1
|
Na J, Jang S, Song M, Nam S, Choi WY, Shin H, Kwon S, Baek Y. Unraveling the unique bioactivities of highly purified C-phycocyanin and allophycocyanin. J Biol Eng 2025; 19:34. [PMID: 40241106 PMCID: PMC12004856 DOI: 10.1186/s13036-025-00496-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND The blue-green microalgae Spirulina, used in human nutrition for centuries, includes phycobiliproteins such as C-phycocyanin (CPC) and allophycocyanin (APC). Assessing their unique bioactivities separately is difficult as they have similar properties, such as molecular weight and isoelectric point. In the present study, we aimed to separate CPC and APC and to evaluate their bioactivities. CPC and APC were separated using a hydrophobic membrane and ammonium sulfate, which promotes reversible and specific protein binding to the membrane. Spectroscopic analysis, HPLC, and SDS-PAGE revealed a successful separation of CPC and APC. Their bioactivities were evaluated through CCK- 8 assays for anticancer activity, radical scavenging assays for antioxidant activity, and albumin denaturation assays for anti-inflammatory activity, respectively. RESULTS The results revealed that highly purified APC showed 40% higher anticancer activity than the control, whereas CPC increased the viability of cancer cells, resulting in a 30% decrease in anticancer activity compared to the control. In contrast, highly purified CPC showed approximately 25% higher antioxidant activity and twice as much anti-inflammatory activity as APCs; moreover, the presence of both showed higher antioxidant activity. CONCLUSION This study provides important insights into the unique bioactivities of CPC and APC for their appropriate application as anticancer, antiphlogistic, and antioxidant agents.
Collapse
Affiliation(s)
- Jimin Na
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-Ro, Michuhol-Gu, Incheon, 22212, Republic of Korea
| | - Soobin Jang
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-Ro, Michuhol-Gu, Incheon, 22212, Republic of Korea
| | - Myeongkwan Song
- Department of Biological Engineering, Inha University, 100 Inha-Ro, Michuhol-Gu, Incheon, 22212, Republic of Korea
- Industry-Academia Interactive R&E Center for Bioprocess Innovation, Inha University, Incheon, 22212, Republic of Korea
| | - SeungEun Nam
- Green Carbon Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-Ro, Yuseong-Gu, Daejeon, 305-600, Republic of Korea
| | - Woon-Yong Choi
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), 2670, Iljudong-Ro, Jeju-Si, Gujwa-Eup, 63349, Republic of Korea
| | - Hwasung Shin
- Department of Biological Engineering, Inha University, 100 Inha-Ro, Michuhol-Gu, Incheon, 22212, Republic of Korea
| | - Soonjo Kwon
- Department of Biological Engineering, Inha University, 100 Inha-Ro, Michuhol-Gu, Incheon, 22212, Republic of Korea
- Industry-Academia Interactive R&E Center for Bioprocess Innovation, Inha University, Incheon, 22212, Republic of Korea
| | - Youngbin Baek
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-Ro, Michuhol-Gu, Incheon, 22212, Republic of Korea.
- Department of Biological Engineering, Inha University, 100 Inha-Ro, Michuhol-Gu, Incheon, 22212, Republic of Korea.
