-7a, miR-122-1, miR190a, miR129, ENSGACT00000029608, ENSGACT00000029489, and ENSGACT00000029667) were found to be higher expressed in mature gonads. Putative miRNA targets, including long non-coding RNAs (lncRNAs) and genes, are proposed. Target genes are involved in several processes of fish oocyte development, such as steroidogenesis, proteolysis, and apoptosis, and may explain hormone regulation. This study demonstrates a gonad maturation biased ncRNA profile which in turn may support the role of ncRNAs in ovarian physiology and reproductive performance of fish, stressing the specific function of each RNA biotype in oocyte development.
Collapse
Affiliation(s)
- Maria Papadaki
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, P.O. Box 2214, 71003, Iraklion, Crete, Greece
- Department of Biology, University of Crete, P.O. Box 2208, 71409, Iraklion, Crete, Greece
| | - Elisavet Kaitetzidou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, P.O. Box 2214, 71003, Iraklion, Crete, Greece
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, P.O. Box 2214, 71003, Iraklion, Crete, Greece
| | - Elena Sarropoulou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, P.O. Box 2214, 71003, Iraklion, Crete, Greece.
| |
Collapse
|
32
|
Driscoll RMH, Faber-Hammond JJ, O'Rourke CF, Hurd PL, Renn SCP. Epigenetic regulation of gonadal and brain aromatase expression in a cichlid fish with environmental sex determination. Gen Comp Endocrinol 2020; 296:113538. [PMID: 32585214 DOI: 10.1016/j.ygcen.2020.113538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/11/2020] [Accepted: 05/14/2020] [Indexed: 11/26/2022]
Abstract
A fit animal must develop testes or ovaries, with brain and physiology to match. In species with alternative male morphs this coordination of development across tissues operates within sexes as well as between. For Pelvicachromis pulcher, an African cichlid in which early pH exposure influences both sex and alternative male morph, we sequence both copies of aromatase (cyp19a1), a key gene for sex determination. We analyze gene expression and epigenetic state, comparing gonad and brain tissue from females, alternative male morphs, and fry. Relative to brain, we find elevated expression of the A-copy in the ovaries but not testes. Methylation analysis suggests strong epigenetic regulation, with one region specifying sex and another specifying tissue. We find elevated brain expression of the B-copy with no sex or male morph differences. B-copy methylation follows that of the A-copy rather than corresponding to B-copy expression. In 30-day old fry, we see elevated B-copy expression in the head, but we do not see the expected elevated A-copy expression in the trunk that would reflect ovarian development. Interestingly, the A-copy epialleles that distinguish ovaries from testes are among the most explanatory patterns for variation among fry, suggesting epigenetic marking of sex prior to differentiation and thus laying the groundwork for mechanistic studies of epigenetic regulation of sex and morph differentiation.
Collapse
Affiliation(s)
- Rose M H Driscoll
- Department of Biology, Reed College, Portland, OR, USA; Department of Biology, University of Rochester, Rochester, NY, USA
| | | | | | - Peter L Hurd
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada; Department of Psychology, University of Alberta, Edmonton, AB, Canada
| | - Suzy C P Renn
- Department of Biology, Reed College, Portland, OR, USA.
