1
|
Solhaug A, Dowd GC, Dayeh VR, Sindre H, Lee LEJ, Bols NC. Improve your success with fish cell lines-small things that matter. In Vitro Cell Dev Biol Anim 2025:10.1007/s11626-025-01042-1. [PMID: 40205252 DOI: 10.1007/s11626-025-01042-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/25/2025] [Indexed: 04/11/2025]
Abstract
There is a drive towards reducing animal experiments and developing robust biologically relevant in vitro models based on cell lines, including those derived from fish. At the time of writing, Cellosaurus, the knowledge base of current cell lines used in research, listed more than 900 fish cell lines in its database. One of the key challenges facing fish cell biology is the lack of fundamental technical information regarding the isolation, culture, and application of cell lines. Researchers often work in silos, encountering similar technical challenges, each spending significant time and resources overcoming the same issues for which solutions may not be readily accessible. Here, we share some of the key considerations for the isolation, culture, maintenance, and application of fish cell lines in toxicology, which we have encountered over our collective decades of experience.
Collapse
Affiliation(s)
| | - Georgina C Dowd
- The New Zealand Institute for Plant and Food Research Limited, 293 Akersten Street, Nelson, 7010, New Zealand
| | - Vivian R Dayeh
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Hilde Sindre
- Norwegian Veterinary Institute, 1433, Ås, Norway
| | - Lucy E J Lee
- Faculty of Science, University of the Fraser Valley, Abbotsford, BC, V2S 7M8, Canada
| | - Niels C Bols
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
2
|
Ooka M, Zhao J, Zhang L, Huang R, Sakamuru S, TeKrony C, Hsieh JH, Collins BJ, Dunnick JK, Dixon D, Xia M. Profiling of Environmental Mixtures Containing Metals for Their Toxicity Pathways and Mechanism of Action. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4778-4787. [PMID: 40047063 DOI: 10.1021/acs.est.4c07995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Superfund sites are where soil, air, and water are polluted with hazardous materials. Individuals residing and working in these areas are often exposed to metals and other hazardous materials, leading to many adverse health outcomes, including cancer. While individuals are often exposed to multiple chemicals simultaneously, the combined effect of such exposures remains largely unexplored. Here, we investigated the toxicity of metal mixtures in five categories of in vitro assays measuring cytotoxicity, oxidative stress, genotoxicity, cytokine release, and angiogenesis. After testing these mixtures in primary cells and cell lines, we discovered that the nickel/arsenic/cadmium and beryllium/arsenic/cadmium combinations exhibited higher cytotoxicity than their individual compounds, suggesting that the mixtures amplified the cytotoxic effect. To investigate the mechanism underlying their toxicity, we evaluated metal-induced oxidative stress, as oxidative stress is a common factor in most metal-related toxicities. Our results showed that cadmium-induced oxidative stress was increased in mixtures. Some mixtures that induced oxidative stress further increased DNA damage, inhibited DNA synthesis, and activated p53. In addition, some mixtures significantly increased interleukin-8 secretion and angiogenesis more than their component compounds. Our findings offer important insights into metal-related toxicity at Superfund sites.
Collapse
Affiliation(s)
- Masato Ooka
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville 20850, Maryland, United States
| | - Jinghua Zhao
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville 20850, Maryland, United States
| | - Li Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville 20850, Maryland, United States
| | - Ruili Huang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville 20850, Maryland, United States
| | - Srilatha Sakamuru
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville 20850, Maryland, United States
| | - Charlotte TeKrony
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville 20850, Maryland, United States
| | - Jui-Hua Hsieh
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Durham 27709, North Carolina, United States
| | - Bradley J Collins
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Durham 27709, North Carolina, United States
| | - June K Dunnick
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Durham 27709, North Carolina, United States
| | - Darlene Dixon
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Durham 27709, North Carolina, United States
| | - Menghang Xia
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville 20850, Maryland, United States
| |
Collapse
|
3
|
Kakakhel MA, Jamil A, Narwal N. Effects of Silver Nanoparticles on Ctenopharyngodon idella: Synthesis, Characterization, Antibacterial Activity, and Toxicological Assessment. Microsc Res Tech 2025; 88:686-695. [PMID: 39535459 DOI: 10.1002/jemt.24733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Currently, nanotechnology (NT) and nanoparticles (NPs) have gained significant attention in the scientific field due to their diverse application history. Particularly, in environmental applications, their antibacterial efficiency in fisheries due to antibacterial resistance. However, the NPs have been found toxic in the environment. Therefore, the current study aimed to fabricate less toxic NPs using environmentally dried leaves to check their antibacterial efficacy and possible toxicity against grass carp. The findings confirmed the good dispersity of obtained AgNPs, which further showed promising antibacterial activity against several bacterial isolates including Staphylococcus with a zone of inhibition (23.73 ± 0.57 nm). Also, the AgNPs were exposed to the grass carp (Ctenopharyngodon idella) for possible toxicity and toxic effects. First, the bioaccumulation of AgNPs was significantly observed in gills followed by intestines and muscles (p < 0.05). Finally, the AgNPs mainly accumulate in the liver, followed by the intestine, gills, and muscles. Additionally, the deposition of AgNPs in various organs resulted in histological alteration such as necrosis and infiltration of red blood cells in the intestine and the fusion of gill lamella. Hence, the synthesized NPs using dried leaf extract could be a promising approach in applied science. The significant features of the nanoparticles in the present work using green synthesis can help in synthesizing less toxic materials.
