1
|
Carlotto N, Robles-Luna G, Nedo A, Wang X, Attorresi A, Caplan J, Lee JY, Kobayashi K. Evidence for reduced plasmodesmata callose accumulation in Nicotiana benthamiana leaves with increased symplastic cell-to-cell communication caused by RNA processing defects of chloroplasts. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:58-64. [PMID: 35313145 DOI: 10.1016/j.plaphy.2022.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/09/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
RNA processing defects in chloroplasts were previously associated with increased plasmodesmata (PD) permeability. However, the underlying mechanisms for such association are still unknown. To provide insight into this, we silenced the expression of chloroplast-located INCREASED SIZE EXCLUSION LIMIT 2 (ISE2) RNA helicase in Nicotiana benthamiana leaves and determined an increase in PD permeability which is caused by a reduction of PD callose deposition. Moreover, the silencing of two other nuclear genes encoding chloroplastic enzymes involved in RNA processing, RH3, and CLPR2, also increased PD permeability accompanied by reduced callose accumulation at PD. In addition, we quantified the plastidic hydrogen peroxide levels using the chloroplast-targeted fluorescent sensor, HyPer, in ISE2, RH3, and CLPR2 silenced N. benthamiana leaves. The levels of chloroplastic hydrogen peroxide were not correlated with the increased cell-to-cell movement of the marker protein GFP2X. We, therefore, propose that defects in chloroplast RNA metabolism mediate PD gating by suppressing PD callose deposition, and hydrogen peroxide levels in the organelles are not directly linked to this process.
Collapse
Affiliation(s)
- Nicolas Carlotto
- Laboratorio de Agrobiotecnología, Departamento de Fisiología y Biología Molecular y Celular - Instituto de Biodiversidad y Biología Experimental Aplicada, FCEN UBA - CONICET, Ciudad Autónoma de Buenos Aires, C1428, EGA, Argentina
| | - Gabriel Robles-Luna
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, 19711, USA
| | - Alexander Nedo
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, 19711, USA
| | - Xu Wang
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, 19711, USA; Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Alejandra Attorresi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) -CONICET- Partner Institute of the Max Planck Society, Ciudad Autónoma de Buenos Aires, C1425, FQD, Argentina
| | - Jeffrey Caplan
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, 19711, USA
| | - Jung Y Lee
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, 19711, USA
| | - Ken Kobayashi
- Laboratorio de Agrobiotecnología, Departamento de Fisiología y Biología Molecular y Celular - Instituto de Biodiversidad y Biología Experimental Aplicada, FCEN UBA - CONICET, Ciudad Autónoma de Buenos Aires, C1428, EGA, Argentina.
| |
Collapse
|
2
|
Reagan BC, Dunlap JR, Burch-Smith TM. Focused Ion Beam-Scanning Electron Microscopy for Investigating Plasmodesmal Densities. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2457:109-123. [PMID: 35349135 DOI: 10.1007/978-1-0716-2132-5_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Plasmodesmata (PD) facilitate the exchange of nutrients and signaling molecules between neighboring plant cells, and they are therefore essential for proper growth and development. PD have been studied extensively in efforts to elucidate the ultrastructure of individual PD nanopores and the distribution of PD in a variety of cell walls. These studies often involved the use of serial ultrathin sections and manual quantification of PD by transmission electron microscopy (TEM). In recent years, a variety of techniques that offer more amenable approaches for quantifying PD distribution have been reported. Here, we describe the quantification of PD densities using the serial scanning electron microscopy technique called focused ion beam-scanning electron microscopy (FIB-SEM). For this, resin-embedded samples prepared by standard TEM methods undergo successive rounds of imaging by SEM interspersed with milling of the sample surface by a focused beam of gallium ions to reveal a new surface. In this way, the details of the sample are sequentially revealed and imaged. Over the course of a few hours, repetitive milling and imaging facilitates the automated collection of nanometer-resolution data of several μm of sample depth. FIB-SEM can be targeted to interrogate specific cell walls and cell wall junctions, and the subsequent three-dimensional renderings of the data can be used to visualize the ultrastructural details of the sample. PD densities can then be rapidly quantified by calculating the number of PD per μm2 of cell wall observed in the renderings.