| |
Collapse
|
33
|
Zhuang QKW, Galvez JH, Xiao Q, AlOgayil N, Hyacinthe J, Taketo T, Bourque G, Naumova AK. Sex Chromosomes and Sex Phenotype Contribute to Biased DNA Methylation in Mouse Liver. Cells 2020; 9:E1436. [PMID: 32527045 PMCID: PMC7349295 DOI: 10.3390/cells9061436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Sex biases in the genome-wide distribution of DNA methylation and gene expression levels are some of the manifestations of sexual dimorphism in mammals. To advance our understanding of the mechanisms that contribute to sex biases in DNA methylation and gene expression, we conducted whole genome bisulfite sequencing (WGBS) as well as RNA-seq on liver samples from mice with different combinations of sex phenotype and sex-chromosome complement. We compared groups of animals with different sex phenotypes, but the same genetic sexes, and vice versa, same sex phenotypes, but different sex-chromosome complements. We also compared sex-biased DNA methylation in mouse and human livers. Our data show that sex phenotype, X-chromosome dosage, and the presence of Y chromosome shape the differences in DNA methylation between males and females. We also demonstrate that sex bias in autosomal methylation is associated with sex bias in gene expression, whereas X-chromosome dosage-dependent methylation differences are not, as expected for a dosage-compensation mechanism. Furthermore, we find partial conservation between the repertoires of mouse and human genes that are associated with sex-biased methylation, an indication that gene function is likely to be an important factor in this phenomenon.
Collapse
Affiliation(s)
- Qinwei Kim-Wee Zhuang
- Department of Human Genetics, McGill University, Montréal, QC H3A 1C7, Canada; (Q.K.-W.Z.); (N.A.)
| | - Jose Hector Galvez
- Canadian Centre for Computational Genomics, Montréal, QC H3A 0G1, Canada;
| | - Qian Xiao
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA;
| | - Najla AlOgayil
- Department of Human Genetics, McGill University, Montréal, QC H3A 1C7, Canada; (Q.K.-W.Z.); (N.A.)
| | - Jeffrey Hyacinthe
- Department of Quantitative Life Sciences, McGill University, Montréal, QC H3A 0G4, Canada;
| | - Teruko Taketo
- The Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada;
- Department of Surgery, McGill University, Montréal, QC H4A 3J1, Canada
- Department of Obstetrics and Gynecology, McGill University, Montréal, QC H4A 3J1, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montréal, QC H3A 1C7, Canada; (Q.K.-W.Z.); (N.A.)
- Canadian Centre for Computational Genomics, Montréal, QC H3A 0G1, Canada;
| | - Anna K. Naumova
- Department of Human Genetics, McGill University, Montréal, QC H3A 1C7, Canada; (Q.K.-W.Z.); (N.A.)
- The Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada;
- Department of Obstetrics and Gynecology, McGill University, Montréal, QC H4A 3J1, Canada
| |
Collapse
|
34
|
Teng J, Zhao Y, Chen HJ, Wang H, Ji XS. Transcriptome Profiling and Analysis of Genes Associated with High Temperature-Induced Masculinization in Sex-Undifferentiated Nile Tilapia Gonad. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:367-379. [PMID: 32088770 DOI: 10.1007/s10126-020-09956-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
Artificially high temperatures during critical thermosensitive periods (TSPs) can induce the sex reversal of Nile tilapia (Oreochromis niloticus) females into pseudomales; Nile tilapia is a GSD + TE (genotypic plus temperature effects) fish species. Previous studies have shown that water temperature affects the expression levels of many genes in the gonad or brain in various teleost species. However, few studies on the effect of temperature at the whole-gonad transcriptomic level in the early stage of sex differentiation have been reported in fish species exhibiting GSD + TE. In this study, RNA-Seq was performed to characterize the transcriptomic profile and identify genes exhibiting temperature- and sex-biased expressions in the Nile tilapia gonad at 21 dpf. A total of 42 genes were found to be associated with both high-temperature treatment and sex development, as the expression levels of these genes differed in both FC (female control) vs MC (male control) and FC vs FT (high temperature-treated females in the TSP). Among these genes, the transcriptional alterations of many male sex determination and differentiation genes, such as Dmrt1, Gsdf, and the DNA damage-inducible protein GADD45 alpha, suggested that the male pathway is initiated after high-temperature treatment and that its initiation may play a role in high temperature-induced masculinization in Nile tilapia. The qRT-PCR validation results for thirteen differentially expressed genes showed that the Pearson's correlation of the log10 fold change values between the qPCR and RNA-Seq results was 0.70 (p < 0.001), indicating the accuracy and reliability of the RNA-Seq results. Our study provides insights into how high-temperature treatment induces the sex reversal of Nile tilapia females.