Collapse
Affiliation(s)
- Mian Adnan Kakakhel
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, China
| | - Arshad Jamil
- Department of Plant Breeding and Genetics, University of Agriculture DI Khan, Khyber Pakhtunkhwa, Pakistan
| | - Nishita Narwal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
4
|
Siciliani D, Ruyter B, Løkka G, Præsteng KE, Minghetti M, Kortner TM. A fish intestinal in vitro model for investigation of lipid metabolism and steatosis. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159573. [PMID: 39490958 DOI: 10.1016/j.bbalip.2024.159573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Choline is now recognized as an essential nutrient to ensure lipid transport in Atlantic salmon. Its deficiency leads to excessive lipid accumulation in the enterocytes, a condition known as steatosis. The knowledge of lipid metabolism and steatosis in fish remains limited, motivating the use of in vitro intestinal models to perform deeper explorations. This study aimed to create an in vitro steatosis model using RTdi-MI, a new cell line derived from the distal intestine of rainbow trout. Cells were exposed to varying oleic acid (OA) concentrations over different time points (24 h, 72 h, and 168 h). Results indicated that the increasing OA concentration enhanced intracellular lipid droplet formation. Quantitative lipid analysis confirmed OA accumulation, which intensified with prolonged exposure and increased OA dose. Moreover, all cells, including controls, exhibited fatty acid metabolic activity. Such outcome was confirmed by light and fluorescence microscopy. Additionally, RTdi-MI cells expressed genes involved in lipid metabolism and synthesis similar to in vivo conditions. Collectively, our findings demonstrate the ability of RTdi-MI cells to accumulate OA in intracellular lipid droplets and mirror in vivo steatosis conditions, offering a new tool for exploring fish intestinal lipid metabolism.
Collapse
Affiliation(s)
- Daphne Siciliani
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | | | - Guro Løkka
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Kirsti Elisabeth Præsteng
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Matteo Minghetti
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Trond M Kortner
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| |
Collapse
|
5
|
Bucking C, Bury NR, Sundh H, Wood CM. Making in vitro conditions more reflective of in vivo conditions for research on the teleost gastrointestinal tract. J Exp Biol 2024; 227:jeb246440. [PMID: 39392112 PMCID: PMC11529878 DOI: 10.1242/jeb.246440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
To date, the majority of in vitro or ex vivo fish gastrointestinal research has been conducted under unrealistic conditions. In a living fish, ionic conditions, as well as levels of ammonia, pH, HCO3- and PCO2 differ considerably between the different regions of the gastrointestinal tract. These factors also differ from those of the saline often used in gut research. Furthermore, the oxygen gradient from the serosa to the gut lumen is rarely considered: in contrast to the serosa, the lumen is a hypoxic/anoxic environment. In addition, the gut microbiome plays a significant role in gut physiology, increasing the complexity of the in vivo gut, but replicating the microbial community for in vitro studies is exceptionally difficult. However, there are ways in which we can begin to overcome these challenges. Firstly, the luminal chemistry and PO2 in each gut compartment must be carefully considered. Secondly, although microbiological culture techniques are improving, we must learn how to maintain the microbiome diversity seen in vivo. Finally, for ex vivo studies, developing mucosal (luminal) solutions that more closely mimic the in vivo conditions will better replicate physiological processes. Within the field of mammalian gut physiology, great advances in 'gut-on-chip' devices are providing the tools to better replicate in vivo conditions; adopting and adapting this technology may assist in fish gut research initiatives. This Commentary aims to make fish gut physiologists aware of the various issues in replicating the in vivo conditions and identifies solutions as well as those areas that require further improvement.
