1
|
Jia Y, Ye M, Bukulmez O, Norman RJ, Liu W, Chen M. Melatonin Rescues Hyperacetylation of Liver and Impaired Enzymatic Activities of Mitochondrial in IVF Offspring. Reprod Sci 2025:10.1007/s43032-025-01846-2. [PMID: 40246783 DOI: 10.1007/s43032-025-01846-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 03/07/2025] [Indexed: 04/19/2025]
Abstract
Increased risks of obesity and abnormal glucose metabolism were observed in IVF offspring. However, the underlying molecular mechanism was still unclear. As an important post-translational modification (PTM), lysine acetylation changed with the changes in the metabolic environment and usually occurred on metabolic enzymes to regulate metabolic pathways and enzyme activities and participated in the regulation of downstream metabolites. In our previous study, we proved that supplementation of melatonin in the culture medium improved obesity and metabolic dysfunction in IVF mice. In this study, we further demonstrated that elevated levels of protein acetylation in hepatic cells might be associated with impaired glucose metabolism in IVF offspring, and melatonin could significantly reduce the acetylation level and improve the adverse phenotype of IVF mice. More importantly, we discovered that the supplementation of melatonin in the culture medium during in vitro fertilization significantly enhanced the activity of enzymes, especially citrate synthase (CS) and isocitrate dehydrogenase (IDH) which were involved in tricarboxylic acid recycling and played critical roles in glucose metabolism of liver. Thus, our findings elucidated a new perspective on the mechanisms of metabolic reprogramming of IVF mice.
Collapse
Affiliation(s)
- Yanping Jia
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 2699 Gaoke West Road, Pudong District, Shanghai, 201204, China
| | - Mingming Ye
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 2699 Gaoke West Road, Pudong District, Shanghai, 201204, China
| | - Orhan Bukulmez
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robert J Norman
- Robinson Research Institute, School of Paediatrics and Reproductive Health, the University of Adelaide, Adelaide, SA, Australia
| | - Wenqiang Liu
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 2699 Gaoke West Road, Pudong District, Shanghai, 201204, China.
| | - Miaoxin Chen
- Centre for Assisted Reproduction, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 2699 Gaoke West Road, Pudong District, Shanghai, 201204, China.
| |
Collapse
|
2
|
Sundrani D, Kapare A, Yadav H, Randhir K, Gupte S, Joshi S. Placental expression and methylation of angiogenic factors in assisted reproductive technology pregnancies from India. Epigenomics 2025; 17:21-31. [PMID: 39655657 DOI: 10.1080/17501911.2024.2438593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024] Open
Abstract
AIM This study aims to examine the gene expression and DNA methylation patterns of angiogenic factors in the placentae of Indian women who underwent assisted reproductive technology (ART) procedures and their association with maternal one-carbon metabolites and birth outcome. METHODS Placental gene expression and DNA methylation of angiogenic factors (VEGF, PlGF, FLT-1, KDR) in Indian women who underwent ART procedures (n = 64) and women who conceived naturally (Non-ART) (n = 93) was investigated using RT-qPCR and Epitect Methyl-II PCR assay kits. Maternal plasma one-carbon metabolites were assessed by CMIA technology. RESULT Gene expression of FLT-1 and KDR was higher (p < 0.05) in the ART placentae. Placental global DNA methylation levels were higher (p < 0.01) and DNA methylation levels of VEGF promoter were lower (p < 0.05) in ART compared to non-ART women. Maternal plasma folate and vitamin B12 levels were higher (p < 0.01) in the ART group. Gene expression of PlGF was negatively associated with maternal plasma folate (p < 0.05) whereas KDR was positively associated with maternal plasma homocysteine (p < 0.05). Gene expression of KDR was positively associated with chest circumference of the baby (p < 0.05). CONCLUSION Hypomethylation of VEGF and increased expression of FLT-1 and KDR was observed in the placentae of women who underwent ART procedure.