Collapse
Affiliation(s)
- Jian Teng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Daizong Street 61, Tai'an, Shandong, China
| | - Yan Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Daizong Street 61, Tai'an, Shandong, China
| | - Hong Ju Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Daizong Street 61, Tai'an, Shandong, China
| | - Hui Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Daizong Street 61, Tai'an, Shandong, China
| | - Xiang Shan Ji
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Daizong Street 61, Tai'an, Shandong, China.
| |
Collapse
|
35
|
Combined neurodevelopmental exposure to deltamethrin and corticosterone is associated with Nr3c1 hypermethylation in the midbrain of male mice. Neurotoxicol Teratol 2020; 80:106887. [PMID: 32348866 DOI: 10.1016/j.ntt.2020.106887] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/10/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022]
Abstract
Attention-Deficit Hyperactivity Disorder (ADHD) is one of the most common neurodevelopmental disorders and manifests inattention, hyperactivity, and impulsivity symptoms in childhood that can last throughout life. Genetic and environmental studies implicate the dopamine system in ADHD pathogenesis. Work from our group and that of others indicates that deltamethrin insecticide and stress exposure during neurodevelopment leads to alterations in dopamine function, and we hypothesized that exposure to both of these factors together would lead to synergistic effects on DNA methylation of key genes within the midbrain, a highly dopaminergic region, that could contribute to these findings. Through targeted next-generation sequencing of a panel of cortisol and dopamine pathway genes, we observed hypermethylation of the glucocorticoid receptor gene, Nr3c1, in the midbrain of C57/BL6N males in response to dual deltamethrin and corticosterone exposures during development. This is the first description of DNA methylation studies of Nr3c1 and key dopaminergic genes within the midbrain in response to a pyrethroid insecticide, corticosterone, and these two exposures together. Our results provide possible connections between environmental exposures that impact the dopamine system and the hypothalamic-pituitary-adrenal axis via changes in DNA methylation and provides new information about the presence of epigenetic effects in adulthood after exposure during neurodevelopment.
Collapse
|
36
|
Caballero-Huertas M, Moraleda-Prados J, Joly S, Ribas L. Immune genes, IL1β and Casp9, show sexual dimorphic methylation patterns in zebrafish gonads. FISH & SHELLFISH IMMUNOLOGY 2020; 97:648-655. [PMID: 31830572 DOI: 10.1016/j.fsi.2019.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/04/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
There is crosstalk between the immune and reproductive systems in which sexual dimorphism is a common pattern in vertebrates. In recent years, epigenetics has emerged as a way to study the molecular mechanisms involved in gonadal development, those responsible for integrating environmental information that contribute to assigning a specific sexual phenotype (either an ovary or a testis). The knowledge of epigenetic mechanisms in certain molecular processes allows the development of epigenetic markers. In fish gonads, the existence of reproduction-immune system interactions is known, although the epigenetic mechanisms involved are far from clear. Here, we used the zebrafish (Danio rerio) as a model to study the DNA methylation patterns in gonads of two well-known innate immune genes: IL1β and Casp9. DNA methylation levels were studied by a candidate gene approach at single nucleotide resolution and gene expression analyses were also carried out. Results showed that there was clear sexual dimorphism in the DNA methylation levels of the two immune genes studied, being significantly higher in the testes when compared to the ovaries. In summary, and although further research is needed, this paper presents sexual dimorphic methylation patterns of two immune-related genes, thus sex-biased differences in methylation profiles should considered when analyzing immune responses in fish. Data showed here can help to develop epimarkers with forthcoming applications in livestock and fish farming production, for example, in immune fish diseases or sexual control programs as epigenetic molecular tools to predict environmental pressure in the gonads.
