1
|
Safaeizadeh M, Boller T, Becker C. Comparative RNA-seq analysis of Arabidopsis thaliana response to AtPep1 and flg22, reveals the identification of PP2-B13 and ACLP1 as new members in pattern-triggered immunity. PLoS One 2024; 19:e0297124. [PMID: 38833485 PMCID: PMC11149889 DOI: 10.1371/journal.pone.0297124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 12/28/2023] [Indexed: 06/06/2024] Open
Abstract
In this research, a high-throughput RNA sequencing-based transcriptome analysis technique (RNA-Seq) was used to evaluate differentially expressed genes (DEGs) in the wild type Arabidopsis seedlings in response to AtPep1, a well-known peptide representing an endogenous damage-associated molecular pattern (DAMP), and flg22, a well-known microbe-associated molecular pattern (MAMP). We compared and dissected the global transcriptional landscape of Arabidopsis thaliana in response to AtPep1 and flg22 and could identify shared and unique DEGs in response to these elicitors. We found that while a remarkable number of flg22 up-regulated genes were also induced by AtPep1, 256 genes were exclusively up-regulated in response to flg22, and 328 were exclusively up-regulated in response to AtPep1. Furthermore, among down-regulated DEGs upon flg22 treatment, 107 genes were exclusively down-regulated by flg22 treatment, while 411 genes were exclusively down-regulated by AtPep1. We found a number of hitherto overlooked genes to be induced upon treatment with either flg22 or with AtPep1, indicating their possible involvement general pathways in innate immunity. Here, we characterized two of them, namely PP2-B13 and ACLP1. pp2-b13 and aclp1 mutants showed increased susceptibility to infection by the virulent pathogen Pseudomonas syringae DC3000 and its mutant Pst DC3000 hrcC (lacking the type III secretion system), as evidenced by increased proliferation of the two pathogens in planta. Further, we present evidence that the aclp1 mutant is deficient in ethylene production upon flg22 treatment, while the pp2-b13 mutant is deficient in the production of reactive oxygen species (ROS). The results from this research provide new information for a better understanding of the immune system in Arabidopsis.
Collapse
Affiliation(s)
- Mehdi Safaeizadeh
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Zürich-Basel Plant Science Center, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Thomas Boller
- Zürich-Basel Plant Science Center, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Claude Becker
- LMU Biocentre, Faculty of Biology, Ludwig-Maximilian-University Munich, Martinsried, Germany
| |
Collapse
|
2
|
Saidi A, Safaeizadeh M, Hajibarat Z. Differential expression of the genes encoding immune system components in response to Pseudomonas syringae and Pseudomonas aeruginosa in Arabidopsis thaliana. 3 Biotech 2024; 14:11. [PMID: 38098678 PMCID: PMC10716095 DOI: 10.1007/s13205-023-03852-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023] Open
Abstract
In innate immunity, the first layer of defense against any microbial infection is triggered by the perception of pathogen-associated molecular patterns by highly specific pattern recognition receptors. The Pseudomonas syringae pv. tomato and Pseudomonas aeruginosa are plant-pathogenic bacterial species that include pathogenic strains in a wide range of different plant species. In the current study, extensive analysis including gene expression of 12 hub genes, gene ontology, protein-protein interaction, and cis-element prediction to dissect the Arabidopsis response to above-mentioned bacteria were performed. Further, we evaluated weighted co-expression network analysis (WGCNA) in the wild-type plants and coi-1 mutant line and determined changes in responsive genes at two time-points (4 and 8 h) of post-treatment with P. syringae and P. aeruginosa. Compared to the wild-type plants, coi-1 mutant showed significant expression in most of the genes involved, indicating that their protein products have important role in innate immunity and RNA silencing pathways. Our findings showed that 12 hub genes were co-expressed in response to P. syringae and P. aeruginosa infections. Based on the network analysis, transcription factors, receptors, protein kinase, and pathogenesis-related protein (PR1) were involved in the immunity system. Gene ontology related to each module was involved in defense response, protein serine kinase activity, and primary miRNA processing. Based on the cis-elements prediction, MYB, MYC, WRE3, W-box, STRE, and ARE contained the most number of cis-elements in co-expressed network genes. Also, in coi-1 mutant, most responsive genes against theses pathogens were up-regulated. The knowledge gained in the gene expression analysis in response to P. syringae and P. aeruginosa in the model plant, i.e., Arabidopsis, is essential to allow us to gain more insight about the innate immunity in other crops.
