1
|
Hung RKY, Costeira R, Chen J, Schlosser P, Grundner-Culemann F, Booth JW, Sharpe CC, Bramham K, Sun YV, Marconi VC, Teumer A, Winkler CA, Post FA, Bell JT. Epigenetic associations with kidney disease in individuals of African ancestry with APOL1 high-risk genotypes and HIV. Nephrol Dial Transplant 2025; 40:997-1006. [PMID: 39448372 DOI: 10.1093/ndt/gfae237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Apolipoprotein L1 (APOL1) high-risk variants are major determinants of chronic kidney disease (CKD) in people of African ancestry. Previous studies have identified epigenetic changes in relation to kidney function and CKD, but not in individuals with APOL1 high-risk genotypes. We conducted an epigenome-wide analysis of CKD and estimated glomerular filtration rate (eGFR) in in people of African ancestry and APOL1 high-risk genotypes with HIV. METHODS DNA methylation profiles from peripheral blood mononuclear cells of 119 individuals with APOL1 high-risk genotypes (mean age 48 years, 49% female, median CD4 count 515 cells/mm3, 90% HIV-1 RNA <200 copies/mL, 23% with CKD) were obtained by Illumina MethylationEPIC BeadChip. Differential methylation analysis of CKD considered technical and biological covariates. We also assessed associations with eGFR. Replication was pursued in three independent multi-ancestry cohorts with and without HIV. RESULTS DNA methylation levels at 14 regions were associated with CKD. The strongest signals were located in SCARB1, DNAJC5B and C4orf50. Seven of the 14 signals also associated with eGFR, and most showed evidence for a genetic basis. Four signals (in SCARB1, FRMD4A, CSRNP1 and RAB38) replicated in other cohorts, and 11 previously reported epigenetic signals for kidney function or CKD replicated in our cohort. We found no significant DNA methylation signals in, or near, the APOL1 promoter region. CONCLUSIONS We report several novel as well as previously reported epigenetic associations with CKD and eGFR in individuals with HIV having APOL1 high-risk genotypes. Further investigation of pathways linking DNA methylation to APOL1 nephropathies is warranted.
Collapse
Affiliation(s)
- Rachel K Y Hung
- Department of HIV and Sexual Health, King's College Hospital, London, UK
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Ricardo Costeira
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Junyu Chen
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Pascal Schlosser
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Franziska Grundner-Culemann
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - John W Booth
- Department of Renal Medicine, Bart's Health NHS Foundation Trust, London, UK
| | - Claire C Sharpe
- Department of Renal Medicine, King's College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Kate Bramham
- Department of Renal Medicine, King's College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Yan V Sun
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Atlanta Veterans Affairs Health Care System, Decatur, GA, USA
| | - Vincent C Marconi
- Atlanta Veterans Affairs Health Care System, Decatur, GA, USA
- Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- School of Medicine, Emory University, Atlanta, GA, USA
| | - Alexander Teumer
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| | - Cheryl A Winkler
- Basic Reseach Program, Frederick National Laboratory for Cancer Research and the Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Frank A Post
- Department of HIV and Sexual Health, King's College Hospital, London, UK
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Jordana T Bell
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| |
Collapse
|
2
|
Chaar DL, Tu L, Moore K, Du J, Opsasnick LA, Ratliff SM, Mosley TH, Kardia SLR, Zhao W, Zhou X, Diez Roux AV, Faruque FS, Butler KR, Smith JA. Neighborhood environment associations with cognitive function and structural brain measures in older African Americans. BMC Med 2025; 23:15. [PMID: 39800688 PMCID: PMC11727707 DOI: 10.1186/s12916-024-03845-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Since older adults spend significant time in their neighborhood environment, environmental factors such as neighborhood socioeconomic disadvantage, high racial segregation, low healthy food availability, low access to recreation, and minimal social engagement may have adverse effects on cognitive function and increase susceptibility to dementia. DNA methylation, which is associated with neighborhood characteristics as well as cognitive function and white matter hyperintensity (WMH), may act as a mediator between neighborhood characteristics and neurocognitive outcomes. METHODS In this study, we examined whether DNA methylation in peripheral blood leukocytes mediates the relationship between neighborhood characteristics and cognitive function (N = 542) or WMH (N = 466) in older African American (AA) participants without preliminary evidence of dementia from the Genetic Epidemiology Network of Arteriopathy (GENOA). RESULTS For a 1-mile buffer around a participant's residence, each additional fast food destination or unfavorable food store with alcohol per square mile was nominally associated with a 0.05 (95%CI: 0.01, 0.09) and a 0.04 (0.00, 0.08) second improvement in visual conceptual tracking score, respectively. Also, each additional alcohol drinking place per square mile was nominally associated with a 0.62 (0.05, 1.19) word increase in delayed recall score, indicating better memory function (all p < 0.05). Neighborhood characteristics were not associated with WMH. We did not find evidence that DNA methylation mediates the observed associations between neighborhood characteristics and cognitive function. CONCLUSIONS The presence of fast food destinations and unfavorable food stores with alcohol was associated cognitive measures, possibly due to greater social interaction provided in these venues. However, replication of these findings is necessary. Further examination of the potential pathways between the neighborhood environment and cognitive function/WMH may allow the development of potential behavioral, infrastructural, and pharmaceutical interventions to facilitate aging in place and healthy brain aging in older adults, especially in marginal populations that are most at risk.