Collapse
Affiliation(s)
- Carol Bucking
- Department of Biology, Farquharson Life Science Building, York University, Toronto, ON, M3J 1P3, Canada
| | - Nic R. Bury
- School of Ocean and Earth Sciences, University of Southampton, National Oceanographic Centre, Waterfront Campus, Southampton, Hampshire, SO14 3ZH, UK
| | - Henrik Sundh
- Department of Biological & Environmental Sciences, University of Gothenburg, Medicinaregatan 7 B, 41390 Göteborg, Sweden
| | - Chris M. Wood
- Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T1Z4, Canada
| |
Collapse
|
6
|
Pinto EP, Scott J, Hess K, Paredes E, Bellas J, Gonzalez-Estrella J, Minghetti M. Role of UV radiation and oxidation on polyethylene micro- and nanoplastics: impacts on cadmium sorption, bioaccumulation, and toxicity in fish intestinal cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47974-47990. [PMID: 39017862 PMCID: PMC11297841 DOI: 10.1007/s11356-024-34301-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
This study investigated the role of ultraviolet (UV) radiation and oxidation in high-density polyethylene microplastics (2-15 μm) and nanoplastics (0.2-9.9 μm) (NMPs) on particle chemistry, morphology, and reactivity with cadmium (Cd). Additionally, toxicity of NMPs alone and with Cd was evaluated using RTgutGC cells, a model of the rainbow trout (Oncorhynchus mykiss) intestine. The role on NMPs on Cd bioaccumulation in RTgutGC cells was also evaluated. Dynamic light scattering indicated that after UV radiation NPs agglomerated size increased from 0.8 to 28 µm, and to 8 µm when Cd was added. Oxidized MPs agglomerated size increased from 11 and 7 to 46 and 27 µm in non-UV- and UV-aged oxidized MPs when adding Cd, respectively. Cd-coated particles exhibited generally significantly higher zeta potential than non-Cd-coated particles, while attenuated total reflectance-Fourier transform infrared spectroscopy showed that the functional chemistry of the particles was oxidized and modified after being exposed to UV radiation. Presence of NMPs resulted in a significant decrease in Cd bioaccumulation in RTgutGC cells (100.5-87.9 ng Cd/mg protein) compared to Cd alone (138.1 ng Cd/mg protein), although this was not quite significant for co-exposures with UV-aged NPs (105.7 ng Cd/mg protein). No toxicity was observed in RTgutGC cells exposed to NMPs alone for 24 h. Moreover, co-exposures with Cd indicated that NMPs reduce the toxicity of Cd. Altogether these results show that UV aging enhances NMP surface reactivity, increasing Cd absorption in solution, which resulted in a reduction in Cd bioavailability and toxicity.
Collapse
Affiliation(s)
- Estefanía Pereira Pinto
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, 74078, USA.
- Centro de Investigación Mariña, Departamento de Ecoloxía e Bioloxía Animal, Laboratorio de Ecoloxía Costeira (ECOCOST), 36310, Universidade de Vigo, Vigo, Spain.
