1
|
Kosmalski T, Kołodziejska R, Przybysz M, Szeleszczuk Ł, Pawluk H, Mądra-Gackowska K, Studzińska R. The Application of Green Solvents in the Synthesis of S-Heterocyclic Compounds-A Review. Int J Mol Sci 2024; 25:9474. [PMID: 39273421 PMCID: PMC11395059 DOI: 10.3390/ijms25179474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Cyclic organic compounds containing sulfur atoms constitute a large group, and they play an important role in the chemistry of heterocyclic compounds. They are valuable intermediates for the synthesis of other compounds or biologically active compounds themselves. The synthesis of heterocyclic compounds poses a major challenge for organic chemists, especially in the context of applying the principles of "green chemistry". This work is a review of the methods of synthesis of various S-heterocyclic compounds using green solvents such as water, ionic liquids, deep eutectic solvents, glycerol, ethylene glycol, polyethylene glycol, and sabinene. The syntheses of five-, six-, and seven-membered heterocyclic compounds containing a sulfur atom or atoms, as well as those with other heteroatoms and fused-ring systems, are described. It is shown that using green solvents determines the attractiveness of conditions for many reactions; for others, such use constitutes a real compromise between efficiency and mild reaction conditions.
Collapse
Affiliation(s)
- Tomasz Kosmalski
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 Jurasza Str., 85-089 Bydgoszcz, Poland
| | - Renata Kołodziejska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza Str., 85-092 Bydgoszcz, Poland
| | - Monika Przybysz
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 Jurasza Str., 85-089 Bydgoszcz, Poland
| | - Łukasz Szeleszczuk
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-093 Warsaw, Poland
| | - Hanna Pawluk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza Str., 85-092 Bydgoszcz, Poland
| | - Katarzyna Mądra-Gackowska
- Department of Geriatrics, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 Skłodowskiej Curie Str., 85-094 Bydgoszcz, Poland
| | - Renata Studzińska
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 Jurasza Str., 85-089 Bydgoszcz, Poland
| |
Collapse
|
2
|
Duvauchelle V, Meffre P, Benfodda Z. Green methodologies for the synthesis of 2-aminothiophene. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:597-621. [PMID: 36060495 PMCID: PMC9421116 DOI: 10.1007/s10311-022-01482-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/29/2022] [Indexed: 05/16/2023]
Abstract
Pollution and the rising energy demand have prompted the design of new synthetic reactions that meet the principles of green chemistry. In particular, alternative synthesis of 2-aminothiophene have recently focused interest because 2-aminothiophene is a unique 5-membered S-heterocycle and a pharmacophore providing antiprotozoal, antiproliferative, antiviral, antibacterial or antifungal properties. Here, we review new synthetic routes to 2-aminothiophenes, including multicomponent reactions, homogeneously- or heterogeneously-catalyzed reactions, with focus on green pathways.
Collapse
Affiliation(s)
- Valentin Duvauchelle
- CHROME Laboratory, University of Nîmes, Rue du Dr. G. Salan, 30021 Nîmes Cedex 1, France
| | - Patrick Meffre
- CHROME Laboratory, University of Nîmes, Rue du Dr. G. Salan, 30021 Nîmes Cedex 1, France
| | - Zohra Benfodda
- CHROME Laboratory, University of Nîmes, Rue du Dr. G. Salan, 30021 Nîmes Cedex 1, France
| |
Collapse
|
3
|
Figuerola-Asencio L, Morales P, Zhao P, Hurst DP, Sayed SS, Colón KL, Gómez-Cañas M, Fernández-Ruiz J, Croatt MP, Reggio PH, Abood ME, Jagerovic N. Thienopyrimidine Derivatives as GPR55 Receptor Antagonists: Insight into Structure-Activity Relationship. ACS Med Chem Lett 2022; 14:18-25. [PMID: 36655130 PMCID: PMC9841585 DOI: 10.1021/acsmedchemlett.2c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
GPR55 is an orphan G-protein coupled receptor involved in various pathophysiological conditions. However, there are only a few noncannabinoid GPR55 ligands reported so far. The lack of potent and selective GPR55 ligands precludes a deep exploration of this receptor. The studies presented here focused on a thienopyrimidine scaffold based on the GPR55 antagonist ML192, previously discovered by high-throughput screening. The GPR55 activities of the new synthesized compounds were assessed using β-arrestin recruitment assays in Chinese hamster ovary cells overexpressing human GPR55. Some derivatives were identified as GPR55 antagonists with functional efficacy and selectivity versus CB1 and CB2 cannabinoid receptors.