Collapse
Affiliation(s)
- Brandon C Reagan
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA.,Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - John R Dunlap
- The Joint Institute for Advanced Materials, University of Tennessee, Knoxville, TN, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA. .,Donald Danforth Plant Science Center, Saint Louis, MO, USA.
| |
Collapse
|
3
|
Voitsekhovskaja OV, Melnikova AN, Demchenko KN, Ivanova AN, Dmitrieva VA, Maksimova AI, Lohaus G, Tomos AD, Tyutereva EV, Koroleva OA. Leaf Epidermis: The Ambiguous Symplastic Domain. FRONTIERS IN PLANT SCIENCE 2021; 12:695415. [PMID: 34394148 PMCID: PMC8358407 DOI: 10.3389/fpls.2021.695415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
The ability to develop secondary (post-cytokinetic) plasmodesmata (PD) is an important evolutionary advantage that helps in creating symplastic domains within the plant body. Developmental regulation of secondary PD formation is not completely understood. In flowering plants, secondary PD occur exclusively between cells from different lineages, e.g., at the L1/L2 interface within shoot apices, or between leaf epidermis (L1-derivative), and mesophyll (L2-derivative). However, the highest numbers of secondary PD occur in the minor veins of leaf between bundle sheath cells and phloem companion cells in a group of plant species designated "symplastic" phloem loaders, as opposed to "apoplastic" loaders. This poses a question of whether secondary PD formation is upregulated in general in symplastic loaders. Distribution of PD in leaves and in shoot apices of two symplastic phloem loaders, Alonsoa meridionalis and Asarina barclaiana, was compared with that in two apoplastic loaders, Solanum tuberosum (potato) and Hordeum vulgare (barley), using immunolabeling of the PD-specific proteins and transmission electron microscopy (TEM), respectively. Single-cell sampling was performed to correlate sugar allocation between leaf epidermis and mesophyll to PD abundance. Although the distribution of PD in the leaf lamina (except within the vascular tissues) and in the meristem layers was similar in all species examined, far fewer PD were found at the epidermis/epidermis and mesophyll/epidermis boundaries in apoplastic loaders compared to symplastic loaders. In the latter, the leaf epidermis accumulated sugar, suggesting sugar import from the mesophyll via PD. Thus, leaf epidermis and mesophyll might represent a single symplastic domain in Alonsoa meridionalis and Asarina barclaiana.
Collapse
Affiliation(s)
- Olga V. Voitsekhovskaja
- Komarov Botanical Institute, Russian Academy of Sciences, Saint Petersburg, Russia
- Department of Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences, Göttingen, Germany
| | - Anna N. Melnikova
- Komarov Botanical Institute, Russian Academy of Sciences, Saint Petersburg, Russia
- Saint Petersburg State University, Saint Petersburg, Russia
| | - Kirill N. Demchenko
- Komarov Botanical Institute, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Alexandra N. Ivanova
- Komarov Botanical Institute, Russian Academy of Sciences, Saint Petersburg, Russia
- Saint Petersburg State University, Saint Petersburg, Russia
| | - Valeria A. Dmitrieva
- Komarov Botanical Institute, Russian Academy of Sciences, Saint Petersburg, Russia
| | | | - Gertrud Lohaus
- Department of Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences, Göttingen, Germany
- Molecular Plant Research/Plant Biochemistry, School of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - A. Deri Tomos
- School of Biological Sciences, Bangor University, Bangor, United Kingdom
| | - Elena V. Tyutereva
- Komarov Botanical Institute, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Olga A. Koroleva
- School of Biological Sciences, Bangor University, Bangor, United Kingdom
| |
Collapse
|
4
|
Dmitrieva VA, Domashkina VV, Ivanova AN, Sukhov VS, Tyutereva EV, Voitsekhovskaja OV. Regulation of plasmodesmata in Arabidopsis leaves: ATP, NADPH and chlorophyll b levels matter. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5534-5552. [PMID: 33974689 DOI: 10.1093/jxb/erab205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
In mature leaves, cell-to-cell transport via plasmodesmata between mesophyll cells links the production of assimilates by photosynthesis with their export to sink organs. This study addresses the question of how signals derived from chloroplasts and photosynthesis influence plasmodesmata permeability. Cell-to-cell transport was analyzed in leaves of the Arabidopsis chlorophyll b-less ch1-3 mutant, the same mutant complemented with a cyanobacterial CAO gene (PhCAO) overaccumulating chlorophyll b, the trxm3 mutant lacking plastidial thioredoxin m3, and the ntrc mutant lacking functional NADPH:thioredoxin reductase C. The regulation of plasmodesmata permeability in these lines could not be traced back to the reduction state of the thioredoxin system or the types and levels of reactive oxygen species produced in chloroplasts; however, it could be related to chloroplast ATP and NADPH production. The results suggest that light enables plasmodesmata closure via an increase in the ATP and NADPH levels produced in photosynthesis, providing a control mechanism for assimilate export based on the rate of photosynthate production in the Calvin-Benson cycle. The level of chlorophyll b influences plasmodesmata permeability via as-yet-unidentified signals. The data also suggest a role of thioredoxin m3 in the regulation of cyclic electron flow around photosystem I.
