1
|
Mankotia S, Dubey A, Jakhar P, Shikha D, Koolath V, Kumar A, Satbhai SB. ELONGATED HYPOCOTYL 5 (HY5) and POPEYE (PYE) regulate intercellular iron transport in plants. PLANT, CELL & ENVIRONMENT 2025; 48:2647-2661. [PMID: 39136421 DOI: 10.1111/pce.15090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 03/12/2025]
Abstract
Plants maintain iron (Fe) homeostasis under varying environmental conditions by balancing processes such as Fe uptake, transport and storage. In Arabidopsis, POPEYE (PYE), a basic helix-loop-helix transcription factor (TF), has been shown to play a crucial role in regulating this balance. In recent years, the mechanisms regulating Fe uptake have been well established but the upstream transcriptional regulators of Fe transport and storage are still poorly understood. In this study, we report that ELONGATED HYPOCOTYL5 (HY5), a basic leucine zipper (bZIP) TF which has recently been shown to play a crucial role in Fe homeostasis, interacts with PYE. Molecular, genetic and biochemical approaches revealed that PYE and HY5 have overlapping as well as some distinct roles in the regulation of Fe deficiency response. We found that HY5 and PYE both act as a repressor of Fe transport genes such as YSL3, FRD3, NPF5.9, YSL2, NAS4 and OPT3. HY5 was found to directly bind on the promoter of these genes and regulate intercellular Fe transport. Further analysis revealed that HY5 and PYE directly interact at the same region on PYE and NAS4 promoter. Overall, this study revealed that HY5 regulates Fe homeostasis by physically interacting with PYE as well as independently.
Collapse
Affiliation(s)
- Samriti Mankotia
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| | - Abhishek Dubey
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Pooja Jakhar
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| | - Deep Shikha
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| | - Varsha Koolath
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| | - Ankit Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| | - Santosh B Satbhai
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| |
Collapse
|
2
|
Pan L, Huang C, Li R, Li Y. The bHLH Transcription Factor PhbHLH121 Regulates Response to Iron Deficiency in Petunia hybrida. PLANTS (BASEL, SWITZERLAND) 2024; 13:3429. [PMID: 39683222 DOI: 10.3390/plants13233429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024]
Abstract
Iron (Fe) is an essential micronutrient for plants. Due to the low Fe bioavailability in cultivated soils, Fe deficiency is a widespread agricultural problem. In this study, we present the functional characterization of a petunia (Petunia hybrida) basic-helix-loop-helix transcription factor PhbHLH121 in response to Fe shortage. Real-time PCR revealed that the expression of PhbHLH121 in petunia roots and shoots was downregulated under Fe-limited conditions. CRISPR/Cas9-edited phbhlh121 mutant plants were generated to investigate the functions of PhbHLH121 in petunia. Loss-of-function of PhbHLH121 enhanced petunia tolerance to Fe deficiency. Further investigations revealed that the expression level of several structural genes involved in Fe uptake in petunia, such as IRT1 and FRO2, was higher in phbhlh121 mutants compared to that in wild-type under Fe-limited conditions, and the expression level of several genes involved in Fe storage and Fe transport, such as VTL2, FERs and ZIF1, was lower in phbhlh121 mutants compared to that in wild-type under Fe-deficient conditions. Yeast one-hybrid assays revealed that PhbHLH121 binds to the G-box element in the promoter of genes involved in Fe homeostasis. Yeast two-hybrid assays revealed that PhbHLH121 interacts with petunia bHLH IVc proteins. Taken together, PhbHLH121 plays an important role in the Fe deficiency response in petunia.
Collapse
Affiliation(s)
- Liru Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengcheng Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruiling Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanbang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Shi G, Zhang Z, Li J. Genome-Wide Identification of Basic Helix-Loop-Helix ( bHLH) Family in Peanut: Potential Regulatory Roles in Iron Homeostasis. Int J Mol Sci 2024; 25:12057. [PMID: 39596126 PMCID: PMC11594023 DOI: 10.3390/ijms252212057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
The basic helix-loop-helix (bHLH) superfamily is the second-largest transcription factor family that participates in a wide range of biological processes in plants, including iron homeostasis. Although the family has been studied in several plant species, a comprehensive investigation is still needed for peanut (Arachis hypogaea). Here, a genome-wide analysis identified 373 AhbHLH genes in peanut, which were divided into 14 groups or subfamilies according to phylogenetic analysis. Clustered members generally share similar gene/protein structures, supporting the evolutionary relationships among AhbHLH proteins. Most AhbHLHs experienced whole-genome or segmental duplication. The majority of AhbHLH proteins had a typical bHLH domain, while several phylogenetic groups, including Group VI, X, XIII, and XIV, had the HLH domain. The expression of several AhbHLH genes, including AhbHLH001.3, AhbHLH029.1/.2, AhbHLH047.1/.2, AhbHLH115.1/.2, AhbHLH097.1/.2, AhbHLH109.4, and AhbHLH135.1, was induced by Fe deficiency for both cultivars, or at least in Silihong, suggesting an important role in the Fe deficiency response in peanut. Nine genes (AhbHLH001.3, AhbHLH029.1/.2, AhbHLH047.1/.2, AhbHLH097.1/.2, and AhbHLH115.1/.2) were specifically induced by Fe deficiency in Silihong, and their expression was higher in Silihong than that in Fenghua 1. These genes might be responsible for higher tolerance to Fe deficiency in Silihong. Our findings provide comprehensive information for further elucidating the regulatory mechanism of Fe homeostasis in peanut.