Collapse
Affiliation(s)
- Laura Figuerola-Asencio
- Instituto
de Química Médica, Consejo
Superior de Investigaciones Científicas, 28006Madrid, Spain
| | - Paula Morales
- Instituto
de Química Médica, Consejo
Superior de Investigaciones Científicas, 28006Madrid, Spain
| | - Pingwei Zhao
- Center
for Substance Abuse Research, Temple University, Philadelphia, Pennsylvania19122, United States
| | - Dow P. Hurst
- Center
for Drug Discovery, Department of Chemistry and Biochemistry, University North Carolina, Greensboro, North Carolina27599, United States
| | - Sommayah S. Sayed
- Center
for Drug Discovery, Department of Chemistry and Biochemistry, University North Carolina, Greensboro, North Carolina27599, United States
| | - Katsuya L. Colón
- Center
for Drug Discovery, Department of Chemistry and Biochemistry, University North Carolina, Greensboro, North Carolina27599, United States
| | - María Gómez-Cañas
- Department
of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, CIBERNED and IRYCIS, 28040Madrid, Spain
| | - Javier Fernández-Ruiz
- Department
of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, CIBERNED and IRYCIS, 28040Madrid, Spain
| | - Mitchell P. Croatt
- Center
for Drug Discovery, Department of Chemistry and Biochemistry, University North Carolina, Greensboro, North Carolina27599, United States
| | - Patricia H. Reggio
- Center
for Drug Discovery, Department of Chemistry and Biochemistry, University North Carolina, Greensboro, North Carolina27599, United States,E-mail:
| | - Mary E. Abood
- Center
for Substance Abuse Research, Temple University, Philadelphia, Pennsylvania19122, United States,E-mail:
| | - Nadine Jagerovic
- Instituto
de Química Médica, Consejo
Superior de Investigaciones Científicas, 28006Madrid, Spain,E-mail:
| |
Collapse
|
4
|
Zheng L, Liu G, Zou X, Zhong Y, Deng L, Wu Y, Yang B, Wang Y, Guo W. DBU‐Promoted Three‐Component Cascade Annulations to Access Multiply Substituted 3‐Cyano‐thiophenes. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Gongping Liu
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Xiaoying Zou
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Yumei Zhong
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Lei Deng
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Yingying Wu
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Beining Yang
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Yihan Wang
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Wei Guo
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province 赣南师范大学黄金校区 341000 Ganzhou CHINA
| |
Collapse
|
5
|
Kim T, Morshed MN, Londhe AM, Lim JW, Lee HE, Cho S, Cho SJ, Hwang H, Lim SM, Lee JY, Lee J, Pae AN. The translocator protein ligands as mitochondrial functional modulators for the potential anti-Alzheimer agents. J Enzyme Inhib Med Chem 2021; 36:831-846. [PMID: 33752569 PMCID: PMC7996082 DOI: 10.1080/14756366.2021.1900158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 11/06/2022] Open
Abstract
Small molecule modulators of mitochondrial function have been attracted much attention in recent years due to their potential therapeutic applications for neurodegenerative diseases. The mitochondrial translocator protein (TSPO) is a promising target for such compounds, given its involvement in the formation of the mitochondrial permeability transition pore in response to mitochondrial stress. In this study, we performed a ligand-based pharmacophore design and virtual screening, and identified a potent hit compound, 7 (VH34) as a TSPO ligand. After validating its biological activity against amyloid-β (Aβ) induced mitochondrial dysfunction and in acute and transgenic Alzheimer's disease (AD) model mice, we developed a library of analogs, and we found two most active compounds, 31 and 44, which restored the mitochondrial membrane potential, ATP production, and cell viability under Aβ-induced mitochondrial toxicity. These compounds recovered learning and memory function in acute AD model mice with improved pharmacokinetic properties.
Collapse
Affiliation(s)
- TaeHun Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Mohammad N. Morshed
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
- Center for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, Bangladesh
| | - Ashwini M. Londhe
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Ji W. Lim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Ha E. Lee
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Suengmok Cho
- Department of Food Science and Technology, Pukyong National University, Pusan, Republic of Korea
| | - Sung J. Cho
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, Republic of Korea
| | - Hayoung Hwang
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, Republic of Korea
| | - Sang M. Lim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Jae Y. Lee
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Jiyoun Lee
- Department of Global Medical Science, Sungshin University, Seoul, Republic of Korea
| | - Ae N. Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Ghith A, Youssef KM, Ismail NSM, Abouzid KAM. Design, synthesis and molecular modeling study of certain VEGFR-2 inhibitors based on thienopyrimidne scaffold as cancer targeting agents. Bioorg Chem 2018; 83:111-128. [PMID: 30343204 DOI: 10.1016/j.bioorg.2018.10.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/21/2018] [Accepted: 10/04/2018] [Indexed: 01/22/2023]
Abstract
Different series of novel thieno [2,3-d]pyrimidine derivative (9a-d,10a-f,l,m and 15a-m) were designed, synthesized and evaluated for their ability to in vitro inhibit VEGFR-2 enzyme. Also, the cytotoxicity of the final compounds was tested against a panel of 60 different human cancer cell lines by NCI. The VEGFR-2 enzyme inhibitory results revealed that compounds 10d, 15d and 15 g are among the most active inhibitors with IC50 values of 2.5, 5.48 and 2.27 µM respectively, while compound 10a remarkably showed the highest cell growth inhibition with mean growth inhibition (GI) percent of 31.57%. It exhibited broad spectrum anti-proliferative activity against several NCI cell lines specifically on human breast cancer (T7-47D) and renal cancer (A498) cell lines of 85.5% and 77.65% inhibition respectively. To investigate the mechanistic aspects underlying the activity, further biological studies like flow cytometry cell cycle together with caspase-3 colorimetric assays were carried on compound 10a. Flow cytometric analysis on both MCV-7 and PC-3 cancer cells revealed that it induced cell-cycle arrest in the G0-G1phase and reinforced apoptosis via activation of caspase-3. Furthermore, molecular modeling studies have been carried out to gain further understanding of the binding mode in the active site of VEGFR-2 enzyme and predict pharmacokinetic properties of all the synthesized inhibitors.
Collapse
Affiliation(s)
- Amna Ghith
- Pharmaceutical Chemistry Department, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo 12311, Egypt
| | - Khairia M Youssef
- Pharmaceutical Chemistry Department, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo 12311, Egypt
| | - Nasser S M Ismail
- Pharmaceutical Chemistry Department, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo 12311, Egypt.
| | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt.
| |
Collapse
|
7
|
Thiophene Syntheses by Ring Forming Multicomponent Reactions. Top Curr Chem (Cham) 2018; 376:38. [PMID: 30221315 DOI: 10.1007/s41061-018-0216-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/05/2018] [Indexed: 10/28/2022]
Abstract
Thiophenes occur as important building blocks in natural products, pharmaceutical active compounds, and in materials for electronic and opto-electronic devices. Therefore, there is a considerable demand for efficient synthetic strategies for producing these compounds. This review focuses on ring-forming multicomponent reactions for synthesizing thiophenes and their derivatives.
Collapse
|
8
|
Yarahmadi H, Ghashang M, Jabbar Zare S, Khodaivandi A. Barium aluminate nano-powders efficient catalyst for the synthesis of novel benzo[b]thiophene, thieno[2,3-c]thiopyran and thieno[2,3-c]pyridine derivatives. PHOSPHORUS SULFUR 2017. [DOI: 10.1080/10426507.2017.1295961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hossein Yarahmadi
- Department of Chemical Engineering, Sirjan University of Technology, Sirjan, Iran
| | - Majid Ghashang
- Department of Chemistry, Faculty of Sciences, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Saeid Jabbar Zare
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Alireza Khodaivandi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
9
|
Abaee MS, Forghani S, Mojtahedi MM, Harms K. Facile one-pot synthesis of novel dicyanoanilines fused to tetrahydro-4H-thiopyran-4-one ring via Et3N/H2O catalyzed pseudo four-component reaction. J Sulphur Chem 2016. [DOI: 10.1080/17415993.2016.1182170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- M. Saeed Abaee
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Soodabeh Forghani
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Mohammad M. Mojtahedi
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Klaus Harms
- Fachbereich Chemie der Philipps-Universitaet Marburg, Marburg, Germany
| |
Collapse
|
10
|
Sharifi A, Ansari M, Darabi HR, Abaee MS. Synergistic promoting effect of ball milling and KF–alumina support as a green tool for solvent-free synthesis of 2-arylidene-benzothiazinones. J Sulphur Chem 2016. [DOI: 10.1080/17415993.2016.1163699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ali Sharifi
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Mohammad Ansari
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Hossein Reza Darabi
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - M. Saeed Abaee
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| |
Collapse
|
11
|
Abaee MS, Mahmoudi F, Forghani S, Mojtahedi MM, Harms K. Efficient synthesis of novel bis(arylmethylidenes) of the 2,2-dimethyl-1,3-dithian-5-one system. J Sulphur Chem 2016. [DOI: 10.1080/17415993.2015.1130131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- M. Saeed Abaee
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Fereshteh Mahmoudi
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Soodabeh Forghani
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Mohammad M. Mojtahedi
- Department of Organic Chemistry and Natural Products, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Klaus Harms
- Fachbereich Chemie der, Philipps-Universitaet Marburg, Marburg, Germany
| |
Collapse
|