1
|
Barba A, López-Vilaró L, Ferre M, Majem M, Martinez-Recio S, Bell O, Arranz MJ, Salazar J, Sullivan I. ERCC1 and ERCC2 Polymorphisms Predict the Efficacy and Toxicity of Platinum-Based Chemotherapy in Small Cell Lung Cancer. Pharmaceutics 2024; 16:1121. [PMID: 39339159 PMCID: PMC11434779 DOI: 10.3390/pharmaceutics16091121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Standard first-line chemotherapy in small cell lung cancer (SCLC) is based on the platinum plus etoposide combination. Despite a high objective response rate, responses are not durable and chemotherapy-induced toxicity may compromise treatment. Genetic variants in genes involved in the DNA-repair pathways and in etoposide metabolization could predict treatment efficacy and safety and help personalize platinum-based chemotherapy. Germline polymorphisms in XRCC1, ERCC1, ERCC2, ABCB1, ABCC3, UGT1A1 and GSTP1 genes were investigated in 145 patients with SCLC. The tumor expression of ERCC1 was determined using immunohistochemistry, and the tumor expression of ERCC1-XPF was determined via a proximity ligation assay. Survival analyses showed a statistically significant association between the ERCC1 rs11615 variant and median progression-free survival (PFS) in patients with limited-stage (LS) SCLC (multivariate: hazard ratio 3.25, [95% CI 1.38-7.70]; p = 0.007). Furthermore, we observed differences between the ERCC1-XPF complex and median PFS in LS-SCLC, although statistical significance was not reached (univariate: positive expression 10.8 [95% CI 4.09-17.55] months versus negative expression 13.3 [95% CI 7.32-19.31] months; p = 0.06). Safety analyses showed that the ERCC2 rs1799793 variant was significantly associated with the risk of grade ≥ 3 thrombocytopenia in the total cohort (multivariate: odds ratio 3.15, [95% CI 1.08-9.17]; p = 0.04). Our results provide evidence that ERCC1 and ERCC2 variants may predict the efficacy and safety of platinum-based chemotherapy in SCLC patients. LS-SCLC patients may benefit most from ERCC1 determination, but prospective studies are needed.
Collapse
Affiliation(s)
- Andrés Barba
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Department of Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Laura López-Vilaró
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Malena Ferre
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Margarita Majem
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Sergio Martinez-Recio
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Olga Bell
- Translational Medical Oncology Laboratory, Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain
| | - María J Arranz
- Research Laboratory Unit, Fundació Docència i Recerca Mútua Terrassa, 08221 Terrassa, Spain
| | - Juliana Salazar
- Translational Medical Oncology Laboratory, Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain
| | - Ivana Sullivan
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| |
Collapse
|
2
|
Sito H, Sharzehan MAK, Islam MA, Tan SC. Genetic Variants Associated With Response to Platinum-Based Chemotherapy in Non-Small Cell Lung Cancer Patients: A Field Synopsis and Meta-Analysis. Br J Biomed Sci 2024; 81:11835. [PMID: 38450253 PMCID: PMC10914946 DOI: 10.3389/bjbs.2024.11835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/25/2024] [Indexed: 03/08/2024]
Abstract
Background: Publications on the associations of genetic variants with the response to platinum-based chemotherapy (PBC) in NSCLC patients have surged over the years, but the results have been inconsistent. Here, a comprehensive meta-analysis was conducted to combine eligible studies for a more accurate assessment of the pharmacogenetics of PBC in NSCLC patients. Methods: Relevant publications were searched in PubMed, Scopus, and Web of Science databases through 15 May 2021. Inclusion criteria for eligible publications include studies that reported genotype and allele frequencies of NSCLC patients treated with PBC, delineated by their treatment response (sensitive vs. resistant). Publications on cell lines or animal models, duplicate reports, and non-primary research were excluded. Epidemiological credibility of cumulative evidence was assessed using the Newcastle-Ottawa Scale (NOS) and Venice criteria. Begg's and Egger's tests were used to assess publication bias. Cochran's Q-test and I2 test were used to calculate the odds ratio and heterogeneity value to proceed with the random effects or fixed-effects method. Venice criteria were used to assess the strength of evidence, replication methods and protection against bias in the studies. Results: A total of 121 publications comprising 29,478 subjects were included in this study, and meta-analyses were performed on 184 genetic variants. Twelve genetic variants from 10 candidate genes showed significant associations with PBC response in NSCLC patients with strong or moderate cumulative epidemiological evidence (increased risk: ERCC1 rs3212986, ERCC2 rs1799793, ERCC2 rs1052555, and CYP1A1 rs1048943; decreased risk: GSTM1 rs36631, XRCC1 rs1799782 and rs25487, XRCC3 rs861539, XPC rs77907221, ABCC2 rs717620, ABCG2 rs2231142, and CDA rs1048977). Bioinformatics analysis predicted possible damaging or deleterious effects for XRCC1 rs1799782 and possible low or medium functional impact for CYP1A1 rs1048943. Conclusion: Our results provide an up-to-date summary of the association between genetic variants and response to PBC in NSCLC patients.
Collapse
Affiliation(s)
- Hilary Sito
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Md Asiful Islam
- WHO Collaborating Centre for Global Women’s Health, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Yu CX, Peng ZQ, Wang T, Qu XH, Yang P, Huang SR, Jiang LP, Tou FF, Han XJ. p32/OPA1 axis-mediated mitochondrial dynamics contributes to cisplatin resistance in non-small cell lung cancer. Acta Biochim Biophys Sin (Shanghai) 2024; 56:34-43. [PMID: 38151998 PMCID: PMC10875347 DOI: 10.3724/abbs.2023247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/27/2023] [Indexed: 12/29/2023] Open
Abstract
Cisplatin resistance is a major obstacle in the treatment of non-small cell lung cancer (NSCLC). p32 and OPA1 are the key regulators of mitochondrial morphology and function. This study aims to investigate the role of the p32/OPA1 axis in cisplatin resistance in NSCLC and its underlying mechanism. The levels of p32 protein and mitochondrial fusion protein OPA1 are higher in cisplatin-resistant A549/DDP cells than in cisplatin-sensitive A549 cells, which facilitates mitochondrial fusion in A549/DDP cells. In addition, the expression of p32 and OPA1 protein is also upregulated in A549 cells during the development of cisplatin resistance. Moreover, p32 knockdown effectively downregulates the expression of OPA1, stimulates mitochondrial fission, decreases ATP generation and sensitizes A549/DDP cells to cisplatin-induced apoptosis. Furthermore, metformin significantly downregulates the expressions of p32 and OPA1 and induces mitochondrial fission and a decrease in ATP level in A549/DDP cells. The co-administration of metformin and cisplatin shows a significantly greater decrease in A549/DDP cell viability than cisplatin treatment alone. Moreover, D-erythro-Sphingosine, a potent p32 kinase activator, counteracts the metformin-induced downregulation of OPA1 and mitochondrial fission in A549/DDP cells. Taken together, these findings indicate that p32/OPA1 axis-mediated mitochondrial dynamics contributes to the acquired cisplatin resistance in NSCLC and that metformin resensitizes NSCLC to cisplatin, suggesting that targeting p32 and mitochondrial dynamics is an effective strategy for the prevention of cisplatin resistance.
