1
|
Yan R, Zou C, Yang X, Zhuang W, Huang Y, Zheng X, Hu J, Liao L, Yao Y, Sun X, Hu WW. Nebulized inhalation drug delivery: clinical applications and advancements in research. J Mater Chem B 2025; 13:821-843. [PMID: 39652178 DOI: 10.1039/d4tb01938e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Nebulized inhalation administration refers to the dispersion of drugs into small droplets suspended in the gas through a nebulized device, which are deposited in the respiratory tract by inhalation, to achieve the local therapeutic effect of the respiratory tract. Compared with other drug delivery methods, nebulized inhalation has the advantages of fast effect, high local drug concentration, less dosage, convenient application and less systemic adverse reactions, and has become one of the main drug delivery methods for the treatment of respiratory diseases. In this review, we first discuss the characteristics of nebulized inhalation, including its principles and influencing factors. Next, we compare the advantages and disadvantages of different types of nebulizers. Finally, we explore the clinical applications and recent research developments of nebulized inhalation therapy. By delving into these aspects, we aim to gain a deeper understanding of its pivotal role in contemporary medical treatment.
Collapse
Affiliation(s)
- Ruyi Yan
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Chang Zou
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xiaohang Yang
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Weihua Zhuang
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yushi Huang
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xiuli Zheng
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jie Hu
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Lingni Liao
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yongchao Yao
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xuping Sun
- High Altitude Medical Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Wenchuang Walter Hu
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
2
|
Acosta M, Encinas-Basurto D, Abrahamson MD, Eedara BB, Hayes D, Fineman JR, Black SM, Mansour HM. Innovative Dual Combination Cospray-Dried Rock Inhibitor/l-Carnitine Inhalable Dry Powder Aerosols. ACS BIO & MED CHEM AU 2024; 4:300-318. [PMID: 39712207 PMCID: PMC11659894 DOI: 10.1021/acsbiomedchemau.4c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 12/24/2024]
Abstract
This study introduces novel cospray-dried (Co-SD) formulations of simvastatin, a Nrf2 activator ROCK inhibitor, with l-carnitine as molecular mixtures in various molar ratios for targeted pulmonary inhalation aerosol delivery in pulmonary hypertension, optimized for excipient-free dry powder inhalers (DPIs). The two components were spray-dried at various molar ratios by using different starting feed solution concentrations and process parameters. In addition to comprehensive physicochemical characterization, in vitro aerosol dispersion performance as DPIs using two FDA-approved DPI devices with different shear stress properties, in vitro viability as a function of dose on 2D human pulmonary cellular monolayers and on 3D small airway epithelia human primary cultures at the air-liquid interface (ALI), and in vitro transepithelial electrical resistance (TEER) at the ALI were conducted. Solid-state physicochemical characterization confirmed homogeneous molecular mixtures and the crystalline nature of the Co-SD formulations. In vitro aerosolization dispersion performance demonstrated that all Co-SD dual combination molecular mixtures aerosolized successfully with both human FDA-approved DPI devices, had ∼100% emitted dose, and good fine particle fraction values. The in vitro viability and TEER assays demonstrated that all formulations were safe to the human pulmonary cell as 2D and 3D cultures as a function of dose.
Collapse
Affiliation(s)
- Maria
F. Acosta
- The
University of Arizona College of Pharmacy, Skaggs Pharmaceutical Sciences
Center, Tucson, Arizona 85721, United States
| | - David Encinas-Basurto
- The
University of Arizona College of Pharmacy, Skaggs Pharmaceutical Sciences
Center, Tucson, Arizona 85721, United States
- Universidad
de Sonora, Department of Physics, Nanotechnology Program, Hermosillo, Sonora 83000, México
| | - Michael D. Abrahamson
- The
University of Arizona College of Pharmacy, Skaggs Pharmaceutical Sciences
Center, Tucson, Arizona 85721, United States
| | - Basanth Babu Eedara
- The
University of Arizona College of Pharmacy, Skaggs Pharmaceutical Sciences
Center, Tucson, Arizona 85721, United States
- Florida
International University, Center for Translational Science, Port St. Lucie, Florida 34987, United States
- Florida
International University, Robert Stempel College of Public Health
and Social Work, Department of Environmental Health Sciences, Miami, Florida 34987, United States
| | - Don Hayes
- The
Ohio State University College of Medicine, the Davis Heart and Lung
Research Institute, Columbus, Ohio 43271, United States
- Cincinnati
Children’s Medical Center, Cincinnati, Ohio 45229, United States
| | - Jeffrey R. Fineman
- University
of California San Francisco School of Medicine, Department of Pediatrics, San Francisco, California 94107, United States
| | - Stephen M. Black
- Florida
International University, Center for Translational Science, Port St. Lucie, Florida 34987, United States
- Florida
International University, Robert Stempel College of Public Health
and Social Work, Department of Environmental Health Sciences, Miami, Florida 34987, United States
- The
University of Arizona College of Medicine, Department of Medicine,
Division of Translational and Regenerative Medicine, Tucson, Arizona 85724, United States
- Florida
International University, Herbert Wertheim College of Medicine, Department
of Cellular & Molecular Medicine, Miami, Florida 33199, United States
| | - Heidi M. Mansour
- The
University of Arizona College of Pharmacy, Skaggs Pharmaceutical Sciences
Center, Tucson, Arizona 85721, United States
- Florida
International University, Center for Translational Science, Port St. Lucie, Florida 34987, United States
- Florida
International University, Robert Stempel College of Public Health
and Social Work, Department of Environmental Health Sciences, Miami, Florida 34987, United States
- The
University of Arizona College of Medicine, Department of Medicine,
Division of Translational and Regenerative Medicine, Tucson, Arizona 85724, United States
- Florida
International University, Herbert Wertheim College of Medicine, Department
of Cellular & Molecular Medicine, Miami, Florida 33199, United States
- Florida International
University, College of Engineering and Computing,
Department of Biomedical Engineering, Miami, Florida 33174, United States
| |
Collapse
|
3
|
Scialabba C, Craparo EF, Cabibbo M, Emanuele Drago S, Cavallaro G. Exploiting inhalable microparticles incorporating hybrid polymer-lipid nanoparticles loaded with Iloprost manages lung hyper-inflammation. Int J Pharm 2024; 666:124813. [PMID: 39384025 DOI: 10.1016/j.ijpharm.2024.124813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/18/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
This study focuses on developing of a novel inhalation therapy for managing lung hyper-inflammation, producing hybrid polymer-lipid nanoparticles loaded with Iloprost (Ilo). These nanoparticles showed a size of approximately 100 nm with a core-shell structure and provided prolonged drug release, reaching 28 wt% after 6 h of incubation. The phospholipid composition and quantity (64 wt% on the total sample weight) result in minimal interaction with mucin and a significant effect on the rheology of a cystic fibrosis mucus model, in terms of reducing complex viscosity. To obtain an inhalable microparticulate matrix suitable for incorporating Ilo@PEG-LPHNPs, the qualitative and quantitative composition of the feed fluid for the spray drying (SD) process was optimized. The selected composition (10 % wt/vol of mannitol and 10 % wt of ammonium bicarbonate relative to the weight of mannitol) was used to produce Nano-into Microparticles (NiM). The characterization of NiM revealed excellent aerodynamic properties, with a Mass Median Aerodynamic Diameter (MMAD) of 4.34 μm and a Fine Particle Fraction (FPF) of approximately 57 %. Biological characterization revealed that the particles are non-toxic to 16-HBE cells and can effectively evade macrophage uptake, likely due to the presence of PEG in their composition. Moreover, the delivered Iloprost significantly downregulates the production of the pro-inflammatory cytokine IL-6, showing the therapeutic potential of this drug delivery system.