Collapse
Affiliation(s)
- Gangrong Shi
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China; (Z.Z.); (J.L.)
| | | | | |
Collapse
|
4
|
Ma H, Fu M, Xu Z, Chu Z, Tian J, Wang Y, Zhang X, Han Z, Wu T. Allele-specific expression of AP2-like ABA repressor 1 regulates iron uptake by modulating rhizosphere pH in apple. PLANT PHYSIOLOGY 2024; 196:2121-2136. [PMID: 39197038 DOI: 10.1093/plphys/kiae452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/11/2024] [Accepted: 08/09/2024] [Indexed: 08/30/2024]
Abstract
Genetic variation within a species can result in allelic expression for natural selection or breeding efforts. Here, we identified an iron (Fe) deficiency-inducible gene, AP2-like ABA repressor 1 (MdABR1), in apple (Malus domestica). MdABR1 exhibited differential expression at the allelic level (MdABR131A and MdABR131G) in response to Fe deficiency. The W-box insertion in the promoter of MdABR131A is essential for its induced expression and its positive role under Fe deficiency stress. MdABR1 binds to the promoter of basic helix-loop-helix 105 (MdbHLH105), participating in the Fe deficiency response, and activates its transcription. MdABR131A exerts a more pronounced transcriptional activation effect on MdbHLH105. Suppression of MdABR1 expression leads to reduced rhizosphere acidification in apple, and MdABR131A exhibits allelic expression under Fe deficiency stress, which is substantially upregulated and then activates the expression of MdbHLH105, promoting the accumulation of plasma membrane proton ATPase 8 (MdAHA8) transcripts in response to proton extrusion, thereby promoting rhizosphere acidification. Therefore, variation in the ABR1 alleles results in variable gene expression and enables apple plants to exhibit a wider tolerance capability and Fe deficiency response. These findings also shed light on the molecular mechanisms of allele-specific expression in woody plants.
Collapse
Affiliation(s)
- Huaying Ma
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Mengmeng Fu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhen Xu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zicheng Chu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Ji Tian
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Dong W, Liu L, Sun Y, Xu X, Guo G, Heng W, Jiao H, Wei S, Jia B. PbbHLH155 enhances iron deficiency tolerance in pear by directly activating PbFRO2 and PbbHLH38. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108786. [PMID: 38878387 DOI: 10.1016/j.plaphy.2024.108786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 07/07/2024]
Abstract
Iron (Fe) deficiency is a general stress for many horticulture crops, causing leaf chlorosis and stunted growth. The basic-helix-loop-helix (bHLH) transcription factor (TF) was reported to function in Fe absorption; however, the regulatory mechanism of bHLH genes on iron absorption remains largely unclear in pear. In this study, we found that PbbHLH155 was significantly induced by Fe deficiency. Overexpression of PbbHLH155 in Arabidopsis thaliana and pear calli significantly increases resistance to Fe deficiency. The PbbHLH155-overexpressed Arabidopsis lines exhibited greener leaf color, higher Fe content, stronger Fe chelate reductase (FCR) and root acidification activity. The PbbHLH155 knockout pear calli showed lower Fe content and weaker FCR activity. Interestingly, PbbHLH155 inhibited the expressions of PbFRO2 and PbbHLH38, which were positive regulators in Fe-deficiency responses (FDR). Furthermore, yeast one-hybrid (Y1H) and Dual-Luciferase Reporter (DLR) assays revealed that PbbHLH155 directly binds to the promoters of PbFRO2 and PbbHLH38, thus activating their expression. Overall, our results showed that PbbHLH155 directly promote the expression of PbFRO2 and PbbHLH38 to activate FCR activity for iron absorption. This study provided valuable information for pear breeding.