Collapse
Affiliation(s)
- Dima L Chaar
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Le Tu
- Department of Preventive Medicine, John D. Bower School of Population Health, University of Mississippi Medical Center, Jackson, USA
| | - Kari Moore
- Urban Health Collaborative, Drexel Dornsife School of Public Health, Philadelphia, PA, USA
| | - Jiacong Du
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Lauren A Opsasnick
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Scott M Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Thomas H Mosley
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Xiang Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Ana V Diez Roux
- Urban Health Collaborative, Drexel Dornsife School of Public Health, Philadelphia, PA, USA
| | - Fazlay S Faruque
- Department of Preventive Medicine, John D. Bower School of Population Health, University of Mississippi Medical Center, Jackson, USA
| | - Kenneth R Butler
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Chen J, Hui Q, Titanji BK, So-Armah K, Freiberg M, Justice AC, Xu K, Zhu X, Gwinn M, Marconi VC, Sun YV. A multi-trait epigenome-wide association study identified DNA methylation signature of inflammation among men with HIV. Clin Epigenetics 2024; 16:152. [PMID: 39488703 PMCID: PMC11531128 DOI: 10.1186/s13148-024-01763-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/14/2024] [Indexed: 11/04/2024] Open
Abstract
Inflammation underlies many conditions causing excess morbidity and mortality among people with HIV (PWH). A handful of single-trait epigenome-wide association studies (EWAS) have suggested that inflammation is associated with DNA methylation (DNAm) among PWH. Multi-trait EWAS may further improve statistical power and reveal pathways in common between different inflammatory markers. We conducted single-trait EWAS of three inflammatory markers (soluble CD14, D-dimers and interleukin-6) in the Veterans Aging Cohort Study (n = 920). The study population was all male PWH with an average age of 51 years, and 82.3% self-reported as Black. We then applied two multi-trait EWAS methods-CPASSOC and OmniTest-to combine single-trait EWAS results. CPASSOC and OmniTest identified 189 and 157 inflammation-associated DNAm sites, respectively, of which 112 overlapped. Among the identified sites, 56% were not significant in any single-trait EWAS. Top sites were mapped to inflammation-related genes including IFITM1, PARP9 and STAT1. These genes were significantly enriched in pathways such as "type I interferon signaling" and "immune response to virus." We demonstrate that multi-trait EWAS can improve the discovery of inflammation-associated DNAm sites, genes and pathways. These DNAm sites might hold the key to addressing persistent inflammation in PWH.
Collapse
Affiliation(s)
- Junyu Chen
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road NE #3049, Atlanta, GA, 30322, USA
| | - Qin Hui
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road NE #3049, Atlanta, GA, 30322, USA
| | - Boghuma K Titanji
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Kaku So-Armah
- Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Matthew Freiberg
- Cardiovascular Medicine Division, Vanderbilt University School of Medicine and Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Amy C Justice
- Connecticut Veteran Health System, West Haven, CT, USA
- Schools of Medicine and Public Health, Yale University, New Haven, CT, USA
| | - Ke Xu
- Connecticut Veteran Health System, West Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Xiaofeng Zhu
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Marta Gwinn
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road NE #3049, Atlanta, GA, 30322, USA
| | - Vincent C Marconi
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
- Hubert Department of Global Health, Rollins School of Public Health, Atlanta, GA, USA
- Atlanta Veterans Affairs Health Care System, Decatur, GA, USA
| | - Yan V Sun
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road NE #3049, Atlanta, GA, 30322, USA.
- Atlanta Veterans Affairs Health Care System, Decatur, GA, USA.
| |
Collapse
|
4
|
Chen J, Chen L, Zhang X, Yao W, Xue Z. Exploring causal associations of antioxidants from supplements and diet with attention deficit/hyperactivity disorder in European populations: a Mendelian randomization analysis. Front Nutr 2024; 11:1415793. [PMID: 39381354 PMCID: PMC11459460 DOI: 10.3389/fnut.2024.1415793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
Background Antioxidants from both supplements and diet have been suggested to potentially reduce oxidative stress in individuals with ADHD. However, there is a lack of studies utilizing the Mendelian randomization (MR) method to explore the relationship between dietary and supplemental antioxidants with ADHD. Methods This study employed two-sample mendelian randomization. Various specific antioxidant dietary supplements (such as coffee, green tea, herbal tea, standard tea, and red wine intake per week), along with diet-derived circulating antioxidants including Vitamin C (ascorbate), Vitamin E (α-tocopherol), Vitamin E (γ-tocopherol), carotene, Vitamin A (retinol), zinc, and selenium (N = 2,603-428,860), were linked to independent single nucleotide polymorphisms (SNPs). Data on ADHD was gathered from six sources, comprising 246,888 participants. The primary analytical method utilized was inverse variance weighting (IVW), with sensitivity analysis conducted to assess the robustness of the main findings. Results In different diagnostic periods for ADHD, we found that only green tea intake among the antioxidants was significantly associated with a reduced risk of ADHD in males (OR: 0.977, CI: 0.963-0.990, p < 0.001, FDR = 0.065), with no evidence of pleiotropy or heterogeneity observed in the results. Additionally, a nominal causal association was found between green tea intake and childhood ADHD (OR: 0.989, 95% CI: 0.979-0.998, p = 0.023, FDR = 0.843). No causal relationships were detected between the intake of other antioxidant-rich diets and ADHD. Conclusion Our study found a significant inverse association between green tea intake and male ADHD, suggesting that higher green tea consumption may reduce ADHD risk in males. Further research is needed to explore optimal doses and underlying mechanisms.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lifei Chen
- Department of Pediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinguang Zhang
- Department of Pediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenbo Yao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheng Xue
- Department of Pediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Jones AC, Patki A, Srinivasasainagendra V, Hidalgo BA, Tiwari HK, Limdi NA, Armstrong ND, Chaudhary NS, Minniefield B, Absher D, Arnett DK, Lange LA, Lange EM, Young BA, Diamantidis CJ, Rich SS, Mychaleckyj JC, Rotter JI, Taylor KD, Kramer HJ, Tracy RP, Durda P, Kasela S, Lappalinen T, Liu Y, Johnson WC, Van Den Berg DJ, Franceschini N, Liu S, Mouton CP, Bhatti P, Horvath S, Whitsel EA, Irvin MR. A methylation risk score for chronic kidney disease: a HyperGEN study. Sci Rep 2024; 14:17757. [PMID: 39085340 PMCID: PMC11291488 DOI: 10.1038/s41598-024-68470-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024] Open
Abstract
Chronic kidney disease (CKD) impacts about 1 in 7 adults in the United States, but African Americans (AAs) carry a disproportionately higher burden of disease. Epigenetic modifications, such as DNA methylation at cytosine-phosphate-guanine (CpG) sites, have been linked to kidney function and may have clinical utility in predicting the risk of CKD. Given the dynamic relationship between the epigenome, environment, and disease, AAs may be especially sensitive to environment-driven methylation alterations. Moreover, risk models incorporating CpG methylation have been shown to predict disease across multiple racial groups. In this study, we developed a methylation risk score (MRS) for CKD in cohorts of AAs. We selected nine CpG sites that were previously reported to be associated with estimated glomerular filtration rate (eGFR) in epigenome-wide association studies to construct a MRS in the Hypertension Genetic Epidemiology Network (HyperGEN). In logistic mixed models, the MRS was significantly associated with prevalent CKD and was robust to multiple sensitivity analyses, including CKD risk factors. There was modest replication in validation cohorts. In summary, we demonstrated that an eGFR-based CpG score is an independent predictor of prevalent CKD, suggesting that MRS should be further investigated for clinical utility in evaluating CKD risk and progression.