Collapse
Affiliation(s)
- Cinzia Scialabba
- Lab of Biocompatible Polymers, Dpt of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo 90123, Italy
| | - Emanuela F Craparo
- Lab of Biocompatible Polymers, Dpt of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo 90123, Italy.
| | - Marta Cabibbo
- Lab of Biocompatible Polymers, Dpt of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo 90123, Italy
| | - Salvatore Emanuele Drago
- Lab of Biocompatible Polymers, Dpt of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo 90123, Italy
| | - Gennara Cavallaro
- Lab of Biocompatible Polymers, Dpt of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo 90123, Italy
| |
Collapse
|
4
|
Nemr MTM, Abdelaziz MA, Teleb M, Elmasry AE, Elshaier YAAM. An overview on pharmaceutical applications of phosphodiesterase enzyme 5 (PDE5) inhibitors. Mol Divers 2024:10.1007/s11030-024-11016-2. [PMID: 39592536 DOI: 10.1007/s11030-024-11016-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/12/2024] [Indexed: 11/28/2024]
Abstract
Phosphodiesterase enzyme 5 (PDE5) inhibitors have emerged as one of the leading molecules for the treatment of erectile dysfunction (ED). PDE5 inhibitors are categorized structurally into several classes. PDE5 inhibitors have been a multidisciplinary endeavor that attracts the attention of researchers because of their multiple pharmaceutical applications. Beyond their action on ED, PDE5 inhibitors are widely used in treatment of benign prostatic hypertrophy (BPH), Eisenmenger's syndrome, Raynaud's Disease, Intrauterine growth retardation (IUGR), Mountain sickness, Bladder pain syndrome/interstitial cystitis (BPS/IC), pulmonary arterial hypertension and type II diabetes (insulin resistance). In addition, PDE5 inhibitors also show promising antiproliferative activity, anti-Alzheimer and COX-1/COX-2 inhibitory activity (anti-inflammatory). Pharmacokinetics, Pharmacogenetics and toxicity of PDE5 inhibitors were finally explored. The diverse therapeutic applications, the high feasibility of structural modification and the appropriate pharmacokinetic properties of PDE5 inhibitors have motivated researchers to develop new scaffolds that have been either under clinical trials or approved by FDA and utilize them to overcome some recent global concerns, such as COVID-19.
Collapse
Affiliation(s)
- Mohamed T M Nemr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Eini Street 11562, Cairo, Egypt.
| | | | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
- Faculty of Pharmacy, Alamein International University (AIU), Alamein City, Alamein City, 5060310, Egypt
| | - Ahmed E Elmasry
- Organic & Medicinal Chemistry Department, Faculty of Pharmacy, University of Sadat City, Menoufia, Egypt
| | - Yaseen A A M Elshaier
- Organic & Medicinal Chemistry Department, Faculty of Pharmacy, University of Sadat City, Menoufia, Egypt.
| |
Collapse
|
5
|
Zhang Z, Yi C, Chen T, Zhao Y, Zhang Y, Jin H. Solid-State Gas Sensors with Ni-Based Sensing Materials for Highly Selective Detecting NOx. SENSORS (BASEL, SWITZERLAND) 2024; 24:7378. [PMID: 39599154 PMCID: PMC11598561 DOI: 10.3390/s24227378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Precise monitoring of NOx concentrations in nitric oxide delivery systems is crucial to ensure the safety and well-being of patients undergoing inhaled nitric oxide (iNO) therapy for pulmonary arterial hypertension. Currently, NOx sensing in commercialized iNO instruments predominantly relies on chemiluminescence sensors, which not only drives up costs but also limits their portability. Herein, we developed solid-state gas sensors utilizing Ni-based sensing materials for effectively tracking the levels of NO and NO2 in the NO delivery system. These sensors comprised of NiO-SE or (NiFe2O4 + 30 wt.% Fe2O3)-SE vs. Mn-based RE demonstrated high selectivity toward 100 ppm NO under the interference of 10 ppm NO2 or 3 ppm NO2 under the interference of 100 ppm NO, respectively. Meanwhile, excellent stability, repeatability, and humidity resistance were also verified for the proposed sensors. Sensing mechanisms were thoroughly investigated through assessments of adsorption capabilities and electrochemical reactivity. It turns out that the superior electrochemical reactivity of NiO toward NO, alongside the NO2 favorable adsorption characteristics of (NiFe2O4 + 30 wt.% Fe2O3), is the primary reason for the high selectivity to NOx. These findings indicate a bright future for the application of these NOx sensors in innovative iNO treatment technologies.
Collapse
Affiliation(s)
- Zhenghu Zhang
- Institute of Micro-Nano Science and Technology & National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.Z.); (C.Y.)
| | - Chenghan Yi
- Institute of Micro-Nano Science and Technology & National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.Z.); (C.Y.)
| | - Tao Chen
- Nanjing Novlead Biotechnology Co., Ltd., Nanjing 211800, China; (T.C.); (Y.Z.); (Y.Z.)
| | - Yangbo Zhao
- Nanjing Novlead Biotechnology Co., Ltd., Nanjing 211800, China; (T.C.); (Y.Z.); (Y.Z.)
| | - Yanyu Zhang
- Nanjing Novlead Biotechnology Co., Ltd., Nanjing 211800, China; (T.C.); (Y.Z.); (Y.Z.)
| | - Han Jin
- Institute of Micro-Nano Science and Technology & National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.Z.); (C.Y.)
- Medical School, Henan University, Kaifeng 475004, China
- National Engineering Research Center for Nanotechnology, Shanghai 200241, China
- Wuzhen Laboratory, Tongxiang 314500, China
| |
Collapse
|
6
|
Sandner P, Follmann M, Becker-Pelster E, Hahn MG, Meier C, Freitas C, Roessig L, Stasch JP. Soluble GC stimulators and activators: Past, present and future. Br J Pharmacol 2024; 181:4130-4151. [PMID: 34600441 DOI: 10.1111/bph.15698] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022] Open
Abstract
The discovery of soluble GC (sGC) stimulators and sGC activators provided valuable tools to elucidate NO-sGC signalling and opened novel pharmacological opportunities for cardiovascular indications and beyond. The first-in-class sGC stimulator riociguat was approved for pulmonary hypertension in 2013 and vericiguat very recently for heart failure. sGC stimulators enhance sGC activity independent of NO and also act synergistically with endogenous NO. The sGC activators specifically bind to, and activate, the oxidised haem-free form of sGC. Substantial research efforts improved on the first-generation sGC activators such as cinaciguat, culminating in the discovery of runcaciguat, currently in clinical Phase II trials for chronic kidney disease and diabetic retinopathy. Here, we highlight the discovery and development of sGC stimulators and sGC activators, their unique modes of action, their preclinical characteristics and the clinical studies. In the future, we expect to see more sGC agonists in new indications, reflecting their unique therapeutic potential.