| | - Justin Scott
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Kendra Hess
- School of Civil and Environmental Engineering, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Estefanía Paredes
- Centro de Investigación Mariña, Departamento de Ecoloxía e Bioloxía Animal, Laboratorio de Ecoloxía Costeira (ECOCOST), 36310, Universidade de Vigo, Vigo, Spain
| | - Juan Bellas
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO, CSIC), Subida a Radio Faro 50, 36390, Vigo, Spain
| | - Jorge Gonzalez-Estrella
- School of Civil and Environmental Engineering, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Matteo Minghetti
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|
7
|
Solhaug A, Olsvik PA, Siriyappagouder P, Faller R, Kristensen T. Gill epithelial cell line ASG-10 from Atlantic salmon as a new research tool for solving water quality challenges in aquaculture. Toxicol In Vitro 2024; 96:105790. [PMID: 38355023 DOI: 10.1016/j.tiv.2024.105790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Here we evaluated the gill epithelial cell line ASG-10 from Atlantic salmon, as an in vitro model for research on known water quality challenges in aquaculture. Ammonia/ammonium (NH3/NH4+), a recognized challenge in water-intensive recirculating aquaculture systems (RAS), induced lysosomal vacuolization, reduced protein degradation and cell migration of the ASG-10 cells. Aluminium (Aln+), another challenge in freshwater aquaculture facilities had only minor effects. Next, we investigated the tolerance for direct water exposure of ASG-10. The cells tolerated water with osmolarity between 169 and 419 mOsmol/kg for 24 h. However, cells exposed for 3 h to water at 863 mOsmol/kg changed cellular morphology and induced gene expression related to stress (gpx1, casp3, hsp70), and after 24 h exposure cellular viability was severely reduced. Nevertheless, when the cells were grown in transwell inserts, they tolerated 863 mOsmol/kg for 3 h and induction of stress response associated genes was considerably reduced. Lastly, the ASG-10 cells were exposed to water samples, with no known quality issues, from different aquaculture facilities. The cells showed no differences in viability or morphology compared to their representative control. In conclusion, the ASG-10 cell line is a promising in vitro model to study water quality challenges and whole water samples.
Collapse
Affiliation(s)
- Anita Solhaug
- Chemistry and Toxinology Research Group, Norwegian Veterinary Institute, 1431 Ås, Norway.
| | - Pål A Olsvik
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Randi Faller
- Chemistry and Toxinology Research Group, Norwegian Veterinary Institute, 1431 Ås, Norway
| | | |
Collapse
|
8
|
Ibrahim M, Belden JB, Minghetti M. Interactive Effects of Copper-Silver Mixtures at the Intestinal Epithelium of Rainbow Trout: An In Vitro Approach. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:105-114. [PMID: 37818877 DOI: 10.1002/etc.5762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/17/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
While metals are present in mixture in the environment, metal toxicity studies are usually conducted on an individual metal basis. There is a paucity of data in the existing literature regarding specific metal-metal interactions and their effect on metal toxicity and bioavailability. We studied interactions of a silver (Ag)-copper (Cu) mixture at the intestinal epithelium using an intestinal cell line derived from rainbow trout (Oncorhynchus mykiss), the RTgutGC. Exposures were conducted in media containing different chloride concentrations (low chloride, 1 mM; high chloride, 146 mM), thus resulting in different metal speciation. Cytotoxicity was evaluated based on two endpoints, cell metabolic activity and cell membrane integrity. The Ag-Cu mixture toxicity was assessed using two designs: independent action and concentration addition. Metal mixture bioavailability was studied by exposing cells to 500 nM of Ag or Cu as a single metal or a mixture (i.e., 500 nM of Cu plus 500 nM of Ag). We found an antagonistic effect in the low-chloride medium and an additive/synergistic effect in the high-chloride medium. We found that Cu dominates over Ag toxicity and bioavailability, indicating a competitive inhibition when both metals are present as free metal ions in the exposure media, which supports our hypothesis. Our study also suggests different mechanisms of uptake of free metal ions and metal complexes. The study adds valuable information to our understanding of the role of metal speciation on metal mixture toxicity and bioavailability. Environ Toxicol Chem 2024;43:105-114. © 2023 SETAC.
Collapse
Affiliation(s)
- Md Ibrahim
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
- Charles River Laboratories, Ashland, Ohio, USA
| | - Jason B Belden
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Matteo Minghetti
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
9
|
Wang J, Wei X, Wu CX, Zhang X, Wei YJ, Liu JH, Wang Y, Chen ML, Wang JH. Interaction of Cellular Uptake of Nanosilver and Metallothionein Stress Expression Elucidated by 2D Single-Cell Analyses Based on LIF and ICP-MS. Anal Chem 2023; 95:16176-16184. [PMID: 37879040 DOI: 10.1021/acs.analchem.3c02906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The exploration of cytology mechanisms of nanosilver uptake, toxicity, and detoxification has become an important issue due to its widespread applications. Previous studies have shown differences in the toxic response of mammalian cells to nanosilver. However, the analysis results based on cell populations ignore the impact of cell uptake heterogeneity on the expression of associated stress proteins and cellular physiological activities. In this respect, this work investigated the interaction between silver uptake and metallothionein (MT) expression in individual cells. In addition, we have also preliminarily elucidated the sensitivity variation to AgNPs by using five cell lines, e.g., LX-2, HepG-2, SK-HEP-1, Huh-7, and MDA-MB-231, by adopting a two-dimensional (2D) high-throughput single-cell analysis platform coupling laser-induced fluorescence (LIF) and inductively coupled plasma mass spectrometry (ICP-MS). We developed a 2D data analysis method for one-to-one unification of fluorescence-mass spectrometry signals corresponding to a specific single cell. It indicated that there is no obvious correlation between cellular silver uptake and cell size, and the low MT expression of cells is more sensitive to silver nanoparticles. For each cell line, significant heterogeneity in MT expression was observed. This provides important information for understanding the potential heterogeneous effects of nanosilver on mammalian biological systems. Overall, detoxified cells are more tolerant to nanosilver and normal cells are more tolerant than cancer cells.