Collapse
Affiliation(s)
- Deepali Sundrani
- Mother and Child Health, ICMR - Collaborating Centre of Excellence (CCoE), Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Aishwarya Kapare
- Mother and Child Health, ICMR - Collaborating Centre of Excellence (CCoE), Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Himanshi Yadav
- Mother and Child Health, ICMR - Collaborating Centre of Excellence (CCoE), Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Karuna Randhir
- Mother and Child Health, ICMR - Collaborating Centre of Excellence (CCoE), Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Sanjay Gupte
- Department of Obstetrics and Gynecology, Gupte Hospital and Research Centre, Pune, Maharashtra, India
| | - Sadhana Joshi
- Mother and Child Health, ICMR - Collaborating Centre of Excellence (CCoE), Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| |
Collapse
|
3
|
Frew E, Sainty R, Chappell-Maor L, Bone C, Daskeviciute D, Russell S, Buhigas C, Iglesias-Platas I, Lartey J, Monk D. Differential expression of PPP1R12A transcripts, including those harbouring alternatively spliced micro-exons, in placentae from complicated pregnancies. Placenta 2024; 151:1-9. [PMID: 38615553 DOI: 10.1016/j.placenta.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/04/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
INTRODUCTION Placenta-associated pregnancy complications, including pre-eclampsia (PE) and intrauterine growth restriction (IUGR) are conditions postulated to originate from initial failure of placentation, leading to clinical sequelae indicative of endothelial dysfunction. Vascular smooth muscle aberrations have also been implicated in the pathogenesis of both disorders via smooth muscle contractility and relaxation mediated by Myosin Light Chain Phosphatase (MLCP) and the oppositional contractile action of Myosin Light Chain Kinase. PPP1R12A is a constituent part of the MLCP complex responsible for dephosphorylation of myosin fibrils. We hypothesize that alternative splicing of micro-exons result in isoforms lacking the functional leucine zipper (LZ) domain which may give those cells expressing these alternative transcripts a tendency towards contraction and vasoconstriction. METHODS Expression was determined by qRT-PCR. Epigenetic profiling consisted of bisulphite-based DNA methylation analysis and ChIP for underlying histone modifications. RESULTS We identified several novel transcripts with alternative micro-exon inclusion that would produce LZ- PPP1R12A protein. qRT-PCR revealed some isoforms, including the PPP1R12A canonical transcript, are differentially expressed in placenta biopsies from PE and IUGR samples compared to uncomplicated pregnancies. DISCUSSION We propose that upregulation of PPP1R12A expression in complicated pregnancies may be due to enhanced promoter activity leading to increased transcription as a response to physiological stress in the placenta, which we show is independent of promoter DNA methylation.
Collapse
Affiliation(s)
- Edward Frew
- Department of Obstetrics and Gynaecology, Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, UK
| | - Rebecca Sainty
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Louise Chappell-Maor
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Caitlin Bone
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Dagne Daskeviciute
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Sarah Russell
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Claudia Buhigas
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Isabel Iglesias-Platas
- Neonatal Unit, Institut de Recerca, Sant Joan de Déu, Barcelona, Spain; Neonatal Research, Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, UK
| | - Jon Lartey
- Department of Obstetrics and Gynaecology, Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, UK; Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| | - David Monk
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
4
|
Zhang G, Mao Y, Zhang Y, Huang H, Pan J. Assisted reproductive technology and imprinting errors: analyzing underlying mechanisms from epigenetic regulation. HUM FERTIL 2023; 26:864-878. [PMID: 37929309 DOI: 10.1080/14647273.2023.2261628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 08/11/2023] [Indexed: 11/07/2023]
Abstract
With the increasing maturity and widespread application of assisted reproductive technology (ART), more attention has been paid to the health outcomes of offspring following ART. It is well established that children born from ART treatment are at an increased risk of imprinting errors and imprinting disorders. The disturbances of genetic imprinting are attributed to the overlap of ART procedures and important epigenetic reprogramming events during the development of gametes and early embryos, but the detailed mechanisms are hitherto obscure. In this review, we summarized the DNA methylation-dependent and independent mechanisms that control the dynamic epigenetic regulation of imprinted genes throughout the life cycle of a mammal, including erasure, establishment, and maintenance. In addition, we systematically described the dysregulation of imprinted genes in embryos conceived through ART and discussed the corresponding underlying mechanisms according to findings in animal models. This work is conducive to evaluating and improving the safety of ART.