Collapse
Affiliation(s)
- Peter Sandner
- Pharmaceuticals Research & Development, Bayer AG, Wuppertal, Germany
- Institute of Pharmacology, Hannover Medical School, Hanover, Germany
| | - Markus Follmann
- Pharmaceuticals Research & Development, Bayer AG, Wuppertal, Germany
| | | | - Michael G Hahn
- Pharmaceuticals Research & Development, Bayer AG, Wuppertal, Germany
| | - Christian Meier
- Pharmaceuticals Medical Affairs and Pharmacovigilance, Bayer AG, Berlin, Germany
| | - Cecilia Freitas
- Pharmaceuticals Research & Development, Bayer AG, Wuppertal, Germany
| | - Lothar Roessig
- Pharmaceuticals Research & Development, Bayer AG, Wuppertal, Germany
| | - Johannes-Peter Stasch
- Pharmaceuticals Research & Development, Bayer AG, Wuppertal, Germany
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
7
|
Liang B, Zhou Y, Qin Y, Li X, Zhou S, Yuan K, Zhao R, Lv X, Qin D. Research Progress on Using Nanoparticles to Enhance the Efficacy of Drug Therapy for Chronic Mountain Sickness. Pharmaceutics 2024; 16:1375. [PMID: 39598498 PMCID: PMC11597246 DOI: 10.3390/pharmaceutics16111375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Chronic mountain sickness (CMS) poses a significant health risk to individuals who rapidly ascend to high altitudes, potentially endangering their lives. Nanoparticles (NPs) offer an effective means of transporting and delivering drugs, protecting nucleic acids from nuclease degradation, and mediating the expression of target genes in specific cells. These NPs are almost non-toxic and easy to prepare and store, possess a large surface area, exhibit good biocompatibility and degradability, and maintain good stability. They can be utilized in the treatment of CMS to enhance the therapeutic efficacy of drugs. This paper provides an overview of the impact of NPs on CMS, discussing their roles as nanocarriers and their potential in CMS treatment. It aims to present novel therapeutic strategies for the clinical management of CMS and summarizes the relevant pathways through which NPs contribute to plateau disease treatment, providing a theoretical foundation for future clinical research.
Collapse
Affiliation(s)
- Boshen Liang
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China; (B.L.); (Y.Z.); (Y.Q.); (X.L.); (S.Z.)
| | - Yang Zhou
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China; (B.L.); (Y.Z.); (Y.Q.); (X.L.); (S.Z.)
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming 650500, China;
| | - Yuliang Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China; (B.L.); (Y.Z.); (Y.Q.); (X.L.); (S.Z.)
| | - Xinyao Li
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China; (B.L.); (Y.Z.); (Y.Q.); (X.L.); (S.Z.)
| | - Sitong Zhou
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China; (B.L.); (Y.Z.); (Y.Q.); (X.L.); (S.Z.)
| | - Kai Yuan
- Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming 650500, China;
| | - Rong Zhao
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming 650500, China;
| | - Xiaoman Lv
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China; (B.L.); (Y.Z.); (Y.Q.); (X.L.); (S.Z.)
| | - Dongdong Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China; (B.L.); (Y.Z.); (Y.Q.); (X.L.); (S.Z.)
| |
Collapse
|
8
|
Lu M, Baima YJ, Ni Z, Yang L, Zhang SS, Zhang YT. Advances in the potential of nebulized inhalation for the treatment of pulmonary arterial hypertension. Curr Probl Cardiol 2024; 49:102752. [PMID: 39059783 DOI: 10.1016/j.cpcardiol.2024.102752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Pulmonary hypertension is a pathophysiologic manifestation of a heterogeneous group of diseases, with the main pathophysiologic mechanisms being persistent pulmonary vasoconstriction and irreversible vascular remodeling. The impact significantly affects the prognosis of patients with pulmonary hypertension. If it is not treated and intervened in time, it may lead to right ventricular failure and further endanger the patient's life. Within the past decade or so, nebulized inhalation therapy is considered to have advantages in the treatment of pulmonary hypertension as a safe, limited, and rapid therapy, for example, inhaled vasodilators (prostate analogs, nitroglycerin, carbon monoxide analogs sildenafil, and nitroprusside), inhaled anti-inflammatory and antiproliferative agents (simvastatin, and selatinib), and inhaled peroxides (levocetirizine) have been recognized as emerging therapeutic approaches in the treatment of pulmonary hypertension as emerging therapeutic approaches. Therefore, this article provides a brief review of recent advances in the potential of nebulized inhaled vasodilators, anti-inflammatory and antiproliferative agents, and anti-peroxides for the treatment of pulmonary hypertension, with the aim of providing different therapeutic options for the treatment of pulmonary hypertension, enhancing the quality of survival, alleviating symptoms, and improving the prognosis of patients with this condition.
Collapse
Affiliation(s)
- Miao Lu
- Tibet University Medical College, Lhasa, Tibet Autonomous Region 850000, China; Department of Pulmonary Medicine, Lhasa People's Hospital, Lhasa, Tibet Autonomous Region 850013, China
| | - Yang-Jin Baima
- Department of Pulmonary Medicine, Lhasa People's Hospital, Lhasa, Tibet Autonomous Region 850013, China
| | - Zhu Ni
- Department of Pulmonary Medicine, Lhasa People's Hospital, Lhasa, Tibet Autonomous Region 850013, China
| | - Li Yang
- Department of Pulmonary Medicine, Lhasa People's Hospital, Lhasa, Tibet Autonomous Region 850013, China
| | - Song-Shan Zhang
- Tibet University Medical College, Lhasa, Tibet Autonomous Region 850000, China; Department of External Medicine, Tibet Autonomous Region People's Hospital, Lhasa, Tibet Autonomous Region 850000, China
| | - Yun-Tao Zhang
- Department of Pulmonary Medicine, Lhasa People's Hospital, Lhasa, Tibet Autonomous Region 850013, China.
| |
Collapse
|
9
|
Oláh A, Barta BA, Ruppert M, Sayour AA, Nagy D, Bálint T, Nagy GV, Puskás I, Szente L, Szőcs L, Sohajda T, Zima E, Merkely B, Radovits T. A Comparative Investigation of the Pulmonary Vasodilating Effects of Inhaled NO Gas Therapy and Inhalation of a New Drug Formulation Containing a NO Donor Metabolite (SIN-1A). Int J Mol Sci 2024; 25:7981. [PMID: 39063223 PMCID: PMC11277253 DOI: 10.3390/ijms25147981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Numerous research projects focused on the management of acute pulmonary hypertension as Coronavirus Disease 2019 (COVID-19) might lead to hypoxia-induced pulmonary vasoconstriction related to acute respiratory distress syndrome. For that reason, inhalative therapeutic options have been the subject of several clinical trials. In this experimental study, we aimed to examine the hemodynamic impact of the inhalation of the SIN-1A formulation (N-nitroso-N-morpholino-amino-acetonitrile, the unstable active metabolite of molsidomine, stabilized by a cyclodextrin derivative) in a porcine model of acute pulmonary hypertension. Landrace pigs were divided into the following experimental groups: iNO (inhaled nitric oxide, n = 3), SIN-1A-5 (5 mg, n = 3), and SIN-1A-10 (10 mg, n = 3). Parallel insertion of a PiCCO system and a pulmonary artery catheter (Swan-Ganz) was performed for continuous hemodynamic monitoring. The impact of iNO (15 min) and SIN-1A inhalation (30 min) was investigated under physiologic conditions and U46619-induced acute pulmonary hypertension. Mean pulmonary arterial pressure (PAP) was reduced transiently by both substances. SIN-1A-10 had a comparable impact compared to iNO after U46619-induced pulmonary hypertension. PAP and PVR decreased significantly (changes in PAP: -30.1% iNO, -22.1% SIN-1A-5, -31.2% SIN-1A-10). While iNO therapy did not alter the mean arterial pressure (MAP) and systemic vascular resistance (SVR), SIN-1A administration resulted in decreased MAP and SVR values. Consequently, the PVR/SVR ratio was markedly reduced in the iNO group, while SIN-1A did not alter this parameter. The pulmonary vasodilatory impact of inhaled SIN-1A was shown to be dose-dependent. A larger dose of SIN-1A (10 mg) resulted in decreased PAP and PVR in a similar manner to the gold standard iNO therapy. Inhalation of the nebulized solution of the new SIN-1A formulation (stabilized by a cyclodextrin derivative) might be a valuable, effective option where iNO therapy is not available due to dosing difficulties or availability.