Collapse
Affiliation(s)
- Alana C Jones
- Medical Scientist Training Program, University of Alabama at Birmingham, 912 18th St S, Birmingham, AL, 35233, USA.
- Department of Epidemiology, University of Alabama at Birmingham, 912 18th St S, Birmingham, AL, 35233, USA.
| | - Amit Patki
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Bertha A Hidalgo
- Department of Epidemiology, University of Alabama at Birmingham, 912 18th St S, Birmingham, AL, 35233, USA
| | - Hemant K Tiwari
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nita A Limdi
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nicole D Armstrong
- Department of Epidemiology, University of Alabama at Birmingham, 912 18th St S, Birmingham, AL, 35233, USA
| | | | - Bré Minniefield
- Department of Biology, Florida State University-Panama City, Panama City, FL, USA
| | - Devin Absher
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Donna K Arnett
- Office of the Provost, University of South Carolina, Columbia, SC, USA
| | - Leslie A Lange
- Department of Biomedical Informatics, University of Colorado-Anschutz, Aurora, CO, USA
| | - Ethan M Lange
- Department of Biomedical Informatics, University of Colorado-Anschutz, Aurora, CO, USA
| | - Bessie A Young
- Division of Nephrology, University of Washington, Seattle, WA, USA
| | | | - Stephen S Rich
- Department of Genome Sciences, University of Virginia, Charlottesville, VA, USA
| | - Josyf C Mychaleckyj
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Holly J Kramer
- Departments of Public Health Sciences and Medicine, Loyola University Medical Center, Taywood, IL, USA
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine, University of Vermont, Colchester, VT, USA
| | - Peter Durda
- Department of Pathology and Laboratory Medicine, University of Vermont, Colchester, VT, USA
| | - Silva Kasela
- Department of Systems Biology, New York Genome Center, Columbia University, New York, NY, USA
| | - Tuuli Lappalinen
- Department of Systems Biology, New York Genome Center, Columbia University, New York, NY, USA
| | - Yongmei Liu
- Department of Medicine, Cardiology and Neurology, Duke University Medical Center, Durham, NC, USA
| | - W Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - David J Van Den Berg
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Simin Liu
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, USA
| | - Charles P Mouton
- Department of Family Medicine, University of Texas Medical Branch Health, Galveston, TX, USA
| | - Parveen Bhatti
- Department of Medicine, School of Population and Public Health, University of British Columbia, Vancouver, BC, CAN, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, Gonda Research Center, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marguerite R Irvin
- Department of Epidemiology, University of Alabama at Birmingham, 912 18th St S, Birmingham, AL, 35233, USA
| |
Collapse
|
6
|
Seo S, Kim YA, Lee Y, Kim YJ, Kim BJ, An JH, Jin H, Do AR, Park K, Won S, Seo JH. Epigenetic link between Agent Orange exposure and type 2 diabetes in Korean veterans. Front Endocrinol (Lausanne) 2024; 15:1375459. [PMID: 39072272 PMCID: PMC11272593 DOI: 10.3389/fendo.2024.1375459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
Conflicting findings have been reported regarding the association between Agent Orange (AO) exposure and type 2 diabetes. This study aimed to examine whether AO exposure is associated with the development of type 2 diabetes and to verify the causal relationship between AO exposure and type 2 diabetes by combining DNA methylation with DNA genotype analyses. An epigenome-wide association study and DNA genotype analyses of the blood of AO-exposed and AO-unexposed individuals with type 2 diabetes and that of healthy controls were performed. Methylation quantitative trait locus and Mendelian randomisation analyses were performed to evaluate the causal effect of AO-exposure-identified CpGs on type 2 diabetes. AO-exposed individuals with type 2 diabetes were associated with six hypermethylated CpG sites (cg20075319, cg21757266, cg05203217, cg20102280, cg26081717, and cg21878650) and one hypo-methylated CpG site (cg07553761). Methylation quantitative trait locus analysis showed the methylation levels of some CpG sites (cg20075319, cg20102280, and cg26081717) to be significantly different. Mendelian randomisation analysis showed that CpG sites that were differentially methylated in AO-exposed individuals were causally associated with type 2 diabetes; the reverse causal effect was not significant. These findings reflect the need for further epigenetic studies on the causal relationship between AO exposure and type 2 diabetes.
Collapse
Affiliation(s)
- Sujin Seo
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Ye An Kim
- Division of Endocrinology, Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Young Lee
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Young Jin Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Republic of Korea
| | - Bong-Jo Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, Republic of Korea
| | - Jae Hoon An
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Heejin Jin
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Ah Ra Do
- Interdisciplinary Program of Bioinformatics, College of National Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyungtaek Park
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Sungho Won
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program of Bioinformatics, College of National Sciences, Seoul National University, Seoul, Republic of Korea
| | - Je Hyun Seo
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| |
Collapse
|
7
|
Chen J, Hui Q, Titanji BK, So-Armah K, Freiberg M, Justice AC, Xu K, Zhu X, Gwinn M, Marconi VC, Sun YV. A multi-trait epigenome-wide association study identified DNA methylation signature of inflammation among people with HIV. RESEARCH SQUARE 2024:rs.3.rs-4419840. [PMID: 38854093 PMCID: PMC11160930 DOI: 10.21203/rs.3.rs-4419840/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Inflammation underlies many conditions causing excess morbidity and mortality among people with HIV (PWH). A handful of single-trait epigenome-wide association studies (EWAS) have suggested that inflammation is associated with DNA methylation (DNAm) among PWH. Multi-trait EWAS may further improve statistical power and reveal pathways in common between different inflammatory markers. We conducted single-trait EWAS of three inflammatory markers (soluble CD14, D-dimers, and interleukin 6) in the Veteran Aging Cohort Study (n = 920). The study population was all male PWH with an average age of 51 years, and 82.3% self-reported as Black. We then applied two multi-trait EWAS methods-CPASSOC and OmniTest-to combine single-trait EWAS results. CPASSOC and OmniTest identified 189 and 157 inflammation-associated DNAm sites respectively, of which 112 overlapped. Among the identified sites, 56% were not significant in any single-trait EWAS. Top sites were mapped to inflammation-related genes including IFITM1, PARP9 and STAT1. These genes were significantly enriched in pathways such as "type I interferon signaling" and "immune response to virus". We demonstrate that multi-trait EWAS can improve the discovery of inflammation-associated DNAm sites, genes, and pathways. These DNAm sites suggest molecular mechanisms in response to inflammation associated with HIV and might hold the key to addressing persistent inflammation in PWH.