| |
Collapse
|
2
|
Microalgae-mediated wastewater treatment for biofuels production: A comprehensive review. Microbiol Res 2022; 265:127187. [DOI: 10.1016/j.micres.2022.127187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 01/20/2023]
|
3
|
Sustainable Microalgae and Cyanobacteria Biotechnology. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Marine organisms are a valuable source of new compounds, many of which have remarkable biotechnological properties, such as microalgae and cyanobacteria, which have attracted special attention to develop new industrial production routes. These organisms are a source of many biologically active molecules in nature, including antioxidants, immunostimulants, antivirals, antibiotics, hemagglutinates, polyunsaturated fatty acids, peptides, proteins, biofuels, and pigments. The use of several technologies to improve biomass production, in the first step, industrial processes schemes have been addressed with different accomplishments. It is critical to consider all steps involved in producing a bioactive valuable compound, such as species and strain selection, nutrient supply required to support productivity, type of photobioreactor, downstream processes, namely extraction, recovery, and purification. In general, two product production schemes can be mentioned; one for large amounts of product, such as biodiesel or any other biofuel and the biomass for feeding purposes; the other for when the product will be used in the human health domain, such as antivirals, antibiotics, antioxidants, etc. Several applications for microalgae have been documented. In general, the usefulness of an application for each species of microalgae is determined by growth and product production. Furthermore, the use of OMICS technologies enabled the development of a new design for human therapeutic recombinant proteins, including strain selection based on previous proteomic profiles, gene cloning, and the development of expression networks. Microalgal expression systems have an advantage over traditional microbial, plant, and mammalian expression systems for new and sustainable microalga applications, for responsible production and consumption.
Collapse
|
4
|
Park J, Lee H, Dinh TB, Choi S, De Saeger J, Depuydt S, Brown MT, Han T. Commercial Potential of the Cyanobacterium Arthrospira maxima: Physiological and Biochemical Traits and the Purification of Phycocyanin. BIOLOGY 2022; 11:biology11050628. [PMID: 35625356 PMCID: PMC9138259 DOI: 10.3390/biology11050628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 12/11/2022]
Abstract
Simple Summary Arthrospira maxima is an unbranched, filamentous cyanobacterium rich in important cellular products such as vitamins, minerals, iron, essential amino acids, essential fatty acids, and protein, which has made it one of the most important commercial photoautotrophs. To optimize the growth conditions for the production of target compounds and to ensure profitability in commercial applications, the effects of pH and temperature were investigated. A. maxima has been shown to be tolerant to a range of pH conditions and to exhibit hyper-accumulation of phycoerythrin and allophycocyanin at low temperatures. These traits may offer significant advantages for future exploitation, especially in outdoor cultivation with fluctuating pH and temperature. Our study also demonstrated a new method for the purification of phycocyanin from A. maxima by using by ultrafiltration, ion-exchange chromatography, and gel filtration, producing PC at 1.0 mg·mL−1 with 97.6% purity. Abstract Arthrospira maxima is a natural source of fine chemicals for multiple biotechnological applications. We determined the optimal environmental conditions for A. maxima by measuring its relative growth rate (RGR), pigment yield, and photosynthetic performance under different pH and temperature conditions. RGR was highest at pH 7–9 and 30 °C. Chlorophyll a, phycocyanin, maximal quantum yield (Fv/Fm), relative maximal electron transport rate (rETRmax), and effective quantum yield (ΦPSII) were highest at pH 7–8 and 25 °C. Interestingly, phycoerythrin and allophycocyanin content was highest at 15 °C, which may be the lowest optimum temperature reported for phycobiliprotein production in the Arthrospira species. A threestep purification of phycocyanin (PC) by ultrafiltration, ion-exchange chromatography, and gel filtration resulted in a 97.6% purity of PC.
Collapse
Affiliation(s)
- Jihae Park
- Development & Planning Office, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Korea; (J.P.); (H.L.)
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Korea;
| | - Hojun Lee
- Development & Planning Office, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Korea; (J.P.); (H.L.)
| | - Thai Binh Dinh
- Department of Cosmetic Science and Management, Incheon National University, 119, Academy-ro, Incheon 22012, Korea;
| | - Soyeon Choi
- Department of Marine Science, Incheon National University, 119, Academy-ro, Incheon 22012, Korea;
| | - Jonas De Saeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium;
| | - Stephen Depuydt
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Korea;
| | - Murray T. Brown
- School of Marine Science & Engineering, Plymouth University, Plymouth PL4 8AA, Devon, UK;
| | - Taejun Han
- Development & Planning Office, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Korea; (J.P.); (H.L.)
- Department of Marine Science, Incheon National University, 119, Academy-ro, Incheon 22012, Korea;
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653-Block F, 9000 Ghent, Belgium
- Correspondence:
| |
Collapse
|
5
|
Puzorjov A, Dunn KE, McCormick AJ. Production of thermostable phycocyanin in a mesophilic cyanobacterium. Metab Eng Commun 2021; 13:e00175. [PMID: 34168957 PMCID: PMC8209669 DOI: 10.1016/j.mec.2021.e00175] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/12/2021] [Accepted: 05/28/2021] [Indexed: 11/01/2022] Open
Abstract
Phycocyanin (PC) is a soluble phycobiliprotein found within the light-harvesting phycobilisome complex of cyanobacteria and red algae, and is considered a high-value product due to its brilliant blue colour and fluorescent properties. However, commercially available PC has a relatively low temperature stability. Thermophilic species produce more thermostable variants of PC, but are challenging and energetically expensive to cultivate. Here, we show that the PC operon from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 (cpcBACD) is functional in the mesophile Synechocystis sp. PCC 6803. Expression of cpcBACD in an 'Olive' mutant strain of Synechocystis lacking endogenous PC resulted in high yields of thermostable PC (112 ± 1 mg g-1 DW) comparable to that of endogenous PC in wild-type cells. Heterologous PC also improved the growth of the Olive mutant, which was further supported by evidence of a functional interaction with the endogenous allophycocyanin core of the phycobilisome complex. The thermostability properties of the heterologous PC were comparable to those of PC from T. elongatus, and could be purified from the Olive mutant using a low-cost heat treatment method. Finally, we developed a scalable model to calculate the energetic benefits of producing PC from T. elongatus in Synechocystis cultures. Our model showed that the higher yields and lower cultivation temperatures of Synechocystis resulted in a 3.5-fold increase in energy efficiency compared to T. elongatus, indicating that producing thermostable PC in non-native hosts is a cost-effective strategy for scaling to commercial production.
Collapse
Affiliation(s)
- Anton Puzorjov
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Katherine E. Dunn
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh, EH9 3DW, UK
| | - Alistair J. McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| |
Collapse
|
6
|
Nandagopal P, Steven AN, Chan LW, Rahmat Z, Jamaluddin H, Mohd Noh NI. Bioactive Metabolites Produced by Cyanobacteria for Growth Adaptation and Their Pharmacological Properties. BIOLOGY 2021; 10:1061. [PMID: 34681158 PMCID: PMC8533319 DOI: 10.3390/biology10101061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023]
Abstract
Cyanobacteria are the most abundant oxygenic photosynthetic organisms inhabiting various ecosystems on earth. As with all other photosynthetic organisms, cyanobacteria release oxygen as a byproduct during photosynthesis. In fact, some cyanobacterial species are involved in the global nitrogen cycles by fixing atmospheric nitrogen. Environmental factors influence the dynamic, physiological characteristics, and metabolic profiles of cyanobacteria, which results in their great adaptation ability to survive in diverse ecosystems. The evolution of these primitive bacteria resulted from the unique settings of photosynthetic machineries and the production of bioactive compounds. Specifically, bioactive compounds play roles as regulators to provide protection against extrinsic factors and act as intracellular signaling molecules to promote colonization. In addition to the roles of bioactive metabolites as indole alkaloids, terpenoids, mycosporine-like amino acids, non-ribosomal peptides, polyketides, ribosomal peptides, phenolic acid, flavonoids, vitamins, and antimetabolites for cyanobacterial survival in numerous habitats, which is the focus of this review, the bioactivities of these compounds for the treatment of various diseases are also discussed.
Collapse
Affiliation(s)
- Pavitra Nandagopal
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
| | - Anthony Nyangson Steven
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia;
| | - Liong-Wai Chan
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
| | - Zaidah Rahmat
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai 81310, Malaysia
| | - Haryati Jamaluddin
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
| | - Nur Izzati Mohd Noh
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Malaysia; (P.N.); (L.-W.C.); (Z.R.); (H.J.)
| |
Collapse
|