Collapse
Affiliation(s)
- Valeria A Dmitrieva
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Valentina V Domashkina
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexandra N Ivanova
- Laboratory of Plant Anatomy, Komarov Botanical Institute, Russian Academy of Sciences, St. Petersburg, Russia
- Research Park, St. Petersburg State University, St. Petersburg, Russia
| | - Vladimir S Sukhov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Elena V Tyutereva
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Olga V Voitsekhovskaja
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
5
|
Azim MF, Burch-Smith TM. Organelles-nucleus-plasmodesmata signaling (ONPS): an update on its roles in plant physiology, metabolism and stress responses. CURRENT OPINION IN PLANT BIOLOGY 2020; 58:48-59. [PMID: 33197746 DOI: 10.1016/j.pbi.2020.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 05/03/2023]
Abstract
Plasmodesmata allow movement of metabolites and signaling molecules between plant cells and are, therefore, critical players in plant development and physiology, and in responding to environmental signals and stresses. There is emerging evidence that plasmodesmata are controlled by signaling originating from other organelles, primarily the chloroplasts and mitochondria. These signals act in the nucleus to alter expression of genetic pathways that control both trafficking via plasmodesmata and the plasmodesmatal pores themselves. This control circuit was dubbed organelle-nucleus-plasmodesmata signaling (ONPS). Here we discuss how ONPS arose during plant evolution and highlight the discovery of an ONPS-like module for regulating stomata. We also consider recent findings that illuminate details of the ONPS circuit and its roles in plant physiology, metabolism, and defense.
Collapse
Affiliation(s)
- Mohammad F Azim
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States
| | - Tessa M Burch-Smith
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States.
| |
Collapse
|
6
|
Dmitrieva VA, Tyutereva EV, Voitsekhovskaja OV. Singlet Oxygen in Plants: Generation, Detection, and Signaling Roles. Int J Mol Sci 2020; 21:E3237. [PMID: 32375245 PMCID: PMC7247340 DOI: 10.3390/ijms21093237] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 01/17/2023] Open
Abstract
Singlet oxygen (1O2) refers to the lowest excited electronic state of molecular oxygen. It easily oxidizes biological molecules and, therefore, is cytotoxic. In plant cells, 1O2 is formed mostly in the light in thylakoid membranes by reaction centers of photosystem II. In high concentrations, 1O2 destroys membranes, proteins and DNA, inhibits protein synthesis in chloroplasts leading to photoinhibition of photosynthesis, and can result in cell death. However, 1O2 also acts as a signal relaying information from chloroplasts to the nucleus, regulating expression of nuclear genes. In spite of its extremely short lifetime, 1O2 can diffuse from the chloroplasts into the cytoplasm and the apoplast. As shown by recent studies, 1O2-activated signaling pathways depend not only on the levels but also on the sites of 1O2 production in chloroplasts, and can activate two types of responses, either acclimation to high light or programmed cell death. 1O2 can be produced in high amounts also in root cells during drought stress. This review summarizes recent advances in research on mechanisms and sites of 1O2 generation in plants, on 1O2-activated pathways of retrograde- and cellular signaling, and on the methods to study 1O2 production in plants.
