1
|
Neto GLB, Quinalia TRB, de Almeida DA, Madruga LYC, Souza PR, Popat KC, Sabino RM, Martins AF. Surface coating nanoarchitectonics for optimizing cytocompatibility and antimicrobial activity: The impact of hyaluronic acid positioning as the outermost layer. Int J Biol Macromol 2025; 298:139908. [PMID: 39818370 DOI: 10.1016/j.ijbiomac.2025.139908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/24/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Polyelectrolyte multilayers (PEMs) based on hyaluronic acid (HA) and poly (diallyldimethylammonium chloride) (PDDA) were deposited on oxidized polystyrene (PSox) via the layer-by-layer (LbL) method. The X-ray photoelectron spectroscopy (XPS) confirmed the PEM deposition on PSox, and atomic force microscopy (AFM) indicated that the surface roughness of PS also increased after PEM deposition. The PEMs significantly enhanced PS wettability, reducing the contact angle from 73° on PS to 24° on PDDA-terminated (PDDA/HA)2.5 PEM (2.5 bilayers, 5 layers) and 36° on HA-terminated (PDDA/HA)3 PEM (3 bilayers, 6 layers). The HA-terminated (PDDA/HA)₃ PEM demonstrated antimicrobial activity. Compared to uncoated PS surfaces, this PEM reduced the surface coverage of viable P. aeruginosa cells from 36.5 % to 3.7 % and S. aureus cells from 13.3 % to 2.5 % on uncoated PS surfaces. The antimicrobial assay following the JIS Z 2801-2010 standard demonstrated that the PDDA-terminated (PDDA/HA)2.5 PEM inhibited S. aureus growth by 48 %, compared to 32 % inhibition by the HA-terminated (PDDA/HA)3 PEM relative to the uncoated and non-oxidized polystyrene (PS) surface (control). HA-terminated PEM demonstrated lesser antimicrobial activity than PDDA-terminated PEM. However, both PEMs were cytocompatible against erythrocytes and human adipose-derived stem cells (ADSCs), indicating their potential for biomedical applications, particularly prosthetic coatings.
Collapse
Affiliation(s)
- Guilherme L B Neto
- Department of Chemistry, State University of Maringá, Maringá, PR, Brazil; Laboratory of Materials, Macromolecules, and Composites, Federal University of Technology - Paraná, Apucarana, PR, Brazil
| | - Tiago R B Quinalia
- Department of Chemistry, State University of Maringá, Maringá, PR, Brazil; Laboratory of Materials, Macromolecules, and Composites, Federal University of Technology - Paraná, Apucarana, PR, Brazil
| | - Débora A de Almeida
- Department of Chemistry, State University of Maringá, Maringá, PR, Brazil; Laboratory of Materials, Macromolecules, and Composites, Federal University of Technology - Paraná, Apucarana, PR, Brazil
| | - Liszt Y C Madruga
- Department of Chemistry, State University of Maringá, Maringá, PR, Brazil; Laboratory of Materials, Macromolecules, and Composites, Federal University of Technology - Paraná, Apucarana, PR, Brazil
| | - Paulo R Souza
- Department of Chemistry, State University of Maringá, Maringá, PR, Brazil
| | - Ketul C Popat
- Department of Bioengineering, George Mason University, VA, USA; Department of Mechanical Engineering, Colorado State University, CO, USA
| | - Roberta M Sabino
- Department of Chemical and Biomedical Engineering, University of Wyoming, WY, USA
| | - Alessandro F Martins
- Department of Chemistry, State University of Maringá, Maringá, PR, Brazil; Laboratory of Materials, Macromolecules, and Composites, Federal University of Technology - Paraná, Apucarana, PR, Brazil; National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS, USA; Department of Chemistry, Pittsburg State University, Pittsburg, KS, USA.
| |
Collapse
|
2
|
Wang Y, Gao C, Cheng S, Li Y, Huang Y, Cao X, Zhang Z, Huang J. 3D Bioprinting of Double-Layer Conductive Skin for Wound Healing. Adv Healthc Mater 2025; 14:e2404388. [PMID: 40018834 DOI: 10.1002/adhm.202404388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/17/2025] [Indexed: 03/01/2025]
Abstract
Conductive hydrogels are highly attractive in 3D bioprinting of tissue engineered scaffolds for skin injury repair. However, their application is limited by mismatched electrical signal conduction mode and poor printability. Herein, the 3D bioprinting-assisted fabrication of a double-layer ionic conductive skin scaffold using a newly designed ionic conductive biomimetic bioink (GHCM) is reported, which is composed of gelatin methacrylate (GelMA), oxidized hyaluronic acid (OHA), carboxymethyl chitosan (CMCS), and 2-methacryloyloxyethyl phosphorylcholine (MPC) for the treatment of full-thickness skin defects. The combination of rigid (GelMA) and dynamic (OHA-CMCS) polymer networks imparts GHCM bioink excellent reversible thixotropy, enabling good printability, and allowing the creation of skin-like constructs with high shape fidelity and cell activity by convenient one-step bioprinting. Moreover, the incorporation of zwitterionic MPC endows the bioink with electrical signaling pattern similar to that of natural skin tissue. By integrating human foreskin fibroblasts (HFF-1), human umbilical vein endothelial cells (HUVECs), and human immortalized keratinocytes (HaCaTs), a double-layer conductive skin scaffold comprising an epidermal layer and a vascularized dermal layer is created. In vivo experiments have demonstrated that the conductive skin scaffolds provide an appropriate conductive microenvironment for cellular signaling, growth, migration, and differentiation, ultimately accelerating the re-epithelialization, collagen deposition, and vascularization of skin wounds, which may represent a general and versatile strategy for precise engineering of electroactive tissues for regenerative medicine applications.
Collapse
Affiliation(s)
- Yuhan Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Chen Gao
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Shengnan Cheng
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yuxuan Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Ying Huang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xiaoling Cao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zhijun Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jie Huang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
3
|
Utpal BK, Sutradhar B, Zehravi M, Sweilam SH, Panigrahy UP, Urs D, Fatima AF, Nallasivan PK, Chhabra GS, Sayeed M, Alshehri MA, Rab SO, Khan SL, Emran TB. Polyphenols in wound healing: unlocking prospects with clinical applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2459-2485. [PMID: 39453503 DOI: 10.1007/s00210-024-03538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Wound healing is a multifaceted, complex process that factors like aging, metabolic diseases, and infections may influence. The potentiality of polyphenols, natural compounds, has shown anti-inflammatory and antimicrobial properties in promoting wound healing and their potential applications in wound management. The studies reviewed indicate that polyphenols have multiple mechanisms that promote wound healing. This involves enhancing antioxidant defenses, reducing oxidative stress, modulating inflammatory responses, improving healing times, reducing infection rates, and enhancing tissue regeneration in clinical trials and in vivo and in vitro studies. Polyphenols have been proven to be effective in managing hard-to-heal wounds, especially in diabetic and elderly populations. Polyphenols have shown significant benefits in promoting angiogenesis and stimulating collagen synthesis. Polyphenol treatment has been demonstrated to have therapeutic effects in wound healing and chronic wound management. Their ability to regulate key healing processes makes them suitable for new wound care products and treatments. Future research should enhance formulations and delivery methods to optimize polyphenols' bioavailability and therapeutic efficacy in wound management approaches.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| | - Baishakhi Sutradhar
- Department of Microbiology, Gono University (Bishwabidyalay), Nolam, Mirzanagar, Savar, Dhaka, 1344, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Uttam Prasad Panigrahy
- Faculty of Pharmaceutical Science, Assam Down Town University, Gandhi Nagar, Sankar Madhab Path, Panikhaiti, Guwahati, Assam, 781026, India
| | - Deepadarshan Urs
- Inflammation Research Laboratory, Department of Studies & Research in Biochemistry, Mangalore University, Jnana Kaveri Post Graduate Campus, Kodagu, Karnataka, India
| | - Ayesha Farhath Fatima
- Department of Pharmaceutics, Anwarul Uloom College of Pharmacy, New Mallepally, Hyderabad, India
| | - P Kumar Nallasivan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari, Coimbatore, Tamilnadu, India
| | - Gurmeet Singh Chhabra
- Department Pharmaceutical Chemistry, Indore Institute of Pharmacy, Opposite Indian Institute of Management Rau, Pithampur Road, Indore, Madhya Pradesh, India
| | - Mohammed Sayeed
- Department of Pharmacology, School of Pharmacy, Anurag University, Venkatapur, Ghatkesar, Hyderabad, Telangana, India
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Sharuk L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, 413520, Maharashtra, India
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| |
Collapse
|
4
|
Hou Z, Wang Y, Chen S, Luo Z, Liu Y. Licochalcone A loaded multifunctional chitosan hyaluronic acid hydrogel with antibacterial and inflammatory regulating effects to promote wound healing. Int J Biol Macromol 2024; 283:137458. [PMID: 39528175 DOI: 10.1016/j.ijbiomac.2024.137458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/17/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The wound healing process is characterized by persistent infection and long-term inflammation. The licochalcone A (LicA) has the potential for skin wound healing and needs a good drug-loading platform to apply its antibacterial and anti-inflammatory effects. In this study, the LicA@chitosan (CS) -hyaluronic acid (HA) hydrogel with antibacterial and anti-inflammatory was developed for wound healing in mice. The SEM displayed that the hydrogel had an obvious porous structure and was very suitable to be used as a delivery carrier for LicA. The FTIR results suggested that the LicA can be effectively loaded in the CS-HA hydrogel. Variable strain scanning, frequency scanning and temperature scanning indicated that the LicA@CS-HA hydrogel can maintain the gel state. The LicA@CS-HA hydrogel had good biological safety, can inhibit the activity of Escherichia coli and Staphylococcus aureus, and can release LicA stably. The LicA@CS-HA hydrogel also has good adhesion and hemostatic properties. Finally, the LicA@CS-HA hydrogel significantly accelerated wound healing in mice skin injury model, and reduced inflammation and orderly collagen deposition were observed by HE and Masson staining. The immunohistochemistry indicated that the LicA@CS-HA hydrogel induced the positive expression of CD31, VEGF, and HIF-1α promoted neovascularization. The LicA@CS-HA hydrogel also down-regulated the expression of M1 macrophage markers CD86, IL-6, and TNF-α, and increased the expression of M2 macrophage markers CD206, IL-4, and IL-10 proteins. The molecular docking demonstrated that the target proteins had better binding activity to LicA. Collectively, the LicA@CS-HA hydrogel has broad application prospects in promoting wound healing.
Collapse
Affiliation(s)
- Zhiquan Hou
- Graduate School, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Yahong Wang
- Graduate School, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Siqi Chen
- School of Public Health, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Zhonghua Luo
- Shuren International College, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China.
| | - Yunen Liu
- Shuren International College, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China.
| |
Collapse
|
5
|
Alkabli J. Recent advances in the development of chitosan/hyaluronic acid-based hybrid materials for skin protection, regeneration, and healing: A review. Int J Biol Macromol 2024; 279:135357. [PMID: 39245118 DOI: 10.1016/j.ijbiomac.2024.135357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/17/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Biomaterials play vital roles in regenerative medicine, specifically in tissue engineering applications. They promote angiogenesis and facilitate tissue creation and repair. The most difficult aspect of this field is acquiring smart biomaterials that possess qualities and functions that either surpass or are on par with those of synthetic products. The biocompatibility, biodegradability, film-forming capacity, and hydrophilic nature of the non-sulfated glycosaminoglycans (GAGs) (hyaluronic acid (HA) and chitosan (CS)) have attracted significant attention. In addition, CS and HA possess remarkable inherent biological capabilities, such as antimicrobial, antioxidant, and anti-inflammatory properties. This review provides a comprehensive overview of the recent progress made in designing and fabricating CS/HA-based hybrid materials for dermatology applications. Various formulations utilizing CS/HA have been developed, including hydrogels, microspheres, films, foams, membranes, and nanoparticles, based on the fabrication protocol (physical or chemical). Each formulation aims to enhance the materials' remarkable biological properties while also addressing their limited stability in water and mechanical strength. Additionally, this review gave a thorough outline of future suggestions for enhancing the mechanical strength of CS/HA wound dressings, along with methods to include biomolecules to make them more useful in skin biomedicine applications.