Collapse
Affiliation(s)
- Attila Oláh
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary (D.N.); (T.B.); (E.Z.); (B.M.)
| | - Bálint András Barta
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary (D.N.); (T.B.); (E.Z.); (B.M.)
| | - Mihály Ruppert
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary (D.N.); (T.B.); (E.Z.); (B.M.)
| | - Alex Ali Sayour
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary (D.N.); (T.B.); (E.Z.); (B.M.)
| | - Dávid Nagy
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary (D.N.); (T.B.); (E.Z.); (B.M.)
| | - Tímea Bálint
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary (D.N.); (T.B.); (E.Z.); (B.M.)
| | - Georgina Viktória Nagy
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary (D.N.); (T.B.); (E.Z.); (B.M.)
| | | | | | | | | | - Endre Zima
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary (D.N.); (T.B.); (E.Z.); (B.M.)
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary (D.N.); (T.B.); (E.Z.); (B.M.)
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary (D.N.); (T.B.); (E.Z.); (B.M.)
| |
Collapse
|
10
|
Oh Y, Park K, Jung S, Choi M, Kim T, Lee Y, Choi JY, Kim YH, Jung SY, Hong J. Inhalable Nitric Oxide Delivery Systems for Pulmonary Arterial Hypertension Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308936. [PMID: 38054614 DOI: 10.1002/smll.202308936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/24/2023] [Indexed: 12/07/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a severe medical condition characterized by elevated blood pressure in the pulmonary arteries. Nitric oxide (NO) is a gaseous signaling molecule with potent vasodilator effects; however, inhaled NO is limited in clinical practice because of the need for tracheal intubation and the toxicity of high NO concentrations. In this study, inhalable NO-releasing microspheres (NO inhalers) are fabricated to deliver nanomolar NO through a nebulizer. Two NO inhalers with distinct porous structures are prepared depending on the molecular weights of NO donors. It is confirmed that pore formation can be controlled by regulating the migration of water molecules from the external aqueous phase to the internal aqueous phase. Notably, open porous NO inhalers (OPNIs) can deliver NO deep into the lungs through a nebulizer. Furthermore, OPNIs exhibit vasodilatory and anti-inflammatory effects via sustained NO release. In conclusion, the findings suggest that OPNIs with highly porous structures have the potential to serve as tools for PAH treatment.
Collapse
Affiliation(s)
- Yoogyeong Oh
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyungtae Park
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sungwon Jung
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Moonhyun Choi
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Taihyun Kim
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yoojin Lee
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jae Young Choi
- Division of Pediatric Cardiology, Department of Pediatrics, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yang-Hee Kim
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - Se Yong Jung
- Division of Pediatric Cardiology, Department of Pediatrics, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jinkee Hong
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
11
|
Ware LR, Kim CS, Szumita PM, DeGrado JR. A Narrative Review on the Administration of Inhaled Prostaglandins in Critically Ill Adult Patients With Acute Respiratory Distress Syndrome. Ann Pharmacother 2024; 58:533-548. [PMID: 37589097 DOI: 10.1177/10600280231194539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
OBJECTIVE To describe the effect of inhaled prostaglandins on both oxygenation and mortality in critically ill patients with acute respiratory distress syndrome (ARDS), with a focus on safety and efficacy in coronavirus disease 2019 (COVID-19)-associated ARDS and non-COVID-19 ARDS. DATA SOURCES A literature search of MEDLINE was performed using the following search terms: inhaled prostaglandins, inhaled epoprostenol, inhaled nitric oxide, ARDS, critically ill. All abstracts were reviewed. STUDY SELECTION AND DATA EXTRACTION Relevant English-language reports and studies conducted in humans between 1980 and June 2023 were considered. DATA SYNTHESIS Data regarding inhaled prostaglandins and their effect on oxygenation are limited but show a benefit in patients who respond to therapy, and data pertaining to their effect on mortality is scarce. Concerns exist regarding the formulation of inhaled epoprostenol (iEPO) utilized in addition to modes of medication delivery; however, the limited data surrounding their use have shown a reasonable safety profile. Other avenues and beneficial effects may exist with inhaled prostaglandins, such as use in COVID-19-associated ARDS or non-COVID-19 ARDS patients undergoing noninvasive mechanical ventilation or during patient transport. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE The use of inhaled prostaglandins can be considered in critically ill patients with COVID-19-associated ARDS or non-COVID-19 ARDS who are experiencing difficulties with oxygenation refractory to nonpharmacologic strategies. CONCLUSIONS The use of iEPO and other inhaled prostaglandins requires further investigation to fully elucidate their effects on clinical outcomes, but it appears these medications may have a potential benefit in COVID-19-associated ARDS and non-COVID-19 ARDS patients with refractory hypoxemia but with little effect on mortality.
Collapse
Affiliation(s)
- Lydia R Ware
- Department of Pharmacy, Brigham and Women's Hospital, Boston, MA, USA
| | - Christine S Kim
- Department of Pharmacy, Brigham and Women's Hospital, Boston, MA, USA
| | - Paul M Szumita
- Department of Pharmacy, Brigham and Women's Hospital, Boston, MA, USA
| | - Jeremy R DeGrado
- Department of Pharmacy, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
12
|
Chaudhary KR, Singh K, Singh C. Recent Updates in Inhalable Drug Delivery System against Various Pulmonary Diseases: Challenges and Future Perspectives. Curr Drug Deliv 2024; 21:1320-1345. [PMID: 37870055 DOI: 10.2174/0115672018265571231011093546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
In the current scenario, pulmonary disease has become a prime burden for morbidity and mortality alongside tremendous social and economic crises throughout the world. Numerous conventional drug delivery system and treatment approach targeting the respiratory region has been driven out. However, effective and accurate recovery has not been achieved yet. In this regard, nanotechnological- based inhalable drug delivery strategy including polymeric, lipidic, or metallic-based respirable microparticles plays an indispensable role in circumventing numerous challenges faced during traditional treatment. Excellent aerodynamic performance leads to enhanced lung targetability, reduced dosing frequency and hence systemic toxicities, as well as improved pharmaceutical attributes, and therefore pharmacokinetic profiles are interminable factors associated with nanotechnologicalbased inhalable delivery. In this review, we comprehensively explored recent advancements in nanotechnologically engineered inhalable formulations targeting each of the mentioned pulmonary diseases. Moreover, we systematically discussed possible respiratory or systemic toxicities about the indeterminate and undefined physicochemical characteristics of inhaled particles.
Collapse
Affiliation(s)
- Kabi Raj Chaudhary
- Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T Road, Moga, Punjab 142001, India
- Department of Research and Development, United Biotech [P] Ltd. Bagbania, Nalagarh, Solan, Himachal Pradesh, India
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T Road, Moga, Punjab 142001, India
- Department of Pharmaceutical Sciences HNB Garhwal University, Madhi Chauras, Srinagar, Uttarakhand 246174, India
| |
Collapse
|
13
|
Gillies H, Chakinala MM, Dake BT, Feldman JP, Hoeper MM, Humbert M, Jing Z, Langley J, McLaughlin VV, Niven RW, Rosenkranz S, Zhang X, Hill NS. IMPAHCT: A randomized phase 2b/3 study of inhaled imatinib for pulmonary arterial hypertension. Pulm Circ 2024; 14:e12352. [PMID: 38532768 PMCID: PMC10963589 DOI: 10.1002/pul2.12352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024] Open
Abstract
AV-101 (imatinib) powder for inhalation, an investigational dry powder inhaled formulation of imatinib designed to target the underlying pathobiology of pulmonary arterial hypertension, was generally well tolerated in healthy adults in a phase 1 single and multiple ascending dose study. Inhaled Imatinib Pulmonary Arterial Hypertension Clinical Trial (IMPAHCT; NCT05036135) is a phase 2b/3, randomized, double-blind, placebo-controlled, dose-ranging, and confirmatory study. IMPAHCT is designed to identify an optimal AV-101 dose (phase 2b primary endpoint: pulmonary vascular resistance) and assess the efficacy (phase 3 primary endpoint: 6-min walk distance), safety, and tolerability of AV-101 dose levels in subjects with pulmonary arterial hypertension using background therapies. The study has an operationally seamless, adaptive design allowing for continuous recruitment. It includes three parts; subjects enrolled in Part 1 (phase 2b dose-response portion) or Part 2 (phase 3 intermediate portion) will be randomized 1:1:1:1 to 10, 35, 70 mg AV-101, or placebo (twice daily), respectively. Subjects enrolled in Part 3 (phase 3 optimal dose portion) will be randomized 1:1 to the optimal dose of AV-101 and placebo (twice daily), respectively. All study parts include a screening period, a 24-week treatment period, and a 30-day safety follow-up period; the total duration is ∼32 weeks. Participation is possible in only one study part. IMPAHCT has the potential to advance therapies for patients with pulmonary arterial hypertension by assessing the efficacy and safety of a novel investigational drug-device combination (AV-101) using an improved study design that has the potential to save 6-12 months of development time. ClinicalTrials.gov Identifier: NCT05036135.
Collapse
Affiliation(s)
| | - Murali M. Chakinala
- Division of Pulmonary and Critical Care MedicineWashington University in St. LouisSt. LouisMissourIUSA
| | | | | | - Marius M. Hoeper
- Department of Respiratory Medicine and Infectious DiseasesHannover Medical SchoolHannoverGermany
- German Center for Lung Research (DZL)Biomedical Research in Endstage and Obstructive Lung Disease Hanover (BREATH)HannoverGermany
| | - Marc Humbert
- Service de Pneumologieet Soins Intensifs Respiratoires, Assistance Publique Hôpitaux de Paris, Hôpital BicêtreUniversité Paris–Saclay, INSERMUMR_S 999Le Kremlin‐BicêtreFrance
| | - Zhi‐Cheng Jing
- Department of Cardiology, Guangdong Provincial People's Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical SciencesSouthern Medical UniversityGuangzhouChina
| | | | - Vallerie V. McLaughlin
- Cardiology Clinic, Frankel Cardiovascular CenterUniversity of MichiganAnn ArborMichiganUSA
| | | | - Stephan Rosenkranz
- Department of Internal Medicine III, Cologne Cardiovascular Research Center, Heart CenterUniversityof CologneCologneGermany
| | | | - Nicholas S. Hill
- Pulmonary Critical Care and Sleep DivisionTufts Medical CenterBostonMassachusettsUSA
| |
Collapse
|
14
|
Zhao Y, Li C, Zhang S, Cheng J, Liu Y, Han X, Wang Y, Wang Y. Inhaled nitric oxide: can it serve as a savior for COVID-19 and related respiratory and cardiovascular diseases? Front Microbiol 2023; 14:1277552. [PMID: 37849924 PMCID: PMC10577426 DOI: 10.3389/fmicb.2023.1277552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
Nitric oxide (NO), as an important gaseous medium, plays a pivotal role in the human body, such as maintaining vascular homeostasis, regulating immune-inflammatory responses, inhibiting platelet aggregation, and inhibiting leukocyte adhesion. In recent years, the rapid prevalence of coronavirus disease 2019 (COVID-19) has greatly affected the daily lives and physical and mental health of people all over the world, and the therapeutic efficacy and resuscitation strategies for critically ill patients need to be further improved and perfected. Inhaled nitric oxide (iNO) is a selective pulmonary vasodilator, and some studies have demonstrated its potential therapeutic use for COVID-19, severe respiratory distress syndrome, pulmonary infections, and pulmonary hypertension. In this article, we describe the biochemistry and basic characteristics of NO and discuss whether iNO can act as a "savior" for COVID-19 and related respiratory and cardiovascular disorders to exert a potent clinical protective effect.
Collapse
Affiliation(s)
- Yifan Zhao
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Cheng Li
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Shuai Zhang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Jiayu Cheng
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Yucheng Liu
- Department of Family and Community Medicine, Feinberg School of Medicine, McGaw Medical Center of Northwestern University, Chicago, IL, United States
| | - Xiaorong Han
- Department of Special Care Center, Fuwai Hospital, National Clinical Research Center for Cardiovascular Diseases, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yinghui Wang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Yonggang Wang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Stolfa I, Page C. Phosphodiesterase inhibitors and lung diseases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 98:55-81. [PMID: 37524492 DOI: 10.1016/bs.apha.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Phosphodiesterase enzymes (PDE) have long been known as regulators of cAMP and cGMP, second messengers involved in various signaling pathways and expressed in a variety of cell types implicated in respiratory diseases such as airway smooth muscle and inflammatory cells making them a key target for the treatment of lung diseases as chronic obstructive pulmonary disease (COPD), asthma, cystic fibrosis, and pulmonary hypertension (PH). The first reported PDE inhibitor was the xanthine, theophylline, described as a non-specific PDE inhibitor and whilst this drug is effective, it also has a range of unwanted side effects. In an attempt to improve the therapeutic window of xanthines, a number of selective PDE inhibitors have been developed for the treatment of respiratory diseases with only the selective PDE 4 inhibitor, roflumilast, being approved for the treatment of severe COPD. However, roflumilast also has a very narrow therapeutic window due to a number of important doses limiting side effects, particularly in the gastrointestinal tract. However, there continues to be research carried out in this field to identify improved selective PDE inhibitors, both by targeting other PDE subtypes (e.g., PDE 7 found in a number of inflammatory and immune cells) and through development of selective PDE inhibitors for pulmonary administration to reduce systemic exposure and improve the side effect profile. This approach has been exemplified by the development of ensifentrine, a dual PDE 3-PDE 4 inhibitor, an inhaled drug that has recently completed two successful Phase III clinical trials in patients with COPD.