Collapse
Affiliation(s)
- Weiyu Dong
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| | - Lun Liu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| | - Yu Sun
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| | - Xiaoqian Xu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| | - Guoling Guo
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| | - Wei Heng
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| | - Huijun Jiao
- Shandong Fresh Pear Cultivation and Breeding Engineering Technology Research Center, Shandong Institute of Pomology, Taian, 271000, China.
| | - Shuwei Wei
- Shandong Fresh Pear Cultivation and Breeding Engineering Technology Research Center, Shandong Institute of Pomology, Taian, 271000, China.
| | - Bing Jia
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
6
|
Gao F, Dubos C. The arabidopsis bHLH transcription factor family. TRENDS IN PLANT SCIENCE 2024; 29:668-680. [PMID: 38143207 DOI: 10.1016/j.tplants.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/26/2023]
Abstract
Basic helix-loop-helices (bHLHs) are present in all eukaryotes and form one of the largest families of transcription factors (TFs) found in plants. bHLHs function as transcriptional activators and/or repressors of genes involved in key processes involved in plant growth and development in interaction with the environment (e.g., stomata and root hair development, iron homeostasis, and response to heat and shade). Recent studies have improved our understanding of the functioning of bHLH TFs in complex regulatory networks where a series of post-translational modifications (PTMs) have critical roles in regulating their subcellular localization, DNA-binding capacity, transcriptional activity, and/or stability (e.g., protein-protein interactions, phosphorylation, ubiquitination, and sumoylation). Further elucidating the function and regulation of bHLHs will help further understanding of the biology of plants in general and for the development of new tools for crop improvement.
Collapse
Affiliation(s)
- Fei Gao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China.
| | - Christian Dubos
- IPSiM, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France.
| |
Collapse
|
7
|
Gao F, Li M, Dubos C. bHLH121 and clade IVc bHLH transcription factors synergistically function to regulate iron homeostasis in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2933-2950. [PMID: 38441949 DOI: 10.1093/jxb/erae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/04/2024] [Indexed: 05/21/2024]
Abstract
Iron is an essential micronutrient for plant growth and development. In Arabidopsis thaliana, an intricate regulatory network involving several basic helix-loop-helix (bHLH) transcription factors controls the homeostasis of iron. Among these transcription factors, bHLH121 plays a crucial role. bHLH121 interacts in vivo with clade IVc bHLH transcription factors and activates the expression of FIT and clade Ib bHLH transcription factors to stimulate the uptake of iron. How bHLH121 and clade IVc bHLH transcription factors function collectively and efficiently to maintain iron homeostasis is still unclear. Herein, we found that double loss-of-function mutants involving bhlh121 and one of the clade IVc bHLH transcription factors displayed more severe iron deficiency-associated growth defects than each of the single mutants. We also found that among the four clade IVc bHLH transcription factors, only bHLH34 and bHLH105 could partially complement the iron-associated growth defects of bhlh121 when overexpressed. These data, together with protein localization analysis, support that bHLH121 and clade IVc bHLH transcription factors act synergistically to regulate iron homeostasis and that different bHLH121/clade IVc and clade IVc/clade IVc protein complexes are involved in this process.
Collapse
Affiliation(s)
- Fei Gao
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Meijie Li
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Christian Dubos
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
8
|
Yang Q, Wang T, Cao J, Wang HL, Tan S, Zhang Y, Park S, Park H, Woo HR, Li X, Xia X, Guo H, Li Z. Histone variant HTB4 delays leaf senescence by epigenetic control of Ib bHLH transcription factor-mediated iron homeostasis. THE NEW PHYTOLOGIST 2023; 240:694-709. [PMID: 37265004 DOI: 10.1111/nph.19008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 05/02/2023] [Indexed: 06/03/2023]
Abstract
Leaf senescence is an orderly process regulated by multiple internal factors and diverse environmental stresses including nutrient deficiency. Histone variants are involved in regulating plant growth and development. However, their functions and underlying regulatory mechanisms in leaf senescence remain largely unclear. Here, we found that H2B histone variant HTB4 functions as a negative regulator of leaf senescence. Loss of function of HTB4 led to early leaf senescence phenotypes that were rescued by functional complementation. RNA-seq analysis revealed that several Ib subgroup basic helix-loop-helix (bHLH) transcription factors (TFs) involved in iron (Fe) homeostasis, including bHLH038, bHLH039, bHLH100, and bHLH101, were suppressed in the htb4 mutant, thereby compromising the expressions of FERRIC REDUCTION OXIDASE 2 (FRO2) and IRON-REGULATED TRANSPORTER (IRT1), two important components of the Fe uptake machinery. Chromatin immunoprecipitation-quantitative polymerase chain reaction analysis revealed that HTB4 could bind to the promoter regions of Ib bHLH TFs and enhance their expression by promoting the enrichment of the active mark H3K4me3 near their transcriptional start sites. Moreover, overexpression of Ib bHLH TFs or IRT1 suppressed the premature senescence phenotype of the htb4 mutant. Our work established a signaling pathway, HTB4-bHLH TFs-FRO2/IRT1-Fe homeostasis, which regulates the onset and progression of leaf senescence.