Collapse
Affiliation(s)
- Gaochen Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
| | - Yiting Mao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Yu Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Hefeng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiexue Pan
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Sainty R, Silver MJ, Prentice AM, Monk D. The influence of early environment and micronutrient availability on developmental epigenetic programming: lessons from the placenta. Front Cell Dev Biol 2023; 11:1212199. [PMID: 37484911 PMCID: PMC10358779 DOI: 10.3389/fcell.2023.1212199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023] Open
Abstract
DNA methylation is the most commonly studied epigenetic mark in humans, as it is well recognised as a stable, heritable mark that can affect genome function and influence gene expression. Somatic DNA methylation patterns that can persist throughout life are established shortly after fertilisation when the majority of epigenetic marks, including DNA methylation, are erased from the pre-implantation embryo. Therefore, the period around conception is potentially critical for influencing DNA methylation, including methylation at imprinted alleles and metastable epialleles (MEs), loci where methylation varies between individuals but is correlated across tissues. Exposures before and during conception can affect pregnancy outcomes and health throughout life. Retrospective studies of the survivors of famines, such as those exposed to the Dutch Hunger Winter of 1944-45, have linked exposures around conception to later disease outcomes, some of which correlate with DNA methylation changes at certain genes. Animal models have shown more directly that DNA methylation can be affected by dietary supplements that act as cofactors in one-carbon metabolism, and in humans, methylation at birth has been associated with peri-conceptional micronutrient supplementation. However, directly showing a role of micronutrients in shaping the epigenome has proven difficult. Recently, the placenta, a tissue with a unique hypomethylated methylome, has been shown to possess great inter-individual variability, which we highlight as a promising target tissue for studying MEs and mixed environmental exposures. The placenta has a critical role shaping the health of the fetus. Placenta-associated pregnancy complications, such as preeclampsia and intrauterine growth restriction, are all associated with aberrant patterns of DNA methylation and expression which are only now being linked to disease risk later in life.
Collapse
Affiliation(s)
- Rebecca Sainty
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Matt J. Silver
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Andrew M. Prentice
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - David Monk
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
6
|
Chen H, Zhang L, Yue F, Cui C, Li Y, Zhang Q, Liang L, Meng L, Zhang C. Effects of assisted reproductive technology on gene expression in heart and spleen tissues of adult offspring mouse. Front Endocrinol (Lausanne) 2023; 14:1035161. [PMID: 37065763 PMCID: PMC10098333 DOI: 10.3389/fendo.2023.1035161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/10/2023] [Indexed: 04/18/2023] Open
Abstract
OBJECTIVES Assisted reproductive technology (ART) is an important part of reproductive medicine, whose possible effects on offspring's health have drawn widespread attention in recent years. However, relevant studies are limited to postnatal short-term follow-up and lack of diverse sample sources analysis other than blood. METHODS In this study, a mouse model was used to explore the effects of ART on fetal development and gene expression in the organs of offspring in the adulthood using next-generation sequencing. The sequencing results were then analyzed. RESULTS The results showed that it caused abnormal expression in 1060 genes and 179 genes in the heart and spleen, respectively. Differentially expressed genes (DEGs) in the heart are mainly enriched in RNA synthesis and processing, and the cardiovascular system development also shows enrichment. STRING analysis identified Ccl2, Ptgs2, Rock1, Mapk14, Agt, and Wnt5a as the core interacting factors. DEGs in the spleen are significantly enriched in anti-infection and immune responses, which include the core factors Fos, Jun and Il1r2. Further exploration revealed the abnormal expression of 42 and 5 epigenetic modifiers in the heart and spleen, respectively. The expression of the imprinted genes Dhcr7, Igf2, Mest and Smoc1 decreased in the hearts of ART offspring, and the DNA methylation levels of Igf2- and Mest-imprinting control regions (ICRs) increased abnormally. CONCLUSION In the mouse model, ART can interfere with the gene expression pattern in the heart and spleen of the adult offspring and that these changes are related to the aberrant expression of epigenetic regulators.
Collapse
Affiliation(s)
- Huanhuan Chen
- Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, Henan, China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan, China
| | - Lei Zhang
- Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, Henan, China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan, China
| | - Feng Yue
- Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, Henan, China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan, China
| | - Chenchen Cui
- Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, Henan, China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan, China
| | - Yan Li
- Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, Henan, China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan, China
| | - Qingwen Zhang
- Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, Henan, China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan, China
| | - Linlin Liang
- Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, Henan, China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan, China
| | - Li Meng
- Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, Henan, China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan, China
- *Correspondence: Li Meng, ; Cuilian Zhang,
| | - Cuilian Zhang
- Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital of Henan University, Zhengzhou, Henan, China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, Henan, China
- *Correspondence: Li Meng, ; Cuilian Zhang,
| |
Collapse
|
7
|
Khosravizadeh Z, Khodamoradi K, Rashidi Z, Jahromi M, Shiri E, Salehi E, Talebi A. Sperm cryopreservation and DNA methylation: possible implications for ART success and the health of offspring. J Assist Reprod Genet 2022; 39:1815-1824. [PMID: 35713751 PMCID: PMC9428082 DOI: 10.1007/s10815-022-02545-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/09/2022] [Indexed: 01/19/2023] Open
Abstract
Despite the beneficial effects of sperm cryopreservation, increased reactive oxygen species (ROS) production during this process can affect spermatozoon structure and function. Moreover, ROS production is associated with elevated DNA damage and alterations in DNA methylation. There is little information about the effects of cryopreservation on epigenetic modulation in sperm and the health of children born with frozen spermatozoa. Considering the potential consequences of cryopreservation in ART-conceived children, it is necessary to assure that cryopreservation does not modify sperm DNA methylation status. This review summarizes reports on epigenetic modifications of spermatozoa during cryopreservation and the probable effects of this process on offspring health. Contradictory results have reported the influence of sperm cryopreservation on DNA methylation in imprinted genes. Multiclinical studies with larger sample sizes under the same conditions of cryopreservation and DNA methylation analysis are needed to make any definitive conclusion about the effect of the cryopreservation process on sperm DNA methylation.
Collapse
Affiliation(s)
- Zahra Khosravizadeh
- grid.468130.80000 0001 1218 604XClinical Research Development Unit, Amiralmomenin Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Kajal Khodamoradi
- grid.26790.3a0000 0004 1936 8606Department of Urology, University of Miami, Miller School of Medicine, Miami, FL USA
| | - Zahra Rashidi
- grid.412112.50000 0001 2012 5829Department of Anatomical Sciences, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran ,grid.412112.50000 0001 2012 5829Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Malihe Jahromi
- grid.411757.10000 0004 1755 5416Clinical Research Development Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Elham Shiri
- grid.411950.80000 0004 0611 9280Department of Anatomical Sciences, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ensieh Salehi
- grid.412237.10000 0004 0385 452XFertility and Infertility Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ali Talebi
- grid.444858.10000 0004 0384 8816School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran ,grid.444858.10000 0004 0384 8816Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
8
|
Sciorio R, El Hajj N. Epigenetic Risks of Medically Assisted Reproduction. J Clin Med 2022; 11:jcm11082151. [PMID: 35456243 PMCID: PMC9027760 DOI: 10.3390/jcm11082151] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 12/14/2022] Open
Abstract
Since the birth of Louise Joy Brown, the first baby conceived via in vitro fertilization, more than 9 million children have been born worldwide using assisted reproductive technologies (ART). In vivo fertilization takes place in the maternal oviduct, where the unique physiological conditions guarantee the healthy development of the embryo. During early embryogenesis, a major wave of epigenetic reprogramming takes place that is crucial for the correct development of the embryo. Epigenetic reprogramming is susceptible to environmental changes and non-physiological conditions such as those applied during in vitro culture, including shift in pH and temperature, oxygen tension, controlled ovarian stimulation, intracytoplasmic sperm injection, as well as preimplantation embryo manipulations for genetic testing. In the last decade, concerns were raised of a possible link between ART and increased incidence of imprinting disorders, as well as epigenetic alterations in the germ cells of infertile parents that are transmitted to the offspring following ART. The aim of this review was to present evidence from the literature regarding epigenetic errors linked to assisted reproduction treatments and their consequences on the conceived children. Furthermore, we provide an overview of disease risk associated with epigenetic or imprinting alterations in children born via ART.
Collapse
Affiliation(s)
- Romualdo Sciorio
- Edinburgh Assisted Conception Programme, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
- Correspondence:
| | - Nady El Hajj
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar;
| |
Collapse
|
9
|
Comparison of Histone H3K4me3 between IVF and ICSI Technologies and between Boy and Girl Offspring. Int J Mol Sci 2021; 22:ijms22168574. [PMID: 34445278 PMCID: PMC8395251 DOI: 10.3390/ijms22168574] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 01/04/2023] Open
Abstract
Epigenetics play a vital role in early embryo development. Offspring conceived via assisted reproductive technologies (ARTs) have a three times higher risk of epigenetic diseases than naturally conceived children. However, investigations into ART-associated placental histone modifications or sex-stratified analyses of ART-associated histone modifications remain limited. In the current study, we carried out immunohistochemistry, chip-sequence analysis, and a series of in vitro experiments. Our results demonstrated that placentas from intra-cytoplasmic sperm injection (ICSI), but not in vitro fertilization (IVF), showed global tri-methylated-histone-H3-lysine-4 (H3K4me3) alteration compared to those from natural conception. However, for acetylated-histone-H3-lysine-9 (H3K9ac) and acetylated-histone-H3-lysine-27 (H3K27ac), no significant differences between groups could be found. Further, sex -stratified analysis found that, compared with the same-gender newborn cord blood mononuclear cell (CBMC) from natural conceptions, CBMC from ICSI-boys presented more genes with differentially enriched H3K4me3 (n = 198) than those from ICSI-girls (n = 79), IVF-girls (n = 5), and IVF-boys (n = 2). We also found that varying oxygen conditions, RNA polymerase II subunit A (Polr2A), and lysine demethylase 5A (KDM5A) regulated H3K4me3. These findings revealed a difference between IVF and ICSI and a difference between boys and girls in H3K4me3 modification, providing greater insight into ART-associated epigenetic alteration.
Collapse
|
10
|
Cozzolino F, Iacobucci I, Monaco V, Monti M. Protein-DNA/RNA Interactions: An Overview of Investigation Methods in the -Omics Era. J Proteome Res 2021; 20:3018-3030. [PMID: 33961438 PMCID: PMC8280749 DOI: 10.1021/acs.jproteome.1c00074] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
![]()
The fields of application
of functional proteomics are not limited
to the study of protein–protein interactions; they also extend
to those involving protein complexes that bind DNA or RNA. These interactions
affect fundamental processes such as replication, transcription, and
repair in the case of DNA, as well as transport, translation, splicing,
and silencing in the case of RNA. Analytical or preparative experimental
approaches, both in vivo and in vitro, have been developed to isolate and identify DNA/RNA binding proteins
by exploiting the advantage of the affinity shown by these proteins
toward a specific oligonucleotide sequence. The present review proposes
an overview of the approaches most commonly employed in proteomics
applications for the identification of nucleic acid-binding proteins,
such as affinity purification (AP) protocols, EMSA, chromatin purification
methods, and CRISPR-based chromatin affinity purification, which are
generally associated with mass spectrometry methodologies for the
unbiased protein identification.
Collapse
Affiliation(s)
- Flora Cozzolino
- Department of Chemical Sciences, University Federico II of Naples, Strada Comunale Cinthia, 26, 80126 Naples, Italy.,CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy
| | - Ilaria Iacobucci
- Department of Chemical Sciences, University Federico II of Naples, Strada Comunale Cinthia, 26, 80126 Naples, Italy.,CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy
| | - Vittoria Monaco
- CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy.,Interuniversity Consortium National Institute of Biostructures and Biosystems (INBB), Viale Medaglie d'Oro, 305-00136 Rome, Italy
| | - Maria Monti
- Department of Chemical Sciences, University Federico II of Naples, Strada Comunale Cinthia, 26, 80126 Naples, Italy.,CEINGE Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy
| |
Collapse
|
11
|
Van Winkle LJ. Perspective: One-Cell and Cleavage-Stage Mouse Embryos Thrive in Hyperosmotic Oviductal Fluid Through Expression of a Glycine Neurotransmitter Transporter and a Glycine-Gated Chloride Channel: Clinical and Transgenerational Implications. Front Physiol 2020; 11:613840. [PMID: 33408644 PMCID: PMC7779613 DOI: 10.3389/fphys.2020.613840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022] Open
Abstract
The osmolality of mouse oviductal fluid ranges from about 300 mOsmol/kg in the ampulla 0–3 h post coitus (h p.c.) to more than 350 mOsmol/kg in the isthmus 34–36 h p.c. Thus, it has been surprising to find that development of one-cell and cleavage-stage mouse embryos arrests in vitro in media exceeding 300 mOsmol/kg, and they develop best in unphysiological, hypotonic media. The glycine concentration in oviductal fluid can, however, rescue development in hypertonic media, so physiological conditions in vivo and in vitro likely work together to foster embryo well-being. Glycine acts on one-cell and cleavage-stage mouse embryos through the glycine-gated chloride channel, GLRA4, and uptake via the glycine neurotransmitter transporter, GLYT1. Since these processes lead to further signaling in neurons, the presence and function of such signaling in preimplantation embryos also should be investigated. The more we know about the interactions of physiological processes and conditions in vivo, the better we would be able to reproduce them in vitro. Such improvements in assisted reproductive technology (ART) could improve patient outcomes for IVF and potentially help prevent unwanted developmental abnormalities in early embryos, which might include undesirable epigenetic DNA and histone modifications. These epigenetic modifications may lead to transgenerational adult disorders such as metabolic syndrome and related conditions.
Collapse
Affiliation(s)
- Lon J Van Winkle
- Department of Biochemistry, Midwestern University, Downers Grove, IL, United States.,Department of Medical Humanities, Rocky Vista University, Parker, CO, United States
| |
Collapse
|