Collapse
Affiliation(s)
- Abbas Saidi
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mehdi Safaeizadeh
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Zohreh Hajibarat
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
3
|
Huang Y, Cui J, Li M, Yang R, Hu Y, Yu X, Chen Y, Wu Q, Yao H, Yu G, Guo J, Zhang H, Wu S, Cai Y. Conservation and divergence of flg22, pep1 and nlp20 in activation of immune response and inhibition of root development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 331:111686. [PMID: 36963637 DOI: 10.1016/j.plantsci.2023.111686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/11/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
Many pattern-recognition receptors (PRRs) and their corresponding ligands have been identified. However, it is largely unknown how similar and different these ligands are in inducing plant innate immunity and affecting plant development. In this study, we examined three well characterized ligands in Arabidopsis thaliana, namely flagellin 22 (flg22), plant elicitor peptide 1 (pep1) and a conserved 20-amino-acid fragment found in most necrosis and ethylene-inducing peptide 1-like proteins (nlp20). Our quantitative analyses detected the differences in amplitude in the early immune responses of these ligands, with nlp20-induced responses typically being slower than those mediated by flg22 and pep1. RNA sequencing showed the shared differentially expressed genes (DEGs) was mostly enriched in defense response, whereas nlp20-regulated genes represent only a fraction of those genes differentially regulated by flg22 and pep1. The three elicitors all inhibited primary root growth, especially pep1, which inhibited both auxin transport and signaling pathway. In addition, pep1 significantly inhibited the cell division and genes involved in cell cycle. Compared with flg22 and nlp20, pep1 induced much stronger expression of its receptor in roots, suggesting a potential positive feedback regulation in the activation of immune response. Despite PRRs and their co-receptor BAK1 were necessary for both PAMP induced immune response and root growth inhibition, bik1 mutant only showed impaired defense response but relatively normal root growth inhibition, suggesting BIK1 acts differently in these two biological processes.
Collapse
Affiliation(s)
- Yan Huang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Junmei Cui
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Meng Li
- College of Horticulture, FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Rongqian Yang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Yang Hu
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Xiaosong Yu
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Ying Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Qiqi Wu
- Lusyno Biotech Ltd., Chengdu, Sichuan, PR China
| | - Huipeng Yao
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Guozhi Yu
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Jinya Guo
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Huaiyu Zhang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | - Shuang Wu
- College of Horticulture, FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Yi Cai
- College of Life Sciences, Sichuan Agricultural University, Ya'an, Sichuan, PR China.
| |
Collapse
|
4
|
Wang A, Guo J, Wang S, Zhang Y, Lu F, Duan J, Liu Z, Ji W. BoPEP4, a C-Terminally Encoded Plant Elicitor Peptide from Broccoli, Plays a Role in Salinity Stress Tolerance. Int J Mol Sci 2022; 23:ijms23063090. [PMID: 35328511 PMCID: PMC8952307 DOI: 10.3390/ijms23063090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 12/16/2022] Open
Abstract
Plant peptide hormones play various roles in plant development, pathogen defense and abiotic stress tolerance. Plant elicitor peptides (Peps) are a type of damage-associated molecular pattern (DAMP) derived from precursor protein PROPEPs. In this study, we identified nine PROPEP genes in the broccoli genome. qRT-PCR analysis indicated that the expression levels of BoPROPEPs were induced by NaCl, ABA, heat, SA and P. syringae DC3000 treatments. In order to study the functions of Peps in salinity stress response, we synthesized BoPep4 peptide, the precursor gene of which, BoPROPEP4, was significantly responsive to NaCl treatment, and carried out a salinity stress assay by exogenous application of BoPep4 in broccoli sprouts. The results showed that the application of 100 nM BoPep4 enhanced tolerance to 200 mM NaCl in broccoli by reducing the Na+/K+ ratio and promoting accumulation of wax and cutin in leaves. Further RNA-seq analysis identified 663 differentially expressed genes (DGEs) under combined treatment with BoPep4 and NaCl compared with NaCl treatment, as well as 1776 genes differentially expressed specifically upon BoPep4 and NaCl treatment. GO and KEGG analyses of these DEGs indicated that most genes were enriched in auxin and ABA signal transduction, as well as wax and cutin biosynthesis. Collectively, this study shows that there was crosstalk between peptide hormone BoPep4 signaling and some well-established signaling pathways under salinity stress in broccoli sprouts, which implies an essential function of BoPep4 in salinity stress defense.