Collapse
Affiliation(s)
- J Alkabli
- Department of Chemistry, College of Sciences and Arts-Alkamil, University of Jeddah, Jeddah 23218, Saudi Arabia.
| |
Collapse
|
6
|
Wang Z, Huang W, Jin S, Gao F, Sun T, He Y, Jiang X, Wang H. Hyaluronic acid/chitin thermosensitive hydrogel loaded with TGF-β1 promotes meniscus repair in rabbit meniscus full-thickness tear model. J Orthop Surg Res 2024; 19:683. [PMID: 39438973 PMCID: PMC11520169 DOI: 10.1186/s13018-024-05144-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
Repair of the damaged meniscus is a scientific challenge owing to the poor self-healing potential of the white area of the meniscus. Tissue engineering provides a new method for the repair of meniscus injuries. In this study, we explored the superiority of 2% hyaluronic acid chitin hydrogel in temperature sensitivity, in vitro degradation, biocompatibility, cell adhesion, and other biological characteristics, and investigated the advantages of hyaluronic acid (HA) and Transforming Growth Factor β1 (TGF-β1) in promoting cell proliferation and a matrix formation phenotype. The hydrogel loaded with HA and TGF-β1 promoted cell proliferation. The HA + TGF-β1 mixed group showed the highest glycosaminoglycan (GAG) content and promoted cell migration. Hydroxypropyl chitin (HPCH), HA, and TGF-β1 were combined to form a composite hydrogel with a concentration of 2% after physical cross-linking, and this was injected into a rabbit model of a meniscus full-thickness tear. After 12 weeks of implantation, the TGF-β1 + HA/HPCH composite hydrogel was significantly better than HPCH, HA/HPCH, TGF-β1 + HPCH, and the control group in promoting meniscus repair. In addition, the new meniscus tissue of the TGF-β1 + HA/HPCH composite hydrogel had a tissue structure and biochemical content similar to that of the normal meniscus tissue.
Collapse
Affiliation(s)
- Ze Wang
- Department of Orthopedics, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430015, People's Republic of China
| | - Wei Huang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Shengyang Jin
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China
| | - Fei Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Tingfang Sun
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Yu He
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Hong Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
7
|
Li C, Tan Z, Shi X, Song D, Zhao Y, Zhang Y, Zhao Z, Zhang W, Qi J, Wang Y, Wang X, Tan Z, Liu N. Breathable, Adhesive, and Biomimetic Skin-Like Super Tattoo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406706. [PMID: 39206685 PMCID: PMC11515898 DOI: 10.1002/advs.202406706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Electronic tattoo, capable of imperceivably acquiring bio-electrical signals from the body, is broadly applied in healthcare and human-machine interface. Tattoo substrate, the foundation of electronic tattoo, is expected to be mechanically mimetic to skin, adhesive, and breathable, and yet remains highly challenging to achieve. Herein, the study mimics human skin and design a breathable, adhesive, and mechanically skin-like super tattoo substrate based on an ultra-thin film (≈2 µm). Similar to skin, super tattoo demonstrates strain-adaptive stiffening properties with high tear energy (5.4 kJ·m-2) and toughness (1.3 MJ·m-3). Superior to skin, it exhibits high adhesion, ionic conductivity, and permeability. A variety of conductive electrodes can be processed on it, showing the universality toward an ideal platform for electronic tattoo with stable and low contact impedance. Super tattoo-based electrodes can imperceivably and accurately monitor weak electromyography (EMG) of swallowing on the junction, providing effective guidance for rehabilitation training of dysphagia.
Collapse
Affiliation(s)
- Chuqi Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
- State Key Laboratory of Fine Chemicals, Panjin Branch of School of Chemical EngineeringDalian University of TechnologyPanjinLiaoning124221P. R. China
| | - Zhiyuan Tan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Xiaohu Shi
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Dekui Song
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Yan Zhao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Yan Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Zihan Zhao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Weifeng Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Jiongyang Qi
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Yifang Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Xin Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Zhenquan Tan
- State Key Laboratory of Fine Chemicals, Panjin Branch of School of Chemical EngineeringDalian University of TechnologyPanjinLiaoning124221P. R. China
| | - Nan Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| |
Collapse
|
8
|
Ding Y, Zhu Z, Zhang X, Wang J. Novel Functional Dressing Materials for Intraoral Wound Care. Adv Healthc Mater 2024; 13:e2400912. [PMID: 38716872 DOI: 10.1002/adhm.202400912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Intraoral wounds represent a particularly challenging category of mucosal and hard tissue injuries, characterized by the unique structures, complex environment, and distinctive healing processes within the oral cavity. They have a common occurrence yet frequently inflict significant inconvenience and pain on patients, causing a serious decline in the quality of life. A variety of novel functional dressings specifically designed for the moist and dynamic oral environment have been developed and realized accelerated and improved wound healing. Thoroughly analyzing and summarizing these materials is of paramount importance in enhancing the understanding and proficiently managing intraoral wounds. In this review, the particular processes and unique characteristics of intraoral wound healing are firstly described. Up-to-date knowledge of various forms, properties, and applications of existing products are then intensively discussed, which are categorized into animal products, plant extracts, natural polymers, and synthetic products. To conclude, this review presents a comprehensive framework of currently available functional intraoral wound dressings, with an aim to provoke inspiration of future studies to design more convenient and versatile materials.
Collapse
Affiliation(s)
- Yutang Ding
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
9
|
Dai Y, Wu J, Wang J, Wang H, Guo B, Jiang T, Cai Z, Han J, Zhang H, Xu B, Zhou X, Wang C. Magnesium Ions Promote the Induction of Immunosuppressive Bone Microenvironment and Bone Repair through HIF-1α-TGF-β Axis in Dendritic Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311344. [PMID: 38661278 DOI: 10.1002/smll.202311344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/22/2024] [Indexed: 04/26/2024]
Abstract
The effect of immunoinflammation on bone repair during the recovery process of bone defects needs to be further explored. It is reported that Mg2+ can promote bone repair with immunoregulatory effect, but the underlying mechanism on adaptive immunity is still unclear. Here, by using chitosan and hyaluronic acid-coated Mg2+ (CSHA-Mg) in bone-deficient mice, it is shown that Mg2+ can inhibit the activation of CD4+ T cells and increase regulatory T cell formation by inducing immunosuppressive dendritic cells (imDCs). Mechanistically, Mg2+ initiates the activation of the MAPK signaling pathway through TRPM7 channels on DCs. This process subsequently induces the downstream HIF-1α expression, a transcription factor that amplifies TGF-β production and inhibits the effective T cell function. In vivo, knock-out of HIF-1α in DCs or using a HIF-1α inhibitor PX-478 reverses inhibition of bone inflammation and repair promotion upon Mg2+-treatment. Moreover, roxadustat, which stabilizes HIF-1α protein expression, can significantly promote immunosuppression and bone repair in synergism with CSHA-Mg. Thus, the findings identify a key mechanism for DCs and its HIF-1α-TGF-β axis in the induction of immunosuppressive bone microenvironment, providing potential targets for bone regeneration.
Collapse
Affiliation(s)
- Yuya Dai
- Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Jinhui Wu
- Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Junyou Wang
- State-Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Haoze Wang
- Nation Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Bingqing Guo
- Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, China
| | - Tao Jiang
- Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, China
| | - Zhuyun Cai
- Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Junjie Han
- Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Haoyu Zhang
- Nation Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Bangzhe Xu
- Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Xuhui Zhou
- Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Ce Wang
- Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University, Shanghai, 200003, China
| |
Collapse
|
10
|
Abdulsalam RA, Ijabadeniyi OA, Sabiu S. Fatty acid-modified chitosan and nanoencapsulation of essential oils: A snapshot of applications. Carbohydr Res 2024; 542:109196. [PMID: 38936268 DOI: 10.1016/j.carres.2024.109196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Chitosan (CS) and its modification with fatty acid (FA) in addition to the nanoencapsulation with essential oils (EOs) have emerged as promising approaches with diverse applications, particularly in food and fruit preservation. This review aims to curate data on the prospects of CS modified with FA as nanostructures, serving as carriers for EOs and its application in the preservation of fruits. A narrative review with no restricted period was used for the general overview of CS and strategies for its modification with FA. Report on CS modified with FA and nanoencapsulation with EO and their applications were appraised. The prospects of CS modified with FA and EO nanoencapsulation in food and fruit preservation were outlined. Most chitosan-fatty acid (CS-FA) studies have found relevance in water, medical and pharmaceutical industries, with few studies on food preservation. CS-FA formulation with EOs shows substantial potential in preserving fruits and will significantly impact the food industry in the future by extending the shelf life of fruits and reducing food waste.
Collapse
Affiliation(s)
- Rukayat Abiola Abdulsalam
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Oluwatosin Ademola Ijabadeniyi
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
11
|
Adel Alawadi H, Andarzbakhsh K, Rastegari A, Mohammadi Z, Aghsami M, Saadatpour F. Chitosan-Aloe Vera Composition Loaded with Zinc Oxide Nanoparticles for Wound Healing: In Vitro and In Vivo Evaluations. IET Nanobiotechnol 2024; 2024:6024411. [PMID: 38863973 PMCID: PMC11111295 DOI: 10.1049/2024/6024411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Global concerns due to the negative impacts of untreatable wounds, as well as the growing population of these patients, emphasize the critical need for advancements in the wound healing materials and techniques. Nanotechnology offers encouraging avenues for improving wound healing process. In this context, nanoparticles (NPs) and certain natural materials, including chitosan (CS) and aloe vera (AV), have demonstrated the potential to promote healing effects. The objective of this investigation is to assess the effect of novel fabricated nanocomposite gel containing CS, AV, and zinc oxide NPs (ZnO NPs) on the wound healing process. The ZnO NPs were synthesized and characterized by X-ray diffraction and electron microscopy. Then, CS/AV gel with different ratios was prepared and loaded with ZnO NPs. The obtained formulations were characterized in vitro based on an antimicrobial study, and the best formulations were used for the animal study to assess their wound healing effects in 21 days. The ZnO NPs were produced with an average 33 nm particle size and exhibited rod shape morphology. Prepared gels were homogenous with good spreadability, and CS/AV/ZnO NPs formulations showed higher antimicrobial effects against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The wound healing findings showed significant wound area reduction in the CS/AV/ZnO NPs group compared to negative control at day 21. Histopathological assessment revealed the advantageous impact of this formulation across various stages of the wound healing process, including collagen deposition (CS/AV/ZnO NPs (2 : 1), 76.6 ± 3.3 compared to negative control, 46.2 ± 3.7) and epitheliogenesis (CS/AV/ZnO NPs (2 : 1), 3 ± 0.9 compared to negative control, 0.8 ± 0.8). CS/AV gel-loaded ZnO NPs showed significant effectiveness in wound healing and would be suggested as a promising formulation in the wound healing process. Further assessments are warranted to ensure the robustness of our findings.
Collapse
Affiliation(s)
- Hasanain Adel Alawadi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Kamyab Andarzbakhsh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Rastegari
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Zohreh Mohammadi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Aghsami
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Saadatpour
- Molecular Virology Lab, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
12
|
Shabani M, Sharifi S, Karimi I, Shirian S, Fadaei M, Mirzaei E. Evaluation of the restorative effect of ozone and chitosan-hyaluronic acid with and without mesenchymal stem cells on wound healing in rats. Vet Med Sci 2024; 10:e1439. [PMID: 38695208 PMCID: PMC11063917 DOI: 10.1002/vms3.1439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/10/2024] [Indexed: 05/04/2024] Open
Abstract
This study evaluated the effect of ozone, chitosan-hyaluronic (Cs-HA) acid and mesenchymal stem cells (MSCs) on wound healing in rats. A total of 64 rats were randomly divided into four groups: control, ozone, Cs-HA + ozone and Cs-HA + ozone + MSCs. A 5 mm full-thickness wound was created on the back of each rat. The wound area was measured macroscopically on days 3, 5, 9 and 14. Tissue sections were prepared for histopathological evaluation of inflammation, collagen arrangement, neovascularization and epithelial tissue rearrangement. Macroscopic assessment showed differences in wound area on days 5, 9 and 14. Histopathological examination showed that the Cs-HA + ozone + MSCs and Cs-HA + ozone groups had significantly higher vascularization on day 3 compared to the ozone-treated and control groups. All treatment groups had significantly better collagen arrangement than the control group. On day 5, no significant difference was observed between different groups. On day 9, the inflammation level in the Cs-HA + ozone + MSCs group was significantly lower than in the other groups. All treatment groups had significantly better vascularization compared to the control group. On day 14, the rate of inflammation was significantly lower in the treatment groups than in the control group. Significantly higher collagen arrangement levels were observed in the Cs-HA + ozone and Cs-HA + ozone + MSCs groups compared to the control and ozone groups. All treatment groups had significantly better epithelial tissue rearrangement than the control group. Overall, the results of this study indicated that treatment with ozone, Cs-HA acid, Cs-HA and MSCs accelerated wound healing in rats. The effect of using Cs-HA acid with mesenchymal cells was better than the other types of treatment. Larger clinical trials are needed to assess these factors for improving chronic wound treatment.
Collapse
Affiliation(s)
- Mahshid Shabani
- Department of Clinical SciencesFaculty of Veterinary MedicineUniversity of ShahrekordShahrekordIran
- Shiraz Molecular Pathology Resrech CenterDr Daneshbod Path LabShirazIran
| | - Siavash Sharifi
- Department of Clinical SciencesFaculty of Veterinary MedicineUniversity of ShahrekordShahrekordIran
| | - Iraj Karimi
- Department of PathobiologySchool of Veterinary MedicineUniversity of ShahrekordShahrekordIran
| | - Sadegh Shirian
- Department of PathobiologySchool of Veterinary MedicineUniversity of ShahrekordShahrekordIran
| | - Milad Fadaei
- Department of Medical NanotechnologySchool of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
| | - Esmaeil Mirzaei
- Department of Medical NanotechnologySchool of Advanced Medical Sciences and TechnologiesShiraz University of Medical SciencesShirazIran
| |
Collapse
|
13
|
Liu W, Qian H, Zhang Y, Qiu L, Wang F, Chen X. Comparison of Ba-Hao burn ointment gauze and petrolatum gauze in split graft donor site healing: A randomized, prospective, and self-control study. Health Sci Rep 2024; 7:e1988. [PMID: 38572119 PMCID: PMC10987975 DOI: 10.1002/hsr2.1988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/16/2024] [Accepted: 03/03/2024] [Indexed: 04/05/2024] Open
Abstract
Background and Aims To assess patient comfort, wound healing, and scarring at the 6-month follow-up of split-skin graft donor sites treated with Ba-Hao burn ointment (BHBO) gauze, a compound preparation of traditional Chinese medicine since 1970s, compared with petrolatum gauze. Methods Thirty patients admitted to the Department of Burns of the First Affiliated Hospital of Anhui Medical University between September 2021 and September 2022 participated in this randomized, prospective, self-control clinical study. After harvesting the split skin, donor sites were divided into two parts along the midline. BHBO gauze was applied to half of the donor wounds, and petrolatum gauze was applied to the other half. The wound healing time, pain scores on the postoperative Days 3, 6, and 9, and Vancouver Scar Scale (VSS) score at the 6-month follow-up were assessed. Results The wound healing time was significantly shorter in the BHBO group than in the control group (10.07 ± 1.48 days vs. 11.50 ± 1.74 days, p < 0.001). On postoperative Days 3 and 6, the pain scores quantified by visual analog scores were significantly lower in the BHBO group than in the control group (5.33 ± 1.54 and 4.17 ± 1.51, respectively vs. 7.57 ± 1.41 and 5.20 ± 1.47, respectively). The difference in the visual analog scale score on postoperative Day 9 between the groups was not significant (p > 0.05). Microbiological assessment revealed the absence of bacterial contamination in both groups. At the 6-month follow up, the VSS score was significantly lower in the BHBO group (6.67 ± 1.92) than in the control group (9.57 ± 1.55). Conclusion BHBO resulted in faster donor-site healing, reduced postoperative pain, and improved scar quality at the 6-month follow-up than petrolatum gauze alone.
Collapse
Affiliation(s)
- Wen‐Jing Liu
- Department of Graduate SchoolAnhui University of Chinese MedicineHefeiAnhuiPR China
- Department of BurnsThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiPR China
- Department of Integrated Traditional Chinese and Western MedicineAnhui Medical UniversityHefeiAnhuiChina
| | - Han‐Ying Qian
- Department of Graduate SchoolAnhui University of Chinese MedicineHefeiAnhuiPR China
- Department of BurnsThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiPR China
- Department of Integrated Traditional Chinese and Western MedicineAnhui Medical UniversityHefeiAnhuiChina
| | - Yuan‐Yuan Zhang
- Department of Graduate SchoolAnhui University of Chinese MedicineHefeiAnhuiPR China
- Department of BurnsThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiPR China
- Department of Integrated Traditional Chinese and Western MedicineAnhui Medical UniversityHefeiAnhuiChina
| | - Le Qiu
- Department of BurnsThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiPR China
| | - Fei Wang
- Department of BurnsThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiPR China
| | - Xu‐Lin Chen
- Department of BurnsThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhuiPR China
| |
Collapse
|
14
|
Wu S, Zhu L, Ni S, Zhong Y, Qu K, Qin X, Zhang K, Wang G, Sun D, Deng W, Wu W. Hyaluronic acid-decorated curcumin-based coordination nanomedicine for enhancing the infected diabetic wound healing. Int J Biol Macromol 2024; 263:130249. [PMID: 38368994 DOI: 10.1016/j.ijbiomac.2024.130249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Persistent over-oxidation, inflammation and bacterial infection are the primary reasons for impaired wound repairing in diabetic patients. Therefore, crucial strategies to promote diabetic wound repairing involve suppressing the inflammatory response, inhibiting bacterial growth and decreasing reactive oxygen species (ROS) within the wound. In this work, we develop a multifunctional nanomedicine (HA@Cur/Cu) designed to facilitate the repairing process of diabetic wound. The findings demonstrated that the synthesized infinite coordination polymers (ICPs) was effective in enhancing the bioavailability of curcumin and improving the controlled drug release at the site of inflammation. Furthermore, in vitro and in vivo evaluation validate the capacity of HA@Cur/Cu to inhibit bacterial growth and remove excess ROS and inflammatory mediators, thereby significantly promoting the healing of diabetic wound in mice. These compelling findings strongly demonstrate the enormous promise of this multifunctional nanomedicine for the treatment of diabetic wound.
Collapse
Affiliation(s)
- Shuai Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Li Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Sheng Ni
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yuan Zhong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Kai Qu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing 404000, China
| | - Xian Qin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing 404000, China
| | - Kun Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; Chongqing University Three Gorges Hospital, Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing 404000, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Wuquan Deng
- Department of Endocrinology, School of Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400014, China.
| | - Wei Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
15
|
Wang Y, Vizely K, Li CY, Shen K, Shakeri A, Khosravi R, Smith JR, Alteza EAII, Zhao Y, Radisic M. Biomaterials for immunomodulation in wound healing. Regen Biomater 2024; 11:rbae032. [PMID: 38779347 PMCID: PMC11110865 DOI: 10.1093/rb/rbae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 05/25/2024] Open
Abstract
The substantial economic impact of non-healing wounds, scarring, and burns stemming from skin injuries is evident, resulting in a financial burden on both patients and the healthcare system. This review paper provides an overview of the skin's vital role in guarding against various environmental challenges as the body's largest protective organ and associated developments in biomaterials for wound healing. We first introduce the composition of skin tissue and the intricate processes of wound healing, with special attention to the crucial role of immunomodulation in both acute and chronic wounds. This highlights how the imbalance in the immune response, particularly in chronic wounds associated with underlying health conditions such as diabetes and immunosuppression, hinders normal healing stages. Then, this review distinguishes between traditional wound-healing strategies that create an optimal microenvironment and recent peptide-based biomaterials that modulate cellular processes and immune responses to facilitate wound closure. Additionally, we highlight the importance of considering the stages of wounds in the healing process. By integrating advanced materials engineering with an in-depth understanding of wound biology, this approach holds promise for reshaping the field of wound management and ultimately offering improved outcomes for patients with acute and chronic wounds.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Katrina Vizely
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Chen Yu Li
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Karen Shen
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Amid Shakeri
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Ramak Khosravi
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - James Ryan Smith
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | | | - Yimu Zhao
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| |
Collapse
|
16
|
Yang H, Xu H, Lv D, Li S, Rong Y, Wang Z, Wang P, Cao X, Li X, Xu Z, Tang B, Zhu J, Hu Z. The naringin/carboxymethyl chitosan/sodium hyaluronate/silk fibroin scaffold facilitates the healing of diabetic wounds by restoring the ROS-related dysfunction of vascularization and macrophage polarization. Int J Biol Macromol 2024; 260:129348. [PMID: 38219943 DOI: 10.1016/j.ijbiomac.2024.129348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/27/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Chronic diabetic wounds remain a globally recognized clinical challenge, which occurs mainly due to the disturbances of wound microenvironmental induced by high concentrations of reactive oxygen species (ROS). Impairments in angiogenesis and inflammation in the wound microenvironment ultimately impede the normal healing process. Therefore, targeting macrophage and vascular endothelial cell dysfunction is a promising therapeutic strategy. In our study, we fabricated artificial composite scaffolds composed of naringin/carboxymethyl chitosan/sodium hyaluronate/silk fibroin (NG/CMCS/HA/SF) to promote wound healing. The NG/CMCS/HA/SF scaffold demonstrated favorable anti-inflammatory, anti-oxidative, and pro-angiogenic properties in both in vitro and in vivo experiments, effectively promoting the healing of diabetic wounds. The positive therapeutic effects observed indicate that the composite scaffolds have great potential in clinical wound healing applications.
Collapse
Affiliation(s)
- Hao Yang
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Hailin Xu
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Dongming Lv
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Shuting Li
- First Affiliated Hospital of Sun Yat-sen University, Department of Plastic Surgery, Guangzhou, China
| | - Yanchao Rong
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Zhiyong Wang
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Peng Wang
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Xiaoling Cao
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Xiaohui Li
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Zhongye Xu
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China
| | - Bing Tang
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China.
| | - Jiayuan Zhu
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China.
| | - Zhicheng Hu
- First Affiliated Hospital of Sun Yat-sen University, Department of Burn and Wound Repair, Guangzhou, China.
| |
Collapse
|
17
|
Weber RK, Sommer F, Heppt W, Hosemann W, Kühnel T, Beule AG, Laudien M, Hoffmann TK, Hoffmann AS, Baumann I, Deitmer T, Löhler J, Hildenbrand T. [Fundamentals and practice of the application of nasal packing in sinonasal surgery]. HNO 2024; 72:3-15. [PMID: 37845539 DOI: 10.1007/s00106-023-01369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND AND OBJECTIVES This paper presents an overview on nasal packing materials which are available in Germany. The current literature is analyzed whether there are robust criteria regarding use nasal packing after sinonasal surgery, whether there are fundamental and proven advantages or disadvantages of products, and what this means in clinical practice. MATERIALS AND METHODS Selective literature analysis using the PubMed database (key words "nasal packing", "nasal tamponade", "nasal surgery", "sinonasal surgery", or "sinus surgery"), corresponding text books and resulting secondary literature. RESULTS AND CONCLUSIONS Because of systematic methodological shortcomings, the literature does not help in the decision-making about which nasal packing should be used after which kind of sinonasal surgery. In fact, individual approaches for the many different clinical scenarios are recommended. In principle, nasal packing aims in hemostasis, should promote wound healing, and should not result in secondary morbidity. Nasal packing materials should be smooth (non-absorbable materials), inert (absorbable materials), and should not exert excessive pressure. Using non-absorbable packing entails the risk of potentially lethal aspiration and ingestion. For safety reasons inpatient control is recommended as long as this packing is in situ. With other, uncritical packing materials and in patients with special conditions, outpatient control could be justified.
Collapse
Affiliation(s)
- Rainer K Weber
- Klinik für Hals‑, Nasen- und Ohrenheilkunde, Städtisches Klinikum Karlsruhe, Karlsruhe, Deutschland.
- Sinus Academy, Karlsruhe, Deutschland.
- Sektion Nasennebenhöhlen- und Schädelbasischirurgie, Traumatologie, HNO-Klinik, Städtisches Klinikum Karlsruhe, Moltkestr. 90, 76133, Karlsruhe, Deutschland.
| | - Fabian Sommer
- Klinik für Hals‑, Nasen- und Ohrenheilkunde, Kopf- und Halschirurgie, Universitätsklinikum Ulm, Ulm, Deutschland
| | - Werner Heppt
- Klinik für Hals‑, Nasen- und Ohrenheilkunde, Städtisches Klinikum Karlsruhe, Karlsruhe, Deutschland
| | - Werner Hosemann
- Klinik für Hals-Nasen-Ohrenheilkunde, Heliosklinikum Stralsund, Stralsund, Deutschland
| | - Thomas Kühnel
- Klinik für Hals-Nasen-Ohrenheilkunde, Universitätsklinikum Regensburg, Regensburg, Deutschland
| | - Achim Georg Beule
- Klinik für Hals-Nasen-Ohrenheilkunde, Universitätsklinikum Münster, Münster, Deutschland
- Deutsches Zentrum für Erkrankungen der oberen Atemwege, Münster, Deutschland
| | - Martin Laudien
- Klinik für Hals‑, Nasen- und Ohrenheilkunde, Universitätsklinikum Kiel, Kiel, Deutschland
| | - Thomas K Hoffmann
- Klinik für Hals‑, Nasen- und Ohrenheilkunde, Kopf- und Halschirurgie, Universitätsklinikum Ulm, Ulm, Deutschland
| | - Anna Sophie Hoffmann
- Klinik für Hals‑, Nasen- und Ohrenheilkunde, Universitätsklinikum Hamburg-Eppendorf, Hamburg-Eppendorf, Deutschland
| | - Ingo Baumann
- Klinik für Hals‑, Nasen- und Ohrenheilkunde, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - Thomas Deitmer
- Deutsche Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e. V., Bonn, Deutschland
| | - Jan Löhler
- Deutscher Berufsverband der HNO-Ärzte e. V., Neumünster, Deutschland
| | - Tanja Hildenbrand
- Klinik für Hals‑, Nasen- und Ohrenheilkunde, Universitätsklinikum Freiburg, Freiburg, Deutschland
| |
Collapse
|
18
|
Syed MH, Khan MMR, Zahari MAKM, Beg MDH, Abdullah N. Current issues and potential solutions for the electrospinning of major polysaccharides and proteins: A review. Int J Biol Macromol 2023; 253:126735. [PMID: 37690643 DOI: 10.1016/j.ijbiomac.2023.126735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Biopolymers, especially polysaccharides and proteins, are the promising green replacement for petroleum based polymers. Due to their innate properties, they are effectively used in biomedical applications, especially tissue engineering, wound healing, and drug delivery. The fibrous morphology of biopolymers is essentially required for the effectiveness in these biomedical applications. Electrospinning (ES) is the most advanced and robust method to fabricate nanofibers (NFs) and provides a complete solution to the conventional methods issues. However, the major issues regarding fabricating polysaccharides and protein nanofibers using ES include poor electrospinnability, lack of desired fundamental properties for a specific application by a single biopolymer, and insolubility among common solvents. The current review provides the main strategies for effective electrospinning of the major biopolymers. The key strategies include blending major biopolymers with suitable biopolymers and optimizing the solvent system. A systematic literature review was done to provide the optimized solvent system of the major biopolymers along with their best possible biopolymeric blend for ES. The review also highlights the fundamental issues with the commercialization of ES based biomedical products and provides future directions to improve the fabrication of biopolymeric nanofibers.
Collapse
Affiliation(s)
- Murtaza Haider Syed
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, Pahang, Malaysia
| | - Md Maksudur Rahman Khan
- Petroleum and Chemical Engineering Programme Area, Faculty of Engineering, Universiti Teknologi Brunei, Gadong BE1410, Brunei
| | - Mior Ahmad Khushairi Mohd Zahari
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, Pahang, Malaysia.
| | | | - Norhayati Abdullah
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, Pahang, Malaysia.
| |
Collapse
|
19
|
Haroon B, Sohail M, Minhas MU, Mahmood A, Hussain Z, Ahmed Shah S, Khan S, Abbasi M, Kashif MUR. Nano-residronate loaded κ-carrageenan-based injectable hydrogels for bone tissue regeneration. Int J Biol Macromol 2023; 251:126380. [PMID: 37595715 DOI: 10.1016/j.ijbiomac.2023.126380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/10/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Bone tissue possesses intrinsic regenerative capabilities to address deformities; however, its ability to repair defects caused by severe fractures, tumor resections, osteoporosis, joint arthroplasties, and surgical reconsiderations can be hindered. To address this limitation, bone tissue engineering has emerged as a promising approach for bone repair and regeneration, particularly for large-scale bone defects. In this study, an injectable hydrogel based on kappa-carrageenan-co-N-isopropyl acrylamide (κC-co-NIPAAM) was synthesized using free radical polymerization and the antisolvent evaporation technique. The κC-co-NIPAAM hydrogel's cross-linked structure was confirmed using Fourier transform infrared spectra (FTIR) and nuclear magnetic resonance (1H NMR). The hydrogel's thermal stability and morphological behavior were assessed using thermogravimetric analysis (TGA) and scanning electron microscopy (SEM), respectively. Swelling and in vitro drug release studies were conducted at varying pH and temperatures, with minimal swelling and release observed at low pH (1.2) and 25 °C, while maximum swelling and release occurred at pH 7.4 and 37oC. Cytocompatibility analysis revealed that the κC-co-NIPAAM hydrogels were biocompatible, and hematoxylin and eosin (H&E) staining demonstrated their potential for tissue regeneration and enhanced bone repair compared to other experimental groups. Notably, digital x-ray examination using an in vivo bone defect model showed that the κC-co-NIPAAM hydrogel significantly improved bone regeneration, making it a promising candidate for bone defects.
Collapse
Affiliation(s)
- Bilal Haroon
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan; Faculty of Pharmacy, Cyprus International University, Nicosia 99258, North Cyprus.
| | | | - Arshad Mahmood
- Collage of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Zahid Hussain
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Syed Ahmed Shah
- Department of Biosystems and Soft Matters, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland; Faculty of Pharmacy, Superior University, Lahore, Pakistan
| | - Shahzeb Khan
- Center of Pharmaceutical Engineering Science (CPES), School of Pharmacy and Biomedical Science, University of Bradford, BD7,1DP, United Kingdom
| | - Mudassir Abbasi
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| | | |
Collapse
|
20
|
Róna V, Bencze B, Kelemen K, Végh D, Tóth R, Kói T, Hegyi P, Varga G, Rózsa NK, Géczi Z. Effect of Chitosan on the Number of Streptococcus mutans in Saliva: A Meta-Analysis and Systematic Review. Int J Mol Sci 2023; 24:15270. [PMID: 37894948 PMCID: PMC10607225 DOI: 10.3390/ijms242015270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
We conducted a meta-analysis and systematic review to investigate the efficacy of chitosan-containing chewing gums, and to test their inhibitory effects on Streptococcus mutans. The systematic search was performed in three databases (Cochrane Library, EMBASE, and PubMed) and included English-language randomized-controlled trials to compare the efficacy of chitosan in reducing the number of S. mutans. To assess the certainty of evidence, the GRADE tool was used. Mean differences were calculated with a 95% confidence interval for one outcome: bacterial counts in CFU/mL. The protocol of the study was registered on PROSPERO, registration number CRD42022365006. Articles were downloaded (n = 6758) from EMBASE (n = 2255), PubMed (n = 1516), and Cochrane (n = 2987). After the selection process, a total of four articles were included in the qualitative synthesis and three in the quantitative synthesis. Our results show that chitosan reduced the number of bacteria. The difference in mean quantity was -4.68 × 105. The interval of the random-effects model was [-2.15 × 106; 1.21 × 106] and the prediction interval was [1.03 × 107; 9.40 × 106]. The I2 value was 98% (p = 0.35), which indicates a high degree of heterogeneity. Chitosan has some antibacterial effects when used as a component of chewing gum, but further studies are needed. It can be a promising antimicrobial agent for prevention.
Collapse
Affiliation(s)
- Virág Róna
- Department of Prosthodontics, Semmelweis University, 1085 Budapest, Hungary; (V.R.); (B.B.); (K.K.); (D.V.)
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (R.T.); (T.K.); (P.H.); (G.V.); (N.K.R.)
| | - Bulcsú Bencze
- Department of Prosthodontics, Semmelweis University, 1085 Budapest, Hungary; (V.R.); (B.B.); (K.K.); (D.V.)
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (R.T.); (T.K.); (P.H.); (G.V.); (N.K.R.)
| | - Kata Kelemen
- Department of Prosthodontics, Semmelweis University, 1085 Budapest, Hungary; (V.R.); (B.B.); (K.K.); (D.V.)
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (R.T.); (T.K.); (P.H.); (G.V.); (N.K.R.)
| | - Dániel Végh
- Department of Prosthodontics, Semmelweis University, 1085 Budapest, Hungary; (V.R.); (B.B.); (K.K.); (D.V.)
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (R.T.); (T.K.); (P.H.); (G.V.); (N.K.R.)
| | - Réka Tóth
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (R.T.); (T.K.); (P.H.); (G.V.); (N.K.R.)
| | - Tamás Kói
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (R.T.); (T.K.); (P.H.); (G.V.); (N.K.R.)
- Department of Stochastics, Institute of Mathematics, Budapest University of Technology and Economics, 1111 Budapest, Hungary
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (R.T.); (T.K.); (P.H.); (G.V.); (N.K.R.)
- Institute for Translational Medicine, Medical School, University of Pécs, 7622 Pécs, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, 1085 Budapest, Hungary
| | - Gábor Varga
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (R.T.); (T.K.); (P.H.); (G.V.); (N.K.R.)
- Department of Oral Biology, Semmelweis University, 1085 Budapest, Hungary
| | - Noémi Katinka Rózsa
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (R.T.); (T.K.); (P.H.); (G.V.); (N.K.R.)
- Department of Pediatric Dentistry and Orthodontics, Semmelweis University, 1085 Budapest, Hungary
| | - Zoltán Géczi
- Department of Prosthodontics, Semmelweis University, 1085 Budapest, Hungary; (V.R.); (B.B.); (K.K.); (D.V.)
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (R.T.); (T.K.); (P.H.); (G.V.); (N.K.R.)
| |
Collapse
|
21
|
Liu Z, Lv Y, Zheng G, Wu W, Che X. Chitosan/Polylactic Acid Nanofibers Containing Astragaloside IV as a New Biodegradable Wound Dressing for Wound Healing. AAPS PharmSciTech 2023; 24:202. [PMID: 37783916 DOI: 10.1208/s12249-023-02650-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023] Open
Abstract
The ideal wound dressing should adequately protect the wound from bacterial infection and provide a suitable healing environment for the wound. Thus, we prepared a biodegradable functional nanofiber dressing with good antibacterial and biocompatibility by electrospinning technology. The average diameter of the dressing was 354 ± 185 nm, and the porosity was 93.27%. Scanning electron microscopy (SEM) showed that the dressing was smooth without beading. It was also characterized by Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The wettability and water vapor permeability of the dressing were tested; the results showed that the dressing had good wettability and permeability. The ability of drug release indicates that continuous release over a period of time is beneficial to wound healing. Finally, the antibacterial effect and in vivo pharmacodynamic evaluation of AS/CS/PLA nanofiber dressing were studied; the result showed that it had significant antibacterial activity and the ability to promote wound healing.
Collapse
Affiliation(s)
- Zemei Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Yuanju Lv
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Guangyan Zheng
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Wenli Wu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Xin Che
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China.
| |
Collapse
|
22
|
Zarur M, Seijo-Rabina A, Goyanes A, Concheiro A, Alvarez-Lorenzo C. pH-responsive scaffolds for tissue regeneration: In vivo performance. Acta Biomater 2023; 168:22-41. [PMID: 37482146 DOI: 10.1016/j.actbio.2023.07.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/25/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
A myriad of pH-sensitive scaffolds has been reported in recent decades. Information on their behaviour in vitro under conditions that mimic the pH changes that occur during tissue regeneration is abundant. Differently, the in vivo demonstration of the advantages of pH-responsive systems in comparison with non-responders is more limited. The in vivo scenario is very complex and the intricate relationship between the host response, the overall pathological conditions of the patient, and the risk of colonization by microorganisms is very difficult to imitate in in vitro tests. This review aims to shed light on how the changes in pH between healthy and damaged states and also during the healing process have been exploited so far to develop polymer-based scaffolds that actively contribute in vivo to the healing process avoiding chronification. The main strategies so far tested to prepare pH-responsive scaffolds rely on (i) changes in ionization of natural polymers, ionizable monomers and clays, (ii) reversible cross-linkers, (iii) coatings, and (iv) production of CO2 gas. These strategies are analysed in detail in this review with the description of relevant examples of their performance on specific animal models. The versatility of the techniques used to prepare biocompatible and environment-friendly pH-responsive scaffolds that have been implemented in the last decade may pave the way for a successful translation to the clinic. STATEMENT OF SIGNIFICANCE: We report here on the most recent advances in pH-responsive polymer-based scaffolds that have been demonstrated in vivo to be suitable for wound and bone healing. pH is a critical variable in the tissue regeneration process, and small changes can speed up or completely stop the process. Although there is still a paucity of information on the performance in the complex in vivo environment, recently reported achievements using scaffolds endowed with pH-responsiveness through ionic natural polymers, ionizable monomers and clays, reversible cross-linkers, coatings, or formation of CO2 ensure a promising future towards clinical translation.
Collapse
Affiliation(s)
- Mariana Zarur
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Alejandro Seijo-Rabina
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Alvaro Goyanes
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| |
Collapse
|
23
|
Tran HQ, Shahriar SS, Yan Z, Xie J. Recent Advances in Functional Wound Dressings. Adv Wound Care (New Rochelle) 2023; 12:399-427. [PMID: 36301918 PMCID: PMC10125407 DOI: 10.1089/wound.2022.0059] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/24/2022] [Indexed: 12/15/2022] Open
Abstract
Significance: Nowadays, the wound dressing is no longer limited to its primary wound protection ability. Hydrogel, sponge-like material, three dimensional-printed mesh, and nanofiber-based dressings with incorporation of functional components, such as nanomaterials, growth factors, enzymes, antimicrobial agents, and electronics, are able to not only prevent/treat infection but also accelerate the wound healing and monitor the wound-healing status. Recent Advances: The advances in nanotechnologies and materials science have paved the way to incorporate various functional components into the dressings, which can facilitate wound healing and monitor different biological parameters in the wound area. In this review, we mainly focus on the discussion of recently developed functional wound dressings. Critical Issues: Understanding the structure and composition of wound dressings is important to correlate their functions with the outcome of wound management. Future Directions: "All-in-one" dressings that integrate multiple functions (e.g., monitoring, antimicrobial, pain relief, immune modulation, and regeneration) could be effective for wound repair and regeneration.
Collapse
Affiliation(s)
- Huy Quang Tran
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - S.M. Shatil Shahriar
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Eppley Institute for Research in Cancer and Allied Diseases, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Zheng Yan
- Department of Mechanical & Aerospace Engineering, Biological & Chemical Engineering, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, Missouri, USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
24
|
Mao G, Tian S, Shi Y, Yang J, Li H, Tang H, Yang W. Preparation and evaluation of a novel alginate-arginine-zinc ion hydrogel film for skin wound healing. Carbohydr Polym 2023; 311:120757. [PMID: 37028858 DOI: 10.1016/j.carbpol.2023.120757] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023]
Abstract
In this paper, the mixed solution of sodium alginate (SA) and arginine (Arg) was dried into a film and then crosslinked with zinc ion to form sodium alginate-arginine-zinc ion (SA-Arg-Zn2+) hydrogel for skin wound dressings. SA-Arg-Zn2+ hydrogel had higher swelling ability, which was beneficial to absorbing wound exudate. Moreover, it exhibited antioxidant activity and strong inhibition against E. coli and S. aureus, and had no obvious cytotoxicity to NIH 3T3 fibroblasts. Compared with other dressings utilized in rat skin wound, SA-Arg-Zn2+ hydrogel showed better wound healing efficacy and the wound closure ratio reached to 100 % on the 14th day. The result of Elisa test indicated that SA-Arg-Zn2+ hydrogel down-regulated the expression of inflammatory factors (TNF-α and IL-6) and promoted the growth factor levels (VEGF and TGF-β1). Furthermore, H&E staining results confirmed that SA-Arg-Zn2+ hydrogel could reduce wound inflammation and accelerate re-epithelialization, angiogenesis and wound healing. Therefore, SA-Arg-Zn2+ hydrogel is an effective and innovative wound dressing, moreover, the preparation technique is simple and feasible for industrial application.
Collapse
|
25
|
Dilnawaz F, Acharya S, Kanungo A. A clinical perspective of chitosan nanoparticles for infectious disease management. Polym Bull (Berl) 2023:1-25. [PMID: 37362954 PMCID: PMC10073797 DOI: 10.1007/s00289-023-04755-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/08/2023] [Accepted: 03/03/2023] [Indexed: 06/28/2023]
Abstract
Infectious diseases and their effective management are still a challenge in this modern era of medicine. Diseases, such as the SARS-CoV-2, Ebola virus, and Zika virus, still put human civilization at peril. Existing drug banks, which include antivirals, antibacterial, and small-molecule drugs, are the most advocated method for treatment, although effective but they still flounder in many instances. This calls for finding more effective alternatives for tackling the menace of infectious diseases. Nanoformulations are progressively being implemented for clinical translation and are being considered a new paradigm against infectious diseases. Natural polymers like chitosan are preferred to design nanoparticles owing to their biocompatibility, biodegradation, and long shelf-life. The chitosan nanoparticles (CNPs) being highly adaptive delivers contemporary prevention for infectious diseases. Currently, they are being used as antibacterial, drug, and vaccine delivery vehicles, and wound-dressing materials, for infectious disease treatment. Although the recruitment of CNPs in clinical trials associated with infectious diseases is minimal, this may increase shortly due to the sudden emergence of unknown pathogens like SARS-CoV-2, thus turning them into a panacea for the management of microorganisms. This review particularly focuses on the all-around application of CNPs along with their recent clinical applications in infectious disease management.
Collapse
Affiliation(s)
- Fahima Dilnawaz
- Department of Biotechnology, School of Engineering and Technology, Centurion University of Technology and Management, Jatni, Bhubaneswar, Odisha 752050 India
| | - Sarbari Acharya
- Department of Biology, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024 India
| | - Anwesha Kanungo
- Department of Biology, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024 India
| |
Collapse
|
26
|
Gupta R, Mohanty S, Verma D. Current status of hemostatic agents, their mechanism of action, and future directions. J BIOACT COMPAT POL 2023. [DOI: 10.1177/08839115221147935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The bleeding problem might seem straightforward, but it involves a plethora of complex biochemical pathways and responses. Hemorrhage control remains one of the leading causes of “preventable deaths” worldwide. The past few decades have seen a wide range of biomaterials and their derivatives targeted to serve as hemostatic agents, but none can be deemed as an ideal solution. In this review, we have highlighted the current diversity in hemostatic agents and their modalities. We have enclosed a comprehensive outlook of the proposed solutions and their clinical performance so far. In addition to these, several promising compositions are still in their infancy or developmental phases. The inclusion of novel upcoming nanocomposites has further widened the potencies of existing formulations as well.
Collapse
Affiliation(s)
- Ritvesh Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, India
| | - Sibanwita Mohanty
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, India
| | - Devendra Verma
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, India
| |
Collapse
|
27
|
Huang J, Guo J, Dong Y, Xiao H, Yang P, Liu Y, Liu S, Cheng S, Song J, Su Y, Wang S. Self-assembled hyaluronic acid-coated nanocomplexes for targeted delivery of curcumin alleviate acute kidney injury. Int J Biol Macromol 2023; 226:1192-1202. [PMID: 36442556 DOI: 10.1016/j.ijbiomac.2022.11.233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Acute kidney injury (AKI) is a pathological process with high morbidity, and drug resistance is easy to occur due to untargeted drug therapy. Curcumin can repair acute kidney injury. The expression of the CD44 receptor in renal tubular epithelial cells is abnormally elevated during AKI, and hyaluronic acid (HA) has the ability to bind specifically to the CD44 receptor. In this study, we developed a hyaluronic acid-coated liposome (HALP) nanocomplexes that targeted renal epithelial cells and its effect of relieving AKI was investigated. HALP was formed by self-assembly through the electrostatic interaction of curcumin-loaded cationic liposomes (LP) with hyaluronic acid and responds to the release of curcumin in the acidic microenvironment of lesions to treat AKI. HALP had good stability and biocompatibility. The in vitro results showed that compared to LP, HALP exhibited higher antioxidant, anti-inflammatory, and anti-apoptotic capacities. The AKI model suggested that HALP could not only target and accumulate in the injured kidney but also had an excellent ability to reduce the inflammatory response, which decreased tubular necrosis and restored kidney function.
Collapse
Affiliation(s)
- Jiaxing Huang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Jingyue Guo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Yunsheng Dong
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Hui Xiao
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Pinyi Yang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Yufei Liu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Sunan Liu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Shuhan Cheng
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Jianwei Song
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Yuchen Su
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Shufang Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China.
| |
Collapse
|
28
|
The Impact of Polyethylene Glycol-Modified Chitosan Scaffolds on the Proliferation and Differentiation of Osteoblasts. Int J Biomater 2023; 2023:4864492. [PMID: 36636323 PMCID: PMC9831697 DOI: 10.1155/2023/4864492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 01/05/2023] Open
Abstract
The objective of this study was to investigate the influence of polyethylene glycol (PEG) incorporated chitosan scaffolds on osteoblasts proliferation and differentiation. The chitosan polymer was initially modified by the predetermined concentration of the photoreactive azido group for UV-crosslinking and with RGD peptides (N-acetyl-GRGDSPGYG-amide). The PEG was mixed at different ratios (0, 10, and 20 wt%) with modified chitosan in 96-well tissue culture polystyrene plates to prepare CHI-100, CHI-90, and CHI-80 scaffolds. PEG-containing scaffolds exhibited bigger pore size and higher water content compared to unmodified chitosan scaffolds. After 10 days of incubation, the cell number of CHI-90 (1.1 × 106 cells/scaffold) surpasses that of CHI-100 (9.2 × 105 cells/scaffold) and the cell number of CHI-80 (7.6 × 105 cells/scaffold) were significantly lower. The ALP activity of CHI-90 was the highest on the fifth day indicating the favored osteoblasts' early-stage differentiation. Moreover, after 14 days of osteogenic culture, calcium deposition in the CHI-90 scaffolds (2.7 μmol Ca/scaffold) was significantly higher than the control (2.2 μmol Ca/scaffold) whereas on CHI-80 was 1.9 μmol/scaffold. The results demonstrate that PEG-incorporated chitosan scaffolds favored osteoblasts proliferation and differentiation; however, mixing relatively excess PEG (≥20% wt.) had a negative impact on osteoblasts proliferation and differentiation.
Collapse
|
29
|
Paramadini AW, Chinavinijkul P, Meemai A, Thongkam P, Apasuthirat A, Nasongkla N. Fabrication and in vitro characterization of zinc oxide nanoparticles and hyaluronic acid-containing carboxymethylcellulose gel for wound healing application. Pharm Dev Technol 2023; 28:95-108. [PMID: 36646681 DOI: 10.1080/10837450.2022.2164304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Chronic wounds, such as burns and diabetic ulcers, are complex wounds sustained by the skin that require life-long rehabilitation and have the potential to deteriorate and get infected. The number of patients with this ailment has been steadily increasing. This illness demands the use of new dressings with the best capabilities for managing wound healing. This study created an gel with carboxymethylcellulose (CMC), hyaluronic acid (HA), and zinc oxide nanoparticles (ZnO NPs). According to the findings, the manufacturing technique with a 1:4 ratio of HA and CMC gel had the best viscosity. Additionally, varying concentrations of zinc oxide nanoparticles (ZnO NPs) were added to the formula. Variations included 0.05, 0.125, 0.5, 1.0, 3.0, 5.0, and 10% by weight. In order to find the ideal dose and formulation, physical properties, an anti-bacterial test, and a cell migration assay were carried out. The samples with concentration of 0.5, 1.0, 3.0, 5.0 and 10% w/v showed ability to kill gram-positive and gram-negative bacteria. Wound healing experiments showed that cells proliferated for HA/CMC/ZnO gel with a weight-to-volume ratio of 0.05% and 1.0% w/v. In conclusion, according to all (physical and biological) characterization, the HA/CMC/ZnO gel with a weight-to-volume ratio of 1.0% w/v was found to have a considerable standard for wound-healing materials, demonstrating a promising effect against bacteria.
Collapse
Affiliation(s)
- Adanti Wido Paramadini
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Panarin Chinavinijkul
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Aniroot Meemai
- Novatec Healthcare Company Limited, Samrong-Nua, Muang, Samutprakarn, Thailand
| | - Peerawat Thongkam
- Novatec Healthcare Company Limited, Samrong-Nua, Muang, Samutprakarn, Thailand
| | - Adisorn Apasuthirat
- Novatec Healthcare Company Limited, Samrong-Nua, Muang, Samutprakarn, Thailand
| | - Norased Nasongkla
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
30
|
Rezvani Ghomi E, Niazi M, Ramakrishna S. The evolution of wound dressings: From traditional to smart dressings. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Erfan Rezvani Ghomi
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering College of Design and Engineering Singapore Singapore
| | - Mina Niazi
- Department of Biomedical Engineering National University of Singapore Singapore Singapore
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering College of Design and Engineering Singapore Singapore
| |
Collapse
|
31
|
Nano-Clays for Cancer Therapy: State-of-the Art and Future Perspectives. J Pers Med 2022; 12:jpm12101736. [PMID: 36294875 PMCID: PMC9605470 DOI: 10.3390/jpm12101736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
To date, cancer continues to be one of the deadliest diseases. Current therapies are often ineffective, leading to the urgency to develop new therapeutic strategies to improve treatments. Conventional chemotherapeutics are characterized by a reduced therapeutic efficacy, as well as them being responsible for important undesirable side effects linked to their non-specific toxicity. In this context, natural nanomaterials such as clayey mineral nanostructures of various shapes (flat, tubular, spherical and fibrous) with adjustable physico-chemical and morphological characteristics are emerging as systems with extraordinary potential for the delivery of different therapeutic agents to tumor sites. Thanks to their submicron size, high specific surface area, high adsorption capacity, chemical inertia and multilayer organization of 0.7 to 1 nm-thick sheets, they have aroused considerable interest among the scientific community as nano systems that are highly biocompatible in cancer therapy. In oncology, the nano-clays usually studied are halloysite, bentonite, laponite, kaolinite, montmorillonite and sepiolite. These are multilayered minerals that can act as nanocarriers (with a drug load generally between 1 and 10% by weight) for improved stabilization, efficient transport and the sustained and controlled release of a wide variety of anticancer agents. In particular, halloysite, montmorillonite and kaolinite are used to improve the dissolution of therapeutic agents and to delay and/or direct their release. In this review, we will examine and expose to the scientific community the extraordinary potential of nano-clays as unique crystalline systems in the treatment of cancer.
Collapse
|
32
|
The Discovery and Development of Natural-Based Biomaterials with Demonstrated Wound Healing Properties: A Reliable Approach in Clinical Trials. Biomedicines 2022; 10:biomedicines10092226. [PMID: 36140332 PMCID: PMC9496351 DOI: 10.3390/biomedicines10092226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Current research across the globe still focuses strongly on naturally derived biomaterials in various fields, particularly wound care. There is a need for more effective therapies that will address the physiological deficiencies underlying chronic wound treatment. The use of moist bioactive scaffolds has significantly increased healing rates compared to local and traditional treatments. However, failure to heal or prolonging the wound healing process results in increased financial and social stress imposed on health institutions, caregivers, patients, and their families. The urgent need to identify practical, safe, and cost-effective wound healing scaffolding from natural-based biomaterials that can be introduced into clinical practice is unequivocal. Naturally derived products have long been used in wound healing; however, clinical trial evaluations of these therapies are still in their infancy. Additionally, further well-designed clinical trials are necessary to confirm the efficacy and safety of natural-based biomaterials in treating wounds. Thus, the focus of this review is to describe the current insight, the latest discoveries in selected natural-based wound healing implant products, the possible action mechanisms, and an approach to clinical studies. We explore several tested products undergoing clinical trials as a novel approach to counteract the debilitating effects of impaired wound healing.
Collapse
|
33
|
Zhang L, Bai X, Wang R, Xu L, Ma J, Xu Y, Lu Z. Advancements in the studies of novel nanomaterials for inner ear drug delivery. Nanomedicine (Lond) 2022; 17:1463-1475. [PMID: 36189895 DOI: 10.2217/nnm-2022-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hearing loss is currently one of the most prevalent sensory disorders worldwide. Because both the blood-labyrinth barrier and the limited blood circulation in the inner ear restrain the effective delivery of most drugs to the inner ear tissues, current treatments for hearing loss are limited to mainly medication, hearing devices and cochlear surgery for therapeutic purposes, whereas treatments lack a noninvasive targeted drug-delivery system. With the continuously rapid development of new nanomaterials, the nanodelivery systems are expected to provide a potentially effective method of clinical treatment for hearing loss. This paper reviews the advantages and disadvantages of the commonly used drug-delivery methods and novel nanomaterials for inner ears as well as advancements in the targeted treatment of hearing loss.
Collapse
Affiliation(s)
- Li Zhang
- Department of Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250021, China
| | - Xiaohui Bai
- Department of Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250021, China
| | - Rongrong Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Lulu Xu
- Department of Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250021, China
| | - Jingyu Ma
- Department of Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250021, China
| | - Yue Xu
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Zhiming Lu
- Department of Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250021, China
| |
Collapse
|
34
|
Mutlu N, Liverani L, Kurtuldu F, Galusek D, Boccaccini AR. Zinc improves antibacterial, anti-inflammatory and cell motility activity of chitosan for wound healing applications. Int J Biol Macromol 2022; 213:845-857. [PMID: 35667458 PMCID: PMC9240323 DOI: 10.1016/j.ijbiomac.2022.05.199] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 11/05/2022]
Abstract
We report the successful preparation and characterization of chitosan-Zn complex (ChiZn) in the form of films, intended to enhance the biological performance of chitosan by the presence of Zn as antibacterial agent and biologically active ion. The influence of Zn chelation on morphology and structure of chitosan was assessed by scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy and infrared spectroscopy. The biodegradability study of ChiZn showed a sustained release of Zn up to 2 mg/mL. No toxic response was observed toward stromal cell line ST-2 in indirect contact with the ChiZn films. The dissolution product of ChiZn showed improved wound closure (88% closure) compared to the positive control group (70% closure). Moreover, ChiZn exhibited antibacterial activity against S. aureus together with a slight increase (~30%) in the secretion of VEGF and moderate decrease in nitric oxide evolution. Our findings indicate that ChiZn could be used as a safe and effective wound healing agent.
Collapse
Affiliation(s)
- Nurshen Mutlu
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia; Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Liliana Liverani
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Fatih Kurtuldu
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia; Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Dušan Galusek
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia; Joint Glass Centre of the IIC SAS, TnUAD and FChFT STU, FunGlass, 911 50 Trenčín, Slovakia.
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| |
Collapse
|
35
|
Deng L, Wang B, Li W, Han Z, Chen S, Wang H. Bacterial cellulose reinforced chitosan-based hydrogel with highly efficient self-healing and enhanced antibacterial activity for wound healing. Int J Biol Macromol 2022; 217:77-87. [PMID: 35817232 DOI: 10.1016/j.ijbiomac.2022.07.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/25/2022] [Accepted: 07/03/2022] [Indexed: 01/08/2023]
Abstract
Biocompatible hydrogels with versatile functions are highly desired for demanding the complicated tissue issues, including irregular site and motional wound. Herein, a bio-based hydrogel with multifunctional properties is designed based on quaternized chitosan and dialdehyde bacterial cellulose. As a functional wound dressing, the hydrogel shows rapid self-healing performance and injectable behaviors due to dynamic Schiff-base interactions and presents superior antibacterial activity against E. coli (gram-negative) and S. aureus (gram-positive). The constructed 3D hydrogel also exhibits proper compressive property, desired water retention capacity. To be mentioned, the hydrogel could mimic the structure of natural extracellular matrix (ECM) in the presence of bacterial cellulose nanofibers. Thus, the biopolymer-based hydrogel shows good biocompatibility in terms of cell proliferation and cell spreading. The prepared chitosan-based hydrogel with self-healing, antibacterial, and low cost will become a promising biomaterial for wound healing.
Collapse
Affiliation(s)
- Lili Deng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Baoxiu Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China.
| | - Wenying Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Zhiliang Han
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Shiyan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China.
| | - Huaping Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
36
|
Maloney SE, Broberg CA, Grayton QE, Picciotti SL, Hall HR, Wallet SM, Maile R, Schoenfisch MH. Role of Nitric Oxide-Releasing Glycosaminoglycans in Wound Healing. ACS Biomater Sci Eng 2022; 8:2537-2552. [PMID: 35580341 PMCID: PMC11574979 DOI: 10.1021/acsbiomaterials.2c00392] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Two glycosaminoglycan (GAG) biopolymers, hyaluronic acid (HA) and chondroitin sulfate (CS), were chemically modified via carbodiimide chemistry to facilitate the loading and release of nitric oxide (NO) to develop a multi-action wound healing agent. The resulting NO-releasing GAGs released 0.2-0.9 μmol NO mg-1 GAG into simulated wound fluid with NO-release half-lives ranging from 20 to 110 min. GAGs containing alkylamines with terminal primary amines and displaying intermediate NO-release kinetics exhibited potent, broad spectrum bactericidal action against three strains each of Pseudomonas aeruginosa and Staphylococcus aureus ranging in antibiotic resistance profile. NO loading of the GAGs was also found to decrease murine TLR4 activation, suggesting that the therapeutic exhibits anti-inflammatory mechanisms. In vitro adhesion and proliferation assays utilizing human dermal fibroblasts and human epidermal keratinocytes displayed differences as a function of the GAG backbone, alkylamine identity, and NO-release properties. In combination with antibacterial properties, the adhesion and proliferation profiles of the GAG derivatives enabled the selection of the most promising wound healing candidates for subsequent in vivo studies. A P. aeruginosa-infected murine wound model revealed the benefits of CS over HA as a pro-wound healing NO donor scaffold, with benefits of accelerated wound closure and decreased bacterial burden attributable to both active NO release and the biopolymer backbone.