Collapse
Affiliation(s)
- Ivana Stolfa
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College, London, United Kingdom
| | - Clive Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College, London, United Kingdom.
| |
Collapse
|
16
|
Mirhadi E, Kesharwani P, Johnston TP, Sahebkar A. Nanomedicine-mediated therapeutic approaches for pulmonary arterial hypertension. Drug Discov Today 2023; 28:103599. [PMID: 37116826 DOI: 10.1016/j.drudis.2023.103599] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/29/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
Nanomedicine has emerged as a field in which there are opportunities to improve the diagnosis, treatment and prevention of incurable diseases. Pulmonary arterial hypertension (PAH) is known as a severe and fatal disease affecting children and adults. Conventional treatments have not produced optimal effectiveness in treating this condition. Several reasons for this include drug instability, poor solubility of the drug and a shortened duration of pharmacological action. The present review focuses on new approaches for delivering anti-PAH drugs using nanotechnology with the aim of overcoming these shortcomings and increasing their efficacy. Solid-lipid nanoparticles, liposomes, metal-organic frameworks and polymeric nanoparticles have demonstrated advantages for the potential treatment of PAH, including increased drug bioavailability, drug solubility and accumulation in the lungs.
Collapse
Affiliation(s)
- Elaheh Mirhadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Development and Optimisation of Inhalable EGCG Nano-Liposomes as a Potential Treatment for Pulmonary Arterial Hypertension by Implementation of the Design of Experiments Approach. Pharmaceutics 2023; 15:pharmaceutics15020539. [PMID: 36839861 PMCID: PMC9965461 DOI: 10.3390/pharmaceutics15020539] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/14/2022] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Epigallocatechin gallate (EGCG), the main ingredient in green tea, holds promise as a potential treatment for pulmonary arterial hypertension (PAH). However, EGCG has many drawbacks, including stability issues, low bioavailability, and a short half-life. Therefore, the purpose of this research was to develop and optimize an inhalable EGCG nano-liposome formulation aiming to overcome EGCG's drawbacks by applying a design of experiments strategy. The aerodynamic behaviour of the optimum formulation was determined using the next-generation impactor (NGI), and its effects on the TGF-β pathway were determined using a cell-based reporter assay. The newly formulated inhalable EGCG liposome had an average liposome size of 105 nm, a polydispersity index (PDI) of 0.18, a zeta potential of -25.5 mV, an encapsulation efficiency of 90.5%, and a PDI after one month of 0.19. These results are in complete agreement with the predicted values of the model. Its aerodynamic properties were as follows: the mass median aerodynamic diameter (MMAD) was 4.41 µm, the fine particle fraction (FPF) was 53.46%, and the percentage of particles equal to or less than 3 µm was 34.3%. This demonstrates that the novel EGCG liposome has all the properties required to be inhalable, and it is expected to be deposited deeply in the lung. The TGFβ pathway is activated in PAH lungs, and the optimum EGCG nano-liposome inhibits TGFβ signalling in cell-based studies and thus holds promise as a potential treatment for PAH.
Collapse
|
18
|
Elbardisy B, Boraie N, Galal S. Tadalafil Nanoemulsion Mists for Treatment of Pediatric Pulmonary Hypertension via Nebulization. Pharmaceutics 2022; 14:pharmaceutics14122717. [PMID: 36559211 PMCID: PMC9784672 DOI: 10.3390/pharmaceutics14122717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Oral tadalafil (TD) proved promising in treating pediatric pulmonary arterial hypertension (PAH). However, to ensure higher efficacy and reduce the systemic side effects, targeted delivery to the lungs through nebulization was proposed as an alternative approach. This poorly soluble drug was previously dissolved in nanoemulsions (NEs). However, the formulations could not resist aqueous dilution, which precluded its dilution with saline for nebulization. Thus, the current study aimed to modify the previous systems into dilutable TD-NEs and assess their suitability for a pulmonary application. In this regard, screening of various excipients was conducted to optimize the former systems; different formulations were selected and characterized in terms of physicochemical properties, nebulization performance, stability following sterilization, and biocompatibility. Results showed that the optimal system comprised of Capmul-MCM-EP:Labrafac-lipophile (1:1) (w/w) as oil, Labrasol:Poloxamer-407 (2:1) (w/w) as surfactant mixture (Smix) and water. The optimum formulation P2TD resisted aqueous dilution, exhibited reasonable drug loading (2.45 mg/mL) and globule size (25.04 nm), acceptable pH and viscosity for pulmonary administration, and could be aerosolized using a jet nebulizer. Moreover, P2TD demonstrated stability following sterilization and a favorable safety profile confirmed by both in-vitro and in-vivo toxicity studies. These favorable findings make P2TD promising for the treatment of pediatric PAH.
Collapse
Affiliation(s)
- Bassant Elbardisy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Institute for Technical Chemistry, Braunschweig University of Technology, Hagenring 30, 38106 Braunschweig, Germany
- Correspondence: or
| | - Nabila Boraie
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Sally Galal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
19
|
Kumbhare U, Yelne P, Tekale S. Therapeutic Use of an Inhaled Drug Delivery in Pulmonary Hypertension: A Review. Cureus 2022; 14:e30134. [PMID: 36381737 PMCID: PMC9645391 DOI: 10.7759/cureus.30134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a serious condition in which there is increased blood pressure in arteries of the lungs (pulmonary arteries). The therapies or drugs for PAH have expanded with the revelation of three key pathological processes - encompassing prostacyclin, nitric oxide (NO), and endothelin pathways. An outlook for patients suffering from PAH is still mediocre amidst recent advancements. The evolution of pre-clinical and clinical research on PAH has facilitated the identification of several new targeted therapies for the disease. In this article, we examine recent data on new pulmonary hypertension physiological pathways, primarily concentrating on administering drugs through the inhalation route and their effects. Although they have been given clinical use approval, medications based on these routes are presently being studied in clinical or pre-clinical settings. To confirm these innovative medicines' therapeutic efficacy and safety, extensive clinical trials are needed.
Collapse
|
20
|
Lazo REL, Mengarda M, Almeida SL, Caldonazo A, Espinoza JT, Murakami FS. Advanced formulations and nanotechnology-based approaches for pulmonary delivery of sildenafil: A scoping review. J Control Release 2022; 350:308-323. [PMID: 35995298 DOI: 10.1016/j.jconrel.2022.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022]
Abstract
Oral sildenafil (SDF) is used to treat pulmonary arterial hypertension (PAH), and its bioavailability is approximately 40%. Several formulations of nano and microparticles (for pulmonary delivery) are being developed because it is possible to improve characteristics such as release time, bioavailability, dose, frequency, and even directly target the drug to the lungs. This review summarizes the latest SDF drug delivery systems for PAH and explains challenges related to the development, the preclinical, and the clinical studies. A scoping review was conducted by searching electronic databases including PubMed, Scopus, and Web of Science to identify studies published between 2001 and 2021. From 300 articles found, 31 met the inclusion criteria. This review identified colloidal formulations such as polymeric, lipid, and metal-organic framework nanoparticles. Strategies were determined to reach the deep airways such as polymeric microparticles, large porous microparticles, nanocomposites, and nano in microparticles. Finally, aspects related to toxicological, pharmacokinetics, and gaps in information for potential use in humans were discussed. SDF formulations are significant candidates for the treatment of PAH by inhalation. In summation, future preclinical studies are still required in large animals, as there is no particular formulation yet submitted to clinical studies.
Collapse
Affiliation(s)
- Raul Edison Luna Lazo
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba, 80210-170 Paraná, Brazil
| | - Mariana Mengarda
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba, 80210-170 Paraná, Brazil
| | - Susana Leão Almeida
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba, 80210-170 Paraná, Brazil
| | - Aline Caldonazo
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba, 80210-170 Paraná, Brazil
| | - Joel Toribio Espinoza
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Ponta Grossa, Ponta Grossa, 84030-900 Paraná, Brazil
| | - Fábio Seigi Murakami
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Parana, Curitiba, 80210-170 Paraná, Brazil.
| |
Collapse
|
21
|
FAM171B as a Novel Biomarker Mediates Tissue Immune Microenvironment in Pulmonary Arterial Hypertension. Mediators Inflamm 2022; 2022:1878766. [PMID: 36248192 PMCID: PMC9553458 DOI: 10.1155/2022/1878766] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to uncover potential diagnostic indicators of pulmonary arterial hypertension (PAH), evaluate the function of immune cells in the pathogenesis of the disease, and find innovative treatment targets and medicines with the potential to enhance prognosis. Gene Expression Omnibus was utilized to acquire the PAH datasets. We recognized differentially expressed genes (DEGs) and investigated their functions utilizing R software. Weighted gene coexpression network analysis, least absolute shrinkage and selection operators, and support vector machines were used to identify biomarkers. The extent of immune cell infiltration in the normal and PAH tissues was determined using CIBERSORT. Additionally, the association between diagnostic markers and immune cells was analyzed. In this study, 258DEGs were used to analyze the disease ontology. Most DEGs were linked with atherosclerosis, arteriosclerotic cardiovascular disease, and lung disease, including obstructive lung disease. Gene set enrichment analysis revealed that compared to normal samples, results from PAH patients were mostly associated with ECM-receptor interaction, arrhythmogenic right ventricular cardiomyopathy, the Wnt signaling pathway, and focal adhesion. FAM171B was identified as a biomarker for PAH (area under the curve = 0.873). The mechanism underlying PAH may be mediated by nave CD4 T cells, resting memory CD4 T cells, resting NK cells, monocytes, activated dendritic cells, resting mast cells, and neutrophils, according to an investigation of immune cell infiltration. FAM171B expression was also associated with resting mast cells, monocytes, and CD8 T cells. The results suggest that PAH may be closely related to FAM171B with high diagnostic performance and associated with immune cell infiltration, suggesting that FAM171B may promote the progression of PAH by stimulating immune infiltration and immune response. This study provides valuable insights into the pathogenesis and treatment of PAH.
Collapse
|
22
|
Celecoxib Microparticles for Inhalation in COVID-19-Related Acute Respiratory Distress Syndrome. Pharmaceutics 2022; 14:pharmaceutics14071392. [PMID: 35890288 PMCID: PMC9320401 DOI: 10.3390/pharmaceutics14071392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Inhalation therapy is gaining increasing attention for the delivery of drugs destined to treat respiratory disorders associated with cytokine storms, such as COVID-19. The pathogenesis of COVID-19 includes an inflammatory storm with the release of cytokines from macrophages, which may be treated with anti-inflammatory drugs as celecoxib (CXB). For this, CXB-loaded PLGA microparticles (MPs) for inhaled therapy and that are able to be internalized by alveolar macrophages, were developed. MPs were prepared with 5% and 10% initial percentages of CXB (MP-C1 and MP-C2). For both systems, the mean particle size was around 5 µm, which was adequate for macrophage uptake, and the mean encapsulation efficiency was >89%. The in vitro release of CXB was prolonged for more than 40 and 70 days, respectively. The uptake of fluorescein-loaded PLGA MPs by the RAW 264.7 macrophage cell line was evidenced by flow cytometry, fluorescence microscopy and confocal microscopy. CXB-loaded PLGA MPs did not produce cytotoxicity at the concentrations assayed. The anti-inflammatory activity of CXB (encapsulated and in solution) was evaluated by determining the IL-1, IL-6 and TNF-α levels at 24 h and 72 h in RAW 264.7 macrophages, resulting in a higher degree of reduction in the expression of inflammatory mediators for CXB in solution. A potent degree of gene expression reduction was obtained with the developed CXB-loaded MPs.
Collapse
|
23
|
An Update on Advancements and Challenges in Inhalational Drug Delivery for Pulmonary Arterial Hypertension. Molecules 2022; 27:molecules27113490. [PMID: 35684428 PMCID: PMC9182169 DOI: 10.3390/molecules27113490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 12/17/2022] Open
Abstract
A lethal condition at the arterial–alveolar juncture caused the exhaustive remodeling of pulmonary arterioles and persistent vasoconstriction, followed by a cumulative augmentation of resistance at the pulmonary vascular and, consequently, right-heart collapse. The selective dilation of the pulmonary endothelium and remodeled vasculature can be achieved by using targeted drug delivery in PAH. Although 12 therapeutics were approved by the FDA for PAH, because of traditional non-specific targeting, they suffered from inconsistent drug release. Despite available inhalation delivery platforms, drug particle deposition into the microenvironment of the pulmonary vasculature and the consequent efficacy of molecules are influenced by pathophysiological conditions, the characteristics of aerosolized mist, and formulations. Uncertainty exists in peripheral hemodynamics outside the pulmonary vasculature and extra-pulmonary side effects, which may be further exacerbated by underlying disease states. The speedy improvement of arterial pressure is possible via the inhalation route because it has direct access to pulmonary arterioles. Additionally, closed particle deposition and accumulation in diseased tissues benefit the restoration of remolded arterioles by reducing fallacious drug deposition in other organs. This review is designed to decipher the pathological changes that should be taken into account when targeting the underlying pulmonary endothelial vasculature, especially with regard to inhaled particle deposition in the alveolar vasculature and characteristic formulations.
Collapse
|
24
|
Alapati D, Shaffer TH. Administration of Drugs/Gene Products to the Respiratory System: A Historical Perspective of the Use of Inert Liquids. Front Physiol 2022; 13:871893. [PMID: 35620598 PMCID: PMC9127416 DOI: 10.3389/fphys.2022.871893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/31/2022] [Indexed: 11/20/2022] Open
Abstract
The present review is a historical perspective of methodology and applications using inert liquids for respiratory support and as a vehicle to deliver biological agents to the respiratory system. As such, the background of using oxygenated inert liquids (considered a drug when used in the lungs) opposed to an oxygen-nitrogen gas mixture for respiratory support is presented. The properties of these inert liquids and the mechanisms of gas exchange and lung function alterations using this technology are described. In addition, published preclinical and clinical trial results are discussed with respect to treatment modalities for respiratory diseases. Finally, this forward-looking review provides a comprehensive overview of potential methods for administration of drugs/gene products to the respiratory system and potential biomedical applications.
Collapse
Affiliation(s)
- Deepthi Alapati
- Nemours Children’s Health, Wilmington, DE, United States
- Sidney Kimmel School of Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Thomas H. Shaffer
- Nemours Children’s Health, Wilmington, DE, United States
- Sidney Kimmel School of Medicine, Thomas Jefferson University, Philadelphia, PA, United States
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
25
|
Plaunt AJ, Nguyen TL, Corboz MR, Malinin VS, Cipolla DC. Strategies to Overcome Biological Barriers Associated with Pulmonary Drug Delivery. Pharmaceutics 2022; 14:302. [PMID: 35214039 PMCID: PMC8880668 DOI: 10.3390/pharmaceutics14020302] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 02/01/2023] Open
Abstract
While the inhalation route has been used for millennia for pharmacologic effect, the biological barriers to treating lung disease created real challenges for the pharmaceutical industry until sophisticated device and formulation technologies emerged over the past fifty years. There are now several inhaled device technologies that enable delivery of therapeutics at high efficiency to the lung and avoid excessive deposition in the oropharyngeal region. Chemistry and formulation technologies have also emerged to prolong retention of drug at the active site by overcoming degradation and clearance mechanisms, or by reducing the rate of systemic absorption. These technologies have also been utilized to improve tolerability or to facilitate uptake within cells when there are intracellular targets. This paper describes the biological barriers and provides recent examples utilizing formulation technologies or drug chemistry modifications to overcome those barriers.