Collapse
|
5
|
Furumizu C, Krabberød AK, Hammerstad M, Alling RM, Wildhagen M, Sawa S, Aalen RB. The sequenced genomes of nonflowering land plants reveal the innovative evolutionary history of peptide signaling. THE PLANT CELL 2021; 33:2915-2934. [PMID: 34240188 PMCID: PMC8462819 DOI: 10.1093/plcell/koab173] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022]
Abstract
An understanding of land plant evolution is a prerequisite for in-depth knowledge of plant biology. Here we extract and explore information hidden in the increasing number of sequenced plant genomes, from bryophytes to angiosperms, to elucidate a specific biological question-how peptide signaling evolved. To conquer land and cope with changing environmental conditions, plants have gone through transformations that must have required innovations in cell-to-cell communication. We discuss peptides mediating endogenous and exogenous changes by interaction with receptors activating intracellular molecular signaling. Signaling peptides were discovered in angiosperms and operate in tissues and organs such as flowers, seeds, vasculature, and 3D meristems that are not universally conserved across land plants. Nevertheless, orthologs of angiosperm peptides and receptors have been identified in nonangiosperms. These discoveries provoke questions regarding coevolution of ligands and their receptors, and whether de novo interactions in peptide signaling pathways may have contributed to generate novel traits in land plants. The answers to such questions will have profound implications for the understanding of the evolution of cell-to-cell communication and the wealth of diversified terrestrial plants. Under this perspective, we have generated, analyzed, and reviewed phylogenetic, genomic, structural, and functional data to elucidate the evolution of peptide signaling.
Collapse
Affiliation(s)
- Chihiro Furumizu
- Graduate School of Science and Technology, Kumamoto University, 860-8555 Kumamoto, Japan
| | - Anders K. Krabberød
- Section for Evolutionary Biology and Genetics, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Marta Hammerstad
- Section for Biochemistry and Molecular Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Renate M. Alling
- Section for Evolutionary Biology and Genetics, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Mari Wildhagen
- Section for Evolutionary Biology and Genetics, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, 860-8555 Kumamoto, Japan
| | - Reidunn B. Aalen
- Section for Evolutionary Biology and Genetics, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
6
|
Foix L, Nadal A, Zagorščak M, Ramšak Ž, Esteve-Codina A, Gruden K, Pla M. Prunus persica plant endogenous peptides PpPep1 and PpPep2 cause PTI-like transcriptome reprogramming in peach and enhance resistance to Xanthomonas arboricola pv. pruni. BMC Genomics 2021; 22:360. [PMID: 34006221 PMCID: PMC8132438 DOI: 10.1186/s12864-021-07571-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rosaceae species are economically highly relevant crops. Their cultivation systems are constrained by phytopathogens causing severe losses. Plants respond to invading pathogens through signaling mechanisms, a component of which are of them being plant elicitor peptides (Peps). Exogenous application of Peps activates defense mechanisms and reduces the symptoms of pathogen infection in various pathosystems. We have previously identified the Rosaceae Peps and showed, in an ex vivo system, that their topical application efficiently enhanced resistance to the bacterial pathogen Xanthomonas arboricola pv. pruni (Xap). RESULTS Here we demonstrate the effectiveness of Prunus persica peptides PpPep1 and PpPep2 in protecting peach plants in vivo at nanomolar doses, with 40% reduction of the symptoms following Xap massive infection. We used deep sequencing to characterize the transcriptomic response of peach plants to preventive treatment with PpPep1 and PpPep2. The two peptides induced highly similar massive transcriptomic reprogramming in the plant. One hour, 1 day and 2 days after peptide application there were changes in expression in up to 8% of peach genes. We visualized the transcriptomics dynamics in a background knowledge network and detected the minor variations between plant responses to PpPep1 and PpPep2, which might explain their slightly different protective effects. By designing a P. persica Pep background knowledge network, comparison of our data and previously published immune response datasets was possible. CONCLUSIONS Topical application of P. persica Peps mimics the PTI natural response and protects plants against massive Xap infection. This makes them good candidates for deployment of natural, targeted and environmental-friendly strategies to enhance resistance in Prunus species and prevent important biotic diseases.
Collapse
Affiliation(s)
- Laura Foix
- Institute for Agricultural and Food Technology, Universitat de Girona, Campus Montilivi (EPS-1), 17003, Girona, Spain
| | - Anna Nadal
- Institute for Agricultural and Food Technology, Universitat de Girona, Campus Montilivi (EPS-1), 17003, Girona, Spain
| | - Maja Zagorščak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Živa Ramšak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Maria Pla
- Institute for Agricultural and Food Technology, Universitat de Girona, Campus Montilivi (EPS-1), 17003, Girona, Spain.
| |
Collapse
|
7
|
Liu J, Zhang W, Long S, Zhao C. Maintenance of Cell Wall Integrity under High Salinity. Int J Mol Sci 2021; 22:3260. [PMID: 33806816 PMCID: PMC8004791 DOI: 10.3390/ijms22063260] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Cell wall biosynthesis is a complex biological process in plants. In the rapidly growing cells or in the plants that encounter a variety of environmental stresses, the compositions and the structure of cell wall can be dynamically changed. To constantly monitor cell wall status, plants have evolved cell wall integrity (CWI) maintenance system, which allows rapid cell growth and improved adaptation of plants to adverse environmental conditions without the perturbation of cell wall organization. Salt stress is one of the abiotic stresses that can severely disrupt CWI, and studies have shown that the ability of plants to sense and maintain CWI is important for salt tolerance. In this review, we highlight the roles of CWI in salt tolerance and the mechanisms underlying the maintenance of CWI under salt stress. The unsolved questions regarding the association between the CWI and salt tolerance are discussed.
Collapse
Affiliation(s)
- Jianwei Liu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; (J.L.); (W.Z.); (S.L.)
| | - Wei Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; (J.L.); (W.Z.); (S.L.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shujie Long
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; (J.L.); (W.Z.); (S.L.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chunzhao Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; (J.L.); (W.Z.); (S.L.)
| |
Collapse
|
8
|
Li Q, Wang C, Mou Z. Perception of Damaged Self in Plants. PLANT PHYSIOLOGY 2020; 182:1545-1565. [PMID: 31907298 PMCID: PMC7140957 DOI: 10.1104/pp.19.01242] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/16/2019] [Indexed: 05/04/2023]
Abstract
Plants use specific receptor proteins on the cell surface to detect host-derived danger signals released in response to attacks by pathogens or herbivores and activate immune responses against them.
Collapse
Affiliation(s)
- Qi Li
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Chenggang Wang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
9
|
Lang Y, Liu Z, Zheng Z. Retracted Article: Investigation of yellow horn ( Xanthoceras sorbifolia Bunge) transcriptome in response to different abiotic stresses: a comparative RNA-Seq study. RSC Adv 2020; 10:6512-6519. [PMID: 35496033 PMCID: PMC9049705 DOI: 10.1039/c9ra09535g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/05/2020] [Indexed: 01/23/2023] Open
Abstract
Yellow horn (Xanthoceras sorbifolia Bunge) is a well-known oil-rich seed shrub which can grow well in barren and arid environments in the northern part of China. Yellow horn has received worldwide attention because of its excellent economic and environmental value. However, because of its limited genetic data, little information can be found regarding the molecular defense mechanisms of yellow horn exposed to various abiotic stresses. In view of this, the current study aims to investigate the impact of different abiotic stresses (i.e. NaCl, ABA and low temperature) on the transcriptome of yellow horn using RNA-Seq. Based on the transcriptome sequencing data, approximately 27% to 45% of stress-responsive genes were found highly expressed after stress treatment for 24 h. In addition, these genes were found to be still expressed after stress treatment for 48 h. However, many additional genes were stress-regulated after 48 h treatment compared with the 24 h treatment. GO enrichment analysis revealed that the expression patterns of the stress-responsive, type-specific terms were generally down-regulated. Most shared GO terms were primarily involved in protein folding, unfolding protein binding, protein transport and protein modification. Further, transcription factors (TFs), such as ERFs, bHLH, GRAS and NAC, were found to be enriched only in the low temperature treatment group, particularly the ERF TFs families. These combined results suggested that yellow horn may have developed specific molecular defense systems against diverse abiotic stresses.
Collapse
Affiliation(s)
- Yanhe Lang
- State Key Laboratory of Tree Genetics and Breeding Laboratory, Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), College of Life Science, Northeast Forestry University Harbin Heilongjiang Province China +86-151-0453-8096
| | - Zhi Liu
- State Key Laboratory of Tree Genetics and Breeding Laboratory, Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), College of Life Science, Northeast Forestry University Harbin Heilongjiang Province China +86-151-0453-8096
| | - Zhimin Zheng
- State Key Laboratory of Tree Genetics and Breeding Laboratory, Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), College of Life Science, Northeast Forestry University Harbin Heilongjiang Province China +86-151-0453-8096
| |
Collapse
|