Collapse
Affiliation(s)
- Jiao Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xing Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Cheng-Xin Wu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xuan Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yu-Jia Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jin-Hui Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yu Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
10
|
Scott J, Mortensen S, Minghetti M. Alternatives to Fish Acute Whole Effluent Toxicity (WET) Testing: Predictability of RTgill-W1 Cells and Fathead Minnow Embryos with Actual Wastewater Samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13721-13731. [PMID: 37672649 DOI: 10.1021/acs.est.3c02067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Toxicity assays using fish cells and embryos continue to gain momentum as a more ethical and informative alternative to fish acute toxicity testing. The goal of our study was to test the accuracy of RTgill-W1 cells and the fathead minnow (Pimephales promelas) embryos to predict actual whole effluent toxicity (WET) in the fathead minnow larvae. The three models were compared concurrently using samples of various origins and treatment types. Additionally, the toxicity of reference toxicants (Cd, Cu, NH3-N, 3,4-dichloraniline, and benzalkonium chloride) spiked into a nontoxic wastewater was compared. The toxicity of reference toxicants was tested in isosmotic and hypoosmotic exposure media in RTgill-W1 cells. Of the 28 wastewater samples, 14 induced a toxic response in fish larvae. Embryos predicted 11 of the 14 wastewater samples toxic to the larvae, whereas RTgill-W1 cells predicted the toxicity of all 14 toxic samples to the larvae. In addition, embryos and RTgill-W1 cells predicted toxicity in two and six additional samples, respectively, that were nontoxic to larvae. Exposures in hypoosmotic medium significantly increased sensitivity of RTgill-W1 cells to all reference toxicants, excluding benzalkonium chloride, compared to exposures in isosmotic medium and showed toxicity levels similar to that in larvae. Thus, hypoosmotic exposure medium should be considered for aquatic toxicity testing applications. Overall, both gill cell and embryo models predicted toxicity in the majority of wastewater samples toxic to larvae and demonstrated their applicability for regulatory WET testing.
Collapse
Affiliation(s)
- Justin Scott
- Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, Oklahoma 74078, United States
- Cove Environmental, 3400 W. Lakeview Rd. Stillwater, Oklahoma 74075, United States
| | - Shannon Mortensen
- Cove Environmental, 3400 W. Lakeview Rd. Stillwater, Oklahoma 74075, United States
| | - Matteo Minghetti
- Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
11
|
Oldham D, Black T, Stewart TJ, Minghetti M. Role of the luminal composition on intestinal metal toxicity, bioavailability and bioreactivity: An in vitro approach based on the cell line RTgutGC. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 256:106411. [PMID: 36716651 DOI: 10.1016/j.aquatox.2023.106411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/07/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The bioavailability of metal complexes is poorly understood. To evaluate bioavailability and toxicity of neutral and charged complexes as well as free metal ions, Visual Minteq, a chemical equilibrium model, was used to design media containing different metal species. Two non-essential (silver and cadmium) and two essential (copper and zinc) metals were selected. The rainbow trout (Oncorhynchus mykiss) gut cell line (RTgutGC) was used to investigate bioavailability, bioreactivity and toxicity of the different metal species. Toxicity was measured using a multiple endpoint cytotoxicity assay, bioavailability by measuring intracellular metal concentration, and bioreactivity by quantification of mRNA level of the metal responsive genes, metallothionein (MT), glutathione reductase (GR) and zinc transporter 1 (ZnT1). Speciation calculations showed that silver and cadmium preferentially bind chloride, copper phosphate and bicarbonate, and zinc remained primarily as a free ion. Cysteine avidly complexed with all metals reducing toxicity, bioavailability and bioreactivity. Silver and copper toxicity was not affected by inorganic metal speciation, whereas cadmium and zinc toxicity was decreased by chloride complexation. Moreover, reduction of calcium concentration in the medium increased toxicity and bioavailability of cadmium and zinc. Bioavailability of silver and zinc was reduced by low chloride while cadmium bioavailability was increased by low chloride and in presence of bicarbonate. Copper bioavailability was not affected by the medium composition. Cadmium and silver were more bioreactive, independently from the medium composition, in comparison to copper and zinc (i.e., higher induction of MT and GR). Cadmium was the only metal able to induce MT in presence of cysteine. ZnT1 was induced by cadmium in low-chloride, by zinc in low-chloride low-calcium and by cadmium and copper in the bicarbonate media. Overall, this study demonstrates that metal complexation alone is not sufficient to explain metal toxicity, and that anion exchange mechanisms play a role in metal uptake and bioreactivity.