Collapse
Affiliation(s)
- Qi Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Ting Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jie Cao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hou-Ling Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Shuya Tan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yuan Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Sanghoon Park
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
| | - Hyunsoo Park
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
| | - Hye Ryun Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
| | - Xiaojuan Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xinli Xia
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hongwei Guo
- Department of Biology, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Zhonghai Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
9
|
Spielmann J, Fanara S, Cotelle V, Vert G. Multilayered regulation of iron homeostasis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1250588. [PMID: 37841618 PMCID: PMC10570522 DOI: 10.3389/fpls.2023.1250588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023]
Abstract
Iron (Fe) is an essential micronutrient for plant growth and development due to its role in crucial processes such as photosynthesis and modulation of the redox state as an electron donor. While Fe is one of the five most abundant metals in the Earth's crust, it is poorly accessible to plants in alkaline soils due to the formation of insoluble complexes. To limit Fe deficiency symptoms, plant have developed a highly sophisticated regulation network including Fe sensing, transcriptional regulation of Fe-deficiency responsive genes, and post-translational modifications of Fe transporters. In this mini-review, we detail how plants perceive intracellular Fe status and how they regulate transporters involved in Fe uptake through a complex cascade of transcription factors. We also describe the current knowledge about intracellular trafficking, including secretion to the plasma membrane, endocytosis, recycling, and degradation of the two main Fe transporters, IRON-REGULATED TRANSPORTER 1 (IRT1) and NATURAL RESISTANCE ASSOCIATED MACROPHAGE PROTEIN 1 (NRAMP1). Regulation of these transporters by their non-Fe substrates is discussed in relation to their functional role to avoid accumulation of these toxic metals during Fe limitation.
Collapse
Affiliation(s)
- Julien Spielmann
- Plant Science Research Laboratory (LRSV), University of Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| | - Steven Fanara
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Valérie Cotelle
- Plant Science Research Laboratory (LRSV), University of Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| | - Grégory Vert
- Plant Science Research Laboratory (LRSV), University of Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| |
Collapse
|
10
|
Li J, Nie K, Wang L, Zhao Y, Qu M, Yang D, Guan X. The Molecular Mechanism of GhbHLH121 in Response to Iron Deficiency in Cotton Seedlings. PLANTS (BASEL, SWITZERLAND) 2023; 12:1955. [PMID: 37653872 PMCID: PMC10224022 DOI: 10.3390/plants12101955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 09/02/2023]
Abstract
Iron deficiency caused by high pH of saline-alkali soil is a major source of abiotic stress affecting plant growth. However, the molecular mechanism underlying the iron deficiency response in cotton (Gossypium hirsutum) is poorly understood. In this study, we investigated the impacts of iron deficiency at the cotton seedling stage and elucidated the corresponding molecular regulation network, which centered on a hub gene GhbHLH121. Iron deficiency induced the expression of genes with roles in the response to iron deficiency, especially GhbHLH121. The suppression of GhbHLH121 with virus-induced gene silence technology reduced seedlings' tolerance to iron deficiency, with low photosynthetic efficiency and severe damage to the structure of the chloroplast. Contrarily, ectopic expression of GhbHLH121 in Arabidopsis enhanced tolerance to iron deficiency. Further analysis of protein/protein interactions revealed that GhbHLH121 can interact with GhbHLH IVc and GhPYE. In addition, GhbHLH121 can directly activate the expression of GhbHLH38, GhFIT, and GhPYE independent of GhbHLH IVc. All told, GhbHLH121 is a positive regulator of the response to iron deficiency in cotton, directly regulating iron uptake as the upstream gene of GhFIT. Our results provide insight into the complex network of the iron deficiency response in cotton.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China;
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China; (K.N.); (L.W.); (Y.Z.)
| | - Ke Nie
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China; (K.N.); (L.W.); (Y.Z.)
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China
| | - Luyao Wang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China; (K.N.); (L.W.); (Y.Z.)
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China
| | - Yongyan Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China; (K.N.); (L.W.); (Y.Z.)
| | - Mingnan Qu
- Hainan Yazhou Bay Seed Lab, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China;
| | - Donglei Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Xueying Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China;
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China; (K.N.); (L.W.); (Y.Z.)
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China
- Hainan Yazhou Bay Seed Lab, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China;
| |
Collapse
|
11
|
Li M, Watanabe S, Gao F, Dubos C. Iron Nutrition in Plants: Towards a New Paradigm? PLANTS (BASEL, SWITZERLAND) 2023; 12:384. [PMID: 36679097 PMCID: PMC9862363 DOI: 10.3390/plants12020384] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Iron (Fe) is an essential micronutrient for plant growth and development. Fe availability affects crops' productivity and the quality of their derived products and thus human nutrition. Fe is poorly available for plant use since it is mostly present in soils in the form of insoluble oxides/hydroxides, especially at neutral to alkaline pH. How plants cope with low-Fe conditions and acquire Fe from soil has been investigated for decades. Pioneering work highlighted that plants have evolved two different strategies to mine Fe from soils, the so-called Strategy I (Fe reduction strategy) and Strategy II (Fe chelation strategy). Strategy I is employed by non-grass species whereas graminaceous plants utilize Strategy II. Recently, it has emerged that these two strategies are not fully exclusive and that the mechanism used by plants for Fe uptake is directly shaped by the characteristics of the soil on which they grow (e.g., pH, oxygen concentration). In this review, recent findings on plant Fe uptake and the regulation of this process will be summarized and their impact on our understanding of plant Fe nutrition will be discussed.
Collapse
Affiliation(s)
- Meijie Li
- IPSiM, University Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Shunsuke Watanabe
- IPSiM, University Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Fei Gao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Christian Dubos
- IPSiM, University Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
12
|
Das AK, Hao L. Functional characterization of ZmbHLH121, a bHLH transcription factor, focusing on Zea mays kernel development. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Grant-Grant S, Schaffhauser M, Baeza-Gonzalez P, Gao F, Conéjéro G, Vidal EA, Gaymard F, Dubos C, Curie C, Roschzttardtz H. B3 Transcription Factors Determine Iron Distribution and FERRITIN Gene Expression in Embryo but Do Not Control Total Seed Iron Content. FRONTIERS IN PLANT SCIENCE 2022; 13:870078. [PMID: 35599858 PMCID: PMC9120844 DOI: 10.3389/fpls.2022.870078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/21/2022] [Indexed: 05/26/2023]
Abstract
Iron is an essential micronutrient for humans and other organisms. Its deficiency is one of the leading causes of anemia worldwide. The world health organization has proposed that an alternative to increasing iron content in food is through crop biofortification. One of the most consumed part of crops is the seed, however, little is known about how iron accumulation in seed occurs and how it is regulated. B3 transcription factors play a critical role in the accumulation of storage compounds such as proteins and lipids. Their role in seed maturation has been well characterized. However, their relevance in accumulation and distribution of micronutrients like iron remains unknown. In Arabidopsis thaliana and other plant models, three master regulators belonging to the B3 transcription factors family have been identified: FUSCA3 (FUS3), LEAFY COTYLEDON2 (LEC2), and ABSCISIC ACID INSENSITIVE 3 (ABI3). In this work, we studied how seed iron homeostasis is affected in B3 transcription factors mutants using histological and molecular approaches. We determined that iron distribution is modified in abi3, lec2, and fus3 embryo mutants. For abi3-6 and fus3-3 mutant embryos, iron was less accumulated in vacuoles of cells surrounding provasculature compared with wild type embryos. lec2-1 embryos showed no difference in the pattern of iron distribution in hypocotyl, but a dramatic decrease of iron was observed in cotyledons. Interestingly, for the three mutant genotypes, total iron content in dry mutant seeds showed no difference compared to wild type. At the molecular level, we showed that genes encoding the iron storage ferritins proteins are misregulated in mutant seeds. Altogether our results support a role of the B3 transcription factors ABI3, LEC2, and FUS3 in maintaining iron homeostasis in Arabidopsis embryos.
Collapse
Affiliation(s)
- Susana Grant-Grant
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Macarena Schaffhauser
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Baeza-Gonzalez
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fei Gao
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Geneviève Conéjéro
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Elena A. Vidal
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Agencia Nacional de Investigación y Desarrollo ANID-Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Frederic Gaymard
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Christian Dubos
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Catherine Curie
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Hannetz Roschzttardtz
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
14
|
Du YC, Kong LJ, Cao LS, Zhang W, Zhu Q, Ma CY, Sun K, Dai CC. Endophytic Fungus Phomopsis liquidambaris Enhances Fe Absorption in Peanuts by Reducing Hydrogen Peroxide. FRONTIERS IN PLANT SCIENCE 2022; 13:872242. [PMID: 35574149 PMCID: PMC9100952 DOI: 10.3389/fpls.2022.872242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
Iron (Fe) deficiency in alkaline calcium soil is a problem that needs to be solved urgently as Fe is an essential and commonly limiting nutrient for plants. Endophytic fungus, Phomopsis liquidambaris (P. liquidambaris), has been reported to promote Fe absorption in peanuts (Arachis hypogaea L.), however, the mechanisms remain unclear. Under prolonged Fe deficiency, an increase in hydrogen peroxide (H2O2) often triggers a series of signaling events and leads to the inhibition of Fe acquisition. The main purpose of this study was to explore whether and how the endophytic fungus P. liquidambaris promote Fe absorption in peanut through regulating H2O2 and assisting in resisting oxidative stress. In this study, we detected the Fe deficiency-induced transcription factor (FIT), Fe2+ transporter (IRT1), and ferric reduction oxidase 2 (FRO2) of peanuts, and confirmed that they were negatively related to Fe concentration. Similarly, FIT, IRT1, and FRO2 were also inhibited by H2O2. The addition of P. liquidambaris reduces H2O2 under Fe-deficiency with an increase in Fe content, while the exogenous addition of H2O2 further decreases it, and the addition of catalase (CAT) under Fe-deficiency reverses this phenomenon. Through transcriptome analysis, we proved that the expression of FIT, IRT1, FRO2 and CAT are consistent with our hypothesis, and P. liquidambaris has a stress-mitigating effect on peanuts mainly via CAT, glutathione peroxidase, and malondialdehyde. Our study proved the Fe-absorption promoting effect and stress mitigation effect of P. liquidambaris under Fe-deficiency in peanuts, and their combined usage may help peanuts grow better.