Collapse
Affiliation(s)
| | | | | | - Kaku So-Armah
- Boston University Chobanian and Avedisian School of Medicine
| | - Matthew Freiberg
- Vanderbilt University School of Medicine and Tennessee Valley Healthcare System
| | | | - Ke Xu
- Connecticut Veteran Health System
| | | | | | | | | |
Collapse
|
8
|
Karabaeva RZ, Vochshenkova TA, Mussin NM, Albayev RK, Kaliyev AA, Tamadon A. Epigenetics of hypertension as a risk factor for the development of coronary artery disease in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2024; 15:1365738. [PMID: 38836231 PMCID: PMC11148232 DOI: 10.3389/fendo.2024.1365738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024] Open
Abstract
Hypertension, a multifaceted cardiovascular disorder influenced by genetic, epigenetic, and environmental factors, poses a significant risk for the development of coronary artery disease (CAD) in individuals with type 2 diabetes mellitus (T2DM). Epigenetic alterations, particularly in histone modifications, DNA methylation, and microRNAs, play a pivotal role in unraveling the complex molecular underpinnings of blood pressure regulation. This review emphasizes the crucial interplay between epigenetic attributes and hypertension, shedding light on the prominence of DNA methylation, both globally and at the gene-specific level, in essential hypertension. Additionally, histone modifications, including acetylation and methylation, emerge as essential epigenetic markers linked to hypertension. Furthermore, microRNAs exert regulatory influence on blood pressure homeostasis, targeting key genes within the aldosterone and renin-angiotensin pathways. Understanding the intricate crosstalk between genetics and epigenetics in hypertension is particularly pertinent in the context of its interaction with T2DM, where hypertension serves as a notable risk factor for the development of CAD. These findings not only contribute to the comprehensive elucidation of essential hypertension but also offer promising avenues for innovative strategies in the prevention and treatment of cardiovascular complications, especially in the context of T2DM.
Collapse
Affiliation(s)
- Raushan Zh Karabaeva
- Gerontology Center, Medical Center Hospital of the President’s Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
| | - Tamara A. Vochshenkova
- Gerontology Center, Medical Center Hospital of the President’s Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
| | - Nadiar M. Mussin
- General Surgery, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Rustam K. Albayev
- Gerontology Center, Medical Center Hospital of the President’s Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
| | - Asset A. Kaliyev
- General Surgery, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Amin Tamadon
- Department for Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
- Department of Research and Development, PerciaVista R&D Co., Shiraz, Iran
| |
Collapse
|
9
|
Zoller JA, Parasyraki E, Lu AT, Haghani A, Niehrs C, Horvath S. DNA methylation clocks for clawed frogs reveal evolutionary conservation of epigenetic aging. GeroScience 2024; 46:945-960. [PMID: 37270437 PMCID: PMC10828168 DOI: 10.1007/s11357-023-00840-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023] Open
Abstract
To address how conserved DNA methylation-based epigenetic aging is in diverse branches of the tree of life, we generated DNA methylation data from African clawed frogs (Xenopus laevis) and Western clawed frogs (Xenopus tropicalis) and built multiple epigenetic clocks. Dual species clocks were developed that apply to both humans and frogs (human-clawed frog clocks), supporting that epigenetic aging processes are evolutionary conserved outside mammals. Highly conserved positively age-related CpGs are located in neural-developmental genes such as uncx, tfap2d as well as nr4a2 implicated in age-associated disease. We conclude that signatures of epigenetic aging are evolutionary conserved between frogs and mammals and that the associated genes relate to neural processes, altogether opening opportunities to employ Xenopus as a model organism to study aging.
Collapse
Affiliation(s)
- Joseph A Zoller
- Department of Biostatistics, School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Ake T Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Christof Niehrs
- Institute of Molecular Biology (IMB), Mainz, Germany.
- German Cancer Research Center (DKFZ), Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | - Steve Horvath
- Department of Biostatistics, School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Altos Labs, San Diego, CA, USA.
| |
Collapse
|
10
|
Epigenetic Clock Explains White Matter Hyperintensity Burden Irrespective of Chronological Age. BIOLOGY 2022; 12:biology12010033. [PMID: 36671726 PMCID: PMC9855342 DOI: 10.3390/biology12010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
In this manuscript we studied the relationship between WMH and biological age (B-age) in patients with acute stroke. We included in this study 247 patients with acute stroke recruited at Hospital del Mar having both epigenetic (DNA methylation) and magnetic resonance imaging data. WMH were measured using a semi-automated method. B-age was calculated using two widely used methods: the Hannum and Horvath formulas. We used multiple linear regression models to interrogate the role of B-age on WMH volume after adjusting for chronological age (C-age) and other covariables. Average C-age of the sample was 68.4 (±11.8) and we observed a relatively high median WMH volume (median = 8.8 cm3, Q1-Q3 = 4.05-18.8). After adjusting for potential confounders, we observed a significant effect of B-ageHannum on WMH volume (βHannum = 0.023, p-value = 0.029) independently of C-age, which remained significant (βC-age = 0.021, p-value = 0.036). Finally, we performed a mediation analysis, which allowed us to discover that 42.7% of the effect of C-age on WMH is mediated by B-ageHannum. On the other hand, B-ageHoarvath showed no significant associations with WMH after being adjusted for C-age. In conclusion, we show for the first time that biological age, measured through DNA methylation, contributes substantially to explain WMH volumetric burden irrespective of chronological age.
Collapse
|
11
|
Ammous F, Zhao W, Lin L, Ratliff SM, Mosley TH, Bielak LF, Zhou X, Peyser PA, Kardia SLR, Smith JA. Epigenetics of single-site and multi-site atherosclerosis in African Americans from the Genetic Epidemiology Network of Arteriopathy (GENOA). Clin Epigenetics 2022; 14:10. [PMID: 35039093 PMCID: PMC8764761 DOI: 10.1186/s13148-022-01229-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND DNA methylation, an epigenetic mechanism modulated by lifestyle and environmental factors, may be an important biomarker of complex diseases including cardiovascular diseases (CVD) and subclinical atherosclerosis. METHODS DNA methylation in peripheral blood samples from 391 African-Americans from the Genetic Epidemiology Network of Arteriopathy (GENOA) was assessed at baseline, and atherosclerosis was assessed 5 and 12 years later. Using linear mixed models, we examined the association between previously identified CpGs for coronary artery calcification (CAC) and carotid plaque, both individually and aggregated into methylation risk scores (MRSCAC and MRScarotid), and four measures of atherosclerosis (CAC, abdominal aorta calcification (AAC), ankle-brachial index (ABI), and multi-site atherosclerosis based on gender-specific quartiles of the single-site measures). We also examined the association between four epigenetic age acceleration measures (IEAA, EEAA, PhenoAge acceleration, and GrimAge acceleration) and the four atherosclerosis measures. Finally, we characterized the temporal stability of the epigenetic measures using repeated DNA methylation measured 5 years after baseline (N = 193). RESULTS After adjusting for CVD risk factors, four CpGs (cg05575921(AHRR), cg09935388 (GFI1), cg21161138 (AHRR), and cg18168448 (LRRC52)) were associated with multi-site atherosclerosis (FDR < 0.1). cg05575921 was also associated with AAC and cg09935388 with ABI. MRSCAC was associated with ABI (Beta = 0.016, P = 0.006), and MRScarotid was associated with both AAC (Beta = 0.605, equivalent to approximately 1.8-fold increase in the Agatston score of AAC, P = 0.004) and multi-site atherosclerosis (Beta = 0.691, P = 0.002). A 5-year increase in GrimAge acceleration (~ 1 SD) was associated with a 1.6-fold (P = 0.012) increase in the Agatston score of AAC and 0.7 units (P = 0.0003) increase in multi-site atherosclerosis, all after adjusting for CVD risk factors. All epigenetic measures were relatively stable over 5 years, with the highest intraclass correlation coefficients observed for MRScarotid and GrimAge acceleration (0.87 and 0.89, respectively). CONCLUSIONS We found evidence of an association between DNA methylation and atherosclerosis at multiple vascular sites in a sample of African-Americans. Further evaluation of these potential biomarkers is warranted to deepen our understanding of the relationship between epigenetics and atherosclerosis.
Collapse
Affiliation(s)
- Farah Ammous
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Lisha Lin
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Scott M Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Thomas H Mosley
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Xiang Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Schlosser P, Tin A, Matias-Garcia PR, Thio CHL, Joehanes R, Liu H, Weihs A, Yu Z, Hoppmann A, Grundner-Culemann F, Min JL, Adeyemo AA, Agyemang C, Ärnlöv J, Aziz NA, Baccarelli A, Bochud M, Brenner H, Breteler MMB, Carmeli C, Chaker L, Chambers JC, Cole SA, Coresh J, Corre T, Correa A, Cox SR, de Klein N, Delgado GE, Domingo-Relloso A, Eckardt KU, Ekici AB, Endlich K, Evans KL, Floyd JS, Fornage M, Franke L, Fraszczyk E, Gao X, Gào X, Ghanbari M, Ghasemi S, Gieger C, Greenland P, Grove ML, Harris SE, Hemani G, Henneman P, Herder C, Horvath S, Hou L, Hurme MA, Hwang SJ, Jarvelin MR, Kardia SLR, Kasela S, Kleber ME, Koenig W, Kooner JS, Kramer H, Kronenberg F, Kühnel B, Lehtimäki T, Lind L, Liu D, Liu Y, Lloyd-Jones DM, Lohman K, Lorkowski S, Lu AT, Marioni RE, März W, McCartney DL, Meeks KAC, Milani L, Mishra PP, Nauck M, Navas-Acien A, Nowak C, Peters A, Prokisch H, Psaty BM, Raitakari OT, Ratliff SM, Reiner AP, Rosas SE, Schöttker B, Schwartz J, Sedaghat S, Smith JA, Sotoodehnia N, Stocker HR, Stringhini S, Sundström J, Swenson BR, Tellez-Plaza M, van Meurs JBJ, van Vliet-Ostaptchouk JV, Venema A, Verweij N, et alSchlosser P, Tin A, Matias-Garcia PR, Thio CHL, Joehanes R, Liu H, Weihs A, Yu Z, Hoppmann A, Grundner-Culemann F, Min JL, Adeyemo AA, Agyemang C, Ärnlöv J, Aziz NA, Baccarelli A, Bochud M, Brenner H, Breteler MMB, Carmeli C, Chaker L, Chambers JC, Cole SA, Coresh J, Corre T, Correa A, Cox SR, de Klein N, Delgado GE, Domingo-Relloso A, Eckardt KU, Ekici AB, Endlich K, Evans KL, Floyd JS, Fornage M, Franke L, Fraszczyk E, Gao X, Gào X, Ghanbari M, Ghasemi S, Gieger C, Greenland P, Grove ML, Harris SE, Hemani G, Henneman P, Herder C, Horvath S, Hou L, Hurme MA, Hwang SJ, Jarvelin MR, Kardia SLR, Kasela S, Kleber ME, Koenig W, Kooner JS, Kramer H, Kronenberg F, Kühnel B, Lehtimäki T, Lind L, Liu D, Liu Y, Lloyd-Jones DM, Lohman K, Lorkowski S, Lu AT, Marioni RE, März W, McCartney DL, Meeks KAC, Milani L, Mishra PP, Nauck M, Navas-Acien A, Nowak C, Peters A, Prokisch H, Psaty BM, Raitakari OT, Ratliff SM, Reiner AP, Rosas SE, Schöttker B, Schwartz J, Sedaghat S, Smith JA, Sotoodehnia N, Stocker HR, Stringhini S, Sundström J, Swenson BR, Tellez-Plaza M, van Meurs JBJ, van Vliet-Ostaptchouk JV, Venema A, Verweij N, Walker RM, Wielscher M, Winkelmann J, Wolffenbuttel BHR, Zhao W, Zheng Y, Loh M, Snieder H, Levy D, Waldenberger M, Susztak K, Köttgen A, Teumer A. Meta-analyses identify DNA methylation associated with kidney function and damage. Nat Commun 2021; 12:7174. [PMID: 34887417 PMCID: PMC8660832 DOI: 10.1038/s41467-021-27234-3] [Show More Authors] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 11/08/2021] [Indexed: 12/27/2022] Open
Abstract
Chronic kidney disease is a major public health burden. Elevated urinary albumin-to-creatinine ratio is a measure of kidney damage, and used to diagnose and stage chronic kidney disease. To extend the knowledge on regulatory mechanisms related to kidney function and disease, we conducted a blood-based epigenome-wide association study for estimated glomerular filtration rate (n = 33,605) and urinary albumin-to-creatinine ratio (n = 15,068) and detected 69 and seven CpG sites where DNA methylation was associated with the respective trait. The majority of these findings showed directionally consistent associations with the respective clinical outcomes chronic kidney disease and moderately increased albuminuria. Associations of DNA methylation with kidney function, such as CpGs at JAZF1, PELI1 and CHD2 were validated in kidney tissue. Methylation at PHRF1, LDB2, CSRNP1 and IRF5 indicated causal effects on kidney function. Enrichment analyses revealed pathways related to hemostasis and blood cell migration for estimated glomerular filtration rate, and immune cell activation and response for urinary albumin-to-creatinineratio-associated CpGs.
Collapse
Affiliation(s)
- Pascal Schlosser
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany.
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Adrienne Tin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Pamela R Matias-Garcia
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764, Neuherberg, Bavaria, Germany
- TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Chris H L Thio
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Roby Joehanes
- Framingham Heart Study, Framingham, Massachusetts, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, US
| | - Hongbo Liu
- Department of Medicine and Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Antoine Weihs
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Zhi Yu
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Anselm Hoppmann
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Franziska Grundner-Culemann
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Josine L Min
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Adebowale A Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles Agyemang
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands
| | - Johan Ärnlöv
- Department of Neurobiology, Care Sciences and Society (NVS), Family Medicine and Primary Care Unit, Karolinska Institutet, Huddinge, Sweden
- School of Health and Social Studies, Dalarna University, Falun, Sweden
| | - Nasir A Aziz
- Population Health Sciences, German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Andrea Baccarelli
- Laboratory of Environmental Precision Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Murielle Bochud
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Hermann Brenner
- German Cancer Research Center (DKFZ), Division of Clinical Epidemiology and Aging Research, Heidelberg, Germany
- Network Aging Research, Heidelberg University, Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Monique M B Breteler
- Population Health Sciences, German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Cristian Carmeli
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
- Population Health Laboratory, University of Fribourg, Fribourg, Switzerland
| | - Layal Chaker
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - John C Chambers
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, Southall, UK
- Imperial College Healthcare NHS Trust, London, UK
| | | | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Tanguy Corre
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Simon R Cox
- Lothian Birth Cohorts Group, Department of Psychology, The University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Niek de Klein
- Department of Genetics, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Graciela E Delgado
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Arce Domingo-Relloso
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
- Department of Statistics and Operations Research, University of Valencia, Valencia, Spain
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, University of Erlangen-Nürnberg, Erlangen, Germany
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-UniversitätErlangen-Nürnberg, 91054, Erlangen, Germany
| | - Karlhans Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - James S Floyd
- Department of Medicine, University of Washington, Seattle, WA, 98101, USA
- Department of Epidemiology, University of Washington, Seattle, WA, 98101, USA
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, 98101, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, Houston, TX, 77030, USA
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Lude Franke
- Department of Genetics, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Eliza Fraszczyk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Xu Gao
- Laboratory of Environmental Precision Health, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Xīn Gào
- German Cancer Research Center (DKFZ), Division of Clinical Epidemiology and Aging Research, Heidelberg, Germany
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sahar Ghasemi
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Christian Gieger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764, Neuherberg, Bavaria, Germany
| | - Philip Greenland
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Megan L Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Sarah E Harris
- Lothian Birth Cohorts Group, Department of Psychology, The University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Peter Henneman
- Department of Clinical Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, the Netherlands
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Munich-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Biostatistics, Fielding School of Public Health, UCLA, Los Angeles, CA, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mikko A Hurme
- Department of Microbiology and Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | - Shih-Jen Hwang
- Framingham Heart Study, Framingham, Massachusetts, USA
- Division of Intramural Research, Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, 90014, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Silva Kasela
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Marcus E Kleber
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- SYNLAB MVZ Humangenetik Mannheim, Mannheim, Germany
| | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, Southall, UK
- Imperial College Healthcare NHS Trust, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Holly Kramer
- Departments of Public Health Science and Medicine, Loyola University Chicago, Maywood, IL, USA
- Edward Hines VA Medical Center, Hines, IL, USA
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Brigitte Kühnel
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764, Neuherberg, Bavaria, Germany
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Centre, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Dan Liu
- Population Health Sciences, German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Yongmei Liu
- Department of Medicine, Division of Cardiology, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Donald M Lloyd-Jones
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kurt Lohman
- Department of Medicine, Division of Cardiology, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
| | - Ake T Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Winfried März
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
- Synlab Academy, SYNLAB Holding Deutschland GmbH, Mannheim and Augsburg, Augsburg, Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Karlijn A C Meeks
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands
| | - Lili Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Centre, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Matthias Nauck
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Christoph Nowak
- Department of Neurobiology, Care Sciences and Society (NVS), Family Medicine and Primary Care Unit, Karolinska Institutet, Huddinge, Sweden
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764, Neuherberg, Bavaria, Germany
- Ludwig-Maximilians Universität München, Munich, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Department of Computational Health, Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Bruce M Psaty
- Department of Medicine, University of Washington, Seattle, WA, 98101, USA
- Department of Epidemiology, University of Washington, Seattle, WA, 98101, USA
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, 98101, USA
- Department of Health Services, University of Washington, Seattle, WA, 98101, USA
| | - Olli T Raitakari
- Research centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Scott M Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Alex P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA, 98101, USA
| | - Sylvia E Rosas
- Joslin Diabetes Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ben Schöttker
- German Cancer Research Center (DKFZ), Division of Clinical Epidemiology and Aging Research, Heidelberg, Germany
- Network Aging Research, Heidelberg University, Heidelberg, Germany
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sanaz Sedaghat
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48104, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, 98101, USA
| | - Hannah R Stocker
- German Cancer Research Center (DKFZ), Division of Clinical Epidemiology and Aging Research, Heidelberg, Germany
- Network Aging Research, Heidelberg University, Heidelberg, Germany
| | - Silvia Stringhini
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Johan Sundström
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
| | - Brenton R Swenson
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, 98101, USA
- Institute for Public Health Genetics, University of Washington, Seattle, WA, USA
| | - Maria Tellez-Plaza
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jana V van Vliet-Ostaptchouk
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Andrea Venema
- Department of Clinical Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, the Netherlands
| | - Niek Verweij
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Rosie M Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Matthias Wielscher
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London, UK
| | - Juliane Winkelmann
- Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Chair Neurogenetics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Bruce H R Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Yinan Zheng
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marie Loh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Daniel Levy
- Framingham Heart Study, Framingham, Massachusetts, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, US
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764, Neuherberg, Bavaria, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Munich Heart Alliance, Munich, Germany
| | - Katalin Susztak
- Department of Medicine and Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alexander Teumer
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany.
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany.
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
13
|
Tu R, Liu X, Dong X, Li R, Liao W, Hou J, Mao Z, Huo W, Wang C, Li Y. Janus kinase 2 (JAK2) methylation and obesity: A Mendelian randomization study. Nutr Metab Cardiovasc Dis 2021; 31:3484-3491. [PMID: 34656381 DOI: 10.1016/j.numecd.2021.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/18/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND AIMS Janus kinase 2 (JAK2) play an important role in the energy metabolism. Whether there is a causal relationship between JAK2 methylation levels and obesity remains unclear. Based on the instrumental variables of 5 SNP sites, this study was aimed to explore the causal relationship between JAK2 methylation levels and obesity by Mendelian randomization analysis. METHODS AND RESULTS A total of 1021 participants (511 cases and 510 controls defined by body mass index (BMI) ≥ 28.0 kg/m2) was conducted from the Henan Rural Cohort study. SNPscan® was performed to test the SNP genotyping and MethylTarget™ was applied to detect the DNA methylation level. The logistic regression model was used to evaluate the associations between SNP or methylation of JAK2 and obesity (according to BMI). Mendelian randomization analysis was used to assess the potential causal association between JAK2 methylation and obesity. According to the logistic regression model, 1 CpG sit in the promotor was related to an increased risk of obesity (P < 0.05). 10 CpG sites in the exon were associated with decreased risk of obesity (P < 0.05). Mendelian randomization analysis showed a causal association between the methylated level of JAK2 and obesity, based on the instrumental variables of 5 SNPs (P < 0.05). CONCLUSIONS This study supported that the methylation degree of JAK2 has a complex relationship with obesity, which might be related to the region of methylation. A causal relationship exists between the methylated level of JAK2 and obesity.
Collapse
Affiliation(s)
- Runqi Tu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xiaokang Dong
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Ruiying Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wei Liao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenqian Huo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yuqian Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China; Department of Clinical Pharmacology, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
14
|
Breeze CE, Batorsky A, Lee MK, Szeto MD, Xu X, McCartney DL, Jiang R, Patki A, Kramer HJ, Eales JM, Raffield L, Lange L, Lange E, Durda P, Liu Y, Tracy RP, Van Den Berg D, Evans KL, Kraus WE, Shah S, Tiwari HK, Hou L, Whitsel EA, Jiang X, Charchar FJ, Baccarelli AA, Rich SS, Morris AP, Irvin MR, Arnett DK, Hauser ER, Rotter JI, Correa A, Hayward C, Horvath S, Marioni RE, Tomaszewski M, Beck S, Berndt SI, London SJ, Mychaleckyj JC, Franceschini N. Epigenome-wide association study of kidney function identifies trans-ethnic and ethnic-specific loci. Genome Med 2021; 13:74. [PMID: 33931109 PMCID: PMC8088054 DOI: 10.1186/s13073-021-00877-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/24/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND DNA methylation (DNAm) is associated with gene regulation and estimated glomerular filtration rate (eGFR), a measure of kidney function. Decreased eGFR is more common among US Hispanics and African Americans. The causes for this are poorly understood. We aimed to identify trans-ethnic and ethnic-specific differentially methylated positions (DMPs) associated with eGFR using an agnostic, genome-wide approach. METHODS The study included up to 5428 participants from multi-ethnic studies for discovery and 8109 participants for replication. We tested the associations between whole blood DNAm and eGFR using beta values from Illumina 450K or EPIC arrays. Ethnicity-stratified analyses were performed using linear mixed models adjusting for age, sex, smoking, and study-specific and technical variables. Summary results were meta-analyzed within and across ethnicities. Findings were assessed using integrative epigenomics methods and pathway analyses. RESULTS We identified 93 DMPs associated with eGFR at an FDR of 0.05 and replicated 13 and 1 DMPs across independent samples in trans-ethnic and African American meta-analyses, respectively. The study also validated 6 previously published DMPs. Identified DMPs showed significant overlap enrichment with DNase I hypersensitive sites in kidney tissue, sites associated with the expression of proximal genes, and transcription factor motifs and pathways associated with kidney tissue and kidney development. CONCLUSIONS We uncovered trans-ethnic and ethnic-specific DMPs associated with eGFR, including DMPs enriched in regulatory elements in kidney tissue and pathways related to kidney development. These findings shed light on epigenetic mechanisms associated with kidney function, bridging the gap between population-specific eGFR-associated DNAm and tissue-specific regulatory context.
Collapse
Affiliation(s)
- Charles E Breeze
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA.
- UCL Cancer Institute, University College London, London, WC1E 6BT, UK.
- Altius Institute for Biomedical Sciences, Seattle, WA, 98121, USA.
| | - Anna Batorsky
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, 27516, USA
| | - Mi Kyeong Lee
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA
| | - Mindy D Szeto
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Xiaoguang Xu
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Rong Jiang
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, 27701, USA
| | - Amit Patki
- Department of Biostatistics, University of Alabama, Birmingham, AL, USA
| | - Holly J Kramer
- Department of Public Health Sciences and Medicine, Loyola University Chicago, Maywood, IL, USA
- Division of Nephrology and Hypertension, Loyola University Chicago, Maywood, IL, USA
| | - James M Eales
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Laura Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Leslie Lange
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ethan Lange
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Peter Durda
- Department of Pathology & Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Yongmei Liu
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Russ P Tracy
- Department of Pathology & Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - David Van Den Berg
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - William E Kraus
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
- Division of Cardiology, Department of Medicine, School of Medicine, Duke University, Durham, NC, USA
| | - Svati Shah
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
- Division of Cardiology, Department of Medicine, School of Medicine, Duke University, Durham, NC, USA
| | - Hermant K Tiwari
- Department of Biostatistics, University of Alabama, Birmingham, AL, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Global Oncology, Institute of Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Eric A Whitsel
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
- Department of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Xiao Jiang
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Fadi J Charchar
- School of Health and Life Sciences, Federation University Australia, Ballarat, VIC, Australia
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Andrea A Baccarelli
- Laboratory of Environmental Epigenetics, Departments of Environmental Health Sciences and Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
| | - Marguerite R Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Donna K Arnett
- College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Elizabeth R Hauser
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
- Durham VA Health System, Durham, NC, 27705, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Heart Centre and Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Stephan Beck
- UCL Cancer Institute, University College London, London, WC1E 6BT, UK
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department Health and Human Services, Bethesda, MD, USA
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA
| | - Josyf C Mychaleckyj
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
15
|
Irvin MR, Jones AC, Claas SA, Arnett DK. DNA Methylation and Blood Pressure Phenotypes: A Review of the Literature. Am J Hypertens 2021; 34:267-273. [PMID: 33821945 DOI: 10.1093/ajh/hpab026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 12/20/2022] Open
Abstract
Genetic studies of DNA have been unable to explain a significant portion of the variance of the estimated heritability of blood pressure (BP). Epigenetic mechanisms, particularly DNA methylation, have helped explain additional biological processes linked to BP phenotypes and diseases. Candidate gene methylation studies and genome-wide methylation studies of BP have highlighted impactful cytosine-phosphate-guanine (CpG) markers across different ethnicities. Furthermore, many of these BP-related CpG sites are also linked to metabolism-related phenotypes. Integrating epigenome-wide association study data with other layers of molecular data such as genotype data (from single nucleotide polymorphism arrays or sequencing), other epigenetic data, and/or transcriptome data can provide additional information about the significance and complexity of these relationships. Recent data suggest that epigenetic changes can be consequences rather than causes of BP variation. Finally, these data can give insight into downstream effects of long-standing high BP (due to target organ damage (TOD)). The current review provides a literature overview of epigenetic modifications in BP and TOD. Recent studies strongly support the importance of epigenetic modifications, such as DNA methylation, in BP and TOD for relevant biological insights, reliable biomarkers, and possible future therapeutics.
Collapse
Affiliation(s)
- Marguerite R Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alana C Jones
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Steven A Claas
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, Kentucky, USA
| | - Donna K Arnett
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
16
|
Ammous F, Zhao W, Ratliff SM, Mosley TH, Bielak LF, Zhou X, Peyser PA, Kardia SLR, Smith JA. Epigenetic age acceleration is associated with cardiometabolic risk factors and clinical cardiovascular disease risk scores in African Americans. Clin Epigenetics 2021; 13:55. [PMID: 33726838 PMCID: PMC7962278 DOI: 10.1186/s13148-021-01035-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is the leading cause of mortality among US adults. African Americans have higher burden of CVD morbidity and mortality compared to any other racial group. Identifying biomarkers for clinical risk prediction of CVD offers an opportunity for precision prevention and earlier intervention. RESULTS Using linear mixed models, we investigated the cross-sectional association between four measures of epigenetic age acceleration (intrinsic (IEAA), extrinsic (EEAA), PhenoAge (PhenoAA), and GrimAge (GrimAA)) and ten cardiometabolic markers of hypertension, insulin resistance, and dyslipidemia in 1,100 primarily hypertensive African Americans from sibships in the Genetic Epidemiology Network of Arteriopathy (GENOA). We then assessed the association between epigenetic age acceleration and time to self-reported incident CVD using frailty hazard models and investigated CVD risk prediction improvement compared to models with clinical risk scores (Framingham risk score (FRS) and the atherosclerotic cardiovascular disease (ASCVD) risk equation). After adjusting for sex and chronological age, increased epigenetic age acceleration was associated with higher systolic blood pressure (IEAA), higher pulse pressure (EEAA and GrimAA), higher fasting glucose (PhenoAA and GrimAA), higher fasting insulin (EEAA), lower low density cholesterol (GrimAA), and higher triglycerides (GrimAA). A five-year increase in GrimAA was associated with CVD incidence with a hazard ratio of 1.54 (95% CI 1.22-2.01) and remained significant after adjusting for CVD risk factors. The addition of GrimAA to risk score models improved model fit using likelihood ratio tests (P = 0.013 for FRS and P = 0.008 for ASCVD), but did not improve C statistics (P > 0.05). Net reclassification index (NRI) showed small but significant improvement in reassignment of risk categories with the addition of GrimAA to FRS (NRI: 0.055, 95% CI 0.040-0.071) and the ASCVD equation (NRI: 0.029, 95% CI 0.006-0.064). CONCLUSIONS Epigenetic age acceleration measures are associated with traditional CVD risk factors in an African-American cohort with a high prevalence of hypertension. GrimAA was associated with CVD incidence and slightly improved prediction of CVD events over clinical risk scores.
Collapse
Affiliation(s)
- Farah Ammous
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Scott M Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Thomas H Mosley
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Xiang Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|