Collapse
Affiliation(s)
- Dean Oldham
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Thomas Black
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Theodora J Stewart
- Research Management & Innovation Directorate, Kings College London, London, UK
| | - Matteo Minghetti
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
12
|
Scott J, Grewe R, Minghetti M. Fish Embryo Acute Toxicity Testing and the RTgill-W1 Cell Line as In Vitro Models for Whole-Effluent Toxicity (WET) Testing: An In Vitro/In Vivo Comparison of Chemicals Relevant for WET Testing. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2721-2731. [PMID: 35942926 DOI: 10.1002/etc.5455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/05/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
The fathead minnow (Pimephales promelas) fish embryo acute toxicity (FET) test was compared to the fish gill cells (RTgill-W1) in vitro assay and to the fish larvae acute toxicity test to evaluate their sensitivity for whole-effluent toxicity (WET) testing. The toxicity of 12 chemicals relevant for WET testing was compared as proof of principle. The concentrations lethal to 50% of a population (LC50) of embryos were compared to those in fish larvae and to the 50% effect concentration (EC50) in RTgill-W1 cells from previous literature. Along with traditional FET endpoints (coagulation, somite development, tail detachment, and heartbeat), cardiotoxicity was evaluated for WET applicability. Heart rate was measured at LC20 and LC50 values of six subselected chemicals (Cd, Cu, Ni, ammonia, 3,4-dichloraniline, and benzalkonium chloride). In addition, the toxicity of Cd and Ni was evaluated in RTgill-W1 cells exposed in a hypoosmotic medium to evaluate the effect that osmolarity may have on metal toxicity. A significant correlation was found between the FET and larvae LC50 values but not between the RTgill-W1 EC50 and FET LC50 values. Although sensitivity to Ni and Cd was found to increase with hypoosmotic conditions for FET and RTgill-W1 cells, a correlation was only found with removal of Ni from the analysis. Hypoosmotic conditions increased sensitivity with a significant correlation between RTgill-W1 cells and larvae. Cardiotoxicity was shown in three of the five subselected chemicals (Cd, Cu, and 3,4-dichloroaniline). Overall, both in vitro alternative models have shown good predictability of toxicity in fish in vivo for WET chemicals of interest. Environ Toxicol Chem 2022;41:2721-2731. © 2022 SETAC.
Collapse
Affiliation(s)
- Justin Scott
- Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
- Cove Environmental, Stillwater, Oklahoma, USA
| | - Ryan Grewe
- Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
- Cove Environmental, Stillwater, Oklahoma, USA
| | - Matteo Minghetti
- Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
13
|
Insights on the Dynamics and Toxicity of Nanoparticles in Environmental Matrices. Bioinorg Chem Appl 2022; 2022:4348149. [PMID: 35959228 PMCID: PMC9357770 DOI: 10.1155/2022/4348149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/21/2022] [Accepted: 06/29/2022] [Indexed: 12/29/2022] Open
Abstract
The manufacturing rate of nanoparticles (10–100 nm) is steadily increasing due to their extensive applications in the fabrication of nanoproducts related to pharmaceuticals, cosmetics, medical devices, paints and pigments, energy storage etc. An increase in research related to nanotechnology is also a cause for the production and disposal of nanomaterials at the lab scale. As a result, contamination of environmental matrices with nanoparticles becomes inevitable, and the understanding of the risk of nanoecotoxicology is getting larger attention. In this context, focusing on the environmental hazards is essential. Hence, this manuscript aims to review the toxic effects of nanoparticles on soil, water, aquatic, and terrestrial organisms. The effects of toxicity on vertebrates, invertebrates, and plants and the source of exposure, environmental and biological dynamics, and the adverse effects of some nanoparticles are discussed.