Collapse
Affiliation(s)
- Sara E. Maloney
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Christopher A. Broberg
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Quincy E. Grayton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Samantha L. Picciotti
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Hannah R. Hall
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Shannon M. Wallet
- Division of Oral, Craniofacial, and Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Robert Maile
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- North Carolina Jaycee Burn Center Research Laboratory, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
37
|
Deng X, Gould M, Ali MA. A review of current advancements for wound healing: Biomaterial applications and medical devices. J Biomed Mater Res B Appl Biomater 2022; 110:2542-2573. [PMID: 35579269 PMCID: PMC9544096 DOI: 10.1002/jbm.b.35086] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/12/2022]
Abstract
Wound healing is a complex process that is critical in restoring the skin's barrier function. This process can be interrupted by numerous diseases resulting in chronic wounds that represent a major medical burden. Such wounds fail to follow the stages of healing and are often complicated by a pro‐inflammatory milieu attributed to increased proteinases, hypoxia, and bacterial accumulation. The comprehensive treatment of chronic wounds is still regarded as a significant unmet medical need due to the complex symptoms caused by the metabolic disorder of the wound microenvironment. As a result, several advanced medical devices, such as wound dressings, wearable wound monitors, negative pressure wound therapy devices, and surgical sutures, have been developed to correct the chronic wound environment and achieve skin tissue regeneration. Most medical devices encompass a wide range of products containing natural (e.g., chitosan, keratin, casein, collagen, hyaluronic acid, alginate, and silk fibroin) and synthetic (e.g., polyvinyl alcohol, polyethylene glycol, poly[lactic‐co‐glycolic acid], polycaprolactone, polylactic acid) polymers, as well as bioactive molecules (e.g., chemical drugs, silver, growth factors, stem cells, and plant compounds). This review addresses these medical devices with a focus on biomaterials and applications, aiming to deliver a critical theoretical reference for further research on chronic wound healing.
Collapse
Affiliation(s)
- Xiaoxuan Deng
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Maree Gould
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - M Azam Ali
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
38
|
Liu J, Shen H. Clinical efficacy of chitosan-based hydrocolloid dressing in the treatment of chronic refractory wounds. Int Wound J 2022; 19:2012-2018. [PMID: 35524492 DOI: 10.1111/iwj.13801] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022] Open
Abstract
This retrospective study aimed to explore the clinical efficacy of chitosan-based hydrocolloid dressing in treating chronic refractory wounds. A total of 80 patients with chronic refractory wounds were randomly divided into the control group (n = 40) and the study group (n = 40). The control group was given inert saline gauze, while the study group was given chitosan-based hydrocolloid dressing. After 3 weeks of treatment, the wound healing efficiency, itching pain score, changes in the wound area, dressing change frequency, and cost were measured. There was a significant difference in the wound healing effect (t = 2.738), and degree of pain (t = 4.76) between the study and control groups, after 3 weeks of treatment. Similarly, a prominent reduction in the itching frequency (t = 8.62), and wound area (t = 6.379) was observed in the study group compared to the control group (P < .05). Moreover, the frequency and total cost of dressing change in the study group were also lower than the control group and the difference was statistically significant (P < .05). To summarise, the application of chitosan-based hydrocolloid dressing in treating chronic refractory can effectively alleviate pain, accelerate wound healing, relieve itching pain, and reduce the overall cost and frequency of dressing change.
Collapse
Affiliation(s)
- Jing Liu
- Department of General Surgery, Nantong Third People's Hospital, Nantong, China
| | - Hong Shen
- Department of General Surgery, Nantong Third People's Hospital, Nantong, China
| |
Collapse
|
39
|
Valachová K, El Meligy MA, Šoltés L. Hyaluronic acid and chitosan-based electrospun wound dressings: Problems and solutions. Int J Biol Macromol 2022; 206:74-91. [PMID: 35218807 DOI: 10.1016/j.ijbiomac.2022.02.117] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 11/05/2022]
Abstract
To date, available review papers related to the electrospinning of biopolymers including polysaccharides for wound healing were focused on summarizing the process conditions for two candidates, namely chitosan and hyaluronic acid. However, most reviews lack the discussion of problems of hyaluronan and chitosan electrospun nanofibers for wound dressing applications. For this reason, it is required to update information by providing a comprehensive overview of all factors which may play a role in the electrospinning of hyaluronic acid and chitosan for applications of wound dressings. This review summarizes the fabricated chitosan and hyaluronic acid electrospun nanofibers as wound dressings in the last years, including methods of preparations of nanofibers and challenges for the electrospinning of both pure chitosan and hyaluronic acid and strategies how to overcome the existing difficulties. Moreover, in this review the biological roles and mechanisms of chitosan and hyaluronic acid in the wound healing process are explained including the advantages of nanofibers for ideal wound management using the common solvents, copolymers enhancing spinning process, and the most biologically active incorporated substances thereby providing drug delivery in wound healing.
Collapse
Affiliation(s)
- Katarína Valachová
- Centre of Experimental Medicine of Slovak Academy of Sciences, Dúbravská cesta 9, 84104 Bratislava, Slovakia.
| | - Mahmoud Atya El Meligy
- Department of Chemistry, Polymer Research Group, Faculty of Science, University of Tanta, Tanta 31527, Egypt
| | - Ladislav Šoltés
- Centre of Experimental Medicine of Slovak Academy of Sciences, Dúbravská cesta 9, 84104 Bratislava, Slovakia
| |
Collapse
|
40
|
Wang Y, Fu S, Lu Y, Lai R, Liu Z, Luo W, Xu Y. Chitosan/hyaluronan nanogels co-delivering methotrexate and 5-aminolevulinic acid: A combined chemo-photodynamic therapy for psoriasis. Carbohydr Polym 2022; 277:118819. [PMID: 34893236 DOI: 10.1016/j.carbpol.2021.118819] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/24/2021] [Accepted: 10/25/2021] [Indexed: 12/19/2022]
Abstract
Psoriasis does not respond adequately to the monotherapy, tailoring combined strategies for synergistical treatment remains challenging. We fabricated chitosan/hyaluronan nanogels to co-load methotrexate (MTX) and 5-aminoleavulinic acid (ALA), i.e., MTX-ALA NGs, for a combined chemo-photodynamic therapy for psoriasis. Compared with MTX-ALA suspension, the NGs enhanced the penetration and retention of MTX and ALA through and into the skin in vitro and in vivo (p < 0.001). NGs enhanced the cellular uptake (p < 0.001), protoporphyrin IX conversion (p < 0.001), and reactive oxygen species generation (3.93-fold), subsequently exerted the synergistical anti-proliferation and apoptosis on lipopolysaccharide-irritated HaCaT cells with the apoptosis rate of 78.6%. MTX-ALA NGs efficiently ameliorated the skin manifestations and down-regulated the proinflammatory cytokines of TNF-α and IL-17A in imiquimod-induced psoriatic mice (p < 0.001). Importantly, MTX-ALA NGs reduced the toxicities of oral MTX to the liver and kidney. The results support that MTX-ALA NG is a convenient, effective, and safe combined chemo-photodynamic strategy for psoriasis treatment.
Collapse
Affiliation(s)
- Yixuan Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Shijia Fu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yi Lu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Rongrong Lai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Ziyi Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Weixuan Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yuehong Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
41
|
Liu P, Jin K, Zong Y, He M, Lu C, Li H, Wang Y, Li C. Ionic liquid functionalized injectable and conductive hyaluronic acid hydrogels for the efficient repair of diabetic wounds under electrical stimulation. Biomater Sci 2022; 10:1795-1802. [DOI: 10.1039/d2bm00026a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The treatment and care of diabetic wounds remains a global challenge due to the the high rates of amputation, recurrence, and mortality. It has been proven that electrical stimulation has...
Collapse
|
42
|
Xu X, Zheng J, He Y, Lin K, Li S, Zhang Y, Song P, Zhou Y, Chen X. Nanocarriers for Inner Ear Disease Therapy. Front Cell Neurosci 2021; 15:791573. [PMID: 34924960 PMCID: PMC8677824 DOI: 10.3389/fncel.2021.791573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Hearing loss is a common disease due to sensory loss caused by the diseases in the inner ear. The development of delivery systems for inner ear disease therapy is important to achieve high efficiency and reduce side effects. Currently, traditional drug delivery systems exhibit the potential to be used for inner ear disease therapy, but there are still some drawbacks. As nanotechnology is developing these years, one of the solutions is to develop nanoparticle-based delivery systems for inner ear disease therapy. Various nanoparticles, such as soft material and inorganic-based nanoparticles, have been designed, tested, and showed controlled delivery of drugs, improved targeting property to specific cells, and reduced systemic side effects. In this review, we summarized recent progress in nanocarriers for inner ear disease therapy. This review provides useful information on developing promising nanocarriers for the efficient treatment of inner ear diseases and for further clinical applications for inner ear disease therapy.
Collapse
Affiliation(s)
- Xiaoxiang Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Otorhinolaryngology, Dawu County People's Hospital, Xiaogan, China
| | - Jianwei Zheng
- Department of Biliary Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanze He
- Department of Otorhinolaryngology, Dawu County People's Hospital, Xiaogan, China
| | - Kun Lin
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuang Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ya Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Peng Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuye Zhou
- Division of Applied Physical Chemistry, Analytical Chemistry, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Kungliga Tekniska Högskolan (KTH) Royal Institute of Technology, Stockholm, Sweden.,Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Xiong Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
43
|
Luo X, Liu Y, Zheng C, Huo Q, Liu X. Development of novel hyaluronic acid/human-like collagen bio-composite membranes: A facile "surface modification-assembly" approach. Int J Biol Macromol 2021; 193:378-386. [PMID: 34699897 DOI: 10.1016/j.ijbiomac.2021.10.091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 01/10/2023]
Abstract
The merits of hyaluronic acid (HA) as a representative biological carbohydrate polymers especially in bioactivity and tailorability makes it ideal building block for the engineering of tissue engineering scaffolds. HA-based bio-composites integrate the characteristics of multi-component materials, possessing versatility and further improving the therapeutic efficacy. Human like collagen (HLC), which is hydrophilic, biomimetic, and bio-safe, with human tissue-derived collagen biofunction, has attracted extensive attention worldwide. Herein, we developed a novel method for HA/HLC bio-composite membranes preparation, comprising one-step surface modification-assembly process by which the HLC self-assembles are simultaneously loaded on the oxidized-modified HA (oxi-HA) from the surface/interface micro-scale. Comprehensive material characterizations and in vitro/in vivo biostudies proved that the HLC/oxi-HA composite membranes exhibited significantly enhanced biological activity, hemostatic performances, and wound healing properties compared to that of the pristine HA. The results of this study highlight the great potential of the prepared biomimetic HLC/oxi-HA bio-composites as a new generation of multifunctional HA-based wound-healing materials.
Collapse
Affiliation(s)
- Xiaomin Luo
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China.
| | - Ying Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China
| | - Chi Zheng
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China
| | - Qianqian Huo
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China
| | - Xinhua Liu
- Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China.
| |
Collapse
|
44
|
Shen S, Chen X, Shen Z, Chen H. Marine Polysaccharides for Wound Dressings Application: An Overview. Pharmaceutics 2021; 13:1666. [PMID: 34683959 PMCID: PMC8541487 DOI: 10.3390/pharmaceutics13101666] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 01/11/2023] Open
Abstract
Wound dressings have become a crucial treatment for wound healing due to their convenience, low cost, and prolonged wound management. As cutting-edge biomaterials, marine polysaccharides are divided from most marine organisms. It possesses various bioactivities, which allowing them to be processed into various forms of wound dressings. Therefore, a comprehensive understanding of the application of marine polysaccharides in wound dressings is particularly important for the studies of wound therapy. In this review, we first introduce the wound healing process and describe the characteristics of modern commonly used dressings. Then, the properties of various marine polysaccharides and their application in wound dressing development are outlined. Finally, strategies for developing and enhancing marine polysaccharide wound dressings are described, and an outlook of these dressings is given. The diverse bioactivities of marine polysaccharides including antibacterial, anti-inflammatory, haemostatic properties, etc., providing excellent wound management and accelerate wound healing. Meanwhile, these biomaterials have higher biocompatibility and biodegradability compared to synthetic ones. On the other hand, marine polysaccharides can be combined with copolymers and active substances to prepare various forms of dressings. Among them, emerging types of dressings such as nanofibers, smart hydrogels and injectable hydrogels are at the research frontier of their development. Therefore, marine polysaccharides are essential materials in wound dressings fabrication and have a promising future.
Collapse
Affiliation(s)
- Shenghai Shen
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (S.S.); (X.C.)
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China
| | - Xiaowen Chen
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (S.S.); (X.C.)
| | - Zhewen Shen
- School of Humanities, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang 43900, Selangor, Malaysia;
| | - Hao Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China
| |
Collapse
|
45
|
Bonferoni MC, Caramella C, Catenacci L, Conti B, Dorati R, Ferrari F, Genta I, Modena T, Perteghella S, Rossi S, Sandri G, Sorrenti M, Torre ML, Tripodo G. Biomaterials for Soft Tissue Repair and Regeneration: A Focus on Italian Research in the Field. Pharmaceutics 2021; 13:pharmaceutics13091341. [PMID: 34575417 PMCID: PMC8471088 DOI: 10.3390/pharmaceutics13091341] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/22/2022] Open
Abstract
Tissue repair and regeneration is an interdisciplinary field focusing on developing bioactive substitutes aimed at restoring pristine functions of damaged, diseased tissues. Biomaterials, intended as those materials compatible with living tissues after in vivo administration, play a pivotal role in this area and they have been successfully studied and developed for several years. Namely, the researches focus on improving bio-inert biomaterials that well integrate in living tissues with no or minimal tissue response, or bioactive materials that influence biological response, stimulating new tissue re-growth. This review aims to gather and introduce, in the context of Italian scientific community, cutting-edge advancements in biomaterial science applied to tissue repair and regeneration. After introducing tissue repair and regeneration, the review focuses on biodegradable and biocompatible biomaterials such as collagen, polysaccharides, silk proteins, polyesters and their derivatives, characterized by the most promising outputs in biomedical science. Attention is pointed out also to those biomaterials exerting peculiar activities, e.g., antibacterial. The regulatory frame applied to pre-clinical and early clinical studies is also outlined by distinguishing between Advanced Therapy Medicinal Products and Medical Devices.
Collapse
Affiliation(s)
| | | | | | - Bice Conti
- Correspondence: (M.C.B.); (B.C.); (F.F.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Chitosan-Coated Poly(lactic acid) Nanofibres Loaded with Essential Oils for Wound Healing. Polymers (Basel) 2021; 13:polym13162582. [PMID: 34451121 PMCID: PMC8398845 DOI: 10.3390/polym13162582] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 01/05/2023] Open
Abstract
Chronic skin wounds are characterised by a non-healing process that makes necessary the application of wound dressings on the damaged area to promote and facilitate the recovery of skin’s physiological integrity. The aim of the present work is to develop a bioactive dressing that, once applied on the injured tissue, would exert antibacterial activity and promote adhesion and proliferation of fibroblasts. Nanofibres consisting of poly(lactic acid) (PLA) and essential oils (EOs) were electrospun and coated with a medium molecular weight chitosan (CS). Black pepper essential oil (BP-EO) or limonene (L), well-known for their antibacterial properties, were added to the PLA/acetone solution before electrospinning; phase separation phenomena occurred due to the poor solubility of the EOs in the PLA solution and led to fibres having surface nano-pores. The porous electrospun fibres were coated with CS to produce hydrophilic membranes that were easy to handle, biocompatible, and suited to promote cellular proliferation. The fibrous scaffolds were tested in terms of mechanical resistance, wettability, antibacterial activity, in-vitro cytotoxicity, and ability to promote fibroblasts’ adhesion and proliferation. The results obtained proved that the CS coating improved the hydrophilicity of the fibrous mats, enhanced EO’s antibacterial potential, and promoted cell adhesion and proliferation.
Collapse
|
47
|
Juncan AM, Moisă DG, Santini A, Morgovan C, Rus LL, Vonica-Țincu AL, Loghin F. Advantages of Hyaluronic Acid and Its Combination with Other Bioactive Ingredients in Cosmeceuticals. Molecules 2021; 26:molecules26154429. [PMID: 34361586 PMCID: PMC8347214 DOI: 10.3390/molecules26154429] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
This study proposes a review on hyaluronic acid (HA) known as hyaluronan or hyaluronate and its derivates and their application in cosmetic formulations. HA is a glycosaminoglycan constituted from two disaccharides (N-acetylglucosamine and D-glucuronic acid), isolated initially from the vitreous humour of the eye, and subsequently discovered in different tissues or fluids (especially in the articular cartilage and the synovial fluid). It is ubiquitous in vertebrates, including humans, and it is involved in diverse biological processes, such as cell differentiation, embryological development, inflammation, wound healing, etc. HA has many qualities that recommend it over other substances used in skin regeneration, with moisturizing and anti-ageing effects. HA molecular weight influences its penetration into the skin and its biological activity. Considering that, nowadays, hyaluronic acid has a wide use and a multitude of applications (in ophthalmology, arthrology, pneumology, rhinology, aesthetic medicine, oncology, nutrition, and cosmetics), the present study describes the main aspects related to its use in cosmetology. The biological effect of HA on the skin level and its potential adverse effects are discussed. Some available cosmetic products containing HA have been identified from the brand portfolio of most known manufacturers and their composition was evaluated. Further, additional biological effects due to the other active ingredients (plant extracts, vitamins, amino acids, peptides, proteins, saccharides, probiotics, etc.) are presented, as well as a description of their possible toxic effects.
Collapse
Affiliation(s)
- Anca Maria Juncan
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur Str., 400349 Cluj-Napoca, Romania;
- SC Aviva Cosmetics SRL, 71A Kövari Str., 400217 Cluj-Napoca, Romania
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
- Correspondence: or (A.M.J.); (D.G.M.); (C.M.)
| | - Dana Georgiana Moisă
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
- Correspondence: or (A.M.J.); (D.G.M.); (C.M.)
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
- Correspondence: or (A.M.J.); (D.G.M.); (C.M.)
| | - Luca-Liviu Rus
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
| | - Andreea Loredana Vonica-Țincu
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
| | - Felicia Loghin
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur Str., 400349 Cluj-Napoca, Romania;
| |
Collapse
|
48
|
Wang M, Huang X, Zheng H, Tang Y, Zeng K, Shao L, Li L. Nanomaterials applied in wound healing: Mechanisms, limitations and perspectives. J Control Release 2021; 337:236-247. [PMID: 34273419 DOI: 10.1016/j.jconrel.2021.07.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/20/2022]
Abstract
Internal and external factors cause various types of wounds on the skin. Infections, nonhealing chronic wounds, and aesthetic and functional recovery all cause challenges for clinicians. The development of nanotechnology in biomedicine has brought many new materials, methods and therapeutic targets for the treatment of wounds, which are believed to have great prospects. In this work, the nanomaterials applied in different stages to promote wound healing and systematically expounded their mechanisms were reviewed. Then, the difficulties and defects of the present research and suggested methods for improvement were pointed out. Moreover, based on the current application status of nanomaterials in wound treatment, some new ideas for subsequent studies were proposed and the feasibility of intelligent healing by real-time monitoring, precision regulation, and signal transmission between electronic signals and human nerve signals in the future were discussed. This review will provide valuable directions and spark new thoughts for researchers.
Collapse
Affiliation(s)
- Menglei Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xiaowen Huang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Huanxin Zheng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yingmei Tang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Longquan Shao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Li Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China.
| |
Collapse
|
49
|
Trombino S, Curcio F, Cassano R, Curcio M, Cirillo G, Iemma F. Polymeric Biomaterials for the Treatment of Cardiac Post-Infarction Injuries. Pharmaceutics 2021; 13:1038. [PMID: 34371729 PMCID: PMC8309168 DOI: 10.3390/pharmaceutics13071038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac regeneration aims to reconstruct the heart contractile mass, preventing the organ from a progressive functional deterioration, by delivering pro-regenerative cells, drugs, or growth factors to the site of injury. In recent years, scientific research focused the attention on tissue engineering for the regeneration of cardiac infarct tissue, and biomaterials able to anatomically and physiologically adapt to the heart muscle have been proposed as valuable tools for this purpose, providing the cells with the stimuli necessary to initiate a complete regenerative process. An ideal biomaterial for cardiac tissue regeneration should have a positive influence on the biomechanical, biochemical, and biological properties of tissues and cells; perfectly reflect the morphology and functionality of the native myocardium; and be mechanically stable, with a suitable thickness. Among others, engineered hydrogels, three-dimensional polymeric systems made from synthetic and natural biomaterials, have attracted much interest for cardiac post-infarction therapy. In addition, biocompatible nanosystems, and polymeric nanoparticles in particular, have been explored in preclinical studies as drug delivery and tissue engineering platforms for the treatment of cardiovascular diseases. This review focused on the most employed natural and synthetic biomaterials in cardiac regeneration, paying particular attention to the contribution of Italian research groups in this field, the fabrication techniques, and the current status of the clinical trials.
Collapse
Affiliation(s)
| | | | - Roberta Cassano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (S.T.); (F.C.); (G.C.); (F.I.)
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (S.T.); (F.C.); (G.C.); (F.I.)
| | | | | |
Collapse
|
50
|
Zidar A, Kristl J, Kocbek P, Zupančič Š. Treatment challenges and delivery systems in immunomodulation and probiotic therapies for periodontitis. Expert Opin Drug Deliv 2021; 18:1229-1244. [PMID: 33760648 DOI: 10.1080/17425247.2021.1908260] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Periodontitis is a widespread illness that arises due to disrupted interplay between the oral microbiota and the host immune response. In some cases, conventional therapies can provide temporary remission, although this is often followed by disease relapse. Recent studies of periodontitis pathology have promoted the development of new therapeutics to improve treatment options, together with local application using advanced drug delivery systems.Areas covered: This paper provides a critical review of the status of current treatment approaches to periodontitis, with a focus on promising immunomodulation and probiotic therapies. These are based on delivery of small molecules, peptides, proteins, DNA or RNA, and probiotics. The key findings on novel treatment strategies and formulation of advanced delivery systems, such as nanoparticles and nanofibers, are highlighted.Expert opinion: Multitarget therapy based on antimicrobial, immunomodulatory, and probiotic active ingredients incorporated into advanced delivery systems for application to the periodontal pocket can improve periodontitis treatment outcomes. Translation of such adjuvant therapy from laboratory to patient is expected in the future.
Collapse
Affiliation(s)
- Anže Zidar
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Julijana Kristl
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Kocbek
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Špela Zupančič
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|