Collapse
Affiliation(s)
| | | | - Olga V. Voitsekhovskaja
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, Saint Petersburg 197376, Russia; (V.A.D.); (E.V.T.)
| |
Collapse
|
7
|
Nakata MT, Sato M, Wakazaki M, Sato N, Kojima K, Sekine A, Nakamura S, Shikanai T, Toyooka K, Tsukaya H, Horiguchi G. Plastid translation is essential for lateral root stem cell patterning in Arabidopsis thaliana. Biol Open 2018; 7:bio028175. [PMID: 29367414 PMCID: PMC5861355 DOI: 10.1242/bio.028175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 01/08/2018] [Indexed: 12/29/2022] Open
Abstract
The plastid evolved from a symbiotic cyanobacterial ancestor and is an essential organelle for plant life, but its developmental roles in roots have been largely overlooked. Here, we show that plastid translation is connected to the stem cell patterning in lateral root primordia. The RFC3 gene encodes a plastid-localized protein that is a conserved bacterial ribosomal protein S6 of β/γ proteobacterial origin. The rfc3 mutant developed lateral roots with disrupted stem cell patterning and associated with decreased leaf photosynthetic activity, reduced accumulation of plastid rRNAs in roots, altered root plastid gene expression, and changes in expression of several root stem cell regulators. These results suggest that deficiencies in plastid function affect lateral root stem cells. Treatment with the plastid translation inhibitor spectinomycin phenocopied the defective stem cell patterning in lateral roots and altered plastid gene expression observed in the rfc3 mutant. Additionally, when prps17 defective in a plastid ribosomal protein was treated with low concentrations of spectinomycin, it also phenocopied the lateral root phenotypes of rfc3 The spectinomycin treatment and rfc3 mutation also negatively affected symplasmic connectivity between primary root and lateral root primordia. This study highlights previously unrecognized functions of plastid translation in the stem cell patterning in lateral roots.
Collapse
Affiliation(s)
- Miyuki T Nakata
- Research Center for Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Mayuko Sato
- Center for Sustainable Resource Science, RIKEN, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Mayumi Wakazaki
- Center for Sustainable Resource Science, RIKEN, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Nozomi Sato
- Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Koji Kojima
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Akihiko Sekine
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Shiori Nakamura
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Toshiharu Shikanai
- Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kiminori Toyooka
- Center for Sustainable Resource Science, RIKEN, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Hirokazu Tsukaya
- Graduate school of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Gorou Horiguchi
- Research Center for Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| |
Collapse
|
8
|
Tyutereva EV, Evkaikina AI, Ivanova AN, Voitsekhovskaja OV. The absence of chlorophyll b affects lateral mobility of photosynthetic complexes and lipids in grana membranes of Arabidopsis and barley chlorina mutants. PHOTOSYNTHESIS RESEARCH 2017; 133:357-370. [PMID: 28382592 DOI: 10.1007/s11120-017-0376-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Abstract
The lateral mobility of integral components of thylakoid membranes, such as plastoquinone, xanthophylls, and pigment-protein complexes, is critical for the maintenance of efficient light harvesting, high rates of linear electron transport, and successful repair of damaged photosystem II (PSII). The packaging of the photosynthetic pigment-protein complexes in the membrane depends on their size and stereometric parameters which in turn depend on the composition of the complexes. Chlorophyll b (Chlb) is an important regulator of antenna size and composition. In this study, the lateral mobility (the mobile fraction size) of pigment-protein complexes and lipids in grana membranes was analyzed in chlorina mutants of Arabidopsis and barley lacking Chlb. In the Arabidopsis ch1-3 mutant, diffusion of membrane lipids decreased as compared to wild-type plants, but the diffusion of photosynthetic complexes was not affected. In the barley chlorina f2 3613 mutant, the diffusion of pigment-protein complexes significantly decreased, while the diffusion of lipids increased, as compared to wild-type plants. We propose that the size of the mobile fractions of pigment-protein complexes in grana membranes in vivo is higher than reported previously. The data are discussed in the context of the protein composition of antennae, characteristics of the plastoquinone pool, and production of reactive oxygen species in leaves of chlorina mutants.
Collapse
Affiliation(s)
- Elena V Tyutereva
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376, Saint-Petersburg, Russia
| | - Anastasiia I Evkaikina
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376, Saint-Petersburg, Russia
| | - Alexandra N Ivanova
- Laboratory of Plant Anatomy and Morphology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376, Saint-Petersburg, Russia
| | - Olga V Voitsekhovskaja
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376, Saint-Petersburg, Russia.
| |
Collapse
|