Collapse
|
14
|
Ibrahim M, Minghetti M. Effect of chloride concentration on the cytotoxicity, bioavailability, and bioreactivity of copper and silver in the rainbow trout gut cell line, RTgutGC. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:626-636. [PMID: 35362806 DOI: 10.1007/s10646-022-02543-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Chloride (Cl-) influences the bioavailability and toxicity of metals in fish, but the mechanisms by which it influences these processes is poorly understood. Here, we investigated the effect of chloride on the cytotoxicity, bioavailability (i.e., accumulation) and bioreactivity (i.e., induction of mRNA levels of metal responsive genes) of copper (Cu) and silver (Ag) in the rainbow trout gut cell line (RTgutGC). Cells were exposed to metals in media with varying Cl- concentrations (0, 1, 5 and 146 mM). Metal speciation in exposure medium was analyzed using Visual MINTEQ software. Cytotoxicity of AgNO3 and CuSO4 was measured based on two endpoints: metabolic activity and membrane integrity. Cells were exposed to 500 nM of AgNO3 and CuSO4 for 24 h in respective media to determine metal bioavailability and bioreactivity. Ag speciation changes from free ionic (Ag+) to neutral (AgCl), to negatively charged chloride complexes (AgCl2-, AgCl3-) with increasing Cl- concentration in exposure media whereas Cu speciation remains in two forms (Cu2+ and CuHPO4) across all media. Chloride does not affect Ag bioavailability but decreases metal toxicity and bioreactivity. Cells exposed to Ag expressed significantly higher metallothionein mRNA levels in low Cl- media (0, 1, and 5 mM) than in high Cl- medium (146 mM). This suggests that chloride complexation reduces silver bioreactivity and toxicity. Conversely, Cu bioavailability and toxicity were higher in the high chloride medium (146 mM) than in the low Cl- (0, 1, and 5 mM) media, supporting the hypothesis that Cu uptake may occur via a chloride dependent mechanism. CLINICAL TRIALS REGISTRATION: This study did not require clinical trial registration.
Collapse
Affiliation(s)
- Md Ibrahim
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA.
| | - Matteo Minghetti
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
15
|
Mass Cytometry Exploration of Immunomodulatory Responses of Human Immune Cells Exposed to Silver Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14030630. [PMID: 35336005 PMCID: PMC8954471 DOI: 10.3390/pharmaceutics14030630] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Increasing production and application of silver nanoparticles (Ag NPs) have raised concerns on their possible adverse effects on human health. However, a comprehensive understanding of their effects on biological systems, especially immunomodulatory responses involving various immune cell types and biomolecules (e.g., cytokines and chemokines), is still incomplete. In this study, a single-cell-based, high-dimensional mass cytometry approach is used to investigate the immunomodulatory responses of Ag NPs using human peripheral blood mononuclear cells (hPBMCs) exposed to poly-vinyl-pyrrolidone (PVP)-coated Ag NPs of different core sizes (i.e., 10-, 20-, and 40-nm). Although there were no severe cytotoxic effects observed, PVPAg10 and PVPAg20 were excessively found in monocytes and dendritic cells, while PVPAg40 displayed more affinity with B cells and natural killer cells, thereby triggering the release of proinflammatory cytokines such as IL-2, IL-17A, IL-17F, MIP1β, TNFα, and IFNγ. Our findings indicate that under the exposure conditions tested in this study, Ag NPs only triggered the inflammatory responses in a size-dependent manner rather than induce cytotoxicity in hPBMCs. Our study provides an appropriate ex vivo model to better understand the human immune responses against Ag NP at a single-cell level, which can contribute to the development of targeted drug delivery, vaccine developments, and cancer radiotherapy treatments.