Collapse
Affiliation(s)
- Chun-Xia Yu
- Institute of GeriatricsJiangxi Provincial People’s HospitalThe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
- Department of PharmacologySchool of Pharmaceutical ScienceNanchang UniversityNanchang330006China
| | - Zhe-Qing Peng
- Institute of GeriatricsJiangxi Provincial People’s HospitalThe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
- Department of PharmacologySchool of Pharmaceutical ScienceNanchang UniversityNanchang330006China
| | - Tao Wang
- Institute of GeriatricsJiangxi Provincial People’s HospitalThe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
| | - Xin-Hui Qu
- Institute of GeriatricsJiangxi Provincial People’s HospitalThe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
- The Second Department of NeurologyJiangxi Provincial People’s Hospitalthe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
| | - Ping Yang
- The Second Department of NeurologyJiangxi Provincial People’s Hospitalthe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
| | - Shao-Rong Huang
- Institute of GeriatricsJiangxi Provincial People’s HospitalThe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
| | - Li-Ping Jiang
- Department of PharmacologySchool of Pharmaceutical ScienceNanchang UniversityNanchang330006China
| | - Fang-Fang Tou
- Institute of GeriatricsJiangxi Provincial People’s HospitalThe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
- Department of OncologyJiangxi Provincial People’s HospitalThe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
| | - Xiao-Jian Han
- Institute of GeriatricsJiangxi Provincial People’s HospitalThe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
- Department of PharmacologySchool of Pharmaceutical ScienceNanchang UniversityNanchang330006China
- The Second Department of NeurologyJiangxi Provincial People’s Hospitalthe First Affiliated Hospital of Nanchang Medical CollegeNanchang330006China
| |
Collapse
|
4
|
Jiang Y, Cai Y, Bao Y, Kong X, Jin H. Overexpression of NOP58 Facilitates Proliferation, Migration, Invasion, and Stemness of Non-small Cell Lung Cancer by Stabilizing hsa_circ_0001550. Anticancer Agents Med Chem 2024; 24:1197-1206. [PMID: 38994624 DOI: 10.2174/0118715206293943240615105417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/13/2024] [Accepted: 05/29/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND NOP58 ribonucleoprotein (NOP58) is associated with the recurrence of lung adenocarcinoma. AIMS Few investigations concentrate on the role of NOP58 in non-small cell lung cancer (NSCLC), which is the focus of our current study. METHODS Following transfection, the proliferation, migration, and invasion of NSCLC cells were assessed by 5- ethynyl-2'-deoxyuridine (EdU), wound healing, and transwell assays. The percentage of CD9+ cells was evaluated by flow cytometry assay. Based on target genes and binding sites predicted through bioinformatics analysis, a dual-luciferase reporter assay was performed to verify the targeting relationship between hsa_circ_0001550 and NOP58. The effect of NOP58 overexpression on hsa_circ_0001550 stability was gauged using Actinomycin D. The hsa_circ_0001550 and NOP58 expression levels, as well as protein expressions of CD44, CD133, OCT4, and SOX2 in NSCLC cells were determined by quantitative real-time PCR and Western blot, respectively. RESULTS Hsa_circ_0001550 was remarkably up-regulated in NSCLC cell lines A549 and PC9, silencing of which weakened cell abilities to proliferate, migrate and invade, decreased CD9+ cell ratio, and diminished protein expressions of CD44, CD133, OCT4, and SOX2. NOP58 could bind to hsa_circ_0001550 and stabilize its expression, and NOP58 overexpression partially abrogated hsa_circ_0001550 knockdown-inhibited NSCLC cell proliferation, migration, invasion and stemness. CONCLUSION Overexpression of NOP58 facilitates proliferation, migration, invasion, and stemness of NSCLC cells by stabilizing hsa_circ_0001550, hinting that NOP58 is a novel molecular target for NSCLC therapy.
Collapse
Affiliation(s)
- Yiqian Jiang
- Department of Radiotherapy, Xiaoshan District Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
| | - Ying Cai
- Department of Respiratory Medicine, Xiaoshan District Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
| | - Yanhong Bao
- Department of Radiotherapy, Xiaoshan District Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
| | - Xiangyang Kong
- Department of Radiotherapy, Xiaoshan District Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
| | - Haigang Jin
- Department of General Surgery, Xiaoshan District Hospital Affiliated to Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
5
|
Chiu CH, Lin YJ, Ramesh S, Kuo WW, Chen MC, Kuo CH, Li CC, Wang TF, Lin YM, Liao PH, Huang CY. Gemcitabine resistance in non-small cell lung cancer is mediated through activation of the PI3K/AKT/NF-κB pathway and suppression of ERK signaling by reactive oxygen species. J Biochem Mol Toxicol 2023; 37:e23497. [PMID: 37564025 DOI: 10.1002/jbt.23497] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Lung cancer is one of the most common cancers in the world. Chemotherapy is a standard clinical treatment. However, tumor cells often develop multidrug resistance after chemotherapy, an inevitable bottleneck in cancer treatment. Therefore, this study used gemcitabine-resistant (GEM-R) CL1-0 lung cancer cells. First, we used flow cytometry and western blot analysis to examine differences in performance between resistant and parental cells. The results showed that compared with parental cells, GEM-R CL1-0 cells significantly enhanced the activation of the AKT pathway, which promoted survival and growth, and decreased the activation of the reactive oxygen species-extracellular signal-regulated kinase (ROS)-ERK pathway. Next, the AKT and ERK pathways' role in tumor growth was further explored in vivo using a xenograft model. The results showed that enhancing AKT and inhibiting ERK activation reduced GEM-induced inhibition of tumor growth. Finally, combining the above results, we found that GEM-R CL1-0 cells showed reduced sensitivity to GEM by activating the phosphatidylinositol 3-kinase/AKT/NF-kB pathway and inhibiting the ROS-ERK pathway leading to resistance against GEM. Therefore, the AKT and ERK pathways are potential targets for improving the sensitivity of cancer cells to anticancer drugs.
Collapse
Affiliation(s)
- Chih-Hao Chiu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yu-Jung Lin
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Samiraj Ramesh
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Research and Innovation, Institute of Biotechnology, Saveetha School of Engineering (SSE), Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Ming-Cheng Chen
- Division of Colorectal Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Chi-Cheng Li
- Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tso-Fu Wang
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Po-Hsiang Liao
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
6
|
Du P, Li G, Wu L, Huang M. Perspectives of ERCC1 in early-stage and advanced cervical cancer: From experiments to clinical applications. Front Immunol 2023; 13:1065379. [PMID: 36713431 PMCID: PMC9875293 DOI: 10.3389/fimmu.2022.1065379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Cervical cancer is a public health problem of extensive clinical importance. Excision repair cross-complementation group 1 (ERCC1) was found to be a promising biomarker of cervical cancer over the years. At present, there is no relevant review article that summarizes such evidence. In this review, nineteen eligible studies were included for evaluation and data extraction. Based on the data from clinical and experimental studies, ERCC1 plays a key role in the progression of carcinoma of the uterine cervix and the therapeutic response of chemoradiotherapy. The majority of the included studies (13/19, 68%) suggested that ERCC1 played a pro-oncogenic role in both early-stage and advanced cervical cancer. High expression of ERCC1 was found to be associated with the poor survival rates of the patients. ERCC1 polymorphism analyses demonstrated that ERCC1 might be a useful tool for predicting the risk of cervical cancer and the treatment-related toxicities. Experimental studies indicated that the biological effects exerted by ERCC1 in cervical cancer might be mediated by its associated genes and affected signaling pathways (i.e., XPF, TUBB3, and. To move towards clinical applications by targeting ERCC1 in cervical cancer, more clinical, in-vitro, and in-vivo investigations are still warranted in the future.