Collapse
|
15
|
Quintana J, Bernal M, Scholle M, Holländer-Czytko H, Nguyen NT, Piotrowski M, Mendoza-Cózatl DG, Haydon MJ, Krämer U. Root-to-shoot iron partitioning in Arabidopsis requires IRON-REGULATED TRANSPORTER1 (IRT1) protein but not its iron(II) transport function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:992-1013. [PMID: 34839543 DOI: 10.1111/tpj.15611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 05/26/2023]
Abstract
IRON-REGULATED TRANSPORTER1 (IRT1) is the root high-affinity ferrous iron (Fe) uptake system and indispensable for the completion of the life cycle of Arabidopsis thaliana without vigorous Fe supplementation. Here we provide evidence supporting a second role of IRT1 in root-to-shoot partitioning of Fe. We show that irt1 mutants overaccumulate Fe in roots, most prominently in the cortex of the differentiation zone in irt1-2, compared to the wild type. Shoots of irt1-2 are severely Fe-deficient according to Fe content and marker transcripts, as expected. We generated irt1-2 lines producing IRT1 mutant variants carrying single amino-acid substitutions of key residues in transmembrane helices IV and V, Ser206 and His232, which are required for transport activity in yeast. Root short-term 55 Fe uptake rates were uninformative concerning IRT1-mediated transport. Overall irt1-like concentrations of the secondary substrate Mn suggested that the transgenic Arabidopsis lines also remain incapable of IRT1-mediated root Fe uptake. Yet, IRT1S206A partially complements rosette dwarfing and leaf chlorosis of irt1-2, as well as root-to-shoot Fe partitioning and gene expression defects of irt1-2, all of which are fully complemented by wild-type IRT1. Taken together, these results suggest a regulatory function for IRT1 in root-to-shoot Fe partitioning that does not require Fe transport activity of IRT1. Among the genes of which transcript levels are partially dependent on IRT1, we identify MYB DOMAIN PROTEIN10, MYB DOMAIN PROTEIN72 and NICOTIANAMINE SYNTHASE4 as candidates for effecting IRT1-dependent Fe mobilization in roots. Understanding the biological functions of IRT1 will help to improve Fe nutrition and the nutritional quality of agricultural crops.
Collapse
Affiliation(s)
- Julia Quintana
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
| | - María Bernal
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
- Department of Plant Nutrition, Estación Experimental de Aula Dei-CSIC, 50059, Zaragoza, Spain
| | - Marleen Scholle
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
| | | | - Nga T Nguyen
- Division of Plant Sciences, MU-Columbia, Columbia, MO, 65211-7310, USA
| | - Markus Piotrowski
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
| | | | - Michael J Haydon
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Ute Krämer
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
| |
Collapse
|
16
|
Quintana J, Bernal M, Scholle M, Holländer-Czytko H, Nguyen NT, Piotrowski M, Mendoza-Cózatl DG, Haydon MJ, Krämer U. Root-to-shoot iron partitioning in Arabidopsis requires IRON-REGULATED TRANSPORTER1 (IRT1) protein but not its iron(II) transport function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:992-1013. [PMID: 34839543 DOI: 10.1101/2021.02.08.430285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 05/29/2023]
Abstract
IRON-REGULATED TRANSPORTER1 (IRT1) is the root high-affinity ferrous iron (Fe) uptake system and indispensable for the completion of the life cycle of Arabidopsis thaliana without vigorous Fe supplementation. Here we provide evidence supporting a second role of IRT1 in root-to-shoot partitioning of Fe. We show that irt1 mutants overaccumulate Fe in roots, most prominently in the cortex of the differentiation zone in irt1-2, compared to the wild type. Shoots of irt1-2 are severely Fe-deficient according to Fe content and marker transcripts, as expected. We generated irt1-2 lines producing IRT1 mutant variants carrying single amino-acid substitutions of key residues in transmembrane helices IV and V, Ser206 and His232, which are required for transport activity in yeast. Root short-term 55 Fe uptake rates were uninformative concerning IRT1-mediated transport. Overall irt1-like concentrations of the secondary substrate Mn suggested that the transgenic Arabidopsis lines also remain incapable of IRT1-mediated root Fe uptake. Yet, IRT1S206A partially complements rosette dwarfing and leaf chlorosis of irt1-2, as well as root-to-shoot Fe partitioning and gene expression defects of irt1-2, all of which are fully complemented by wild-type IRT1. Taken together, these results suggest a regulatory function for IRT1 in root-to-shoot Fe partitioning that does not require Fe transport activity of IRT1. Among the genes of which transcript levels are partially dependent on IRT1, we identify MYB DOMAIN PROTEIN10, MYB DOMAIN PROTEIN72 and NICOTIANAMINE SYNTHASE4 as candidates for effecting IRT1-dependent Fe mobilization in roots. Understanding the biological functions of IRT1 will help to improve Fe nutrition and the nutritional quality of agricultural crops.
Collapse
Affiliation(s)
- Julia Quintana
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
| | - María Bernal
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
- Department of Plant Nutrition, Estación Experimental de Aula Dei-CSIC, 50059, Zaragoza, Spain
| | - Marleen Scholle
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
| | | | - Nga T Nguyen
- Division of Plant Sciences, MU-Columbia, Columbia, MO, 65211-7310, USA
| | - Markus Piotrowski
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
| | | | - Michael J Haydon
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Ute Krämer
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801, Bochum, Germany
| |
Collapse
|
17
|
Fan Z, Wu Y, Zhao L, Fu L, Deng L, Deng J, Ding D, Xiao S, Deng X, Peng S, Pan Z. MYB308-mediated transcriptional activation of plasma membrane H + -ATPase 6 promotes iron uptake in citrus. HORTICULTURE RESEARCH 2022; 9:uhac088. [PMID: 35685222 PMCID: PMC9171118 DOI: 10.1093/hr/uhac088] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/30/2022] [Indexed: 05/15/2023]
Abstract
Iron-deficiency chlorosis is a common nutritional disorder in crops grown on alkaline or calcareous soils. Although the acclimation mechanism to iron deficiency has been investigated, the genetic regulation of iron acquisition is still unclear. Here, by comparing the iron uptake process between the iron-poor-soil-tolerant citrus species Zhique (ZQ) and the iron-poor-soil-sensitive citrus species trifoliate orange (TO), we discovered that enhanced root H + efflux is crucial for the tolerance to iron deficiency in ZQ. The H+ efflux is mainly regulated by a plasma membrane-localized H+-ATPase, HA6, the expression of which is upregulated in plants grown in soil with low iron content, and significantly higher in the roots of ZQ than TO. Overexpression of the HA6 gene in the Arabidopsis thaliana aha2 mutant, defective in iron uptake, recovered the wild-type phenotype. In parallel, overexpression of the HA6 gene in TO significantly increased iron content of plants. Moreover, an iron deficiency-induced transcription factor, MYB308, was revealed to bind the promoter and activate the expression of HA6 in ZQ in yeast one-hybrid, electrophoretic mobility shift, and dual-luciferase assays. Overexpression of MYB308 in ZQ roots significantly increased the expression level of the HA6 gene. However, MYB308 cannot bind or activate the HA6 promoter in TO due to the sequence variation of the corresponding MYB308 binding motif. Taking these results together, we propose that the MYB308 could activate HA6 to promote root H+ efflux and iron uptake, and that the distinctive MYB308-HA6 transcriptional module may be, at least in part, responsible for the iron deficiency tolerance in citrus.
Collapse
Affiliation(s)
- Zhengyan Fan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yifang Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Liuying Zhao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Lina Fu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Lile Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiarui Deng
- Chenggu Fruit Industry Technical Guidance Station, Shaanxi 723200, China
| | - Dekuan Ding
- Chenggu Fruit Industry Technical Guidance Station, Shaanxi 723200, China
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research & Department of Plant Sciences and Landscape Architecture, University of Maryland College Park, Rockville, MD 20850, USA
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Shu’ang Peng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | | |
Collapse
|
18
|
Transcriptome Profiling of Cu Stressed Petunia Petals Reveals Candidate Genes Involved in Fe and Cu Crosstalk. Int J Mol Sci 2021; 22:ijms222111604. [PMID: 34769033 PMCID: PMC8583722 DOI: 10.3390/ijms222111604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 11/16/2022] Open
Abstract
Copper (Cu) is an essential element for most living plants, but it is toxic for plants when present in excess. To better understand the response mechanism under excess Cu in plants, especially in flowers, transcriptome sequencing on petunia buds and opened flowers under excess Cu was performed. Interestingly, the transcript level of FIT-independent Fe deficiency response genes was significantly affected in Cu stressed petals, probably regulated by basic-helix-loop-helix 121 (bHLH121), while no difference was found in Fe content. Notably, the expression level of bHLH121 was significantly down-regulated in petals under excess Cu. In addition, the expression level of genes related to photosystem II (PSII), photosystem I (PSI), cytochrome b6/f complex, the light-harvesting chlorophyll II complex and electron carriers showed disordered expression profiles in petals under excess Cu, thus photosynthesis parameters, including the maximum PSII efficiency (FV/FM), nonphotochemical quenching (NPQ), quantum yield of the PSII (ΦPS(II)) and photochemical quenching coefficient (qP), were reduced in Cu stressed petals. Moreover, the chlorophyll a content was significantly reduced, while the chlorophyll b content was not affected, probably caused by the increased expression of chlorophyllide a oxygenase (CAO). Together, we provide new insight into excess Cu response and the Cu–Fe crosstalk in flowers.
Collapse
|
19
|
von der Mark C, Ivanov R, Eutebach M, Maurino VG, Bauer P, Brumbarova T. Reactive oxygen species coordinate the transcriptional responses to iron availability in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2181-2195. [PMID: 33159788 PMCID: PMC7966954 DOI: 10.1093/jxb/eraa522] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/01/2020] [Indexed: 05/05/2023]
Abstract
Reactive oxygen species play a central role in the regulation of plant responses to environmental stress. Under prolonged iron (Fe) deficiency, increased levels of hydrogen peroxide (H2O2) initiate signaling events, resulting in the attenuation of Fe acquisition through the inhibition of FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT). As this H2O2 increase occurs in a FIT-dependent manner, our aim was to understand the processes involved in maintaining H2O2 levels under prolonged Fe deficiency and the role of FIT. We identified the CAT2 gene, encoding one of the three Arabidopsis catalase isoforms, as regulated by FIT. CAT2 loss-of-function plants displayed severe susceptibility to Fe deficiency and greatly increased H2O2 levels in roots. Analysis of the Fe homeostasis transcription cascade revealed that H2O2 influences the gene expression of downstream regulators FIT, BHLH genes of group Ib, and POPEYE (PYE); however, H2O2 did not affect their upstream regulators, such as BHLH104 and ILR3. Our data shows that FIT and CAT2 participate in a regulatory loop between H2O2 and prolonged Fe deficiency.
Collapse
Affiliation(s)
- Claudia von der Mark
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092 Zurich, Switzerland
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Monique Eutebach
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Veronica G Maurino
- Department of Molecular Plant Physiology, Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschalle 1, D-53115 Bonn, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, D-40225 Düsseldorf, Germany
- Correspondence: or
| | - Tzvetina Brumbarova
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
- Correspondence: or
| |
Collapse
|
20
|
Gao F, Dubos C. Transcriptional integration of plant responses to iron availability. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2056-2070. [PMID: 33246334 DOI: 10.1093/jxb/eraa556] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 05/16/2023]
Abstract
Iron is one of the most important micronutrients for plant growth and development. It functions as the enzyme cofactor or component of electron transport chains in various vital metabolic processes, including photosynthesis, respiration, and amino acid biosynthesis. To maintain iron homeostasis, and therefore prevent any deficiency or excess that could be detrimental, plants have evolved complex transcriptional regulatory networks to tightly control iron uptake, translocation, assimilation, and storage. These regulatory networks are composed of various transcription factors; among them, members of the basic helix-loop-helix (bHLH) family play an essential role. Here, we first review recent advances in understanding the roles of bHLH transcription factors involved in the regulatory cascade controlling iron homeostasis in the model plant Arabidopsis, and extend this understanding to rice and other plant species. The importance of other classes of transcription factors will also be discussed. Second, we elaborate on the post-translational mechanisms involved in the regulation of these regulatory networks. Finally, we provide some perspectives on future research that should be conducted in order to precisely understand how plants control the homeostasis of this micronutrient.
Collapse
Affiliation(s)
- Fei Gao
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Christian Dubos
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
21
|
Robe K, Gao F, Bonillo P, Tissot N, Gaymard F, Fourcroy P, Izquierdo E, Dubos C. Sulphur availability modulates Arabidopsis thaliana responses to iron deficiency. PLoS One 2020; 15:e0237998. [PMID: 32817691 PMCID: PMC7440645 DOI: 10.1371/journal.pone.0237998] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/06/2020] [Indexed: 11/23/2022] Open
Abstract
Among the mineral nutrients that are required for plant metabolism, iron (Fe) and sulphur (S) play a central role as both elements are needed for the activity of several proteins involved in essential cellular processes. A combination of physiological, biochemical and molecular approaches was employed to investigate how S availability influences plant response to Fe deficiency, using the model plant Arabidopsis thaliana. We first observed that chlorosis symptom induced by Fe deficiency was less pronounced when S availability was scarce. We thus found that S deficiency inhibited the Fe deficiency induced expression of several genes associated with the maintenance of Fe homeostasis. This includes structural genes involved in Fe uptake (i.e. IRT1, FRO2, PDR9, NRAMP1) and transport (i.e. FRD3, NAS4) as well as a subset of their upstream regulators, namely BTS, PYE and the four clade Ib bHLH. Last, we found that the over accumulation of manganese (Mn) in response to Fe shortage was reduced under combined Fe and S deficiencies. These data suggest that S deficiency inhibits the Fe deficiency dependent induction of the Fe uptake machinery. This in turn limits the transport into the root and the plant body of potentially toxic divalent cations such as Mn and Zn, thus limiting the deleterious effect of Fe deprivation.
Collapse
Affiliation(s)
- Kevin Robe
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Fei Gao
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Pauline Bonillo
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Nicolas Tissot
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Frédéric Gaymard
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Pierre Fourcroy
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Esther Izquierdo
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Christian Dubos
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
- * E-mail:
| |
Collapse
|