Collapse
Affiliation(s)
- M Caballero-Huertas
- Institute of Marine Sciences, Spanish National Research Council (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
| | - J Moraleda-Prados
- Institute of Marine Sciences, Spanish National Research Council (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
| | - S Joly
- Institute of Marine Sciences, Spanish National Research Council (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
| | - L Ribas
- Institute of Marine Sciences, Spanish National Research Council (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain.
| |
Collapse
|
37
|
Anastasiadi D, Piferrer F. Epimutations in Developmental Genes Underlie the Onset of Domestication in Farmed European Sea Bass. Mol Biol Evol 2020; 36:2252-2264. [PMID: 31289822 PMCID: PMC6759067 DOI: 10.1093/molbev/msz153] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Domestication of wild animals induces a set of phenotypic characteristics collectively known as the domestication syndrome. However, how this syndrome emerges is still not clear. Recently, the neural crest cell deficit hypothesis proposed that it is generated by a mildly disrupted neural crest cell developmental program, but clear support is lacking due to the difficulties of distinguishing pure domestication effects from preexisting genetic differences between farmed and wild mammals and birds. Here, we use a farmed fish as model to investigate the role of persistent changes in DNA methylation (epimutations) in the process of domestication. We show that early domesticates of sea bass, with no genetic differences with wild counterparts, contain epimutations in tissues with different embryonic origins. About one fifth of epimutations that persist into adulthood are established by the time of gastrulation and affect genes involved in developmental processes that are expressed in embryonic structures, including the neural crest. Some of these genes are differentially expressed in sea bass with lower jaw malformations, a key feature of domestication syndrome. Interestingly, these epimutations significantly overlap with cytosine-to-thymine polymorphisms after 25 years of selective breeding. Furthermore, epimutated genes coincide with genes under positive selection in other domesticates. We argue that the initial stages of domestication include dynamic alterations in DNA methylation of developmental genes that affect the neural crest. Our results indicate a role for epimutations during the beginning of domestication that could be fixed as genetic variants and suggest a conserved molecular process to explain Darwin’s domestication syndrome across vertebrates.
Collapse
Affiliation(s)
- Dafni Anastasiadi
- Institut de Ciències del Mar, Spanish National Research Council (CSIC), Barcelona, Spain.,The New Zealand Institute for Plant & Food Research, Nelson, New Zealand
| | - Francesc Piferrer
- Institut de Ciències del Mar, Spanish National Research Council (CSIC), Barcelona, Spain
| |
Collapse
|
38
|
Perera E, Turkmen S, Simó-Mirabet P, Zamorano MJ, Xu H, Naya-Català F, Izquierdo M, Pérez-Sánchez J. Stearoyl-CoA desaturase ( scd1a) is epigenetically regulated by broodstock nutrition in gilthead sea bream ( Sparus aurata). Epigenetics 2019; 15:536-553. [PMID: 31790638 DOI: 10.1080/15592294.2019.1699982] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to generate new knowledge on fish epigenetics, assessing the effects of linolenic acid (ALA) conditioning of broodstock in the offspring of the marine fish Sparus aurata. Attention was focused on gene organization, methylation signatures and gene expression patterns of fatty acid desaturase 2 (fads2) and stearoyl-CoA desaturase 1a (scd1a). Blat searches in the genomic IATS-CSIC database (www.nutrigroup-iats.org/seabreamdb) highlighted a conserved exon-intron organization, a conserved PUFA response region, and CG islands at the promoter regions of each gene. The analysed CpG positions in the fads2 promoter were mostly hypomethylated and refractory to broodstock nutrition. The same response was achieved after conditioning of juvenile fish to low water oxygen concentrations, thus methylation susceptibility at individual CpG sites seems to be stringently regulated in fish of different origin and growth trajectories. Conversely, the scd1a promoter was responsive to broodstock nutrition and the offspring of parents fed the ALA-rich diet shared an increased DNA-methylation, mainly in CpG sites neighbouring SP1 and HNF4α binding sites. Cytosine methylation at these sites correlated inversely with the hepatic scd1a expression of the offspring. Co-expression analyses supported that the HNF4α-dependent regulation of scd1a is affected by DNA methylation. The phenotypic output is a regulated liver fat deposition through changes in scd1 expression, which would also allow the preservation of fatty acid unsaturation levels in fish fed reduced levels of n-3 LC-PUFA. Collectively, these findings reveal a reliable mechanism by which parent's nutrition can shape scd1a gene expression in the fish offspring.
Collapse
Affiliation(s)
- Erick Perera
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, IATS-CSIC, Castellón, Spain
| | - Serhat Turkmen
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria (ULPGC), Telde, Spain
| | - Paula Simó-Mirabet
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, IATS-CSIC, Castellón, Spain
| | - Maria J Zamorano
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria (ULPGC), Telde, Spain
| | - Hanlin Xu
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria (ULPGC), Telde, Spain
| | - Fernando Naya-Català
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, IATS-CSIC, Castellón, Spain
| | - Marisol Izquierdo
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria (ULPGC), Telde, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, IATS-CSIC, Castellón, Spain
| |
Collapse
|
39
|
Anastasiadi D, Piferrer F. A clockwork fish: Age prediction using DNA methylation‐based biomarkers in the European seabass. Mol Ecol Resour 2019; 20:387-397. [DOI: 10.1111/1755-0998.13111] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Dafni Anastasiadi
- Institut de Ciències del Mar (ICM) Spanish National Research Council (CSIC) Barcelona Spain
| | - Francesc Piferrer
- Institut de Ciències del Mar (ICM) Spanish National Research Council (CSIC) Barcelona Spain
| |
Collapse
|
40
|
Piferrer F, Anastasiadi D, Valdivieso A, Sánchez-Baizán N, Moraleda-Prados J, Ribas L. The Model of the Conserved Epigenetic Regulation of Sex. Front Genet 2019; 10:857. [PMID: 31616469 PMCID: PMC6775248 DOI: 10.3389/fgene.2019.00857] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/16/2019] [Indexed: 12/18/2022] Open
Abstract
Epigenetics integrates genomic and environmental information to produce a given phenotype. Here, the model of Conserved Epigenetic Regulation of Sex (CERS) is discussed. This model is based on our knowledge on genes involved in sexual development and on epigenetic regulation of gene expression activation and silencing. This model was recently postulated to be applied to the sexual development of fish, and it states that epigenetic and gene expression patterns are more associated with the development of a particular gonadal phenotype, e.g., testis differentiation, rather than with the intrinsic or extrinsic causes that lead to the development of this phenotype. This requires the existence of genes with different epigenetic modifications, for example, changes in DNA methylation levels associated with the development of a particular sex. Focusing on DNA methylation, the identification of CpGs, the methylation of which is linked to sex, constitutes the basis for the identification of Essential Epigenetic Marks (EEM). EEMs are defined as the number and identity of informative epigenetic marks that are strictly necessary, albeit perhaps not sufficient, to bring about a specific, measurable, phenotype of interest. Here, we provide a summary of the genes where DNA methylation has been investigated so far, focusing on fish. We found that cyp19a1a and dmrt1, two key genes for ovary and testis development, respectively, consistently show an inverse relationship between their DNA methylation and expression levels, thus following CERS predictions. However, in foxl2a, a pro-female gene, and amh, a pro-male gene, such relationship is not clear. The available data of other genes related to sexual development such as sox9, gsdf, and amhr2 are also discussed. Next, we discuss the use of CERS to make testable predictions of how sex is epigenetically regulated and to better understand sexual development, as well as the use of EEMs as tools for the diagnosis and prognosis of sex. We argue that CERS can aid in focusing research on the epigenetic regulation of sexual development not only in fish but also in vertebrates in general, particularly in reptiles with temperature sex-determination, and can be the basis for possible practical applications including sex control in aquaculture and also in conservation biology.
Collapse
Affiliation(s)
- Francesc Piferrer
- Institut de Ciències del Mar (ICM), Spanish National Research Council (CSIC), Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
41
|
Ribas L, Crespo B, Sánchez-Baizán N, Xavier D, Kuhl H, Rodríguez JM, Díaz N, Boltañá S, MacKenzie S, Morán F, Zanuy S, Gómez A, Piferrer F. Characterization of the European Sea Bass (Dicentrarchus labrax) Gonadal Transcriptome During Sexual Development. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:359-373. [PMID: 30919121 DOI: 10.1007/s10126-019-09886-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
The European sea bass is one of the most important cultured fish in Europe and has a marked sexual growth dimorphism in favor of females. It is a gonochoristic species with polygenic sex determination, where a combination between still undifferentiated genetic factors and environmental temperature determines sex ratios. The molecular mechanisms responsible for gonadal sex differentiation are still unknown. Here, we sampled fish during the gonadal developmental period (110 to 350 days post fertilization, dpf), and performed a comprehensive transcriptomic study by using a species-specific microarray. This analysis uncovered sex-specific gonadal transcriptomic profiles at each stage of development, identifying larger number of differentially expressed genes in ovaries when compared to testis. The expression patterns of 54 reproduction-related genes were analyzed. We found that hsd17β10 is a reliable marker of early ovarian differentiation. Further, three genes, pdgfb, snx1, and nfy, not previously related to fish sex differentiation, were tightly associated with testis development in the sea bass. Regarding signaling pathways, lysine degradation, bladder cancer, and NOD-like receptor signaling were enriched for ovarian development while eight pathways including basal transcription factors and steroid biosynthesis were enriched for testis development. Analysis of the transcription factor abundance showed an earlier increase in females than in males. Our results show that, although many players in the sex differentiation pathways are conserved among species, there are peculiarities in gene expression worth exploring. The genes identified in this study illustrate the diversity of players involved in fish sex differentiation and can become potential biomarkers for the management of sex ratios in the European sea bass and perhaps other cultured species.
Collapse
Affiliation(s)
- L Ribas
- Institute of Marine Sciences (ICM), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain
| | - B Crespo
- Institute of Aquaculture of Torre de la Sal (IATS-CSIC), Ribera de Cabanes s/n. Torre la Sal, 12595, Castellón, Spain
- UCL GOS Institute of Child Health, University College London, London, UK
| | - N Sánchez-Baizán
- Institute of Marine Sciences (ICM), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain
| | - D Xavier
- Department of Biochemistry and Molecular Biology I, Complutense University, Madrid, Spain
| | - H Kuhl
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Ecophysiology and Aquaculture, Leibniz Institute for Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - J M Rodríguez
- Spanish National Bioinformatics Institute, Madrid, Spain
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - N Díaz
- Institute of Marine Sciences (ICM), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - S Boltañá
- Autonomous University of Barcelona, Barcelona, Spain
- Interdisciplinary Center for Aquaculture Research (INCAR), Department of Oceanography, Biotechnology Center, University of Concepción, Concepción, Chile
| | - S MacKenzie
- Autonomous University of Barcelona, Barcelona, Spain
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK
| | - F Morán
- Department of Biochemistry and Molecular Biology I, Complutense University, Madrid, Spain
| | - S Zanuy
- Institute of Aquaculture of Torre de la Sal (IATS-CSIC), Ribera de Cabanes s/n. Torre la Sal, 12595, Castellón, Spain
| | - A Gómez
- Institute of Aquaculture of Torre de la Sal (IATS-CSIC), Ribera de Cabanes s/n. Torre la Sal, 12595, Castellón, Spain.
| | - F Piferrer
- Institute of Marine Sciences (ICM), Spanish National Research Council (CSIC), Barcelona, Catalonia, Spain.
| |
Collapse
|