Collapse
|
7
|
Liu Q, Li X, Luo Y, Wang H, Zhang Y, Yu T. Ultrasonically Enhanced ZD2767P-Carboxypeptidase G2 Deactivates Cisplatin-Resistant Human Lung Cancer Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9191233. [PMID: 36388164 PMCID: PMC9652066 DOI: 10.1155/2022/9191233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/08/2022] [Accepted: 06/02/2022] [Indexed: 04/03/2025]
Abstract
The prodrug-enzyme regimen ZD2767P+CPG2 is limited by low efficacy. Here, ultrasound was used to modulate ZD2767P+CPG2 (i.e., ZD2767P+CPG2+US) against cisplatin-resistant human lung cancer cells. A549 and A549/DDP (resistant subline) cells received ZD2767P+CPG2 or ZD2767P+CPG2+US. Either ZD2767P+CPG2 or ZD2767P+CPG2+US led to cell death and apoptosis, and ZD2767P+CPG2+US produced stronger effects; comet assays revealed that these two means directly caused DNA double-strand break. Z-VAD-fmk and/or ferrostatin-1 increased the cell survival percentage, and Z-VAD-fmk decreased the apoptosis percentage. The level of transferrin was increased in treated cells, but those of ferroportin and glutathione peroxidase 4 (GPX4) were reduced, with higher intracellular levels of reactive oxygen species and of iron. Intracellular pharmacokinetics of ZD2767D (activated drug) indicated that the peak level, area under the drug level vs. time curve, and mean residence time in ZD2767P+CPG2+US were higher than those in ZD2767P+CPG2. Both ZD2767P+CPG2 and ZD2767P+CPG2+US were effective on xenograft tumors in nude mice; inhibitory rates were 39.7% and 63.5% in A549 tumors and 50.0% and 70.1% in A549/DDP tumors, respectively. A higher apoptosis level and a lower GPX4 level were noted in tumors receiving treatments. No severe adverse events were observed. These data demonstrated that ZD2767P+CPG2+US deactivated cancer cells via apoptosis and ferroptosis pathways, being a candidate therapy for cisplatin-resistant lung cancer.
Collapse
Affiliation(s)
- Qianfen Liu
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children (Women and Children's Hospital, Chongqing Medical University), Chongqing, China
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xinya Li
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yuanyuan Luo
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Houmei Wang
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ying Zhang
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Tinghe Yu
- The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Modification Effect of PARP4 and ERCC1 Gene Polymorphisms on the Relationship between Particulate Matter Exposure and Fasting Glucose Level. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19106241. [PMID: 35627777 PMCID: PMC9140444 DOI: 10.3390/ijerph19106241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 01/27/2023]
Abstract
Particulate matter (PM) has been linked to adverse health outcomes, including insulin resistance (IR). To evaluate the relationships between exposures to PM10, PM2.5–10, and PM2.5; the serum level of fasting glucose, a key IR indicator; and effects of polymorphisms of two repair genes (PARP4 and ERCC1) on these relations, PMs exposure data and blood samples for glucose measurement and genotyping were collected from 527 Korean elders. Daily average levels of PMs during 8 days, from 7 days before examination to the health examination day (from lag day 7 to lag day 0), were used for association analyses, and mean concentrations of PM10, PM2.5–10, and PM2.5 during the study period were 43.4 µg/m3, 19.9 µg/m3, and 23.6 µg/m3, respectively. All three PMs on lag day 4 (mean, 44.5 µg/m3 for PM10, 19.9 µg/m3 for PM2.5–10, and 24.3 µg/m3 for PM2.5) were most strongly associated with an increase in glucose level (percent change by inter-quartile range-change of PM: (β) = 1.4 and p = 0.0023 for PM10; β = 3.0 and p = 0.0010 for PM2.5–10; and β = 2.0 and p = 0.0134 for PM2.5). In particular, elders with PARP4 G-C-G or ERCC1 T-C haplotype were susceptible to PMs exposure in relation to glucose levels (PARP4 G-C-G: β = 2.6 and p = 0.0006 for PM10, β = 3.5 and p = 0.0009 for PM2.5–10, and β = 1.6 and p = 0.0020 for PM2.5; ERCC1 T-C: β = 2.2 and p = 0.0016 for PM10, β = 3.5 and p = 0.0003 for PM2.5–10, and β = 1.2 and p = 0.0158 for PM2.5). Our results indicated that genetic polymorphisms of PARP4 and ERCC1 could modify the relationship between PMs exposure and fasting glucose level in the elderly.
Collapse
|
9
|
Luo Y, Yu T, Li X, Qian G. Thioridazine Enhances Cisplatin-Induced DNA Damage in Cisplatin-Resistant Human Lung Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:3702665. [PMID: 35399625 PMCID: PMC8986366 DOI: 10.1155/2022/3702665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/17/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022]
Abstract
Thioridazine was used to sensitize cisplatin against cisplatin-resistant human lung cancer cells. Cells received thioridazine, cisplatin, or both drugs (the combination). Thioridazine synergized cisplatin to increase percentages of dead and apoptotic cells. DNA damage was detected using the comet assays; the combination led to the highest alkaline- and neutral-comet percentages, demonstrating exacerbation of both single- and double-strand breaks. After thioridazine treatment, levels of glutathione, and BRCA2, RAD51, and ERCC1 proteins were decreased. These data manifested that thioridazine decreased the capacities of detoxification and DNA repair, thereby enhancing cisplatin-induced DNA damage in resistant cells.
Collapse
Affiliation(s)
- Yuanyuan Luo
- Laboratory of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Tinghe Yu
- Laboratory of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Xinya Li
- Laboratory of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Guanhua Qian
- Laboratory of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
10
|
Saha P, Bose S, Javed MN, Srivastava AK. Clinical potential of nanotechnlogy as smart therapeutics: A step toward targeted drug delivery. ADVANCES IN NANOTECHNOLOGY-BASED DRUG DELIVERY SYSTEMS 2022:133-154. [DOI: 10.1016/b978-0-323-88450-1.00024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
11
|
Molinaro C, Martoriati A, Cailliau K. Proteins from the DNA Damage Response: Regulation, Dysfunction, and Anticancer Strategies. Cancers (Basel) 2021; 13:3819. [PMID: 34359720 PMCID: PMC8345162 DOI: 10.3390/cancers13153819] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022] Open
Abstract
Cells respond to genotoxic stress through a series of complex protein pathways called DNA damage response (DDR). These monitoring mechanisms ensure the maintenance and the transfer of a correct genome to daughter cells through a selection of DNA repair, cell cycle regulation, and programmed cell death processes. Canonical or non-canonical DDRs are highly organized and controlled to play crucial roles in genome stability and diversity. When altered or mutated, the proteins in these complex networks lead to many diseases that share common features, and to tumor formation. In recent years, technological advances have made it possible to benefit from the principles and mechanisms of DDR to target and eliminate cancer cells. These new types of treatments are adapted to the different types of tumor sensitivity and could benefit from a combination of therapies to ensure maximal efficiency.
Collapse
Affiliation(s)
| | | | - Katia Cailliau
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (A.M.)
| |
Collapse
|
12
|
Tang Y, Zhang R, Li Y, Xu S, Wang H, Xu J, Xiao L, Wang Y, Du J, Huang Y, Su T. Genetic polymorphisms and haplotypes of ERCC1 and ERCC2 associated with quality of life, depression, and anxiety status among patients with lung cancer. BMC Cancer 2021; 21:842. [PMID: 34284736 PMCID: PMC8293557 DOI: 10.1186/s12885-021-08570-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Patients with lung cancer (LC) have a poor quality of life (QoL) and easily suffer from psychological diseases. Previous studies focused less on the relationship between genetic factors and QoL, depression, and anxiety status in LC patients. The current study is intended to explore the relationship between SNPs and haplotypes of ERCC1 and ERCC2 and the QoL, depression and anxiety status of patients with LC. METHODS QoL, depression and anxiety status were assessed in 291 LC patients using the European Organization for Research and Treatment of Cancer (EORTC) Core Quality of Life Questionnaire (QLQ-C30), EORTC Quality of Life Questionnaire-Lung Cancer 13 (QLQ-LC13), SDS and SAS. Nine tag SNPs of ERCC1 and ERCC2 were detected using an improved multiplex ligation detection reaction (iMLDR) technique. Haplotype analysis was conducted using the software Haploview 4.2. The association between SNPs or haplotypes and QoL or depression or anxiety in LC patients was analyzed by regression analysis. RESULTS ERCC1 rs11615 was associated with emotional functioning (P = 0.027), and ERCC1 rs3212986 was associated with anxiety scores (P = 0.018). ERCC1 rs762562-rs3212986 haplotype was associated with cognitive function (P = 0.029), somatic function (P = 0.014) and dysphagia (OR = 3.32, P = 0.044). Patients with ERCC1 rs3212986-rs11615 AG haplotype had worse cognitive function (adjusted Beta = - 5.42) and somatic function (adjusted Beta = - 6.55) and had severer symptoms of loss of appetite (adjusted OR = 1.67) and dysphagia (adjusted OR = 4.43) (All adjusted P < 0.05). ERCC2 rs13181-rs3916874-rs238416 haplotype was associated with emotional functioning (P = 0.035), pain at other sites (OR 1.88, P = 0.014), chest pain (OR 0.42, P = 0.02), dysphagia (OR 2.82, P = 0.048), and anxiety status (OR 0.23, P = 0.009). CONCLUSION After adjustment for environmental factors, SNPs and haplotypes of ERCC1 and ERCC2 were associated with different domains of QoL, depression and anxiety in LC patients.
Collapse
Affiliation(s)
- Yunxiang Tang
- Department of Medical Psychology, College of Psychology, Naval Medical University, 800 Xiangyin Rd., Shanghai, 200433, China
| | - Ruike Zhang
- Department of Medical Psychology, College of Psychology, Naval Medical University, 800 Xiangyin Rd., Shanghai, 200433, China
| | - Yinan Li
- Department of Medical Psychology, College of Psychology, Naval Medical University, 800 Xiangyin Rd., Shanghai, 200433, China
| | - Shuyu Xu
- Department of Medical Psychology, College of Psychology, Naval Medical University, 800 Xiangyin Rd., Shanghai, 200433, China
| | - Hao Wang
- Department of Medical Psychology, College of Psychology, Naval Medical University, 800 Xiangyin Rd., Shanghai, 200433, China
| | - Jingzhou Xu
- Department of Medical Psychology, College of Psychology, Naval Medical University, 800 Xiangyin Rd., Shanghai, 200433, China
| | - Lei Xiao
- Department of Medical Psychology, College of Psychology, Naval Medical University, 800 Xiangyin Rd., Shanghai, 200433, China
| | - Yajing Wang
- Department of Medical Psychology, College of Psychology, Naval Medical University, 800 Xiangyin Rd., Shanghai, 200433, China
| | - Jing Du
- Department of Medical Psychology, College of Psychology, Naval Medical University, 800 Xiangyin Rd., Shanghai, 200433, China
| | - Yujia Huang
- Department of Medical Psychology, College of Psychology, Naval Medical University, 800 Xiangyin Rd., Shanghai, 200433, China
| | - Tong Su
- Department of Medical Psychology, College of Psychology, Naval Medical University, 800 Xiangyin Rd., Shanghai, 200433, China.
| |
Collapse
|
13
|
Kara A, Özgür A, Nalbantoğlu S, Karadağ A. DNA repair pathways and their roles in drug resistance for lung adenocarcinoma. Mol Biol Rep 2021; 48:3813-3825. [PMID: 33856604 DOI: 10.1007/s11033-021-06314-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/24/2021] [Indexed: 01/24/2023]
Abstract
Lung cancer is the leading cancer type of death rate. The lung adenocarcinoma subtype is responsible for almost half of the total lung cancer deaths. Despite the improvements in cancer treatment in recent years, lung adenocarcinoma patients' overall survival rate remains poor. Immunetherapy and chemotherapy are two of the most widely used options for the treatment of cancer. Although many cancer types initially respond to these treatments, the development of resistance is inevitable. The rapid development of drug resistance mainly characterizes lung adenocarcinoma. Despite being the subject of many studies in recent years, the resistance initiation and progression mechanism is still unclear. In this review, we have examined the role of the primary DNA repair pathways (non-homologous end joining (NHEJ) pathway, homologous-recombinant repair (HR) pathway, base excision repair (BER) pathway, and nucleotide excision repair (NER) pathway and transactivation mechanisms of tumor protein 53 (TP53) in drug resistance development. This review suggests that mentioned pathways have essential roles in developing the resistance against chemotherapy and immunotherapy in lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Altan Kara
- Molecular Oncology Laboratory, Genetic Engineering and Biotechnology Institute, TUBITAK Marmara Research Center, Kocaeli, Turkey.
| | - Aykut Özgür
- Laboratory and Veterinary Health Program, Department of Veterinary Medicine, Artova Vocational School, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - Sinem Nalbantoğlu
- Molecular Oncology Laboratory, Genetic Engineering and Biotechnology Institute, TUBITAK Marmara Research Center, Kocaeli, Turkey
| | - Abdullah Karadağ
- Molecular Oncology Laboratory, Genetic Engineering and Biotechnology Institute, TUBITAK Marmara Research Center, Kocaeli, Turkey
| |
Collapse
|
14
|
Lin H, Chang J, Li J. Effects of Docetaxel Combined with Icotinib on Serum Tumor Markers and Quality of Life of Patients with Advanced Non-Small Cell Lung Cancer. IRANIAN JOURNAL OF PUBLIC HEALTH 2020; 49:1885-1893. [PMID: 33346209 PMCID: PMC7719661 DOI: 10.18502/ijph.v49i10.4691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background To investigate the effects of docetaxel combined with icotinib on tumor markers in serum and quality of life of patients with advanced non-small cell lung cancer (NSCLC). Methods Overall, 121 patients with advanced NSCLC, admitted to the Third Affiliated Hospital of Shandong First Medical University, China from 2017-2018 were selected as subjects. Among them, 58 patients treated with docetaxel combined with icotinib for chemotherapy were considered as study group, and 63 patients treated with paclitaxel combined with carboplatin as control group. The clinical efficacy, adverse reactions, and ECOG scores of the two groups were observed. CEA, CA125, and SCC (Tumor markers) levels of the two groups before and after treatment were detected by chemiluminescence immunoassay (CLIA). Results The leukopenia, oral mucosa ulcer and mild numbness in the control group were significantly higher than those in the study group (P<0.05). After treatment, ECOG scores of both groups decreased (P<0.05), and the ECOG score of the study group was significantly higher than that of the control group (P<0.05). The serum CEA, CA125 and SCC levels of the study group and the control group after treatment decreased significantly compared with that before treatment (P<0.05). Conclusion Application of docetaxel combined with icotinib for chemotherapy of patients with advanced NSCLC can effectively reduce the serum levels of CEA, SCC, and the CA125. Docetaxel combined with icotinib can significantly reduce adverse reactions and better improve the quality of life of patients compared with paclitaxel combined with carboplatin, which is worthy of clinical promotion.
Collapse
Affiliation(s)
- Huawei Lin
- Department of Medicine, Shandong Medical College, Jinan 250002, P.R. China
| | - Jing Chang
- Department of Medical Oncology, The Third Affiliated Hospital, Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), Jinan 250031, P.R. China
| | - Jun Li
- Department of Medical Oncology, The Third Affiliated Hospital, Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), Jinan 250031, P.R. China
| |
Collapse
|
15
|
Chen Y, Ning J, Cao W, Wang S, Du T, Jiang J, Feng X, Zhang B. Research Progress of TXNIP as a Tumor Suppressor Gene Participating in the Metabolic Reprogramming and Oxidative Stress of Cancer Cells in Various Cancers. Front Oncol 2020; 10:568574. [PMID: 33194655 PMCID: PMC7609813 DOI: 10.3389/fonc.2020.568574] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
Thioredoxin-interacting protein (TXNIP) is a thioredoxin-binding protein that can mediate oxidative stress, inhibit cell proliferation, and induce apoptosis by inhibiting the function of the thioredoxin system. TXNIP is important because of its wide range of functions in cardiovascular diseases, neurodegenerative diseases, cancer, diabetes, and other diseases. Increasing evidence has shown that TXNIP expression is low in tumors and that it may act as a tumor suppressor in various cancer types such as hepatocarcinoma, breast cancer, and lung cancer. TXNIP is known to inhibit the proliferation of breast cancer cells by affecting metabolic reprogramming and can affect the invasion and migration of breast cancer cells through the TXNIP-HIF1α-TWIST signaling axis. TXNIP can also prevent the occurrence of bladder cancer by inhibiting the activation of ERK, which inhibits apoptosis in bladder cancer cells. In this review, we find that TXNIP can be regulated by binding to transcription factors or other binding proteins and can also be downregulated by epigenetic changes or miRNA. In addition, we also summarize emerging insights on TXNIP expression and its functional role in different kinds of cancers, as well as clarify its participation in metabolic reprogramming and oxidative stress in cancer cells, wherein it acts as a putative tumor suppressor gene to inhibit the proliferation, invasion, and migration of different tumor cells as well as promote apoptosis in these cells. TXNIP may therefore be of basic and clinical significance for finding novel molecular targets that can facilitate the diagnosis and treatment of malignant tumors.
Collapse
Affiliation(s)
- Yiting Chen
- Department of Oncology and Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jieling Ning
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Wenjie Cao
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Shuanglian Wang
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Du
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, China
| | - Jiahui Jiang
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, China
| | - Xueping Feng
- Department of Oncology and Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Zhang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
16
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Kalantari M, Mohammadinejad R, Javaheri T, Sethi G. Association of the Epithelial-Mesenchymal Transition (EMT) with Cisplatin Resistance. Int J Mol Sci 2020; 21:E4002. [PMID: 32503307 PMCID: PMC7312011 DOI: 10.3390/ijms21114002] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023] Open
Abstract
Therapy resistance is a characteristic of cancer cells that significantly reduces the effectiveness of drugs. Despite the popularity of cisplatin (CP) as a chemotherapeutic agent, which is widely used in the treatment of various types of cancer, resistance of cancer cells to CP chemotherapy has been extensively observed. Among various reported mechanism(s), the epithelial-mesenchymal transition (EMT) process can significantly contribute to chemoresistance by converting the motionless epithelial cells into mobile mesenchymal cells and altering cell-cell adhesion as well as the cellular extracellular matrix, leading to invasion of tumor cells. By analyzing the impact of the different molecular pathways such as microRNAs, long non-coding RNAs, nuclear factor-κB (NF-ĸB), phosphoinositide 3-kinase-related protein kinase (PI3K)/Akt, mammalian target rapamycin (mTOR), and Wnt, which play an important role in resistance exhibited to CP therapy, we first give an introduction about the EMT mechanism and its role in drug resistance. We then focus specifically on the molecular pathways involved in drug resistance and the pharmacological strategies that can be used to mitigate this resistance. Overall, we highlight the various targeted signaling pathways that could be considered in future studies to pave the way for the inhibition of EMT-mediated resistance displayed by tumor cells in response to CP exposure.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey;
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417414418, Iran;
- Kazerun Health Technology Incubator, Shiraz University of Medical Sciences, Shiraz 1433671348, Iran
| | - Mahshad Kalantari
- Department of Genetic Science, Tehran Medical Science Branch, Islamic Azad University, Tehran 19168931813, Iran;
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 1355576169, Iran
| | - Tahereh Javaheri
- Health Informatics Lab, Metropolitan College, Boston University, Boston, MA 02215, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
| |
Collapse
|
17
|
Mao CX, Li M, Zhang W, Zhou HH, Yin JY, Liu ZQ. Pharmacogenomics for the efficacy of platinum-based chemotherapy: Old drugs, new integrated perspective. Biomed Pharmacother 2020; 126:110057. [PMID: 32145590 DOI: 10.1016/j.biopha.2020.110057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/16/2020] [Accepted: 02/25/2020] [Indexed: 01/16/2023] Open
Abstract
Platinum-based chemotherapy remains the cornerstone of treatment for many malignancies. However, although therapeutic efficiency varies greatly among individuals, there is a lack of pharmacogenomic biomarkers that can be used in clinical settings to identify chemosensitive patients and allow stratification. With the development of high-throughput screening techniques and systems biology approaches, a growing body of evidence has shown that platinum resistance is a multifactorial, multi-dimensional, dynamic process incorporating genetic background, tumor evolution and gut microbes. This review critically summarizes potential pharmacogenomic biomarkers for predicting the efficacy of platinum drugs and provides a comprehensive, time-varying perspective that integrates multiple markers.
Collapse
Affiliation(s)
- Chen-Xue Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China
| | - Min Li
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China.
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China.
| |
Collapse
|
18
|
Gemcitabine inhibits cisplatin resistance in cisplatin-resistant A549 cells by upregulating trx-interacting protein and inducing cell cycle arrest. Biochem Biophys Res Commun 2020; 524:549-554. [PMID: 32014255 DOI: 10.1016/j.bbrc.2020.01.130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/18/2022]
Abstract
Cisplatin is a main chemotherapeutic drug used to treat non-small-cell lung cancer patients. However, these patients commonly face cisplatin resistance. The roles and underlying mechanisms of gemcitabine, irinotecan, pemetrexed and docetaxel used as single agents or combined with cisplatin for overcoming cisplatin-resistant non-small-cell lung cancer were explored in this study. MTT assays showed that gemcitabine alone exhibited stronger cytotoxicity on cisplatin-resistant A549 cells than irinotecan, pemetrexed and docetaxel. Meanwhile, gemcitabine combined with cisplatin showed a synergistic inhibitory effect on cisplatin-resistant cells. RNA sequencing and Gene Ontology/Kyoto Encyclopedia of Genes and Genomes analysis showed that cell cycle signaling pathways and trx-interacting protein were factors in the efficacy of the cotreatment. Flow cytometry and Western blot results showed that when cisplatin-resistant A549 cells were cotreated with gemcitabine and cisplatin, G0/G1 phase arrest occurred, and trx-interacting protein was upregulated. Silencing trx-interacting protein attenuated the response of the resistant cells to the drug combination. A trx-interacting protein agonist together with cisplatin showed an additive cytotoxic effect on the resistant cells compared with cisplatin alone. The gemcitabine and cisplatin combination, compared to gemcitabine or PBS alone, markedly suppressed the growth of cisplatin-resistant A549 tumors in vivo, accompanied by an increase in trx-interacting protein and a decrease in Ki67 expression. Therefore, we concluded that gemcitabine and cisplatin, as an FDA-approved combination, is a viable therapy for cisplatin-resistant non-small-cell lung cancer ex vivo and in vivo.
Collapse
|
19
|
Li Y, Xu C, He C, Pu H, Liu J, Wang Y. circMTDH.4/miR‐630/AEG‐1 axis participates in the regulation of proliferation, migration, invasion, chemoresistance, and radioresistance of NSCLC. Mol Carcinog 2019; 59:141-153. [PMID: 31749230 DOI: 10.1002/mc.23135] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Ying‐Hong Li
- Department of Internal MedicineThe Affiliated Tumor Hospital of Harbin Medical University Harbin China
| | - Chun‐Lin Xu
- Department of InfectionThe Second Affiliated Hospital Harbin Medical University Harbin China
| | - Chang‐Jun He
- Department of Thoracic SurgeryThe Affiliated Tumor Hospital of Harbin Medical University Harbin China
| | - Hai‐Hong Pu
- Department of Internal MedicineThe Affiliated Tumor Hospital of Harbin Medical University Harbin China
| | - Jing‐Lei Liu
- Department of Internal MedicineThe Affiliated Tumor Hospital of Harbin Medical University Harbin China
| | - Yan Wang
- Department of Internal MedicineThe Affiliated Tumor Hospital of Harbin Medical University Harbin China
| |
Collapse
|
20
|
Xue F, Xu Y, Song Y, Zhang W, Li R, Zhu X. The Effects Of Sevoflurane On The Progression And Cisplatinum Sensitivity Of Cervical Cancer Cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3919-3928. [PMID: 31819366 PMCID: PMC6873969 DOI: 10.2147/dddt.s219788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/11/2019] [Indexed: 12/25/2022]
Abstract
Objective To investigate the effect of sevoflurane on the progression of cervical cancer cells, and to explore its effect on the cisplatinum (DDP) sensitivity in cervical cancer cells and underlying mechanism. Methods Siha and Hela cervical cancer cells were cultured and treated with 3% sevoflurane, 10 μmol/L DDP, or the co-treatment of sevoflurane and DDP, respectively. Cell proliferation was evaluated by the CCK8 assay. Cell apoptosis was assessed by flow cytometry. Cell migration was detected by wound healing assay. The expression of B-cell lymphoma-2 (BCL-2), B-cell lymphoma-2 associated X (BAX), Ezrin, matrix metalloproteinase 2 (MMP2), lung resistance-related protein (LRP), multiple drug resistance protein 1 (MRP1), glutathione-S-transferase-π (GST-π), and P glycoprotein (P-gp) protein was determined by Western blotting. Results After treated with sevoflurane, cell proliferation and migration rate in Siha and Hela cells were significantly elevated, while cell apoptosis was decreased. In addition, the expression of migration-related protein Ezrin and MMP2 was increased accordingly, apoptotic-related protein BCL-2 expression was also increased while BAX protein expression was decreased after sevoflurane treatment. The proliferation, migration rate, and apoptosis of Siha and Hela cells in sevoflurane plus DDP group were not significantly different with those in DDP group. There was no significant difference in apoptotic-related protein, migration-related protein, and drug resistance-associated proteins expression between DDP treatment group and combined treatment group. Conclusion Sevoflurane promotes the progression but has no effect on the cisplatinum sensitivity in cervical cancer cells.
Collapse
Affiliation(s)
- Fang Xue
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, People's Republic of China
| | - Yichi Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, People's Republic of China
| | - Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, People's Republic of China
| | - Wenwen Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, People's Republic of China
| | - Ruyi Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, People's Republic of China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, People's Republic of China
| |
Collapse
|
21
|
Chen J, Liu B, Zhang F, Cui W, Zhang P. Pharmacokinetics and safety of lobaplatin plus etoposide in Chinese men older than 65 years with extensive-stage small cell lung cancer: a phase II clinical trial. Cancer Chemother Pharmacol 2019; 84:73-81. [DOI: 10.1007/s00280-019-03828-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/25/2019] [Indexed: 12/12/2022]
|
22
|
Reck M, Kerr KM, Grohé C, Manegold C, Pavlakis N, Paz-Ares L, Huber RM, Popat S, Thatcher N, Park K, Hilberg F, Barrueco J, Kaiser R. Defining aggressive or early progressing nononcogene-addicted non-small-cell lung cancer: a separate disease entity? Future Oncol 2019; 15:1363-1383. [PMID: 30758227 DOI: 10.2217/fon-2018-0948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A substantial proportion of patients with nononcogene-addicted non-small-cell lung cancer (NSCLC) has 'aggressive disease', as reflected in short time to progression or lack of disease control with initial platinum-based chemotherapy. Recently, clinical correlates of aggressive disease behavior during first-line therapy have been shown to predict greater benefit from addition of nintedanib to second-line docetaxel in adenocarcinoma NSCLC. Positive predictive effects of aggressive disease have since been reported with other anti-angiogenic agents (ramucirumab and bevacizumab), while such features may negatively impact on outcomes with nivolumab in nonsquamous NSCLC with low PD-L1 expression. Based on a review of the clinical data, we recommend aggressive nonsquamous NSCLC should be defined by progression within <6-9 months of first-line treatment initiation.
Collapse
Affiliation(s)
- Martin Reck
- Department of Thoracic Oncology, Lung Clinic Grosshansdorf, Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Keith M Kerr
- Department of Pathology, Aberdeen University Medical School, Aberdeen Royal Infirmary, Aberdeen, Scotland
| | - Christian Grohé
- Department of Respiratory Diseases, Evangelische Lungenklinik Berlin, Lindenberger Weg 27, Berlin, Germany
| | - Christian Manegold
- Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Nick Pavlakis
- Department of Medical Oncology, Royal North Shore Hospital (Sydney University), Reserve Road, St Leonards 2065, New South Wales, Australia
| | - Luis Paz-Ares
- Medical Oncology Department, University Hospital 12 de Octubre, Complutense University, CNIO & CiberOnc, Madrid, Spain
| | - Rudolf M Huber
- Division of Respiratory Medicine & Thoracic Oncology, Ludwig Maximilians University of Munich, & Thoracic Oncology Centre Munich, Member of the German Center for Lung Research (DZL CPC-M) Munich, Germany
| | - Sanjay Popat
- Department of Medicine, Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Nick Thatcher
- Department of Medical Oncology, Christie Hospital NHS Trust, Wilmslow Road, Manchester, UK
| | - Keunchil Park
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Frank Hilberg
- Boehringer Ingelheim RCV GmbH & Co. KG, A-1121, Vienna, Austria
| | - José Barrueco
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut, CT 06877, USA
| | - Rolf Kaiser
- Boehringer Ingelheim Pharma GmbH & Co, KG, Germany & Institute of Pharmacology, Johannes Gutenberg-University Mainz, Germany
| |
Collapse
|
23
|
Ying J, Zhou D, Gu T, Huang J, Liu H. Pretreatment albumin/fibrinogen ratio as a promising predictor for the survival of advanced non small-cell lung cancer patients undergoing first-line platinum-based chemotherapy. BMC Cancer 2019; 19:288. [PMID: 30925910 PMCID: PMC6441182 DOI: 10.1186/s12885-019-5490-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 03/19/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND This study aimed to identify potential predictive factors for the survival of advanced non small-cell lung cancer (NSCLC) patients undergoing first-line platinum-based chemotherapy. METHODS A total of 270 advanced NSCLC patients who underwent first-line platinum-based chemotherapy from June, 2011 to June, 2015 were enrolled. A receiver operating characteristic (ROC) curve analysis was used to evaluate the predictive value of the albumin-to-fibrinogen ratio (AFR) for overall survival (OS). The predictive factors for survival were evaluated by univariate and multivariate analyses via the Cox proportional hazards regression model. The OS and progression free survival (PFS) results were determined via the Kaplan-Meier method using the log-rank analysis. RESULTS Based on the results of the ROC curve analysis, 8.02 was accepted as the cut-off AFR value for OS. The metastasis stage (M0 vs M1a/b, HR: 1.73, 95% CI: 1.15-2.59, P = 0.020) and AFR (≤8.02 vs > 8.02, HR: 1.80, 95% CI: 1.09-2.78, P = 0.025) were two independent risk factors for PFS by multivariate Cox regression analysis. The AFR (≤8.02 vs > 8.02, HR: 1.79, 95% CI: 1.11-2.59, P = 0.029) was a significant predictive factor for OS in advanced NSCLC patients. The PFS (P = 0.008) and OS (P = 0.003) in the high AFR group were significantly improved compared with those in the low AFR group via the Kaplan-Meier method using the log-rank analysis. CONCLUSIONS The AFR could be a potential effective predictive factor for the survival in advanced NSCLC patients undergoing first-line platinum-based chemotherapy.
Collapse
Affiliation(s)
- Jun Ying
- Department of Respiratory, Hwa Mei Hospital, University of Chinese Academy of Sciences, NO. 41, Xibei Street, Ningbo, 315000, Zhejiang Province, China
| | - Danfei Zhou
- Department of Respiratory, Hwa Mei Hospital, University of Chinese Academy of Sciences, NO. 41, Xibei Street, Ningbo, 315000, Zhejiang Province, China
| | - Tongjie Gu
- Department of Respiratory, Hwa Mei Hospital, University of Chinese Academy of Sciences, NO. 41, Xibei Street, Ningbo, 315000, Zhejiang Province, China
| | - Jianda Huang
- Department of Respiratory, Hwa Mei Hospital, University of Chinese Academy of Sciences, NO. 41, Xibei Street, Ningbo, 315000, Zhejiang Province, China
| | - Haijian Liu
- Department of Respiratory, Hwa Mei Hospital, University of Chinese Academy of Sciences, NO. 41, Xibei Street, Ningbo, 315000, Zhejiang Province, China.
| |
Collapse
|
24
|
Lee YJ, Kim SY, Lee C. Axl is a novel target of celastrol that inhibits cell proliferation and migration, and increases the cytotoxicity of gefitinib in EGFR mutant non‑small cell lung cancer cells. Mol Med Rep 2019; 19:3230-3236. [PMID: 30816529 DOI: 10.3892/mmr.2019.9957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 02/07/2019] [Indexed: 11/06/2022] Open
Abstract
Gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR‑TKI) is an excellent therapeutic agent to treat EGFR mutation‑positive non‑small cell lung cancer (NSCLC). However, the initial response decreases as chemoresistance develops. In the present study, gefitinib‑resistant EGFR mutant NSCLC PC‑9/GR cells were established to examine the characteristics and mechanisms associated with chemoresistance. Axl expression in PC‑9/GR cells was transcriptionally upregulated, since Axl protein and mRNA expression levels were identified to be increased according to western blot analysis and reverse transcription polymerase chain reaction results. The inhibitory effect of celastrol on Axl protein expression level, cell viability and clonogenicity were identified in parental and gefitinib‑resistant PC‑9 cells. In addition, treatment of PC‑9/GR cells with celastrol and gefitinib in combination was demonstrated to synergistically suppress Axl protein expression level, cell proliferation and migration. Taken together, upregulation of Axl expression seems to be associated with chemoresistance of PC‑9/GR cells. Furthermore, celastrol targets Axl to exert its anticancer effects in order to increase the susceptibility of PC‑9/GR cells to gefitinib and overcome chemoresistance.
Collapse
Affiliation(s)
- Youn Ju Lee
- Department of Pharmacology, College of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - So-Young Kim
- Department of Pharmacology, School of Medicine, Dongguk University, Gyeongju, Gyeongbuk 38066, Republic of Korea
| | - Chuhee Lee
- Department of Biochemistry and Molecular Biology, School of Medicine, Yeungnam University, Daegu 42415, Republic of Korea
| |
Collapse
|
25
|
Jin X, Jiang ML, Wu ZH, Fan Y. Progress of Individualized Chemotherapy for Gastric Carcinoma Under the Guidance of Genetic Testing. Curr Med Chem 2019; 27:2322-2334. [PMID: 30714518 DOI: 10.2174/0929867326666190204123101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 12/28/2018] [Accepted: 12/29/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gastric cancer is a major malignancy that has high incidence rates worldwide. Approximately 30% of patients with gastric cancer have progressed into advanced stages at the time of diagnosis. Chemotherapy is the standard-of-care for most advanced gastric cancer and elicits variable responses among patients. Personalized chemotherapy based on genetic information of individual patients with gastric cancer has gained increasing attention among oncologists for guiding chemotherapeutic regimens. METHODS This review summarizes recent progress of individualized chemotherapy in gastric cancer guided by pharmacogenomics. Variable medical research search engines, such as PubMed, Google Scholar, SpringerLink and ScienceDirect, were used to retrieve related literature. Only peerreviewed journal articles were selected for further analyses. RESULTS AND CONCLUSION The efficiency of chemotherapy in patients with gastric cancer is not only determined by chemotherapeutic drugs but is also directly and indirectly influenced by functionally correlative genes. Individual gene alteration or polymorphism remarkably affects patients' responses to particular chemotherapy. Most studies have focused on the influence of single-gene alteration on a selected drug, and only a few works explored the interaction between therapeutics and a panel of genes. Individualized chemotherapy regimens guided by a genetic survey of a multiple-gene panel are expected to remarkably improve the treatment efficacy in patients with advanced gastric cancer and may become the new standard for personalizing chemotherapy for gastric cancer in the near future.
Collapse
Affiliation(s)
- Xin Jin
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, No 8 Dianli Road, Zhenjiang 212002, Jiangsu, China
| | - Meng-Lin Jiang
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, No 8 Dianli Road, Zhenjiang 212002, Jiangsu, China
| | - Zhao-Hui Wu
- Dept. of Pathology and Laboratory Medicine, Center for Cancer Research, University of Tennessee Health Science Center, Rm 118, 19 S Manassas St. Memphis, TN 38163, United States
| | - Yu Fan
- Cancer Institute, The Affiliated People's Hospital of Jiangsu University, No 8 Dianli Road, Zhenjiang 212002, Jiangsu, China
| |
Collapse
|
26
|
Lin CY, Hung CC, Wang CCN, Lin HY, Huang SH, Sheu MJ. Demethoxycurcumin sensitizes the response of non-small cell lung cancer to cisplatin through downregulation of TP and ERCC1-related pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 53:28-36. [PMID: 30668408 DOI: 10.1016/j.phymed.2018.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 06/04/2018] [Accepted: 08/06/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Excision repair cross-complementary 1 (ERCC1) overexpression in lung cancer cells is strongly correlated with its resistance to platinum-based chemotherapy. Overexpression of thymidine phosphorylase (TP) reverts platinum-induced cancer cell death. PURPOSE Curcumin has been reported to enhance antitumor properties through the suppression of TP and ERCC1 in non-small cell lung carcinoma cells (NSCLC). Nevertheless, whether two other curcuminoids, demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC) from Curcuma longa demonstrate antitumor activity like that of curcumin remain unknown. METHODS MTT assay was conducted to determine the cell cytotoxicity. Western blotting was used to determine the protein expressions. Docking is the virtual screening of a database of compounds and predicting the strongest binders based on various scoring functions. BIOVIA Discovery Studio 4.5 (D.S. 4.5) were used for docking. RESULTS Firstly, when compared with curcumin and BDMC, DMC exhibited the most potent cytotoxic effect on NSCLC, most importantly, MRC-5, a lung fetal fibroblast, was insensitive to DMC (under 30 µM). Secondly, DMC alone significantly inhibited on-target cisplatin (CDDP) resistance protein, ERCC1, via PI3K-Akt-snail pathways, and TP protein expression in A549 cells. Thirdly, DMC treatment markedly increased post-target CDDP resistance pathway including Bax and cytochrome c. DMC significantly decreased Bcl-2 protein expressions. Finally, MTT assay indicated that DMC significantly increased CDDP-induced cytotoxicity and was confirmed with an increased Bax/Bcl-2 ratio, indicating upregulation of caspase-3. CONCLUSIONS We concluded that enhancement of the cytotoxicity to CDDP by coadminstration with DMC was mediated by down-regulation of the expression of TP and ERCC1, regulated by PI3K-Akt-Snail pathway inactivation.
Collapse
Affiliation(s)
- Chen-Yuan Lin
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taiwan
| | - Chin-Chuan Hung
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan
| | - Charles C N Wang
- Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan
| | - Hui-Yi Lin
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan
| | - Shih-Huan Huang
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan
| | - Ming-Jyh Sheu
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
27
|
Wang C, Xu F, Shen J, Zhang L, Zhang J, Jin J, Ampollini L, van Schil P, Kimura H, Grossi F, Suda K, Zhang B, Ma D. Successful treatment of lung adenocarcinoma with gefitinib based on EGFR gene amplification. J Thorac Dis 2019; 10:E779-E783. [PMID: 30622811 DOI: 10.21037/jtd.2018.10.55] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chunguo Wang
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai 317000, China
| | - Feng Xu
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai 317000, China
| | - Jianfei Shen
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai 317000, China
| | - Linna Zhang
- Department of Pathology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai 317000, China
| | - Jian Zhang
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai 317000, China
| | - Jiang Jin
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai 317000, China
| | - Luca Ampollini
- Thoracic Surgery, Department of Medicine and Surgery, University Hospital of Parma. Via Gramsci 14, 43126 Parma, Italy
| | - Paul van Schil
- Department of Thoracic and Vascular Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Hideharu Kimura
- Department of Cellular Transplantation Biology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Francesco Grossi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Kenichi Suda
- Division of Thoracic Surgery, Department of Surgery, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Japan
| | - Bo Zhang
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai 317000, China
| | - Dehua Ma
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai 317000, China
| | | |
Collapse
|
28
|
UBE2C Induces Cisplatin Resistance via ZEB1/2-Dependent Upregulation of ABCG2 and ERCC1 in NSCLC Cells. JOURNAL OF ONCOLOGY 2019; 2019:8607859. [PMID: 30693031 PMCID: PMC6333017 DOI: 10.1155/2019/8607859] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/19/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023]
Abstract
Objectives Cisplatin (DDP) is one of the most commonly used chemotherapeutic drugs for several cancers, including non-small-cell lung cancer (NSCLC). However, resistance to DDP eventually develops, limiting its further application. New therapy targets are urgently needed to reverse DDP resistance. Methods The mRNA expression of UBE2C, ZEB1/2, ABCG2, and ERCC1 was analyzed by reverse transcription-polymerase chain reaction. The protein levels of these molecules were analyzed by Western blotting and immunofluorescent staining. Cell proliferation was detected by CCK8 and MTT assays. Cell migration and invasion were analyzed by wound healing assay and Transwell assays. Promoter activities and gene transcription were analyzed by luciferase reporter assay. Results In this study, we examined the effect of UBE2C and ZEB1/2 expression levels in DDP-resistant cells of NSCLC. We confirmed that aberrant expression of UBE2C and ZEB1/2 plays a critical role in repressing the DDP sensitivity to NSCLC cells. Additionally, knockdown of UBE2C significantly sensitized resistant cells to DDP by repressing the expression of ZEB1/2. Mechanistic investigations indicated that UBE2C transcriptionally regulated ZEB1/2 by accelerating promoter activity. This study revealed that ZEB1/2 promotes the epithelial mesenchymal transition and expression of ABCG2 and ERCC1 to participate in UBE2C-mediated NSCLC DDP-resistant cell progression, metastasis, and invasion. Conclusion UBE2C may be a novel therapy target for NSCLC for sensitizing cells to the chemotherapeutic agent DDP.
Collapse
|