Collapse
Affiliation(s)
- Adam J. Plaunt
- Insmed Incorporated, Bridgewater, NJ 08807, USA; (T.L.N.); (M.R.C.); (V.S.M.); (D.C.C.)
| | | | | | | | | |
Collapse
|
26
|
Integrated Bioinformatics Analysis Reveals Marker Genes and Potential Therapeutic Targets for Pulmonary Arterial Hypertension. Genes (Basel) 2021; 12:genes12091339. [PMID: 34573320 PMCID: PMC8467453 DOI: 10.3390/genes12091339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare cardiovascular disease with very high mortality rate. The currently available therapeutic strategies, which improve symptoms, cannot fundamentally reverse the condition. Thus, new therapeutic strategies need to be established. Our research analyzed three microarray datasets of lung tissues from human PAH samples retrieved from the Gene Expression Omnibus (GEO) database. We combined two datasets for subsequent analyses, with the batch effects removed. In the merged dataset, 542 DEGs were identified and the key module relevant to PAH was selected using WGCNA. GO and KEGG analyses of DEGs and the key module indicated that the pre-ribosome, ribosome biogenesis, centriole, ATPase activity, helicase activity, hypertrophic cardiomyopathy, melanoma, and dilated cardiomyopathy pathways are involved in PAH. With the filtering standard (|MM| > 0.95 and |GS| > 0.90), 70 hub genes were identified. Subsequently, five candidate marker genes (CDC5L, AP3B1, ZFYVE16, DDX46, and PHAX) in the key module were found through overlapping with the top thirty genes calculated by two different methods in CytoHubb. Two of them (CDC5L and DDX46) were found to be significantly upregulated both in the merged dataset and the validating dataset in PAH patients. Meanwhile, expression of the selected genes in lung from PAH chicken measured by qRT-PCR and the ROC curve analyses further verified the potential marker genes' predictive value for PAH. In conclusion, CDC5L and DDX46 may be marker genes and potential therapeutic targets for PAH.
Collapse
|
27
|
Matera MG, Calzetta L, Ora J, Rogliani P, Cazzola M. Pharmacokinetic/pharmacodynamic approaches to drug delivery design for inhalation drugs. Expert Opin Drug Deliv 2021; 18:891-906. [PMID: 33412922 DOI: 10.1080/17425247.2021.1873271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduction: Inhaled drugs are important in the treatment of many lung pathologies, but to be therapeutically effective they must reach unbound concentrations at their effect site in the lung that are adequate to interact with their pharmacodynamic properties (PD) and exert the pharmacological action over an appropriate dosing interval. Therefore, the evaluation of pharmacokinetic (PK)/PD relationship is critical to predict their possible therapeutic effect.Areas covered: We review the approaches used to assess the PK/PD relationship of the major classes of inhaled drugs that are prescribed to treat pulmonary pathologies.Expert opinion: There are still great difficulties in producing data on lung concentrations of inhaled drugs and interpreting them as to their ability to induce the desired therapeutic action. The structural complexity of the lungs, the multiplicity of processes involved simultaneously and the physical interactions between the lungs and drug make any PK/PD approach to drug delivery design for inhalation medications extremely challenging. New approaches/methods are increasing our understanding about what happens to inhaled drugs, but they are still not ready for regulatory purposes. Therefore, we must still rely on plasma concentrations based on the axiom that they reflect both the extent and the pattern of deposition within the lungs.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Dept. Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigino Calzetta
- Unit of Respiratory Disease and Lung Function, Dept. Medicine and Surgery, University of Parma, Parma, Italy
| | - Josuel Ora
- Unit of Respiratory Medicine, Dept. Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Dept. Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Dept. Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
28
|
Al-Hilal TA, Keshavarz A, Kadry H, Lahooti B, Al-Obaida A, Ding Z, Li W, Kamm R, McMurtry IF, Lahm T, Nozik-Grayck E, Stenmark KR, Ahsan F. Pulmonary-arterial-hypertension (PAH)-on-a-chip: fabrication, validation and application. LAB ON A CHIP 2020; 20:3334-3345. [PMID: 32749432 PMCID: PMC7592346 DOI: 10.1039/d0lc00605j] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Currently used animal and cellular models for pulmonary arterial hypertension (PAH) only partially recapitulate its pathophysiology in humans and are thus inadequate in reproducing the hallmarks of the disease, inconsistent in portraying the sex-disparity, and unyielding to combinatorial study designs. Here we sought to deploy the ingenuity of microengineering in developing and validating a tissue chip model for human PAH. We designed and fabricated a microfluidic device to emulate the luminal, intimal, medial, adventitial, and perivascular layers of a pulmonary artery. By growing three types of pulmonary arterial cells (PACs)-endothelial, smooth muscle, and adventitial cells, we recreated the PAH pathophysiology on the device. Diseased (PAH) PACs, when grown on the chips, moved of out their designated layers and created phenomena similar to the major pathologies of human PAH: intimal thickening, muscularization, and arterial remodeling and show an endothelial to mesenchymal transition. Flow-induced stress caused control cells, grown on the chips, to undergo morphological changes and elicit arterial remodeling. Our data also suggest that the newly developed chips can be used to elucidate the sex disparity in PAH and to study the therapeutic efficacy of existing and investigational anti-PAH drugs. We believe this miniaturized device can be deployed for testing various prevailing and new hypotheses regarding the pathobiology and drug therapy in human PAH.
Collapse
Affiliation(s)
- Taslim A Al-Hilal
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, 1300 Coulter Dr., Amarillo, 79119 Texas, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Maron BA. Pulmonary arterial hypertension: Rationale for using multiple vs. single drug therapy. Glob Cardiol Sci Pract 2020; 2020:e202008. [PMID: 33150152 PMCID: PMC7590936 DOI: 10.21542/gcsp.2020.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is defined by a heterogenous pathobiology that corresponds to variable clinical presentation, treatment response, and prognosis across affected patients. The approach to pharmacotherapeutics in PAH has evolved since the introduction of the first prostacyclin replacement drug, which was trialed in patients with end-stage disease as a strategy by which to delay or prevent mortality. Subsequently, the aim of care in PAH has shifted toward minimizing symptoms, improving functional capacity, delaying disease progression, and prolonging life. Thus, treatments are now implemented earlier and according to the evidence base, which spans more than twenty years and includes patients at various stages of disease. Overall, the evidence supports multidrug therapy rather than monotherapy in the majority of PAH patients. Among incident patients, up-front combination therapy with ambrisentan and tadalafil or other comparable agents within these drug classes is recommended based on strong clinical trial data. In the near future, up-front triple therapy may be emerge as bona fide treatment approach in selected patients. Future goals that are already under consideration in PAH include stronger integration of pathobiological characteristics when considering the use of specific drugs, or the development of novel therapies, toward precision medicine-based clinical pharmacology.
Collapse
Affiliation(s)
- Bradley A Maron
- Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA.,The Boston VA Healthcare System, West Roxbury, MA, USA
| |
Collapse
|