Collapse
|
16
|
Kalman J, Torrent F, Navas JM. Cytotoxicity of three graphene-related materials in rainbow trout primary hepatocytes is not associated to cellular internalization. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113227. [PMID: 35077996 DOI: 10.1016/j.ecoenv.2022.113227] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
As a consequence of increasing production and use of graphene-related materials (GRM), their release into the aquatic environment is likely to be expected. Development of appropriate model systems to assess their potential toxicity toward aquatic organisms is undoubtedly needed. Of particular relevance are primary cultures of fish hepatocytes, since they maintain similar functionalities as those of the original tissue. Isolated hepatocytes from rainbow trout (Oncorhynchus mykiss) were exposed to ranges of concentrations of different forms of GRM, two graphene oxides (GO) of sheet-like structure and one tubular-shaped carbon nanofiber (CNF) in the presence or absence of fetal bovine serum (FBS) for 24 and 72 h. Metabolic activity, cell membrane integrity, lysosomal function, reactive oxygen species (ROS) formation and interaction with cytochrome P450 1 A enzyme were assessed by using AlamarBlue, 5-carboxyfluorescein diacetate-acetoxymethyl ester, neutral red uptake, dichlorofluorescein and 7-ethoxyresorufin-O-deethylase (EROD) assays, respectively. In the presence of FBS, GO affected metabolic activity and cell membrane integrity more than CNF, whilst absence of serum further reduced cell viability in GRM-exposed cells. GRM did not alter lysosomal function nor did it induce ROS formation or EROD activity. Intracellular uptake was observed only in the case of CNF when incubated without FBS. Primary hepatocytes from rainbow trout appear to be a suitable model to screen for cytotoxicity and to reveal any interaction with GRM. Results emphasize the role of serum proteins in the toxicological responses following exposure to GRM with important implications for the environmental risk assessment of these nanomaterials.
Collapse
Affiliation(s)
- Judit Kalman
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. de la Coruña, Km 7.5, 28040 Madrid, Spain.
| | - Fernando Torrent
- ETS Ingenieros de Montes, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - José M Navas
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. de la Coruña, Km 7.5, 28040 Madrid, Spain
| |
Collapse
|
17
|
Abstract
Many important discoveries have been made in the field of nanotechnology in the last 40 years. Since then, nanoparticles became nearly ubiquitous. With their spreading use, safety concerns have warranted extensive research of nanotoxicity. This paper offers information about the occurrence, transport, and behaviour of metallic nanoparticles in the aquatic environment. It further summarizes details about parameters that dictate the toxicity of nanoparticles and discusses the general/common mechanisms of their toxicity. This review also focuses on fish exposure to nanoparticles, including the possibility of trophic transport through the food chain. Information on some of the most frequently used metallic nanoparticles, such as silver, gold, and titanium dioxide, is further elaborated on.
Collapse
|
18
|
Opršal J, Knotek P, Zickler GA, Sigg L, Schirmer K, Pouzar M, Geppert M. Cytotoxicity, Accumulation and Translocation of Silver and Silver Sulfide Nanoparticles in contact with Rainbow Trout Intestinal Cells. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105869. [PMID: 34082272 DOI: 10.1016/j.aquatox.2021.105869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Silver nanoparticles (Ag NPs) are widely used in consumer products especially because of their antimicrobial properties. However, this wide usage of Ag NPs is accompanied by their release into the environment where they will be rapidly transformed to other silver species - especially silver sulfide (Ag2S). In the present study, we synthesized Ag NPs and sulfidized them to obtain a core-shell system Ag@Ag2S NPs. Both types of particles form stable dispersions with hydrodynamic diameters of less than 100 nm when diluted in water, but tend to form micrometer-sized agglomerates in biological exposure media. Application of Ag and Ag@Ag2S NPs to rainbow trout intestinal cells (RTgutGC) resulted in a concentration-dependent cytotoxicity for both types of particles, as assessed by a three-endpoint assay for metabolic activity, membrane integrity and lysosomal integrity. The Ag NPs were shown to be slightly more toxic than the Ag@Ag2S NPs. Adding Ag or Ag@Ag2S NPs to RTgutGC cells, grown on a permeable membrane to mimic the intestinal barrier, revealed considerable accumulation of silver for both types of particles. Indeed, the cells significantly attenuated the NP translocation, allowing only a fraction of the metal to translocate across the intestinal epithelium. These findings support the notion that the intestine constitutes an important sink for Ag NPs and that, despite the reduced cytotoxicity of a sulfidized NP form, the particles can enter fish where they may constitute a long-term source for silver ion release and cytotoxicity.
Collapse
Affiliation(s)
- Jakub Opršal
- University of Pardubice, Faculty of Chemical Technology, Institute of Environmental and Chemical Engineering, 53210 Pardubice, Czech Republic; Eawag - Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Petr Knotek
- University of Pardubice, