1
|
Zhan Z, Luo X, Shi J, Chen L, Ye M, Jin X. Mechanisms of cisplatin sensitivity and resistance in testicular germ cell tumors and potential therapeutic agents (Review). Exp Ther Med 2025; 29:82. [PMID: 40084198 PMCID: PMC11904865 DOI: 10.3892/etm.2025.12832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/31/2024] [Indexed: 03/16/2025] Open
Abstract
Testicular germ cell tumors (TGCTs) are the most common tumors in men aged 20-40 years and are primarily treated with cisplatin-based drugs. Although TGCTs are highly sensitive to DNA damage induced by cisplatin and show a hypersensitive apoptotic response, cisplatin resistance still exists. Emerging evidence shows that cisplatin resistance in TGCTs is mainly related to the inhibition of apoptotic pathways such as MDM2/p53, OCT4/NOXA, PDGFR/PI3K/AKT, inhibition of cell cycle checkpoints, increased methylation or neddylation and DNA repair balance. In this review, recent advances regarding the mechanisms of TGCTs' sensitivity and resistance to cisplatin were summarized and potential therapeutic agents for cisplatin-resistant TGCTs were presented, providing a new therapeutic strategy for drug-resistant TGCTs.
Collapse
Affiliation(s)
- Ziqing Zhan
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Tumor Chemoradiotherapy, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Xia Luo
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Tumor Chemoradiotherapy, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Jiaxin Shi
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Tumor Chemoradiotherapy, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Litao Chen
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Tumor Chemoradiotherapy, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Meng Ye
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Tumor Chemoradiotherapy, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Tumor Chemoradiotherapy, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
2
|
Fichtner A, Zschäbitz S, Nettersheim D, Bremmer F. (Epi)genetic and Genomic Features of Pediatric and Adult Germ Cell Tumors. Surg Pathol Clin 2025; 18:63-74. [PMID: 39890310 DOI: 10.1016/j.path.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Testicular germ cell tumors (TGCTs) are a heterogeneous group of tumors that occur more commonly in adolescent and adult men. Depending on their age of onset, biological behavior, morphologic characteristics, and molecular alterations, they are divided into different subtypes. A common alteration in malignant TGCTs is the formation of an isochromosome 12p, leading to copy number alterations in pluripotency and cell cycle regulating genes. Genetic predispositions and somatic alterations rarely occur in TGCTs. This article gives an overview on the current knowledge of genomic alterations that play a role in the predisposition, development, diagnosis, and treatment of TGCTs.
Collapse
Affiliation(s)
- Alexander Fichtner
- Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany
| | - Stefanie Zschäbitz
- Department of Medical Oncology, National Centre for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Daniel Nettersheim
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Center for Integrated Oncology Aachen, Bonn, Cologne, Düsseldorf (CIO ABCD)
| | - Felix Bremmer
- Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| |
Collapse
|
3
|
Khan Y, Hussain MS, Ramalingam PS, Fatima R, Maqbool M, Ashique S, Khan NU, Bisht AS, Gupta G. Exploring extracellular RNA as drivers of chemotherapy resistance in cancer. Mol Biol Rep 2025; 52:142. [PMID: 39836259 DOI: 10.1007/s11033-025-10263-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Chemotherapy resistance (CR) represents one of the most important barriers to effective oncological therapy and often leads to ineffective intervention and unfavorable clinical prognosis. Emerging studies have emphasized the vital significance of extracellular RNA (exRNA) in influencing CR. This thorough assessment intends to explore the multifaceted contributions of exRNA, such as exosomal RNA, microRNAs, long non-coding RNAs, and circular RNAs, to CR in cancer. We discuss the mechanisms by which exRNA facilitates drug resistance, such as modulating gene expression, influencing the tumor microenvironment, and facilitating intercellular communication. Furthermore, we examine the potential of exRNA as prognostic factor for determining oncology treatment efficacy and their emerging role as therapeutic targets. Diagnostic and prognostic applications of exRNA biomarkers are considered, alongside current methodologies for their detection and quantification. Additionally, we review recent advances in exRNA-targeted therapies, highlighting ongoing clinical trials and therapeutic strategies aimed at overcoming chemoresistance. Despite the promise of exRNA research, several challenges remain, including technical limitations and the biological complexity of exRNA networks. This review underscores the importance of continued investigation into exRNA biology and its therapeutic potential, which in the future may provide new avenues for cancer treatment and tailored medical strategies. By elucidating the role of exRNA in CR, this article aims to provide a comprehensive resource for researchers and clinicians seeking to improve the effectiveness of carcinoma management approaches.
Collapse
Affiliation(s)
- Yumna Khan
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, PO Box 25130, Pakistan
| | - Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India.
| | - Prasanna Srinivasan Ramalingam
- Protein Engineering Lab, School of Biosciences and Technology, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India
| | - Rabab Fatima
- Department of Chemistry, Energy Acres, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Mudasir Maqbool
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Jammu, Srinagar, Kashmir, 190006, India
| | - Sumel Ashique
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Najeeb Ullah Khan
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, PO Box 25130, Pakistan
| | - Ajay Singh Bisht
- School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand, 248001, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| |
Collapse
|
4
|
Shokry D, Khan MW, Powell C, Johnson S, Rennels BC, Boyd RI, Sun Z, Fazal Z, Freemantle SJ, Parker MH, Vieson MD, Samuelson JP, Spinella MJ, Singh R. Refractory testicular germ cell tumors are highly sensitive to the targeting of polycomb pathway demethylases KDM6A and KDM6B. Cell Commun Signal 2024; 22:528. [PMID: 39482699 PMCID: PMC11529429 DOI: 10.1186/s12964-024-01912-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024] Open
Abstract
Testicular germ cell tumors (TGCTs) can be treated with cisplatin-based therapy. However, a clinically significant number of cisplatin-resistant patients die from progressive disease as no effective alternatives exist. Curative cisplatin therapy results in acute and life-long toxicities in the young TGCT patient population providing a rationale to decrease cisplatin exposure. In contrast to genetic alterations, recent evidence suggests that epigenetics is a major driving factor for TGCT formation, progression, and response to chemotherapy. Hence, targeting epigenetic pathways with "epidrugs" is one potential relatively unexplored strategy to advance TGCT treatment beyond cisplatin. In this report, we demonstrate for the first time that targeting polycomb demethylases KDM6A and KDM6B with epidrug GSK-J4 can treat both cisplatin-sensitive and -resistant TGCTs. While GSK-J4 had minimal effects alone on TGCT tumor growth in vivo, it dramatically sensitized cisplatin-sensitive and -resistant TGCTs to cisplatin. We validated KDM6A/KDM6B as the target of GSK-J4 since KDM6A/KDM6B genetic depletion had a similar effect to GSK-J4 on cisplatin-mediated anti-tumor activity and transcriptome alterations. Pharmacologic and genetic targeting of KDM6A/KDM6B potentiated or primed the p53-dominant transcriptional response to cisplatin, with also evidence for basal activation of p53. Further, several chromatin modifier genes, including BRD4, lysine demethylases, chromodomain helicase DNA binding proteins, and lysine methyltransferases, were repressed with cisplatin only in KDM6A/KDM6B-targeted cells, implying that KDM6A/KDM6B inhibition sets the stage for extensive chromatin remodeling of TGCT cells upon cisplatin treatment. Our findings demonstrate that targeting polycomb demethylases is a new potent pharmacologic strategy for treating cisplatin resistant TGCTs that warrants clinical development.
Collapse
Affiliation(s)
- Doha Shokry
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
- Department of Anatomy and Embryology, Alexandria University, Alexandria, Egypt
| | - Mehwish W Khan
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Christine Powell
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Samantha Johnson
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Brayden C Rennels
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Raya I Boyd
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Zhengyang Sun
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Zeeshan Fazal
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Sarah J Freemantle
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Maryanna H Parker
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Miranda D Vieson
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA
| | - Jonathan P Samuelson
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Michael J Spinella
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA.
- Cancer Center of Illinois, University of Illinois Urbana-Champaign, Urbana, IL, 61802, USA.
| | - Ratnakar Singh
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA.
| |
Collapse
|
5
|
Liu H, Yue W, Shao S, Sun J, Yang Y, Dai X. Global analysis of DNA methylation changes during experimented lingual carcinogenesis. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2024; 42:319-328. [PMID: 39049651 PMCID: PMC11190864 DOI: 10.7518/hxkq.2024.2023416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/05/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVES This study aims to assess the role of DNA methylation changes in tongue cancer through a comprehensive analysis of global DNA methylation alterations during experimental lingual carcinogenesis. METHODS C57BL/6J mice were subjected to 16-week oral administration of 4-nitroquinoline-1-oxide (4NQO, 50 mg/L). Lingual mucosa samples, being representative of normal tissue (week 0) and early (week 12) and advanced (week 28) tumorigenesis, were harvested for microarray and methylated DNA immunoprecipitation sequencing (MeDIP-Seq). The mRNA and promoter methylation of transforming growth factor-beta-signaling protein 1 (SMAD1) were evaluated with real-time quantitative reverse transcription polymerase chain reaction and Massarray in human lingual mucosa and tongue cancer cell lines. RESULTS The cytosine guanine island (CGI) methylation level observed at 28 weeks surpassed that of both 12 weeks and 0 weeks. The promoter methylation level at 12 weeks exceeded that at 0 weeks. Notably, 208 differentially expressed genes were negatively correlated to differential methylation in promoters among 0, 12, and 28 weeks. The mRNA of SMAD1 was upregulated, concurrent with a decrease in promoter methylation levels in cell lines compared to normal mucosa. CONCLUSIONS DNA methylation changed during lingual carcinogenesis. Overexpression of SMAD1 was correlated to promoter hypomethylation in tongue cancer cell lines.
Collapse
Affiliation(s)
- Hua Liu
- Dept. of Oral and Maxillofacial Surgery, Affiliated Hospital of Yunnan University, Kunming 650021, China
| | - Wanyuan Yue
- Dept. of Oral and Maxillofacial Surgery, Affiliated Hospital of Yunnan University, Kunming 650021, China
| | - Shuai Shao
- Dept. of Oral and Maxillofacial Surgery, Affiliated Hospital of Yunnan University, Kunming 650021, China
| | - Jiaping Sun
- Dept. of Oral and Maxillofacial Surgery, Affiliated Hospital of Yunnan University, Kunming 650021, China
| | - Ying Yang
- Dept. of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming 650031, China
| | - Xiaoming Dai
- Maxillofacial Service of Department of Plastic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming 650031, China
| |
Collapse
|
6
|
Labropoulou VT, Manou D, Ravazoula P, Alzahrani FM, Kalofonos HP, Theocharis AD. Expression of CD44 is associated with aggressiveness in seminomas. Mol Biol Rep 2024; 51:693. [PMID: 38796656 PMCID: PMC11127849 DOI: 10.1007/s11033-024-09638-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/13/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Testicular germ cell tumors (TGCTs) exhibit diverse biological and pathological features and are divided in two main types, seminomas and nonseminomatous germ cell tumors (NSGCTs). CD44 is a cell surface receptor, which is highly expressed in malignancies and is implicated in tumorigenesis affecting cell-matrix interactions and cell signaling. METHODS AND RESULTS Here, we examined the expression of CD44 in tumor cell lines and in patients' material. We found that CD44 is over-expressed in TGCTs compared to normal tissues. Immunohistochemical staining in 71 tissue specimens demonstrated increased expression of CD44 in some patients, whereas CD44 was absent in normal tissue. In seminomas, a high percentage of tumor and stromal cells showed cytoplasmic and/or cell surface staining for CD44 as well as increased staining for CD44 in the tumor stroma was found in some cases. The increased expression of CD44 either in tumor cells or in stromal components was associated with tumor size, nodal metastasis, vascular/lymphatic invasion, and disease stage only in seminomas. The increased stromal expression of CD44 in TGCTs was positively associated with angiogenesis. CONCLUSIONS CD44 may exhibit diverse biological functions in seminomas and NSGCTs. The expression of CD44 in tumor cells as well as in tumor stroma fosters an aggressive phenotype in seminomas and should be considered in disease treatment.
Collapse
Affiliation(s)
- Vasiliki T Labropoulou
- Department of Internal Medicine, Division of Hematology, University of Patras Medical School, Patras, Greece.
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Panagiota Ravazoula
- Department of Pathology, University Hospital of Patras, Patras, 26504, Greece
| | - Fatimah Mohammed Alzahrani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Haralabos P Kalofonos
- Clinical Oncology Laboratory, Division of Oncology, Department of Medicine, University of Patras, Rio, 26504, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| |
Collapse
|
7
|
Nicu AT, Ionel IP, Stoica I, Burlibasa L, Jinga V. Recent Advancements in Research on DNA Methylation and Testicular Germ Cell Tumors: Unveiling the Intricate Relationship. Biomedicines 2024; 12:1041. [PMID: 38791003 PMCID: PMC11117643 DOI: 10.3390/biomedicines12051041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Testicular germ cell tumors (TGCTs) are the most common type of testicular cancer, with a particularly high incidence in the 15-45-year age category. Although highly treatable, resistance to therapy sometimes occurs, with devastating consequences for the patients. Additionally, the young age at diagnosis and the treatment itself pose a great threat to patients' fertility. Despite extensive research concerning genetic and environmental risk factors, little is known about TGCT etiology. However, epigenetics has recently come into the spotlight as a major factor in TGCT initiation, progression, and even resistance to treatment. As such, recent studies have been focusing on epigenetic mechanisms, which have revealed their potential in the development of novel, non-invasive biomarkers. As the most studied epigenetic mechanism, DNA methylation was the first revelation in this particular field, and it continues to be a main target of investigations as research into its association with TGCT has contributed to a better understanding of this type of cancer and constantly reveals novel aspects that can be exploited through clinical applications. In addition to biomarker development, DNA methylation holds potential for developing novel treatments based on DNA methyltransferase inhibitors (DNMTis) and may even be of interest for fertility management in cancer survivors. This manuscript is structured as a literature review, which comprehensively explores the pivotal role of DNA methylation in the pathogenesis, progression, and treatment resistance of TGCTs.
Collapse
Affiliation(s)
- Alina-Teodora Nicu
- Genetics Department, Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania; (A.-T.N.); (I.S.)
| | - Ileana Paula Ionel
- Department of Specific Disciplines, Faculty of Midwifery and Nursing, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | - Ileana Stoica
- Genetics Department, Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania; (A.-T.N.); (I.S.)
| | - Liliana Burlibasa
- Genetics Department, Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania; (A.-T.N.); (I.S.)
| | - Viorel Jinga
- Department of Urology, Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania;
- The Academy of Romanian Scientists, 050044 Bucharest, Romania
| |
Collapse
|
8
|
Boyd RI, Shokry D, Fazal Z, Rennels BC, Freemantle SJ, La Frano MR, Prins GS, Madak Erdogan Z, Irudayaraj J, Singh R, Spinella MJ. Perfluorooctanesulfonic Acid Alters Pro-Cancer Phenotypes and Metabolic and Transcriptional Signatures in Testicular Germ Cell Tumors. TOXICS 2024; 12:232. [PMID: 38668455 PMCID: PMC11054796 DOI: 10.3390/toxics12040232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 04/29/2024]
Abstract
The potential effects of poly- and perfluoroalkyl substances (PFAS) are a recently emergent human and environmental health concern. There is a consistent link between PFAS exposure and cancer, but the mechanisms are poorly understood. Although epidemiological evidence supporting PFAS exposure and cancer in general is conflicting, there is relatively strong evidence linking PFAS and testicular germ cell tumors (TGCTs). However, no mechanistic studies have been performed to date concerning PFAS and TGCTs. In this report, the effects of the legacy PFAS perfluorooctanesulfonic acid (PFOS) and the newer "clean energy" PFAS lithium bis(trifluoromethylsulfonyl)imide (LiTFSi, called HQ-115), on the tumorigenicity of TGCTs in mice, TGCT cell survival, and metabolite production, as well as gene regulation were investigated. In vitro, the proliferation and survival of both chemo-sensitive and -resistant TGCT cells were minimally affected by a wide range of PFOS and HQ-115 concentrations. However, both chemicals promoted the growth of TGCT cells in mouse xenografts at doses consistent with human exposure but induced minimal acute toxicity, as assessed by total body, kidney, and testis weight. PFOS, but not HQ-115, increased liver weight. Transcriptomic alterations of PFOS-exposed normal mouse testes were dominated by cancer-related pathways and gene expression alterations associated with the H3K27me3 polycomb pathway and DNA methylation, epigenetic pathways that were previously showed to be critical for the survival of TGCT cells after cisplatin-based chemotherapy. Similar patterns of PFOS-mediated gene expression occurred in PFOS-exposed cells in vitro. Metabolomic studies revealed that PFOS also altered metabolites associated with steroid biosynthesis and fatty acid metabolism in TGCT cells, consistent with the proposed ability of PFAS to mimic fatty acid-based ligands controlling lipid metabolism and the proposed role of PFAS as endocrine disrupters. Our data, is the first cell and animal based study on PFAS in TGCTs, support a pro-tumorigenic effect of PFAS on TGCT biology and suggests epigenetic, metabolic, and endocrine disruption as potential mechanisms of action that are consistent with the non-mutagenic nature of the PFAS class.
Collapse
Affiliation(s)
- Raya I. Boyd
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61801, USA; (R.I.B.); (D.S.); (Z.F.); (B.C.R.); (S.J.F.)
| | - Doha Shokry
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61801, USA; (R.I.B.); (D.S.); (Z.F.); (B.C.R.); (S.J.F.)
| | - Zeeshan Fazal
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61801, USA; (R.I.B.); (D.S.); (Z.F.); (B.C.R.); (S.J.F.)
| | - Brayden C. Rennels
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61801, USA; (R.I.B.); (D.S.); (Z.F.); (B.C.R.); (S.J.F.)
| | - Sarah J. Freemantle
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61801, USA; (R.I.B.); (D.S.); (Z.F.); (B.C.R.); (S.J.F.)
| | - Michael R. La Frano
- Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
| | - Gail S. Prins
- Departments of Urology, Pathology and Physiology, College of Medicine and Chicago Center for Health and Environment, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Zeynep Madak Erdogan
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
- Cancer Center of Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Irudayaraj
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
- Cancer Center of Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Ratnakar Singh
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61801, USA; (R.I.B.); (D.S.); (Z.F.); (B.C.R.); (S.J.F.)
| | - Michael J. Spinella
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61801, USA; (R.I.B.); (D.S.); (Z.F.); (B.C.R.); (S.J.F.)
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
- Cancer Center of Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
9
|
Sun M, Xu B, Chen C, Zhu Y, Li X, Chen K. Tissue of origin prediction for cancer of unknown primary using a targeted methylation sequencing panel. Clin Epigenetics 2024; 16:25. [PMID: 38336771 PMCID: PMC10854167 DOI: 10.1186/s13148-024-01638-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
RATIONALE Cancer of unknown primary (CUP) is a group of rare malignancies with poor prognosis and unidentifiable tissue-of-origin. Distinct DNA methylation patterns in different tissues and cancer types enable the identification of the tissue of origin in CUP patients, which could help risk assessment and guide site-directed therapy. METHODS Using genome-wide DNA methylation profile datasets from The Cancer Genome Atlas (TCGA) and machine learning methods, we developed a 200-CpG methylation feature classifier for CUP tissue of origin prediction (MFCUP). MFCUP was further validated with public-available methylation array data of 2977 specimens and targeted methylation sequencing of 78 Formalin-fixed paraffin-embedded (FFPE) samples from a single center. RESULTS MFCUP achieved an accuracy of 97.2% in a validation cohort (n = 5923) representing 25 cancer types. When applied to an Infinium 450 K array dataset (n = 1052) and an Infinium EPIC (850 K) array dataset (n = 1925), MFCUP achieved an overall accuracy of 93.4% and 84.8%, respectively. Based on MFCUP, we established a targeted bisulfite sequencing panel and validated it with FFPE sections from 78 patients of 20 cancer types. This methylation sequencing panel correctly identified tissue of origin in 88.5% (69/78) of samples. We also found that the methylation levels of specific CpGs can distinguish one cancer type from others, indicating their potential as biomarkers for cancer diagnosis and screening. CONCLUSION Our methylation-based cancer classifier and targeted methylation sequencing panel can predict tissue of origin in diverse cancer types with high accuracy.
Collapse
Affiliation(s)
- Miaomiao Sun
- Department of Pathology, Henan Key Laboratory of Tumor Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Xu
- Research and Development Division, Oriomics Biotech Inc, Hangzhou, China
| | - Chao Chen
- Department of Pathology, Henan Key Laboratory of Tumor Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Youjie Zhu
- Research and Development Division, Oriomics Biotech Inc, Hangzhou, China
| | - Xiaomo Li
- Research and Development Division, Oriomics Biotech Inc, Hangzhou, China.
| | - Kuisheng Chen
- Department of Pathology, Henan Key Laboratory of Tumor Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
10
|
Wang Y, Liu X, Gong L, Ding W, Hao W, Peng Y, Zhang J, Cai W, Gao Y. Mechanisms of sunitinib resistance in renal cell carcinoma and associated opportunities for therapeutics. Br J Pharmacol 2023; 180:2937-2955. [PMID: 37740648 DOI: 10.1111/bph.16252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/07/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023] Open
Abstract
Sunitinib is the first-line drug for renal cell carcinoma (RCC) treatment. However, patients who received sunitinib treatment will ultimately develop drug resistance after 6-15 months, creating a huge obstacle to the current treatment of renal cell carcinoma. Therefore, it is urgent to clarify the mechanisms of sunitinib resistance and develop new strategies to overcome it. In this review, the mechanisms of sunitinib resistance in renal cell carcinoma have been summarized based on five topics: activation of bypass or alternative pathway, inadequate drug accumulation, tumour microenvironment, metabolic reprogramming and epigenetic regulation. Furthermore, present and potential biomarkers, as well as potential treatment strategies for overcoming sunitinib resistance in renal cell carcinoma, are also covered.
Collapse
Affiliation(s)
- Yunxia Wang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaolin Liu
- School of Pharmacy, Fudan University, Shanghai, China
| | - Luyao Gong
- School of Pharmacy, Fudan University, Shanghai, China
| | - Weihong Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenjing Hao
- School of Pharmacy, Fudan University, Shanghai, China
| | - Yeheng Peng
- School of Pharmacy, Fudan University, Shanghai, China
| | - Jun Zhang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Weimin Cai
- School of Pharmacy, Fudan University, Shanghai, China
| | - Yuan Gao
- School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Urbini M, Bleve S, Schepisi G, Menna C, Gurioli G, Gianni C, De Giorgi U. Biomarkers for Salvage Therapy in Testicular Germ Cell Tumors. Int J Mol Sci 2023; 24:16872. [PMID: 38069192 PMCID: PMC10706346 DOI: 10.3390/ijms242316872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
The outcome of metastatic testicular germ cell tumor patients has been dramatically improved by cisplatin-based chemotherapy combinations. However, up to 30% of patients with advanced disease relapse after first-line therapy and require salvage regimens, which include treatments with conventional-dose chemotherapy or high-dose chemotherapy with autologous stem cell transplantation. For these patients, prognosis estimation represents an essential step in the choice of medical treatment but still remains a complex challenge. The available histological, clinical, and biochemical parameters attempt to define the prognosis, but they do not reflect the tumor's molecular and pathological features and do not predict who will exhibit resistance to the several treatments. Molecular selection of patients and validated biomarkers are highly needed in order to improve current risk stratification and identify novel therapeutic approaches for patients with recurrent disease. Biomolecular biomarkers, including microRNAs, gene expression profiles, and immune-related biomarkers are currently under investigation in testicular germ cell tumors and could potentially hold a prominent place in the future treatment selection and prognostication of these tumors. The aim of this review is to summarize current scientific data regarding prognostic and predictive biomarkers for salvage therapy in testicular germ cell tumors.
Collapse
Affiliation(s)
- Milena Urbini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Sara Bleve
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (G.S.); (C.M.); (C.G.); (U.D.G.)
| | - Giuseppe Schepisi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (G.S.); (C.M.); (C.G.); (U.D.G.)
| | - Cecilia Menna
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (G.S.); (C.M.); (C.G.); (U.D.G.)
| | - Giorgia Gurioli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Caterina Gianni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (G.S.); (C.M.); (C.G.); (U.D.G.)
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (G.S.); (C.M.); (C.G.); (U.D.G.)
| |
Collapse
|
12
|
Lobo J, Acosta AM, Netto GJ. Molecular Biomarkers With Potential Clinical Application in Testicular Cancer. Mod Pathol 2023; 36:100307. [PMID: 37611872 DOI: 10.1016/j.modpat.2023.100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/28/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
Testicular germ cell tumors (TGCTs) and sex cord-stromal tumors (SCSTs) are the most common testicular neoplasms. The morphologic spectrum of such tumors is wide, with several histologic subtypes within each group. Testicular tumors often represent a diagnostic challenge, requiring proper identification of their biologic potential for accurate risk stratification and selection of therapy. In the era of precision medicine, molecular biomarkers are increasingly assuming a critical role in the management of patients with cancer. Given the overall rarity of certain types of testicular neoplasms, progress in biomarker research has been relatively slow. However, in recent years, we have witnessed a multitude of important contributions, including both tissue-based and liquid biopsy biomarkers, stemming from important discoveries of tumor pathobiology, accurate histopathological analysis, multi-institutional studies, and genome-wide molecular analyses of specific tumor subtypes. In this review, we provide an overview of the progress in molecular biomarkers of TGCTs and SCSTs, focusing on those with greatest potential for clinical application. In TGCTs, developmental biology has been the key to understanding these tumors and identifying clinically useful biomarkers (from classical serum tumor markers to pluripotency factors and circulating microRNAs of the 371-373 cluster). For SCSTs, studies have focused on tissue biomarkers only, and genome-wide investigations have recently contributed to a better understanding of rare phenotypes and the aggressive biological behavior of some tumors within this nosologic category. Several new biomarkers are moving toward clinical implementation in this field. Therefore, the practicing pathologist should be aware of their strengths and limitations in order to utilize them properly and maximize their clinical benefits.
Collapse
Affiliation(s)
- João Lobo
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), Porto, Portugal; Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca & RISE@CI-IPOP (Health Research Network), Porto, Portugal; Department of Pathology and Molecular Immunology, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Andres M Acosta
- Department of Pathology, Indiana University, Indianapolis, Indiana
| | - George J Netto
- Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
13
|
Bhuta R, Shah R, Gell JJ, Poynter JN, Bagrodia A, Dicken BJ, Pashankar F, Frazier AL, Shaikh F. Children's Oncology Group's 2023 blueprint for research: Germ cell tumors. Pediatr Blood Cancer 2023; 70 Suppl 6:e30562. [PMID: 37449938 PMCID: PMC10529374 DOI: 10.1002/pbc.30562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Extracranial germ cell tumors (GCT) are a biologically diverse group of tumors occurring in children, adolescents, and young adults. The majority of patients have excellent outcomes, but treatment-related toxicities impact their quality of survivorship. A subset of patients succumbs to the disease. Current unmet needs include clarifying which patients can be safely observed after initial surgical resection, refinement of risk stratification to reduce chemotherapy burden in patients with standard-risk disease, and intensify therapy for patients with poor-risk disease. Furthermore, enhancing strategies for detection of minimal residual disease and early detection of relapse, particularly in serum tumor marker-negative histologies, is critical. Improving the understanding of the developmental and molecular origins of GCTs may facilitate discovery of novel targets. Future efforts should be directed toward assessing novel therapies in a biology-driven, biomarker-defined, histology-specific, risk-stratified patient population. Fragmentation of care between subspecialists restricts the unified study of these rare tumors. It is imperative that trials be conducted in collaboration with national and international cooperative groups, with harmonized data and biospecimen collection. Key priorities for the Children's Oncology Group (COG) GCT Committee include (a) better understanding the biology of GCTs, with a focus on molecular targets and mechanisms of treatment resistance; (b) strategic development of pediatric and young adult clinical trials; (c) understanding late effects of therapy and identifying individuals most at risk; and (d) prioritizing diversity, equity, and inclusion to reduce cancer health disparities and studying the impacts of social determinants of health on outcomes.
Collapse
Affiliation(s)
- Roma Bhuta
- Division of Pediatric Hematology-Oncology, Hasbro Children’s Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Rachana Shah
- Division of Hematology-Oncology, Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Joanna J. Gell
- The Center for Cancer and Blood Disorders, Connecticut Children’s Medical Center, Hartford, CT, USA
- Department of Pediatrics, University of Connecticut Medical School, Farmington, CT, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jenny N. Poynter
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Aditya Bagrodia
- Department of Urology, University of California San Diego, San Diego, CA, USA
| | - Bryan J. Dicken
- Department of Surgery, University of Alberta, Stollery Children’s Hospital, Edmonton, Alberta, Canada
| | - Farzana Pashankar
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - A Lindsay Frazier
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Furqan Shaikh
- Division of Hematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Cuevas-Estrada B, Montalvo-Casimiro M, Munguia-Garza P, Ríos-Rodríguez JA, González-Barrios R, Herrera LA. Breaking the Mold: Epigenetics and Genomics Approaches Addressing Novel Treatments and Chemoresponse in TGCT Patients. Int J Mol Sci 2023; 24:ijms24097873. [PMID: 37175579 PMCID: PMC10178517 DOI: 10.3390/ijms24097873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Testicular germ-cell tumors (TGCT) have been widely recognized for their outstanding survival rates, commonly attributed to their high sensitivity to cisplatin-based therapies. Despite this, a subset of patients develops cisplatin resistance, for whom additional therapeutic options are unsuccessful, and ~20% of them will die from disease progression at an early age. Several efforts have been made trying to find the molecular bases of cisplatin resistance. However, this phenomenon is still not fully understood, which has limited the development of efficient biomarkers and precision medicine approaches as an alternative that could improve the clinical outcomes of these patients. With the aim of providing an integrative landscape, we review the most recent genomic and epigenomic features attributed to chemoresponse in TGCT patients, highlighting how we can seek to combat cisplatin resistance through the same mechanisms by which TGCTs are particularly hypersensitive to therapy. In this regard, we explore ongoing treatment directions for resistant TGCT and novel targets to guide future clinical trials. Through our exploration of recent findings, we conclude that epidrugs are promising treatments that could help to restore cisplatin sensitivity in resistant tumors, shedding light on potential avenues for better prognosis for the benefit of the patients.
Collapse
Affiliation(s)
- Berenice Cuevas-Estrada
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico
| | - Michel Montalvo-Casimiro
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico
| | - Paulina Munguia-Garza
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico
| | - Juan Alberto Ríos-Rodríguez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City 14080, Mexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico
| |
Collapse
|
15
|
von Eyben FE, Kristiansen K, Kapp DS, Hu R, Preda O, Nogales FF. Epigenetic Regulation of Driver Genes in Testicular Tumorigenesis. Int J Mol Sci 2023; 24:ijms24044148. [PMID: 36835562 PMCID: PMC9966837 DOI: 10.3390/ijms24044148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
In testicular germ cell tumor type II (TGCT), a seminoma subtype expresses an induced pluripotent stem cell (iPSC) panel with four upregulated genes, OCT4/POU5F1, SOX17, KLF4, and MYC, and embryonal carcinoma (EC) has four upregulated genes, OCT4/POU5F1, SOX2, LIN28, and NANOG. The EC panel can reprogram cells into iPSC, and both iPSC and EC can differentiate into teratoma. This review summarizes the literature on epigenetic regulation of the genes. Epigenetic mechanisms, such as methylations of cytosines on the DNA string and methylations and acetylations of histone 3 lysines, regulate expression of these driver genes between the TGCT subtypes. In TGCT, the driver genes contribute to well-known clinical characteristics and the driver genes are also important for aggressive subtypes of many other malignancies. In conclusion, epigenetic regulation of the driver genes are important for TGCT and for oncology in general.
Collapse
Affiliation(s)
- Finn E. von Eyben
- Center for Tobacco Control Research, Birkevej 17, 5230 Odense, Denmark
- Correspondence: ; Tel.: +45-66145862
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, August Krogh Building Department of Biology, University of Copenhagen, Universitetsparken 13, 2100 Copenhagen, Denmark
- BGI-Research, BGI-Shenzhen, Shenzhen 518120, China
- Institute of Metagenomics, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao 166555, China
| | - Daniel S. Kapp
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Rong Hu
- Department of Pathology, Laboratory Medicine, University of Wisconsin Hospital and Clinics, Madison, WI 53792, USA
| | - Ovidiu Preda
- Department of Pathology, San Cecilio University Hospital, 18071 Granada, CP, Spain
| | - Francisco F. Nogales
- Department of Pathology, School of Medicine, University Granada, 18071 Granada, CP, Spain
| |
Collapse
|
16
|
Yao X, Zhou H, Duan C, Wu X, Li B, Liu H, Zhang Y. Comprehensive characteristics of pathological subtypes in testicular germ cell tumor: Gene expression, mutation and alternative splicing. Front Immunol 2023; 13:1096494. [PMID: 36713456 PMCID: PMC9883017 DOI: 10.3389/fimmu.2022.1096494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Background Testicular germ cell tumor (TGCT) is the most common tumor in young men, but molecular signatures, especially the alternative splicing (AS) between its subtypes have not yet been explored. Methods To investigate the differences between TGCT subtypes, we comprehensively analyzed the data of gene expression, alternative splicing (AS), and somatic mutation in TGCT patients from the TCGA database. The gene ontology (GO) enrichment analyses were used to explore the function of differentially expressed genes and spliced genes respectively, and Spearman correlation analysis was performed to explore the correlation between differential genes and AS events. In addition, the possible patterns in which AS regulates gene expression were elaborated by the ensemble database transcript atlas. And, we identified important transcription factors that regulate gene expression and AS and functionally validated them in TGCT cell lines. Results We found significant differences between expression and AS in embryonal carcinoma and seminoma, while mixed cell tumors were in between. GO enrichment analyses revealed that both differentially expressed and spliced genes were enriched in transcriptional regulatory pathways, and obvious correlation between expression and AS events was determined. By analyzing the transcript map and the sites where splicing occurs, we have demonstrated that AS regulates gene expression in a variety of ways. We further identified two pivot AS-related molecules (SOX2 and HDAC9) involved in AS regulation, which were validated in embryonal carcinoma and seminoma cell lines. Differences in somatic mutations between subtypes are also of concern, with our results suggesting that mutations in some genes (B3GNT8, CAPN7, FAT4, GRK1, TACC2, and TRAM1L1) occur only in embryonal carcinoma, while mutations in KIT, KARS, and NRAS are observed only in seminoma. Conclusions In conclusion, our analysis revealed the differences in gene expression, AS and somatic mutation among TGCT subtypes, providing a molecular basis for clinical diagnosis and precise therapy of TGCT patients.
Collapse
Affiliation(s)
- Xiangyang Yao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Zhou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Duan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoliang Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Liu
- Stanford Bio-X, Stanford University, Stanford, CA, United States
| | - Yangjun Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China,Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China,*Correspondence: Yangjun Zhang,
| |
Collapse
|
17
|
Jhuang YL, Yang CW, Tseng YF, Hsu CL, Li HY, Yuan RH, Jeng YM. SIN3-HDAC complex-associated factor, a chromatin remodelling gene located in the 12p amplicon, is a potential germ cell tumour-specific oncogene. J Pathol 2022; 258:353-365. [PMID: 36056608 DOI: 10.1002/path.6007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/20/2022] [Accepted: 08/30/2022] [Indexed: 01/27/2023]
Abstract
A genetic hallmark of malignant germ cell tumours (GCTs) is isochromosome 12p, but oncogenes located in 12p that are specifically expressed in GCT have not yet been identified. SIN3-HDAC complex-associated factor (SINHCAF) is a subunit of the Sin3/histone deacetylase (HDAC) complex, and it defines a Sin3a-Hdac complex variant that is required for the self-renewal of mouse embryonic stem cells. This study demonstrated that SINHCAF is expressed in a vast majority of malignant GCTs and is rarely expressed in somatic malignancy. Fluorescence in situ hybridisation revealed SINHCAF amplification in malignant GCTs. SINHCAF silencing using shRNA reduced anchorage-dependent cell proliferation and tumoursphere formation and inhibited tumour cell migration and invasion in GCT cell lines. Moreover, in the GCT cell line NTERA2/D1, SINHCAF silencing inhibited the expression of genes associated with embryonic stem cells and induced the expression of genes associated with neuronal and white fat cell differentiation. Compared with somatic cell lines, GCT cell lines were more susceptible to HDAC inhibitor treatment. Thus, we identified SINHCAF to be a potential oncogene located in the amplicon of chromosome 12p and showed that SINHCAF was specifically expressed in malignant GCTs. HDAC inhibitor treatment may counteract the oncogenic activity of SINHCAF and is a promising therapeutic approach for GCTs. © 2022 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Yu-Ling Jhuang
- Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan.,Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Wei Yang
- Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan
| | - Yu-Fen Tseng
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Huei-Ying Li
- Medical Microbiota Center of the First Core Laboratory, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ray-Hwang Yuan
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.,Department of Surgery, National Taiwan University Hospital, Hsinchu Branch, Hsinchu, Taiwan
| | - Yung-Ming Jeng
- Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan.,Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
18
|
Neary B, Lin S, Qiu P. Methylation of CpG Sites as Biomarkers Predictive of Drug-Specific
Patient Survival in Cancer. Cancer Inform 2022; 21:11769351221131124. [PMID: 36340286 PMCID: PMC9634212 DOI: 10.1177/11769351221131124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/18/2022] [Indexed: 11/06/2022] Open
Abstract
Background: Though the development of targeted cancer drugs continues to accelerate,
doctors still lack reliable methods for predicting patient response to
standard-of-care therapies for most cancers. DNA methylation has been
implicated in tumor drug response and is a promising source of predictive
biomarkers of drug efficacy, yet the relationship between drug efficacy and
DNA methylation remains largely unexplored. Method: In this analysis, we performed log-rank survival analyses on patients grouped
by cancer and drug exposure to find CpG sites where binary methylation
status is associated with differential survival in patients treated with a
specific drug but not in patients with the same cancer who were not exposed
to that drug. We also clustered these drug-specific CpG sites based on
co-methylation among patients to identify broader methylation patterns that
may be related to drug efficacy, which we investigated for transcription
factor binding site enrichment using gene set enrichment analysis. Results: We identified CpG sites that were drug-specific predictors of survival in 38
cancer-drug patient groups across 15 cancers and 20 drugs. These included 11
CpG sites with similar drug-specific survival effects in multiple cancers.
We also identified 76 clusters of CpG sites with stronger associations with
patient drug response, many of which contained CpG sites in gene promoters
containing transcription factor binding sites. Conclusion: These findings are promising biomarkers of drug response for a variety of
drugs and contribute to our understanding of drug-methylation interactions
in cancer. Investigation and validation of these results could lead to the
development of targeted co-therapies aimed at manipulating methylation in
order to improve efficacy of commonly used therapies and could improve
patient survival and quality of life by furthering the effort toward drug
response prediction.
Collapse
Affiliation(s)
- Bridget Neary
- School of Biological Sciences, Georgia
Institute of Technology, Atlanta, GA, USA
| | - Shuting Lin
- School of Biological Sciences, Georgia
Institute of Technology, Atlanta, GA, USA
| | - Peng Qiu
- Department of Biomedical Engineering,
Georgia Institute of Technology and Emory University, Atlanta, GA, USA,Peng Qiu, Department of Biomedical
Engineering, Georgia Institute of Technology and Emory University, 950 Atlantic
Dr. NW, Atlanta, GA 30332 USA.
| |
Collapse
|
19
|
Ali R, Aouida M, Alhaj Sulaiman A, Madhusudan S, Ramotar D. Can Cisplatin Therapy Be Improved? Pathways That Can Be Targeted. Int J Mol Sci 2022; 23:ijms23137241. [PMID: 35806243 PMCID: PMC9266583 DOI: 10.3390/ijms23137241] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Cisplatin (cis-diamminedichloroplatinum (II)) is the oldest known chemotherapeutic agent. Since the identification of its anti-tumour activity, it earned a remarkable place as a treatment of choice for several cancer types. It remains effective against testicular, bladder, lung, head and neck, ovarian, and other cancers. Cisplatin treatment triggers different cellular responses. However, it exerts its cytotoxic effects by generating inter-strand and intra-strand crosslinks in DNA. Tumour cells often develop tolerance mechanisms by effectively repairing cisplatin-induced DNA lesions or tolerate the damage by adopting translesion DNA synthesis. Cisplatin-associated nephrotoxicity is also a huge challenge for effective therapy. Several preclinical and clinical studies attempted to understand the major limitations associated with cisplatin therapy, and so far, there is no definitive solution. As such, a more comprehensive molecular and genetic profiling of patients is needed to identify those individuals that can benefit from platinum therapy. Additionally, the treatment regimen can be improved by combining cisplatin with certain molecular targeted therapies to achieve a balance between tumour toxicity and tolerance mechanisms. In this review, we discuss the importance of various biological processes that contribute to the resistance of cisplatin and its derivatives. We aim to highlight the processes that can be modulated to suppress cisplatin resistance and provide an insight into the role of uptake transporters in enhancing drug efficacy.
Collapse
Affiliation(s)
- Reem Ali
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha P.O. Box 34110, Qatar; (M.A.); (A.A.S.)
- Correspondence: (R.A.); (D.R.)
| | - Mustapha Aouida
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha P.O. Box 34110, Qatar; (M.A.); (A.A.S.)
| | - Abdallah Alhaj Sulaiman
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha P.O. Box 34110, Qatar; (M.A.); (A.A.S.)
| | - Srinivasan Madhusudan
- Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham NG7 3RD, UK;
| | - Dindial Ramotar
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha P.O. Box 34110, Qatar; (M.A.); (A.A.S.)
- Correspondence: (R.A.); (D.R.)
| |
Collapse
|
20
|
Boyd RI, Ahmad S, Singh R, Fazal Z, Prins GS, Madak Erdogan Z, Irudayaraj J, Spinella MJ. Toward a Mechanistic Understanding of Poly- and Perfluoroalkylated Substances and Cancer. Cancers (Basel) 2022; 14:2919. [PMID: 35740585 PMCID: PMC9220899 DOI: 10.3390/cancers14122919] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023] Open
Abstract
Poly- and perfluoroalkylated substances (PFAS) are chemicals that persist and bioaccumulate in the environment and are found in nearly all human populations through several routes of exposure. Human occupational and community exposure to PFAS has been associated with several cancers, including cancers of the kidney, testis, prostate, and liver. While evidence suggests that PFAS are not directly mutagenic, many diverse mechanisms of carcinogenicity have been proposed. In this mini-review, we organize these mechanisms into three major proposed pathways of PFAS action-metabolism, endocrine disruption, and epigenetic perturbation-and discuss how these distinct but interdependent pathways may explain many of the proposed pro-carcinogenic effects of the PFAS class of environmental contaminants. Notably, each of the pathways is predicted to be highly sensitive to the dose and window of exposure which may, in part, explain the variable epidemiologic and experimental evidence linking PFAS and cancer. We highlight testicular and prostate cancer as models to validate this concept.
Collapse
Affiliation(s)
- Raya I. Boyd
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61802, USA; (R.I.B.); (R.S.); (Z.F.)
| | - Saeed Ahmad
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; (S.A.); (J.I.)
| | - Ratnakar Singh
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61802, USA; (R.I.B.); (R.S.); (Z.F.)
| | - Zeeshan Fazal
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61802, USA; (R.I.B.); (R.S.); (Z.F.)
| | - Gail S. Prins
- Departments of Urology, Pathology and Physiology, College of Medicine, Chicago Center for Health and Environment, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Zeynep Madak Erdogan
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
- Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute of Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; (S.A.); (J.I.)
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
- Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute of Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Michael J. Spinella
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL 61802, USA; (R.I.B.); (R.S.); (Z.F.)
- Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
21
|
Országhová Z, Kalavska K, Mego M, Chovanec M. Overcoming Chemotherapy Resistance in Germ Cell Tumors. Biomedicines 2022; 10:biomedicines10050972. [PMID: 35625709 PMCID: PMC9139090 DOI: 10.3390/biomedicines10050972] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 12/03/2022] Open
Abstract
Testicular germ cell tumors (GCTs) are highly curable malignancies. Excellent survival rates in patients with metastatic disease can be attributed to the exceptional sensitivity of GCTs to cisplatin-based chemotherapy. This hypersensitivity is probably related to alterations in the DNA repair of cisplatin-induced DNA damage, and an excessive apoptotic response. However, chemotherapy fails due to the development of cisplatin resistance in a proportion of patients. The molecular basis of this resistance appears to be multifactorial. Tracking the mechanisms of cisplatin resistance in GCTs, multiple molecules have been identified as potential therapeutic targets. A variety of therapeutic agents have been evaluated in preclinical and clinical studies. These include different chemotherapeutics, targeted therapies, such as tyrosine kinase inhibitors, mTOR inhibitors, PARP inhibitors, CDK inhibitors, and anti-CD30 therapy, as well as immune-checkpoint inhibitors, epigenetic therapy, and others. These therapeutics have been used as single agents or in combination with cisplatin. Some of them have shown promising in vitro activity in overcoming cisplatin resistance, but have not been effective in clinical trials in refractory GCT patients. This review provides a summary of current knowledge about the molecular mechanisms of cisplatin sensitivity and resistance in GCTs and outlines possible therapeutic approaches that seek to overcome this chemoresistance.
Collapse
Affiliation(s)
- Zuzana Országhová
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovakia; (Z.O.); (M.M.)
| | - Katarina Kalavska
- Translational Research Unit, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovakia;
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, Slovak Academy Sciences, 845 05 Bratislava, Slovakia
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovakia; (Z.O.); (M.M.)
- Translational Research Unit, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovakia;
| | - Michal Chovanec
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovakia; (Z.O.); (M.M.)
- Correspondence:
| |
Collapse
|
22
|
Nicu AT, Medar C, Chifiriuc MC, Gradisteanu Pircalabioru G, Burlibasa L. Epigenetics and Testicular Cancer: Bridging the Gap Between Fundamental Biology and Patient Care. Front Cell Dev Biol 2022; 10:861995. [PMID: 35465311 PMCID: PMC9023878 DOI: 10.3389/fcell.2022.861995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/22/2022] [Indexed: 11/15/2022] Open
Abstract
Testicular cancer is the most common solid tumor affecting young males. Most testicular cancers are testicular germ cell tumors (TGCTs), which are divided into seminomas (SGCTs) and non-seminomatous testicular germ cell tumors (NSGCTs). During their development, primordial germ cells (PGCs) undergo epigenetic modifications and any disturbances in their pattern might lead to cancer development. The present study provides a comprehensive review of the epigenetic mechanisms–DNA methylation, histone post-translational modifications, bivalent marks, non-coding RNA–associated with TGCT susceptibility, initiation, progression and response to chemotherapy. Another important purpose of this review is to highlight the recent investigations regarding the identification and development of epigenetic biomarkers as powerful tools for the diagnostic, prognostic and especially for epigenetic-based therapy.
Collapse
Affiliation(s)
- Alina-Teodora Nicu
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Department of Genetics, University of Bucharest, Bucharest, Romania
| | - Cosmin Medar
- University of Medicine and Pharmacy “Carol Davila”, Clinical Hospital “Prof. dr Theodor Burghele”, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of University of Bucharest (ICUB), Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- Romanian Academy, Bucharest, Romania
| | | | - Liliana Burlibasa
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Department of Genetics, University of Bucharest, Bucharest, Romania
| |
Collapse
|
23
|
Hires M, Jane E, Kalavska K, Chovanec M, Mego M, Kasak P, Bertok T, Tkac J. Glycan signatures for the identification of cisplatin‐resistant testicular cancer cell lines: Specific glycoprofiling of human chorionic gonadotropin (hCG). Cancer Med 2022; 11:968-982. [PMID: 35044085 PMCID: PMC8855906 DOI: 10.1002/cam4.4515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/03/2021] [Accepted: 11/21/2021] [Indexed: 12/14/2022] Open
Abstract
Background Testicular cancer (TC) is the most frequent type of cancer among young men aged between 15 and 34 years. TC is treated using cisplatin, but 3%–5% of TC patients fail to respond to cisplatin, with a very bad to fatal prognosis. Accordingly, it is most important to quickly and readily identify those TC patients who are resistant to cisplatin treatment. Methods This study seeks to investigate changes in the glycosylation associated with cisplatin resistance to TC cell lines. Results A specific glycoprofiling of human chorionic gonadotropin (hCG) was analysed in three TC cell lines and one cell line of female origin. A typical calibration curve for hCG glycoprofiling showed a dynamic range up to 50 ng/ml, with a limit of detection of 0.3 ng/ml and assay reproducibility represented by relative standard deviation of 3.0%. Changes in the glycan signatures on hCG were analysed in cisplatin‐sensitive cell lines and in their cisplatin‐resistant sub‐lines using an enzyme‐linked lectin assay (ELLA) protocol. An immobilised antibody was applied to a selective capture of hCG from a cytoplasmic fraction of cell lysates with final incubation using a lectin from a panel of 17 lectins. Conclusion The results suggest that one particular lectin Dolichos biflorus agglutinin (DBA) can selectively discriminate sensitive TC cell lines from resistant TC cell lines. Moreover, there are additional lectins which can provide useful information about the strength of cisplatin resistance.
Collapse
Affiliation(s)
- Michal Hires
- Institute of Chemistry Slovak Academy of Sciences Bratislava Slovakia
| | - Eduard Jane
- Institute of Chemistry Slovak Academy of Sciences Bratislava Slovakia
| | - Katarina Kalavska
- Translational Research Unit Faculty of Medicine Comenius University and National Cancer Institute Bratislava Slovakia
| | - Michal Chovanec
- 2nd Department of Oncology Faculty of Medicine Comenius University and National Cancer Institute Bratislava Slovakia
| | - Michal Mego
- Translational Research Unit Faculty of Medicine Comenius University and National Cancer Institute Bratislava Slovakia
- 2nd Department of Oncology Faculty of Medicine Comenius University and National Cancer Institute Bratislava Slovakia
| | - Peter Kasak
- Center for Advanced Materials Qatar University Doha Qatar
| | - Tomas Bertok
- Institute of Chemistry Slovak Academy of Sciences Bratislava Slovakia
| | - Jan Tkac
- Institute of Chemistry Slovak Academy of Sciences Bratislava Slovakia
| |
Collapse
|
24
|
Singh R, Fazal Z, Bikorimana E, Boyd RI, Yerby C, Tomlin M, Baldwin H, Shokry D, Corbet AK, Shahid K, Hattab A, Freemantle SJ, Spinella MJ. Reciprocal epigenetic remodeling controls testicular cancer hypersensitivity to hypomethylating agents and chemotherapy. Mol Oncol 2021; 16:683-698. [PMID: 34482638 PMCID: PMC8807365 DOI: 10.1002/1878-0261.13096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/25/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Testicular germ cell tumors (TGCTs) are aggressive but sensitive to cisplatin-based chemotherapy. Alternative therapies are needed for tumors refractory to cisplatin with hypomethylating agents providing one possibility. The mechanisms of cisplatin hypersensitivity and resistance in TGCTs remain poorly understood. Recently, it has been shown that TGCTs, even those resistant to cisplatin, are hypersensitive to very low doses of hypomethylating agents including 5-aza deoxy-cytosine (5-aza) and guadecitabine. We undertook a pharmacogenomic approach in order to better understand mechanisms of TGCT hypomethylating agent hypersensitivity by generating a panel of acquired 5-aza-resistant TGCT cells and contrasting these to previously generated acquired isogenic cisplatin-resistant cells from the same parent. Interestingly, there was a reciprocal relationship between cisplatin and 5-aza sensitivity, with cisplatin resistance associated with increased sensitivity to 5-aza and 5-aza resistance associated with increased sensitivity to cisplatin. Unbiased transcriptome analysis revealed 5-aza-resistant cells strongly downregulated polycomb target gene expression, the exact opposite of the finding for cisplatin-resistant cells, which upregulated polycomb target genes. This was associated with a dramatic increase in H3K27me3 and decrease in DNMT3B levels in 5-aza-resistant cells, the exact opposite changes seen in cisplatin-resistant cells. Evidence is presented that reciprocal regulation of polycomb and DNMT3B may be initiated by changes in DNMT3B levels as DNMT3B knockdown alone in parental cells resulted in increased expression of H3K27me3, EZH2, and BMI1, conferred 5-aza resistance and cisplatin sensitization, and mediated genome-wide repression of polycomb target gene expression. Finally, genome-wide analysis revealed that 5-aza-resistant, cisplatin-resistant, and DNMT3B-knockdown cells alter the expression of a common set of polycomb target genes. This study highlights that reciprocal epigenetic changes mediated by DNMT3B and polycomb may be a key driver of the unique cisplatin and 5-aza hypersensitivity of TGCTs and suggests that distinct epigenetic vulnerabilities may exist for pharmacological targeting of TGCTs.
Collapse
Affiliation(s)
- Ratnakar Singh
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL, USA
| | - Zeeshan Fazal
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL, USA
| | - Emmanuel Bikorimana
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL, USA
| | - Raya I Boyd
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL, USA
| | - Cliff Yerby
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL, USA
| | - Megan Tomlin
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL, USA
| | - Hannah Baldwin
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL, USA
| | - Doha Shokry
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL, USA
| | - Andrea K Corbet
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL, USA
| | - Khadeeja Shahid
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL, USA
| | - Aleyah Hattab
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL, USA
| | - Sarah J Freemantle
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL, USA
| | - Michael J Spinella
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL, USA.,Carle Illinois College of Medicine and Cancer Center of Illinois, University of Illinois at Urbana-Champaign, IL, USA
| |
Collapse
|
25
|
Lobo J, Constâncio V, Leite-Silva P, Guimarães R, Cantante M, Braga I, Maurício J, Looijenga LHJ, Henrique R, Jerónimo C. Differential methylation EPIC analysis discloses cisplatin-resistance related hypermethylation and tumor-specific heterogeneity within matched primary and metastatic testicular germ cell tumor patient tissue samples. Clin Epigenetics 2021; 13:70. [PMID: 33823933 PMCID: PMC8025580 DOI: 10.1186/s13148-021-01048-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/02/2021] [Indexed: 12/24/2022] Open
Abstract
Testicular germ cell tumors (TGCTs) are among the most common solid malignancies in young-adult men, and currently most mortality is due to metastatic disease and emergence of resistance to cisplatin. There is some evidence that increased methylation is one mechanism behind this resistance, stemming from individual studies, but approaches based on matched primary and metastatic patient samples are lacking. Herein, we provide an EPIC array-based study of matched primary and metastatic TGCT samples. Histology was the major determinant of overall methylation pattern, but some clustering of samples related to response to cisplatin was observed. Further differential analysis of patients with the same histological subtype (embryonal carcinoma) disclosed a remarkable increase in net methylation levels (at both promoter and CpG site level) in the patient with cisplatin-resistant disease and poor outcome compared to the patient with complete response to chemotherapy. This further confirms the recent results of another study performed on isogenic clones of sensitive and resistant TGCT cell lines. Differentially methylated promoters among groups of samples were mostly not shared, disclosing heterogeneity in patient tissue samples. Finally, gene ontology analysis of cisplatin-resistant samples indicated enrichment of differentially hypermethylated promoters on pathways related to regulation of immune microenvironment, and enrichment of differentially hypomethylated promoters on pathways related to DNA/chromatin binding and regulation. This data supports not only the use of hypomethylating agents for targeting cisplatin-resistant disease, but also their use in combination with immunotherapies and chromatin remodelers.
Collapse
Affiliation(s)
- João Lobo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513, Porto, Portugal.,Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Vera Constâncio
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Pedro Leite-Silva
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Rita Guimarães
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Mariana Cantante
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Isaac Braga
- Department of Urology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Joaquina Maurício
- Department of Medical Oncology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Leendert H J Looijenga
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513, Porto, Portugal.
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513, Porto, Portugal.
| |
Collapse
|
26
|
Between a Rock and a Hard Place: An Epigenetic-Centric View of Testicular Germ Cell Tumors. Cancers (Basel) 2021; 13:cancers13071506. [PMID: 33805941 PMCID: PMC8036638 DOI: 10.3390/cancers13071506] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary This minireview focuses on the role of epigenetics in testicular cancer. A working model is developed that postulates that epigenetic features that drive testicular cancer malignancy also enable these tumors to be cured at a high rate with chemotherapy. Chemoresistance may occur by epigenetic uncoupling of malignancy and chemosensitivity, a scenario that may be amenable to epigenetic-based therapies. Abstract Compared to many common solid tumors, the main genetic drivers of most testicular germ cell tumors (TGCTs) are unknown. Decades of focus on genomic alterations in TGCTs including awareness of a near universal increase in copies of chromosome 12p have failed to uncover exceptional driver genes, especially in genes that can be targeted therapeutically. Thus far, TGCT patients have missed out on the benefits of targeted therapies available to treat most other malignancies. In the past decade there has been a greater appreciation that epigenetics may play an especially prominent role in TGCT etiology, progression, and hypersensitivity to conventional chemotherapy. While genetics undoubtedly plays a role in TGCT biology, this mini-review will focus on the epigenetic “states” or features of testicular cancer, with an emphasis on DNA methylation, histone modifications, and miRNAs associated with TGCT susceptibility, initiation, progression, and response to chemotherapy. In addition, we comment on the current status of epigenetic-based therapy and epigenetic biomarker development for TGCTs. Finally, we suggest a unifying “rock and a hard place” or “differentiate or die” model where the tumorigenicity and curability of TGCTs are both dependent on common but still ill-defined epigenetic states.
Collapse
|
27
|
Lobo J, Leão R, Jerónimo C, Henrique R. Liquid Biopsies in the Clinical Management of Germ Cell Tumor Patients: State-of-the-Art and Future Directions. Int J Mol Sci 2021; 22:ijms22052654. [PMID: 33800799 PMCID: PMC7961393 DOI: 10.3390/ijms22052654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Liquid biopsies constitute a minimally invasive means of managing cancer patients, entailing early diagnosis, follow-up and prediction of response to therapy. Their use in the germ cell tumor field is invaluable since diagnostic tissue biopsies (which are invasive) are often not performed, and therefore only a presumptive diagnosis can be made, confirmed upon examination of the surgical specimen. Herein, we provide an overall review of the current liquid biopsy-based biomarkers of this disease, including the classical, routinely used serum tumor markers—the promising microRNAs rapidly approaching the introduction into clinical practice—but also cell-free DNA markers (including DNA methylation) and circulating tumor cells. Finally, and importantly, we also explore novel strategies and challenges for liquid biopsy markers and methodologies, providing a critical view of the future directions for liquid biopsy tests in this field, highlighting gaps and unanswered questions.
Collapse
Affiliation(s)
- João Lobo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Ricardo Leão
- Faculty of Medicine, University of Coimbra, Rua Larga, 3000-370 Coimbra, Portugal;
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Correspondence: (C.J.); (R.H.); Tel.: +351-22-225084000 (C.J. & R.H.); Fax: +351-22-5084199 (C.J. & R.H.)
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Correspondence: (C.J.); (R.H.); Tel.: +351-22-225084000 (C.J. & R.H.); Fax: +351-22-5084199 (C.J. & R.H.)
| |
Collapse
|