1
|
Sena S, Prakash A, Van Staden J, Kumar V. Epigenetic control of plant regeneration: Unraveling the role of histone methylation. CURRENT PLANT BIOLOGY 2024; 40:100408. [DOI: 10.1016/j.cpb.2024.100408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
2
|
Marquez-Molins J, Cheng J, Corell-Sierra J, Juarez-Gonzalez VT, Villalba-Bermell P, Annacondia ML, Gomez G, Martinez G. Hop stunt viroid infection induces heterochromatin reorganization. THE NEW PHYTOLOGIST 2024; 243:2351-2367. [PMID: 39030826 DOI: 10.1111/nph.19986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/26/2024] [Indexed: 07/22/2024]
Abstract
Viroids are pathogenic noncoding RNAs that completely rely on their host molecular machinery to accomplish their life cycle. Several interactions between viroids and their host molecular machinery have been identified, including interference with epigenetic mechanisms such as DNA methylation. Despite this, whether viroids influence changes in other epigenetic marks such as histone modifications remained unknown. Epigenetic regulation is particularly important during pathogenesis processes because it might be a key regulator of the dynamism of the defense response. Here we have analyzed the changes taking place in Cucumis sativus (cucumber) facultative and constitutive heterochromatin during hop stunt viroid (HSVd) infection using chromatin immunoprecipitation (ChIP) of the two main heterochromatic marks: H3K9me2 and H3K27me3. We find that HSVd infection is associated with changes in both H3K27me3 and H3K9me2, with a tendency to decrease the levels of repressive epigenetic marks through infection progression. These epigenetic changes are connected to the transcriptional regulation of their expected targets, genes, and transposable elements. Indeed, several genes related to the defense response are targets of both epigenetic marks. Our results highlight another host regulatory mechanism affected by viroid infection, providing further information about the complexity of the multiple layers of interactions between pathogens/viroids and hosts/plants.
Collapse
Affiliation(s)
- Joan Marquez-Molins
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, 75007, Sweden
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC), University of Valencia (UV), Paterna, 46980, Spain
| | - Jinping Cheng
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, 75007, Sweden
| | - Julia Corell-Sierra
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC), University of Valencia (UV), Paterna, 46980, Spain
| | - Vasti Thamara Juarez-Gonzalez
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, 75007, Sweden
| | - Pascual Villalba-Bermell
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC), University of Valencia (UV), Paterna, 46980, Spain
| | - Maria Luz Annacondia
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, 75007, Sweden
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Frederiksberg, 1871, Denmark
| | - Gustavo Gomez
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC), University of Valencia (UV), Paterna, 46980, Spain
| | - German Martinez
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, 75007, Sweden
| |
Collapse
|
3
|
Song Y, He J, Guo J, Xie Y, Ma Z, Liu Z, Niu C, Li X, Chu B, Tahir MM, Xu J, Ma F, Guan Q. The chromatin remodeller MdRAD5B enhances drought tolerance by coupling MdLHP1-mediated H3K27me3 in apple. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:617-634. [PMID: 37874929 PMCID: PMC10893944 DOI: 10.1111/pbi.14210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
RAD5B belongs to the Rad5/16-like group of the SNF2 family, which often functions in chromatin remodelling. However, whether RAD5B is involved in chromatin remodelling, histone modification, and drought stress tolerance is largely unclear. We identified a drought-inducible chromatin remodeler, MdRAD5B, which positively regulates apple drought tolerance. Transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) analysis showed that MdRAD5B affects the expression of 466 drought-responsive genes through its chromatin remodelling function in response to drought stress. In addition, MdRAD5B interacts with and degrades MdLHP1, a crucial regulator of histone H3 trimethylation at K27 (H3K27me3), through the ubiquitin-independent 20S proteasome. Chromatin immunoprecipitation-sequencing (ChIP-seq) analysis revealed that MdRAD5B modulates the H3K27me3 deposition of 615 genes in response to drought stress. Genetic interaction analysis showed that MdRAD5B mediates the H3K27me3 deposition of drought-responsive genes through MdLHP1, which causes their expression changes under drought stress. Our results unravelled a dual function of MdRAD5B in gene expression modulation in apple in response to drought, that is, via the regulation of chromatin remodelling and H3K27me3.
Collapse
Affiliation(s)
- Yi Song
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Junxing Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Yinpeng Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Ziqing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Zeyuan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Chundong Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Baohua Chu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Muhammad Mobeen Tahir
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Jidi Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of HorticultureNorthwest A&F UniversityYanglingChina
- Shenzhen Research InstituteNorthwest A&F UniversityShenzhenChina
| |
Collapse
|
4
|
Hisanaga T, Wu S, Schafran P, Axelsson E, Akimcheva S, Dolan L, Li F, Berger F. The ancestral chromatin landscape of land plants. THE NEW PHYTOLOGIST 2023; 240:2085-2101. [PMID: 37823324 PMCID: PMC10952607 DOI: 10.1111/nph.19311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/29/2023] [Indexed: 10/13/2023]
Abstract
Recent studies have shown that correlations between chromatin modifications and transcription vary among eukaryotes. This is the case for marked differences between the chromatin of the moss Physcomitrium patens and the liverwort Marchantia polymorpha. Mosses and liverworts diverged from hornworts, altogether forming the lineage of bryophytes that shared a common ancestor with land plants. We aimed to describe chromatin in hornworts to establish synapomorphies across bryophytes and approach a definition of the ancestral chromatin organization of land plants. We used genomic methods to define the 3D organization of chromatin and map the chromatin landscape of the model hornwort Anthoceros agrestis. We report that nearly half of the hornwort transposons were associated with facultative heterochromatin and euchromatin and formed the center of topologically associated domains delimited by protein coding genes. Transposons were scattered across autosomes, which contrasted with the dense compartments of constitutive heterochromatin surrounding the centromeres in flowering plants. Most of the features observed in hornworts are also present in liverworts or in mosses but are distinct from flowering plants. Hence, the ancestral genome of bryophytes was likely a patchwork of units of euchromatin interspersed within facultative and constitutive heterochromatin. We propose this genome organization was ancestral to land plants.
Collapse
Affiliation(s)
- Tetsuya Hisanaga
- Gregor Mendel InstituteAustrian Academy of Sciences, Vienna BioCenterDr. Bohr‐Gasse 3Vienna1030Austria
| | - Shuangyang Wu
- Gregor Mendel InstituteAustrian Academy of Sciences, Vienna BioCenterDr. Bohr‐Gasse 3Vienna1030Austria
| | | | - Elin Axelsson
- Gregor Mendel InstituteAustrian Academy of Sciences, Vienna BioCenterDr. Bohr‐Gasse 3Vienna1030Austria
| | - Svetlana Akimcheva
- Gregor Mendel InstituteAustrian Academy of Sciences, Vienna BioCenterDr. Bohr‐Gasse 3Vienna1030Austria
| | - Liam Dolan
- Gregor Mendel InstituteAustrian Academy of Sciences, Vienna BioCenterDr. Bohr‐Gasse 3Vienna1030Austria
| | - Fay‐Wei Li
- Boyce Thompson InstituteIthacaNY14853USA
- Plant Biology SectionCornell UniversityIthacaNY14853USA
| | - Frédéric Berger
- Gregor Mendel InstituteAustrian Academy of Sciences, Vienna BioCenterDr. Bohr‐Gasse 3Vienna1030Austria
| |
Collapse
|
5
|
de Potter B, Raas MWD, Seidl MF, Verrijzer CP, Snel B. Uncoupled evolution of the Polycomb system and deep origin of non-canonical PRC1. Commun Biol 2023; 6:1144. [PMID: 37949928 PMCID: PMC10638273 DOI: 10.1038/s42003-023-05501-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Polycomb group proteins, as part of the Polycomb repressive complexes, are essential in gene repression through chromatin compaction by canonical PRC1, mono-ubiquitylation of histone H2A by non-canonical PRC1 and tri-methylation of histone H3K27 by PRC2. Despite prevalent models emphasizing tight functional coupling between PRC1 and PRC2, it remains unclear whether this paradigm indeed reflects the evolution and functioning of these complexes. Here, we conduct a comprehensive analysis of the presence or absence of cPRC1, nPRC1 and PRC2 across the entire eukaryotic tree of life, and find that both complexes were present in the Last Eukaryotic Common Ancestor (LECA). Strikingly, ~42% of organisms contain only PRC1 or PRC2, showing that their evolution since LECA is largely uncoupled. The identification of ncPRC1-defining subunits in unicellular relatives of animals and fungi suggests ncPRC1 originated before cPRC1, and we propose a scenario for the evolution of cPRC1 from ncPRC1. Together, our results suggest that crosstalk between these complexes is a secondary development in evolution.
Collapse
Affiliation(s)
- Bastiaan de Potter
- Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Utrecht, Netherlands
- Hubrecht institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
| | - Maximilian W D Raas
- Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Utrecht, Netherlands
- Hubrecht institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
| | - Michael F Seidl
- Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Utrecht, Netherlands
| | - C Peter Verrijzer
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
6
|
Chen M, Fan L, Wu G, Wang H, Gu S. Histone methyltransferase enzyme enhancer of zeste homolog 2 counteracts ischemic brain injury via H3K27me3-mediated regulation of PI3K/AKT/mTOR signaling pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:2240-2255. [PMID: 37334851 DOI: 10.1002/tox.23863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Epigenetic histone methylation plays a crucial role in cerebral ischemic injury, particularly in the context of ischemic stroke. However, the complete understanding of regulators involved in histone methylation, such as Enhancer of Zeste Homolog 2 (EZH2), along with their functional effects and underlying mechanisms, remains incomplete. METHODS Here, we employed a rat model of MCAO (Middle cerebral artery occlusion) and an OGD (Oxygen-Glucose Deprivation) model of primary cortical neurons to study the role of EZH2 and H3K27me3 in cerebral ischemia-reperfusion injury. The infarct volume was measured through TTC staining, while cell apoptosis was detected using TUNEL staining. The mRNA expression levels were quantified through quantitative real-time polymerase chain reaction (qPCR), whereas protein expressions were evaluated via western blotting and immunofluorescence experiments. RESULTS The expression levels of EZH2 and H3K27me3 were upregulated in OGD; these expression levels were further enhanced by GSK-J4 but reduced by EPZ-6438 and AKT inhibitor (LY294002) under OGD conditions. Similar trends were observed for mTOR, AKT, and PI3K while contrasting results were noted for UTX and JMJD3. The phosphorylation levels of mTOR, AKT, and PI3K were activated by OGD, further stimulated by GSK-J4, but inhibited by EPZ-6438 and AKT inhibitor. Inhibition of EZH2 or AKT effectively counteracted OGD-/MCAO-induced cell apoptosis. Additionally, inhibition of EZH2 or AKT mitigated MCAO-induced infarct size and neurological deficit in vivo. CONCLUSIONS Collectively, our results demonstrate that EZH2 inhibition exerts a protective effect against ischemic brain injury by modulating the H3K27me3/PI3K/AKT/mTOR signaling pathway. The results provide novel insights into potential therapeutic mechanisms for stroke treatment.
Collapse
Affiliation(s)
- Miao Chen
- Department of Emergency, The First Affiliated Hospital of Hainan Medical University, Haikou, People's Republic of China
| | - Limin Fan
- The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Guoping Wu
- Department of Emergency, Sansha People's Hospital, Sansha, People's Republic of China
| | - Hairong Wang
- Department of Emergency, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Shuo Gu
- Department of Pediatric Neurosurgery, The First Affiliated Hospital of Hainan Medical University, Haikou, People's Republic of China
| |
Collapse
|
7
|
Jamge B, Lorković ZJ, Axelsson E, Osakabe A, Shukla V, Yelagandula R, Akimcheva S, Kuehn AL, Berger F. Histone variants shape chromatin states in Arabidopsis. eLife 2023; 12:RP87714. [PMID: 37467143 PMCID: PMC10393023 DOI: 10.7554/elife.87714] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
How different intrinsic sequence variations and regulatory modifications of histones combine in nucleosomes remain unclear. To test the importance of histone variants in the organization of chromatin we investigated how histone variants and histone modifications assemble in the Arabidopsis thaliana genome. We showed that a limited number of chromatin states divide euchromatin and heterochromatin into several subdomains. We found that histone variants are as significant as histone modifications in determining the composition of chromatin states. Particularly strong associations were observed between H2A variants and specific combinations of histone modifications. To study the role of H2A variants in organizing chromatin states we determined the role of the chromatin remodeler DECREASED IN DNA METHYLATION (DDM1) in the organization of chromatin states. We showed that the loss of DDM1 prevented the exchange of the histone variant H2A.Z to H2A.W in constitutive heterochromatin, resulting in significant effects on the definition and distribution of chromatin states in and outside of constitutive heterochromatin. We thus propose that dynamic exchanges of histone variants control the organization of histone modifications into chromatin states, acting as molecular landmarks.
Collapse
Affiliation(s)
- Bhagyshree Jamge
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenterViennaAustria
- Vienna BioCenterViennaAustria
| | - Zdravko J Lorković
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenterViennaAustria
| | - Elin Axelsson
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenterViennaAustria
| | - Akihisa Osakabe
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenterViennaAustria
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-kuTokyoJapan
- PRESTO, Japan Science and Technology Agency, HonchoKawaguchiJapan
| | - Vikas Shukla
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenterViennaAustria
- Vienna BioCenterViennaAustria
| | - Ramesh Yelagandula
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenterViennaAustria
- Institute of Molecular Biotechnology, IMBA, Dr. Bohr-Gasse 3ViennaAustria
| | - Svetlana Akimcheva
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenterViennaAustria
| | - Annika Luisa Kuehn
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenterViennaAustria
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenterViennaAustria
| |
Collapse
|
8
|
Lee S, Choi J, Park J, Hong CP, Choi D, Han S, Choi K, Roh TY, Hwang D, Hwang I. DDM1-mediated gene body DNA methylation is associated with inducible activation of defense-related genes in Arabidopsis. Genome Biol 2023; 24:106. [PMID: 37147734 PMCID: PMC10161647 DOI: 10.1186/s13059-023-02952-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/24/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Plants memorize previous pathogen attacks and are "primed" to produce a faster and stronger defense response, which is critical for defense against pathogens. In plants, cytosines in transposons and gene bodies are reported to be frequently methylated. Demethylation of transposons can affect disease resistance by regulating the transcription of nearby genes during defense response, but the role of gene body methylation (GBM) in defense responses remains unclear. RESULTS Here, we find that loss of the chromatin remodeler decrease in DNA methylation 1 (ddm1) synergistically enhances resistance to a biotrophic pathogen under mild chemical priming. DDM1 mediates gene body methylation at a subset of stress-responsive genes with distinct chromatin properties from conventional gene body methylated genes. Decreased gene body methylation in loss of ddm1 mutant is associated with hyperactivation of these gene body methylated genes. Knockout of glyoxysomal protein kinase 1 (gpk1), a hypomethylated gene in ddm1 loss-of-function mutant, impairs priming of defense response to pathogen infection in Arabidopsis. We also find that DDM1-mediated gene body methylation is prone to epigenetic variation among natural Arabidopsis populations, and GPK1 expression is hyperactivated in natural variants with demethylated GPK1. CONCLUSIONS Based on our collective results, we propose that DDM1-mediated GBM provides a possible regulatory axis for plants to modulate the inducibility of the immune response.
Collapse
Affiliation(s)
- Seungchul Lee
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Jaemyung Choi
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
- Department of Cell & Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Jihwan Park
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Chang Pyo Hong
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Daeseok Choi
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, 37673, Korea
| | - Soeun Han
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Kyuha Choi
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Tae-Young Roh
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea.
| | - Daehee Hwang
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Ildoo Hwang
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea.
| |
Collapse
|
9
|
Liu W, Lin S, Li L, Tai Z, Liu JX. Zebrafish ELL-associated factors Eaf1/2 modulate erythropoiesis via regulating gata1a expression and WNT signaling to facilitate hypoxia tolerance. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:10. [PMID: 37002435 PMCID: PMC10066051 DOI: 10.1186/s13619-022-00154-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/28/2022] [Indexed: 04/04/2023]
Abstract
EAF1 and EAF2, the eleven-nineteen lysine-rich leukemia (ELL)-associated factors which can assemble to the super elongation complex (AFF1/4, AF9/ENL, ELL, and P-TEFb), are reported to participate in RNA polymerase II to actively regulate a variety of biological processes, including leukemia and embryogenesis, but whether and how EAF1/2 function in hematopoietic system related hypoxia tolerance during embryogenesis remains unclear. Here, we unveiled that deletion of EAF1/2 (eaf1-/- and eaf2-/-) caused reduction in hypoxia tolerance in zebrafish, leading to reduced erythropoiesis during hematopoietic processes. Meanwhile, eaf1-/- and eaf2-/- mutants showed significant reduction in the expression of key transcriptional regulators scl, lmo2, and gata1a in erythropoiesis at both 24 h post fertilization (hpf) and 72 hpf, with gata1a downregulated while scl and lmo2 upregulated at 14 hpf. Mechanistically, eaf1-/- and eaf2-/- mutants exhibited significant changes in the expression of epigenetic modified histones, with a significant increase in the binding enrichment of modified histone H3K27me3 in gata1a promoter rather than scl and lmo2 promoters. Additionally, eaf1-/- and eaf2-/- mutants exhibited a dynamic expression of canonical WNT/β-catenin signaling during erythropoiesis, with significant reduction in p-β-Catenin level and in the binding enrichment of both scl and lmo2 promoters with the WNT transcriptional factor TCF4 at 24 hpf. These findings demonstrate an important role of Eaf1/2 in erythropoiesis in zebrafish and may have shed some light on regeneration medicine for anemia and related diseases and on molecular basis for fish economic or productive traits, such as growth, disease resistance, hypoxia tolerance, and so on.
Collapse
Affiliation(s)
- WenYe Liu
- grid.35155.370000 0004 1790 4137College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, 430070 Wuhan, China
| | - ShuHui Lin
- grid.35155.370000 0004 1790 4137College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, 430070 Wuhan, China
| | - LingYa Li
- grid.35155.370000 0004 1790 4137College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, 430070 Wuhan, China
| | - ZhiPeng Tai
- grid.35155.370000 0004 1790 4137College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, 430070 Wuhan, China
| | - Jing-Xia Liu
- grid.35155.370000 0004 1790 4137College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, 430070 Wuhan, China
| |
Collapse
|
10
|
Wei W, Lu L, Bian XH, Li QT, Han JQ, Tao JJ, Yin CC, Lai YC, Li W, Bi YD, Man WQ, Chen SY, Zhang JS, Zhang WK. Zinc-finger protein GmZF351 improves both salt and drought stress tolerance in soybean. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36866859 DOI: 10.1111/jipb.13474] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Abiotic stress is one of the most important factors reducing soybean yield. It is essential to identify regulatory factors contributing to stress responses. A previous study found that the tandem CCCH zinc-finger protein GmZF351 is an oil level regulator. In this study, we discovered that the GmZF351 gene is induced by stress and that the overexpression of GmZF351 confers stress tolerance to transgenic soybean. GmZF351 directly regulates the expression of GmCIPK9 and GmSnRK, leading to stomata closing, by binding to their promoter regions, which carry two CT(G/C)(T/A)AA elements. Stress induction of GmZF351 is mediated through reduction in the H3K27me3 level at the GmZF351 locus. Two JMJ30-demethylase-like genes, GmJMJ30-1 and GmJMJ30-2, are involved in this demethylation process. Overexpression of GmJMJ30-1/2 in transgenic hairy roots enhances GmZF351 expression mediated by histone demethylation and confers stress tolerance to soybean. Yield-related agronomic traits were evaluated in stable GmZF351-transgenic plants under mild drought stress conditions. Our study reveals a new mode of GmJMJ30-GmZF351 action in stress tolerance, in addition to that of GmZF351 in oil accumulation. Manipulation of the components in this pathway is expected to improve soybean traits and adaptation under unfavorable environments.
Collapse
Affiliation(s)
- Wei Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Long Lu
- Key Lab of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiao-Hua Bian
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qing-Tian Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jia-Qi Han
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Jun Tao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cui-Cui Yin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yong-Cai Lai
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Wei Li
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Ying-Dong Bi
- Institute of Farming and Cultivation, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Wei-Qun Man
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, INASEED, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
11
|
Li L, Chen M, Liu W, Tai P, Liu X, Liu JX. Zebrafish cox17 modulates primitive erythropoiesis via regulation of mitochondrial metabolism to facilitate hypoxia tolerance. FASEB J 2022; 36:e22596. [PMID: 36208295 DOI: 10.1096/fj.202200829r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/31/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022]
Abstract
Cox17 is required in the assembly of mitochondrial intermembrane space (IMS) and Cu metallization of cytochrome C oxidase (CcO) in mitochondria as well as Cu homeostasis in cells. Cox deficiency is associated with hematopoietic diseases such as tubulopathy and leukodystrophy, but whether and how cox17 functions in hematopoiesis are still unknown. Here, we report the effects of zebrafish cox17 deficiency on primitive erythropoiesis, mitochondrial metabolism, and hypoxia tolerance. Cox17-/- larvae were sensitive to hypoxia stress, with reduced primitive erythropoiesis. Meanwhile, cox17-/- mutants showed a significant reduction in the expression of pivotal transcriptional regulators in erythropoiesis, such as scl, lmo2, and gata1a at 14 h post fertilization (hpf), with expression remaining downregulated for scl but upregulated for lmo2 and gata1a at 24 hpf. Mechanistically, cox17-/- mutants showed impaired mitochondrial metabolism, coupled with a significant decrease in the mitochondrial membrane potential, ATP and SAM content, and the ratio of SAM and SAH. Additionally, disrupting mitochondrial metabolism in wild type (WT) larvae treated with carbonyl cyanide 3-chlorophenylhydrazone (CCCP) could mimic the primitive erythropoiesis defects observed in cox17-/- mutants. Moreover, cox17-/- mutants exhibited significantly downregulated WNT signaling and upregulated ER stress, with a significant reduction of beta-Catenin in gata1a+ cells and of binding enrichment in both scl and lmo2 promoters of the WNT transcriptional factor TCF4. This is the first report on the novel linkage of cox17 deficiency with defective primitive erythropoiesis and reduced hypoxia tolerance. This study has shed light on the potential mechanism by which Cox deficiency, especially cox17 deficiency, induces Cu homeostasis imbalance, leading to hematopoietic diseases.
Collapse
Affiliation(s)
- LingYa Li
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - MingYue Chen
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - WenYe Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - PengZhi Tai
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science; Guangzhou Medical University, Guangzhou, China
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
12
|
Forgione I, Muto A, Woloszynska M, Chiappetta AA, Ferrari M, Van Lijsebettens M, Bitonti MB, Bruno L. Epigenetic mechanisms affect the curled leaf phenotype in the hypomethylated ddc mutant of Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111254. [PMID: 35487663 DOI: 10.1016/j.plantsci.2022.111254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/02/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
The ddc mutant of Arabidopsis thaliana is characterized by pleiotropic phenotypic alterations including a curl-shaped leaf, previously explained by disturbed auxin metabolism and transport. The present study was aimed at further explore the molecular bases underlying the abnormal phenotype of the ddc leaf. We demonstrated that genes specifically related to leaf fate commitment and morphogenesis were misexpressed on developing ddc leaves, such as upregulation of CURLY LEAF (CLF) and downregulation of ASYMMETRIC LEAVES2 (AS2), KNOTTED-like gene from A. thaliana (KNAT6), TEOSINTE-LIKE1 CYCLOIDEA and PROLIFERATING CELL FACTOR 2 (TCP2) and others. The CLF gene, encoding a component of Polycomb repressive complex 2 (PRC2) which adds trimethylation marks at Lys27 of histone H3, was overexpressed in the ddc mutant and concomitantly was correlated with DNA methylation-dependent repression of its negative regulator UCL1. KNAT6, encoding a class 1 KNOX homeotic gene, had increased H3K27me3 trimethylation levels, suggesting it is a target gene of the CLF containing PRC2 complex in the ddc mutant. We postulate that different epigenetic mechanisms modulate expression of genes related to auxin pathways as well as gene targets of Polycomb repressive action, during leaf morphogenesis.
Collapse
Affiliation(s)
- Ivano Forgione
- Department of Biology, Ecology and Earth Science, University of Calabria, Ponte P. Bucci, Arcavacata di Rende, 87036 Cosenza, Italy; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| | - Antonella Muto
- Department of Biology, Ecology and Earth Science, University of Calabria, Ponte P. Bucci, Arcavacata di Rende, 87036 Cosenza, Italy.
| | - Magdalena Woloszynska
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Genetics, Faculty of Biology and Animal Sciences, Wroclaw University of Environmental and Life Sciences, ul. Kozuchowska 7, 51-631 Wroclaw, Poland.
| | - Adriana Ada Chiappetta
- Department of Biology, Ecology and Earth Science, University of Calabria, Ponte P. Bucci, Arcavacata di Rende, 87036 Cosenza, Italy.
| | - Michele Ferrari
- Department of Biology, Ecology and Earth Science, University of Calabria, Ponte P. Bucci, Arcavacata di Rende, 87036 Cosenza, Italy.
| | - Mieke Van Lijsebettens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| | - Maria Beatrice Bitonti
- Department of Biology, Ecology and Earth Science, University of Calabria, Ponte P. Bucci, Arcavacata di Rende, 87036 Cosenza, Italy.
| | - Leonardo Bruno
- Department of Biology, Ecology and Earth Science, University of Calabria, Ponte P. Bucci, Arcavacata di Rende, 87036 Cosenza, Italy.
| |
Collapse
|
13
|
Zhang A, Wei Y, Shi Y, Deng X, Gao J, Feng Y, Zheng D, Cheng X, Li Z, Wang T, Wang K, Liu F, Peng R, Zhang W. Profiling of H3K4me3 and H3K27me3 and Their Roles in Gene Subfunctionalization in Allotetraploid Cotton. FRONTIERS IN PLANT SCIENCE 2021; 12:761059. [PMID: 34975944 PMCID: PMC8714964 DOI: 10.3389/fpls.2021.761059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Cotton is an excellent model for studying crop polyploidization and domestication. Chromatin profiling helps to reveal how histone modifications are involved in controlling differential gene expression between A and D subgenomes in allotetraploid cotton. However, the detailed profiling and functional characterization of broad H3K4me3 and H3K27me3 are still understudied in cotton. In this study, we conducted H3K4me3- and H3K27me3-related ChIP-seq followed by comprehensively characterizing their roles in regulating gene transcription in cotton. We found that H3K4me3 and H3K27me3 exhibited active and repressive roles in regulating the expression of genes between A and D subgenomes, respectively. More importantly, H3K4me3 exhibited enrichment level-, position-, and distance-related impacts on expression levels of related genes. Distinct GO term enrichment occurred between A/D-specific and homeologous genes with broad H3K4me3 enrichment in promoters and gene bodies, suggesting that broad H3K4me3-marked genes might have some unique biological functions between A and D subgenome. An anticorrelation between H3K27me3 enrichment and expression levels of homeologous genes was more pronounced in the A subgenome relative to the D subgenome, reflecting distinct enrichment of H3K27me3 in homeologous genes between A and D subgenome. In addition, H3K4me3 and H3K27me3 marks can indirectly influence gene expression through regulatory networks with TF mediation. Thus, our study provides detailed insights into functions of H3K4me3 and H3K27me3 in regulating differential gene expression and subfunctionalization of homeologous genes, therefore serving as a driving force for polyploidization and domestication in cotton.
Collapse
Affiliation(s)
- Aicen Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JCIC-MCP, CIC-MCP, Nanjing Agricultural University, Nanjing, China
| | - Yangyang Wei
- Biological and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Yining Shi
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JCIC-MCP, CIC-MCP, Nanjing Agricultural University, Nanjing, China
| | - Xiaojuan Deng
- College of Agronomy, Xinjiang Agricultural University, Ürümqi, China
| | - Jingjing Gao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JCIC-MCP, CIC-MCP, Nanjing Agricultural University, Nanjing, China
| | - Yilong Feng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JCIC-MCP, CIC-MCP, Nanjing Agricultural University, Nanjing, China
| | - Dongyang Zheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JCIC-MCP, CIC-MCP, Nanjing Agricultural University, Nanjing, China
| | - Xuejiao Cheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JCIC-MCP, CIC-MCP, Nanjing Agricultural University, Nanjing, China
| | - Zhaoguo Li
- Biological and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Tao Wang
- Biological and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Kunbo Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fang Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Renhai Peng
- Biological and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JCIC-MCP, CIC-MCP, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
The Dynamism of Transposon Methylation for Plant Development and Stress Adaptation. Int J Mol Sci 2021; 22:ijms222111387. [PMID: 34768817 PMCID: PMC8583499 DOI: 10.3390/ijms222111387] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Plant development processes are regulated by epigenetic alterations that shape nuclear structure, gene expression, and phenotypic plasticity; these alterations can provide the plant with protection from environmental stresses. During plant growth and development, these processes play a significant role in regulating gene expression to remodel chromatin structure. These epigenetic alterations are mainly regulated by transposable elements (TEs) whose abundance in plant genomes results in their interaction with genomes. Thus, TEs are the main source of epigenetic changes and form a substantial part of the plant genome. Furthermore, TEs can be activated under stress conditions, and activated elements cause mutagenic effects and substantial genetic variability. This introduces novel gene functions and structural variation in the insertion sites and primarily contributes to epigenetic modifications. Altogether, these modifications indirectly or directly provide the ability to withstand environmental stresses. In recent years, many studies have shown that TE methylation plays a major role in the evolution of the plant genome through epigenetic process that regulate gene imprinting, thereby upholding genome stability. The induced genetic rearrangements and insertions of mobile genetic elements in regions of active euchromatin contribute to genome alteration, leading to genomic stress. These TE-mediated epigenetic modifications lead to phenotypic diversity, genetic variation, and environmental stress tolerance. Thus, TE methylation is essential for plant evolution and stress adaptation, and TEs hold a relevant military position in the plant genome. High-throughput techniques have greatly advanced the understanding of TE-mediated gene expression and its associations with genome methylation and suggest that controlled mobilization of TEs could be used for crop breeding. However, development application in this area has been limited, and an integrated view of TE function and subsequent processes is lacking. In this review, we explore the enormous diversity and likely functions of the TE repertoire in adaptive evolution and discuss some recent examples of how TEs impact gene expression in plant development and stress adaptation.
Collapse
|
15
|
Post-Embryonic Phase Transitions Mediated by Polycomb Repressive Complexes in Plants. Int J Mol Sci 2021; 22:ijms22147533. [PMID: 34299153 PMCID: PMC8305008 DOI: 10.3390/ijms22147533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022] Open
Abstract
Correct timing of developmental phase transitions is critical for the survival and fitness of plants. Developmental phase transitions in plants are partially promoted by controlling relevant genes into active or repressive status. Polycomb Repressive Complex1 (PRC1) and PRC2, originally identified in Drosophila, are essential in initiating and/or maintaining genes in repressive status to mediate developmental phase transitions. Our review summarizes mechanisms in which the embryo-to-seedling transition, the juvenile-to-adult transition, and vegetative-to-reproductive transition in plants are mediated by PRC1 and PRC2, and suggests that PRC1 could act either before or after PRC2, or that they could function independently of each other. Details of the exact components of PRC1 and PRC2 in each developmental phase transitions and how they are recruited or removed will need to be addressed in the future.
Collapse
|
16
|
RNA-directed DNA methylation prevents rapid and heritable reversal of transposon silencing under heat stress in Zea mays. PLoS Genet 2021; 17:e1009326. [PMID: 34125827 PMCID: PMC8224964 DOI: 10.1371/journal.pgen.1009326] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/24/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
In large complex plant genomes, RNA-directed DNA methylation (RdDM) ensures that epigenetic silencing is maintained at the boundary between genes and flanking transposable elements. In maize, RdDM is dependent on Mediator of Paramutation1 (Mop1), a gene encoding a putative RNA dependent RNA polymerase. Here we show that although RdDM is essential for the maintenance of DNA methylation of a silenced MuDR transposon in maize, a loss of that methylation does not result in a restoration of activity. Instead, heritable maintenance of silencing is maintained by histone modifications. At one terminal inverted repeat (TIR) of this element, heritable silencing is mediated via histone H3 lysine 9 dimethylation (H3K9me2), and histone H3 lysine 27 dimethylation (H3K27me2), even in the absence of DNA methylation. At the second TIR, heritable silencing is mediated by histone H3 lysine 27 trimethylation (H3K27me3), a mark normally associated with somatically inherited gene silencing. We find that a brief exposure of high temperature in a mop1 mutant rapidly reverses both of these modifications in conjunction with a loss of transcriptional silencing. These reversals are heritable, even in mop1 wild-type progeny in which methylation is restored at both TIRs. These observations suggest that DNA methylation is neither necessary to maintain silencing, nor is it sufficient to initiate silencing once has been reversed. However, given that heritable reactivation only occurs in a mop1 mutant background, these observations suggest that DNA methylation is required to buffer the effects of environmental stress on transposable elements. Most plant genomes are mostly transposable elements (TEs), most of which are held in check by modifications of both DNA and histones. The bulk of silenced TEs are associated with methylated DNA and histone H3 lysine 9 dimethylation (H3K9me2). In contrast, epigenetically silenced genes are often associated with histone lysine 27 trimethylation (H3K27me3). Although stress can affect each of these modifications, plants are generally competent to rapidly reset them following that stress. Here we demonstrate that although DNA methylation is not required to maintain silencing of the MuDR element, it is essential for preventing heat-induced, stable and heritable changes in both H3K9me2 and H3K27me3 at this element, and for concomitant changes in transcriptional activity. These finding suggest that RdDM acts to buffer the effects of heat on silenced transposable elements, and that a loss of DNA methylation under conditions of stress can have profound and long-lasting effects on epigenetic silencing in maize.
Collapse
|
17
|
Perspectives for epigenetic editing in crops. Transgenic Res 2021; 30:381-400. [PMID: 33891288 DOI: 10.1007/s11248-021-00252-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/29/2021] [Indexed: 01/10/2023]
Abstract
Site-specific nucleases (SSNs) have drawn much attention in plant biotechnology due to their ability to drive precision mutagenesis, gene targeting or allele replacement. However, when devoid of its nuclease activity, the underlying DNA-binding activity of SSNs can be used to bring other protein functional domains close to specific genomic sites, thus expanding further the range of applications of the technology. In particular, the addition of functional domains encoding epigenetic effectors and chromatin modifiers to the CRISPR/Cas ribonucleoprotein complex opens the possibility to introduce targeted epigenomic modifications in plants in an easily programmable manner. Here we examine some of the most important agronomic traits known to be controlled epigenetically and review the best studied epigenetic catalytic effectors in plants, such as DNA methylases/demethylases or histone acetylases/deacetylases and their associated marks. We also review the most efficient strategies developed to date to functionalize Cas proteins with both catalytic and non-catalytic epigenetic effectors, and the ability of these domains to influence the expression of endogenous genes in a regulatable manner. Based on these new technical developments, we discuss the possibilities offered by epigenetic editing tools in plant biotechnology and their implications in crop breeding.
Collapse
|
18
|
Rodríguez Lorenzo JL, Hubinský M, Vyskot B, Hobza R. Histone post-translational modifications in Silene latifolia X and Y chromosomes suggest a mammal-like dosage compensation system. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110528. [PMID: 32900432 DOI: 10.1016/j.plantsci.2020.110528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Silene latifolia is a model organism to study evolutionary young heteromorphic sex chromosome evolution in plants. Previous research indicates a Y-allele gene degeneration and a dosage compensation system already operating. Here, we propose an epigenetic approach based on analysis of several histone post-translational modifications (PTMs) to find the first epigenetic hints of the X:Y sex chromosome system regulation in S. latifolia. Through chromatin immunoprecipitation we interrogated six genes from X and Y alleles. Several histone PTMS linked to DNA methylation and transcriptional repression (H3K27me3, H3K23me, H3K9me2 and H3K9me3) and to transcriptional activation (H3K4me3 and H4K5, 8, 12, 16ac) were used. DNA enrichment (Immunoprecipitated DNA/input DNA) was analyzed and showed three main results: (i) promoters of the Y allele are associated with heterochromatin marks, (ii) promoters of the X allele in males are associated with activation of transcription marks and finally, (iii) promoters of X alleles in females are associated with active and repressive marks. Our finding indicates a transcription activation of X allele and transcription repression of Y allele in males. In females we found a possible differential regulation (up X1, down X2) of each female X allele. These results agree with the mammal-like epigenetic dosage compensation regulation.
Collapse
Affiliation(s)
- José Luis Rodríguez Lorenzo
- The Czech Academy of Sciences, Institute of Biophysics v.v.i., Department of Plant Developmental Genetics, Královopolská 135, 612 65, Brno, Czech Republic.
| | - Marcel Hubinský
- The Czech Academy of Sciences, Institute of Biophysics v.v.i., Department of Plant Developmental Genetics, Královopolská 135, 612 65, Brno, Czech Republic
| | - Boris Vyskot
- The Czech Academy of Sciences, Institute of Biophysics v.v.i., Department of Plant Developmental Genetics, Královopolská 135, 612 65, Brno, Czech Republic
| | - Roman Hobza
- The Czech Academy of Sciences, Institute of Biophysics v.v.i., Department of Plant Developmental Genetics, Královopolská 135, 612 65, Brno, Czech Republic
| |
Collapse
|
19
|
Li Z, Jiang G, Liu X, Ding X, Zhang D, Wang X, Zhou Y, Yan H, Li T, Wu K, Jiang Y, Duan X. Histone demethylase SlJMJ6 promotes fruit ripening by removing H3K27 methylation of ripening-related genes in tomato. THE NEW PHYTOLOGIST 2020; 227:1138-1156. [PMID: 32255501 DOI: 10.1111/nph.16590] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/27/2020] [Indexed: 05/22/2023]
Abstract
Fruit ripening is governed by a complex regulatory network. Reversible histone methylation and demethylation regulate chromatin structure and gene expression. However, little is known about the involvement of histone demethylases in regulating fruit ripening. Here, we found that the tomato (Solanum lycopersicum) SlJMJ6 encodes a histone lysine demethylase that specifically demethylates H3K27 methylation. Overexpression of SlJMJ6 accelerates tomato fruit ripening, which is associated with the upregulated expression of a large number of ripening-related genes. Integrated analysis of RNA-seq and chromatin immunoprecipitation followed by sequencing identified 32 genes directly targeted by SlJMJ6 and transcriptionally upregulated with decreased H3K27m3 in SlJMJ6-overexpressed fruit. Numerous SlJMJ6-regulated genes are involved in transcription regulation, ethylene biosynthesis, cell wall degradation and hormone signaling. Eleven ripening-related genes including RIPENING INHIBITOR (RIN), 1-aminocyclopropane 1-carboxylate synthase-4 (ACS4), 1-aminocyclopropane-1-carboxylate oxidase 1 (ACO1), pectate lyase (PL) and beta-galactosidase 4 (TBG4), and a DNA demethylase DML2, were confirmed to be regulated directly by SlJMJ6 through removing H3K27me3. Our results demonstrate that SlJMJ6 is a ripening-prompting H3K27me3 demethylase that activates the expression of the ripening-related genes by modulating H3K27me3, thereby facilitating tomato fruit ripening. Our work also reveals a novel link between histone demethylation and DNA demethylation in regulating fruit ripening. To our knowledge, this is the first report of the involvement of a histone lysine demethylase in the regulation of fruit ripening.
Collapse
Affiliation(s)
- Zhiwei Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoxiang Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xuncheng Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Science, Guangzhou, 510650, China
| | - Xiaochun Ding
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Dandan Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xiaowan Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yijie Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huiling Yan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Taotao Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Keqiang Wu
- Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Yueming Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Science, Guangzhou, 510650, China
| | - Xuewu Duan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Science, Guangzhou, 510650, China
| |
Collapse
|
20
|
Qiu Y. Regulation of PIF4-mediated thermosensory growth. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 297:110541. [PMID: 32563452 DOI: 10.1016/j.plantsci.2020.110541] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/01/2020] [Accepted: 05/26/2020] [Indexed: 05/15/2023]
Abstract
Ambient temperature has profound impacts on almost every aspect of plant growth and development, including seed germination, stem and petiole elongation, leaf movement, stomata development, flowering, and pathogen defense. Although the signal transduction pathways underlying plant responses to extreme cold and heat temperatures have been well studied, our understanding, at the molecular level, of how plants adjust phenotypic plasticity in response to nonstressful ambient temperature is still rudimentary. This review summarizes studies related to PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), the cardinal regulator of thermoresponsive growth in the model dicotyledonous plant Arabidopsis thaliana, emphasizing recent progress in the light-quality- and photoperiod-dependent regulation of PIF4-mediated thermomorphogenesis.
Collapse
Affiliation(s)
- Yongjian Qiu
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA.
| |
Collapse
|
21
|
Zhang C, Wang H, Xu Y, Zhang S, Wang J, Hu B, Hou X, Li Y, Liu T. Enhanced Relative Electron Transport Rate Contributes to Increased Photosynthetic Capacity in Autotetraploid Pak Choi. PLANT & CELL PHYSIOLOGY 2020; 61:761-774. [PMID: 31904850 DOI: 10.1093/pcp/pcz238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
Autopolyploids often show growth advantages over their diploid progenitors because of their increased photosynthetic activity; however, the underlying molecular basis of such mechanism remains elusive. In this study, we aimed to characterize autotetraploid pak choi (Brassica rapa ssp. chinensis) at the physiological, cellular and molecular levels. Autotetraploid pak choi has thicker leaves than its diploid counterparts, with relatively larger intercellular spaces and cell size and greater grana thylakoid height. Photosynthetic data showed that the relative electron transport rate (rETR) was markedly higher in autotetraploid than in diploid pak choi. Transcriptomic data revealed that the expressions of genes involved in 'photosynthesis' biological process and 'thylakoids' cellular component were mainly regulated in autotetraploids. Overall, our findings suggested that the increased rETR in the thylakoids contributed to the increased photosynthetic capacity of autotetraploid leaves. Furthermore, we found that the enhanced rETR is associated with increased BrPetC expression, which is likely altered by histone modification. The ectopic expression of BrPetC in Arabidopsis thaliana led to increased rETR and biomass, which were decreased in BrPetC-silenced pak choi. Autotetraploid pak choi also shows altered hormone levels, which was likely responsible for the increased drought resistance and the impaired powdery mildew resistance of this lineage. Our findings further our understanding on how autotetraploidy provides growth advantages to plants.
Collapse
Affiliation(s)
- Changwei Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Department of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Huiyu Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Department of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanyuan Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Department of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuning Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Department of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianjun Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Department of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Bing Hu
- Department of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Department of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Department of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Department of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
22
|
Pu J, Li T, Liu N, Luo C, Quan Z, Li L, Wu X. PLCε knockdown enhances the radiosensitivity of castration‑resistant prostate cancer via the AR/PARP1/DNA‑PKcs axis. Oncol Rep 2020; 43:1397-1412. [PMID: 32323799 PMCID: PMC7108056 DOI: 10.3892/or.2020.7520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy (RT) has been used as a therapeutic option for treatment of prostate cancer (PCa) for a number of years; however, patients frequently develop RT resistance, particularly in castration-resistant PCa (CRPC), although the underlying mechanisms remain unknown. Understanding the underlying mechanism of RT resistance in CRPC may potentially highlight novel targets to improve therapeutic options for patients with PCa. In the present study, the expression levels of phospholipase Cε (PLCε), androgen receptor (AR) and DNA-dependent protein kinase catalytic subunit (PKcs) were examined in PCa tissue samples and PCa cells, and the effects of PLCε knockdown on AR and DNA damage repair (DDR)-related molecules were determined. The association between PLCε, AR and Poly (ADP-ribose) polymerase 1 (PARP1), as well as their respective roles in radiation resistance, were assessed using gene knockdown and pharmaceutical inhibitors or activators. A chromatin immunoprecipitation assay was used to determine the epigenetic regulatory effects of PLCε on PARP1. Animal experiments were performed to assess whether the mechanisms observed in vitro could be replicated in vivo. The expression levels of PLCε, AR and DNA-PKcs were significantly upregulated in PCa, particularly in CRPC. PLCε knockdown reduced the viability and increased apoptosis of cells subjected to radiation. Additionally, PLCε deficiency suppressed DDR progression by downregulating an AR and PARP1 positive feedback loop and the associated downstream molecules following radiation. PLCε depletion also increased the presence of histone H3 lysine 27 trimethylation in the PARP1 promoter region, suggesting increased methylation of the PARP1 gene and thus resulting in reduced expression of PARP1. In vivo, PLCε knockdown significantly potentiated the effects of radiation on tumor growth. Taken together, the results of the present study demonstrated that PLCε knockdown enhanced the radiosensitivity of CRPC by downregulating the AR/PARP1/DNA-PKcs axis.
Collapse
Affiliation(s)
- Jun Pu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ting Li
- Key Laboratory of Diagnostics Medicine Designated by The Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Nanjing Liu
- Key Laboratory of Diagnostics Medicine Designated by The Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chunli Luo
- Key Laboratory of Diagnostics Medicine Designated by The Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhen Quan
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Luo Li
- Key Laboratory of Diagnostics Medicine Designated by The Ministry of Education, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaohou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
23
|
Shu J, Chen C, Thapa RK, Bian S, Nguyen V, Yu K, Yuan Z, Liu J, Kohalmi SE, Li C, Cui Y. Genome-wide occupancy of histone H3K27 methyltransferases CURLY LEAF and SWINGER in Arabidopsis seedlings. PLANT DIRECT 2019; 3:e00100. [PMID: 31245749 PMCID: PMC6508855 DOI: 10.1002/pld3.100] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 05/25/2023]
Abstract
The Polycomb Group (PcG) proteins form two protein complexes, PcG Repressive Complex 1 (PRC1) and PRC2, which are key epigenetic regulators in eukaryotes. PRC2 represses gene expression by catalyzing the trimethylation of histone H3 lysine 27 (H3K27me3). In Arabidopsis (Arabidopsis thaliana), CURLY LEAF (CLF) and SWINGER (SWN) are two major H3K27 methyltransferases and core components of PRC2, playing essential roles in plant growth and development. Despite their importance, genome-wide binding profiles of CLF and SWN have not been determined and compared yet. In this study, we generated transgenic lines expressing GFP-tagged CLF/SWN under their respective native promoters and used them for ChIP-seq analyses to profile the genome-wide distributions of CLF and SWN in Arabidopsis seedlings. We also profiled and compared the global H3K27me3 levels in wild-type (WT) and PcG mutants (clf, swn, and clf swn). Our data show that CLF and SWN bind to almost the same set of genes, except that SWN has a few hundred more targets. Two short DNA sequences, the GAGA-like and Telo-box-like motifs, were found enriched in the CLF and SWN binding regions. The H3K27me3 levels in clf, but not in swn, were markedly reduced compared with WT; and the mark was undetectable in the clf swn double mutant. Further, we profiled the transcriptomes in clf, swn, and clf swn, and compared that with WT. Thus this work provides a useful resource for the plant epigenetics community for dissecting the functions of PRC2 in plant growth and development.
Collapse
Affiliation(s)
- Jie Shu
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyWestern UniversityLondonOntarioCanada
| | - Chen Chen
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyWestern UniversityLondonOntarioCanada
| | - Raj Kumar Thapa
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyWestern UniversityLondonOntarioCanada
| | - Shaomin Bian
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- College of Plant ScienceJilin UniversityChangchunChina
| | - Vi Nguyen
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
| | - Kangfu Yu
- Harrow Research and Development CentreAgriculture and Agri‐Food CanadaHarrowOntarioCanada
| | - Ze‐Chun Yuan
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
| | - Jun Liu
- Guangdong Academy of Agricultural SciencesGuangzhouChina
| | | | - Chenlong Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Yuhai Cui
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyWestern UniversityLondonOntarioCanada
| |
Collapse
|
24
|
Göbel U, Arce AL, He F, Rico A, Schmitz G, de Meaux J. Robustness of Transposable Element Regulation but No Genomic Shock Observed in Interspecific Arabidopsis Hybrids. Genome Biol Evol 2018; 10:1403-1415. [PMID: 29788048 PMCID: PMC6007786 DOI: 10.1093/gbe/evy095] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2018] [Indexed: 12/23/2022] Open
Abstract
The merging of two divergent genomes in a hybrid is believed to trigger a “genomic shock”, disrupting gene regulation and transposable element (TE) silencing. Here, we tested this expectation by comparing the pattern of expression of transposable elements in their native and hybrid genomic context. For this, we sequenced the transcriptome of the Arabidopsis thaliana genotype Col-0, the A. lyrata genotype MN47 and their F1 hybrid. Contrary to expectations, we observe that the level of TE expression in the hybrid is strongly correlated to levels in the parental species. We detect that at most 1.1% of expressed transposable elements belonging to two specific subfamilies change their expression level upon hybridization. Most of these changes, however, are of small magnitude. We observe that the few hybrid-specific modifications in TE expression are more likely to occur when TE insertions are close to genes. In addition, changes in epigenetic histone marks H3K9me2 and H3K27me3 following hybridization do not coincide with TEs with changed expression. Finally, we further examined TE expression in parents and hybrids exposed to severe dehydration stress. Despite the major reorganization of gene and TE expression by stress, we observe that hybridization does not lead to increased disorganization of TE expression in the hybrid. Although our study did not examine TE transposition activity in hybrids, the examination of the transcriptome shows that TE expression is globally robust to hybridization. The term “genomic shock” is perhaps not appropriate to describe transcriptional modification in a viable hybrid merging divergent genomes.
Collapse
Affiliation(s)
- Ulrike Göbel
- Botanical Institute, University of Cologne, Germany
| | - Agustin L Arce
- Laboratorio de Biología del ARN, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), 3000 Santa Fe, Argentina
| | - Fei He
- Botanical Institute, University of Cologne, Germany
| | - Alain Rico
- Thermo Fisher Scientific, Villebon-sur-Yvette, France
| | | | | |
Collapse
|
25
|
Yan W, Chen D, Smaczniak C, Engelhorn J, Liu H, Yang W, Graf A, Carles CC, Zhou DX, Kaufmann K. Dynamic and spatial restriction of Polycomb activity by plant histone demethylases. NATURE PLANTS 2018; 4:681-689. [PMID: 30104650 DOI: 10.1038/s41477-018-0219-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 07/12/2018] [Indexed: 05/23/2023]
Abstract
Targeted changes in chromatin state at thousands of genes are central to eukaryotic development. RELATIVE OF EARLY FLOWERING 6 (REF6) is a Jumonji-type histone demethylase that counteracts Polycomb repressive complex 2 (PRC2)-mediated gene silencing in plants and was reported to select its binding sites in a direct, sequence-specific manner1-3. Here we show that REF6 and its two close paralogues determine spatial 'boundaries' of the repressive histone H3K27me3 mark in the genome and control the tissue-specific release from PRC2-mediated gene repression. Targeted mutagenesis revealed that these histone demethylases display pleiotropic, redundant functions in plant development, several of which depend on trans factor-mediated recruitment. Thus, Jumonji-type histone demethylases restrict repressive chromatin domains and contribute to tissue-specific gene activation via complementary targeting mechanisms.
Collapse
Affiliation(s)
- Wenhao Yan
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Dijun Chen
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Cezary Smaczniak
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Engelhorn
- LPCV, CNRS, CEA, INRA, Université Grenoble Alpes, Grenoble, France
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Haiyang Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Wenjing Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Alexander Graf
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Cristel C Carles
- LPCV, CNRS, CEA, INRA, Université Grenoble Alpes, Grenoble, France
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Institute Plant Science Paris-Saclay (IPS2), CNRS, INRA, Université Paris-sud 11, Université Paris-Saclay, Orsay, France
| | - Kerstin Kaufmann
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
26
|
Huan Q, Mao Z, Chong K, Zhang J. Global analysis of H3K4me3/H3K27me3 in Brachypodium distachyon reveals VRN3 as critical epigenetic regulation point in vernalization and provides insights into epigenetic memory. THE NEW PHYTOLOGIST 2018; 219:1373-1387. [PMID: 30063801 DOI: 10.1111/nph.15288] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 05/20/2018] [Indexed: 05/21/2023]
Abstract
Vernalization, the requirement of plants for long-term exposure to low environmental temperature for flowering, is an epigenetic phenomenon. Histone modification regulation has been revealed in vernalization, but is limited to key genes. Now, we know that VRN1 is epigenetically critical for monocots. Genome-wide analysis is still unavailable, however. We performed chromatin immunoprecipitation-sequencing for H3K4me3/H3K27me3 in Brachypodium distachyon to obtain a global view of histone modifications in vernalization on a genome-wide scale and for different pathways/genes. Our data showed that H3K4me3 and H3K27me3 play distinct roles in vernalization. Unlike H3K4me3, H3K27me3 exhibited regional regulation, showed main regulation targets in vernalization and contributed to epigenetic memory. For genes in four flowering regulation pathways, only FT2 (functional ortholog of VRN3 in B. distachyon) and VRN1 showed coordinated changes in H3K4me3/H3K27me3. The epigenetic response at VRN3 was weaker under short-day than under long-day conditions. VRN3 was revealed as an epigenetic regulation point integrating vernalization and day length signals. We globally identified genes maintaining vernalization-induced epigenetic changes. Most of these genes showed dose-dependent vernalization responses, revealing a quantitative 'recording system' for vernalization. Our studies shed light on the epigenetic role of VRN3 and H3K4me3/H3K27me3 in vernalization and reveal genes underlying epigenetic memory, laying the foundation for further study.
Collapse
Affiliation(s)
- Qing Huan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhiwei Mao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jingyu Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
27
|
Eimer H, Sureshkumar S, Singh Yadav A, Kraupner-Taylor C, Bandaranayake C, Seleznev A, Thomason T, Fletcher SJ, Gordon SF, Carroll BJ, Balasubramanian S. RNA-Dependent Epigenetic Silencing Directs Transcriptional Downregulation Caused by Intronic Repeat Expansions. Cell 2018; 174:1095-1105.e11. [PMID: 30057112 DOI: 10.1016/j.cell.2018.06.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 04/20/2018] [Accepted: 06/22/2018] [Indexed: 01/07/2023]
Abstract
Transcriptional downregulation caused by intronic triplet repeat expansions underlies diseases such as Friedreich's ataxia. This downregulation of gene expression is coupled with epigenetic changes, but the underlying mechanisms are unknown. Here, we show that an intronic GAA/TTC triplet expansion within the IIL1 gene of Arabidopsis thaliana results in accumulation of 24-nt short interfering RNAs (siRNAs) and repressive histone marks at the IIL1 locus, which in turn causes its transcriptional downregulation and an associated phenotype. Knocking down DICER LIKE-3 (DCL3), which produces 24-nt siRNAs, suppressed transcriptional downregulation of IIL1 and the triplet expansion-associated phenotype. Furthermore, knocking down additional components of the RNA-dependent DNA methylation (RdDM) pathway also suppressed both transcriptional downregulation of IIL1 and the repeat expansion-associated phenotype. Thus, our results show that triplet repeat expansions can lead to local siRNA biogenesis, which in turn downregulates transcription through an RdDM-dependent epigenetic modification.
Collapse
Affiliation(s)
- Hannes Eimer
- School of Biological Sciences, Monash University, Clayton Campus, VIC 3800, Australia
| | - Sridevi Sureshkumar
- School of Biological Sciences, Monash University, Clayton Campus, VIC 3800, Australia
| | - Avilash Singh Yadav
- School of Biological Sciences, Monash University, Clayton Campus, VIC 3800, Australia
| | | | - Champa Bandaranayake
- School of Biological Sciences, Monash University, Clayton Campus, VIC 3800, Australia
| | - Andrei Seleznev
- School of Biological Sciences, Monash University, Clayton Campus, VIC 3800, Australia
| | - Tamblyn Thomason
- School of Biological Sciences, Monash University, Clayton Campus, VIC 3800, Australia
| | - Stephen J Fletcher
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia QLD 4072, Australia
| | | | - Bernard J Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia QLD 4072, Australia
| | | |
Collapse
|
28
|
Carter B, Bishop B, Ho KK, Huang R, Jia W, Zhang H, Pascuzzi PE, Deal RB, Ogas J. The Chromatin Remodelers PKL and PIE1 Act in an Epigenetic Pathway That Determines H3K27me3 Homeostasis in Arabidopsis. THE PLANT CELL 2018; 30:1337-1352. [PMID: 29802212 PMCID: PMC6048792 DOI: 10.1105/tpc.17.00867] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 05/07/2018] [Accepted: 05/24/2018] [Indexed: 05/20/2023]
Abstract
Selective, tissue-specific gene expression is facilitated by the epigenetic modification H3K27me3 (trimethylation of lysine 27 on histone H3) in plants and animals. Much remains to be learned about how H3K27me3-enriched chromatin states are constructed and maintained. Here, we identify a genetic interaction in Arabidopsis thaliana between the chromodomain helicase DNA binding chromatin remodeler PICKLE (PKL), which promotes H3K27me3 enrichment, and the SWR1-family remodeler PHOTOPERIOD INDEPENDENT EARLY FLOWERING1 (PIE1), which incorporates the histone variant H2A.Z. Chromatin immunoprecipitation-sequencing and RNA-sequencing reveal that PKL, PIE1, and the H3K27 methyltransferase CURLY LEAF act in a common gene expression pathway and are required for H3K27me3 levels genome-wide. Additionally, H3K27me3-enriched genes are largely a subset of H2A.Z-enriched genes, further supporting the functional linkage between these marks. We also found that recombinant PKL acts as a prenucleosome maturation factor, indicating that it promotes retention of H3K27me3. These data support the existence of an epigenetic pathway in which PIE1 promotes H2A.Z, which in turn promotes H3K27me3 deposition. After deposition, PKL promotes retention of H3K27me3 after DNA replication and/or transcription. Our analyses thus reveal roles for H2A.Z and ATP-dependent remodelers in construction and maintenance of H3K27me3-enriched chromatin in plants.
Collapse
Affiliation(s)
- Benjamin Carter
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Brett Bishop
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Kwok Ki Ho
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Ru Huang
- Shanghai Center for Plant Stress Biology, Songjiang District, Shanghai 201602, China
| | - Wei Jia
- Shanghai Center for Plant Stress Biology, Songjiang District, Shanghai 201602, China
| | - Heng Zhang
- Shanghai Center for Plant Stress Biology, Songjiang District, Shanghai 201602, China
| | - Pete E Pascuzzi
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
- Purdue University Libraries, Purdue University, West Lafayette, Indiana 47907
| | - Roger B Deal
- Department of Biology, Emory University, Atlanta, Georgia 30322
| | - Joe Ogas
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
29
|
Dorokhov YL, Sheshukova EV, Komarova TV. Methanol in Plant Life. FRONTIERS IN PLANT SCIENCE 2018; 9:1623. [PMID: 30473703 PMCID: PMC6237831 DOI: 10.3389/fpls.2018.01623] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/18/2018] [Indexed: 05/19/2023]
Abstract
Until recently, plant-emitted methanol was considered a biochemical by-product, but studies in the last decade have revealed its role as a signal molecule in plant-plant and plant-animal communication. Moreover, methanol participates in metabolic biochemical processes during growth and development. The purpose of this review is to determine the impact of methanol on the growth and immunity of plants. Plants generate methanol in the reaction of the demethylation of macromolecules including DNA and proteins, but the main source of plant-derived methanol is cell wall pectins, which are demethylesterified by pectin methylesterases (PMEs). Methanol emissions increase in response to mechanical wounding or other stresses due to damage of the cell wall, which is the main source of methanol production. Gaseous methanol from the wounded plant induces defense reactions in intact leaves of the same and neighboring plants, activating so-called methanol-inducible genes (MIGs) that regulate plant resistance to biotic and abiotic factors. Since PMEs are the key enzymes in methanol production, their expression increases in response to wounding, but after elimination of the stress factor effects, the plant cell should return to the original state. The amount of functional PMEs in the cell is strictly regulated at both the gene and protein levels. There is negative feedback between one of the MIGs, aldose epimerase-like protein, and PME gene transcription; moreover, the enzymatic activity of PMEs is modulated and controlled by PME inhibitors (PMEIs), which are also induced in response to pathogenic attack.
Collapse
Affiliation(s)
- Yuri L. Dorokhov
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- *Correspondence: Yuri L. Dorokhov,
| | | | - Tatiana V. Komarova
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
30
|
Large-scale heterochromatin remodeling linked to overreplication-associated DNA damage. Proc Natl Acad Sci U S A 2016; 114:406-411. [PMID: 28028228 DOI: 10.1073/pnas.1619774114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Previously, we have shown that loss of the histone 3 lysine 27 (H3K27) monomethyltransferases ARABIDOPSIS TRITHORAX-RELATED 5 (ATXR5) and ATXR6 (ATXR6) results in the overreplication of heterochromatin. Here we show that the overreplication results in DNA damage and extensive chromocenter remodeling into unique structures we have named "overreplication-associated centers" (RACs). RACs have a highly ordered structure with an outer layer of condensed heterochromatin, an inner layer enriched in the histone variant H2AX, and a low-density core containing foci of phosphorylated H2AX (a marker of double-strand breaks) and the DNA-repair enzyme RAD51. atxr5,6 mutants are strongly affected by mutations in DNA repair, such as ATM and ATR. Because of its dense packaging and repetitive DNA sequence, heterochromatin is a challenging environment in which to repair DNA damage. Previous work in animals has shown that heterochromatic breaks are translocated out of the heterochromatic domain for repair. Our results show that atxr5,6 mutants use a variation on this strategy for repairing heterochromatic DNA damage. Rather than being moved to adjacent euchromatic regions, as in animals, heterochromatin undergoes large-scale remodeling to create a compartment with low chromatin density.
Collapse
|
31
|
Abstract
How epigenetic regulators find their specific targets remains a challenging question. Two parallel studies show that REF6, a plant H3K27me3 demethylase, binds a specific DNA motif via its zinc-finger domains and recruits the SWI/SNF-type ATPase BRAHMA, demonstrating a sequence-specific recruitment mechanism for a chromatin-modifying complex.
Collapse
Affiliation(s)
- Iva Mozgova
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and the Linnean Center for Plant Biology, Uppsala, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and the Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
32
|
Zemlyanskaya EV, Levitsky VG, Oshchepkov DY, Grosse I, Mironova VV. The Interplay of Chromatin Landscape and DNA-Binding Context Suggests Distinct Modes of EIN3 Regulation in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:2044. [PMID: 28119721 PMCID: PMC5220190 DOI: 10.3389/fpls.2016.02044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/21/2016] [Indexed: 05/08/2023]
Abstract
The plant hormone ethylene regulates numerous developmental processes and stress responses. Ethylene signaling proceeds via a linear pathway, which activates transcription factor (TF) EIN3, a primary transcriptional regulator of ethylene response. EIN3 influences gene expression upon binding to a specific sequence in gene promoters. This interaction, however, might be considerably affected by additional co-factors. In this work, we perform whole genome bioinformatics study to identify the impact of epigenetic factors in EIN3 functioning. The analysis of publicly available ChIP-Seq data on EIN3 binding in Arabidopsis thaliana showed bimodality of distribution of EIN3 binding regions (EBRs) in gene promoters. Besides a sharp peak in close proximity to transcription start site, which is a common binding region for a wide variety of TFs, we found an additional extended peak in the distal promoter region. We characterized all EBRs with respect to the epigenetic status appealing to previously published genome-wide map of nine chromatin states in A. thaliana. We found that the implicit distal peak was associated with a specific chromatin state (referred to as chromatin state 4 in the primary source), which was just poorly represented in the pronounced proximal peak. Intriguingly, EBRs corresponding to this chromatin state 4 were significantly associated with ethylene response, unlike the others representing the overwhelming majority of EBRs related to the explicit proximal peak. Moreover, we found that specific EIN3 binding sequences predicted with previously described model were enriched in the EBRs mapped to the chromatin state 4, but not to the rest ones. These results allow us to conclude that the interplay of genetic and epigenetic factors might cause the distinct modes of EIN3 regulation.
Collapse
Affiliation(s)
- Elena V. Zemlyanskaya
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), NovosibirskRussia
- Department of Natural Sciences, Novosibirsk State UniversityNovosibirsk, Russia
- *Correspondence: Elena V. Zemlyanskaya,
| | - Victor G. Levitsky
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), NovosibirskRussia
- Department of Natural Sciences, Novosibirsk State UniversityNovosibirsk, Russia
| | - Dmitry Y. Oshchepkov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), NovosibirskRussia
| | - Ivo Grosse
- Department of Natural Sciences, Novosibirsk State UniversityNovosibirsk, Russia
- Institute of Computer Science, Martin Luther University Halle-WittenbergHalle(Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzig, Germany
| | - Victoria V. Mironova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), NovosibirskRussia
- Department of Natural Sciences, Novosibirsk State UniversityNovosibirsk, Russia
| |
Collapse
|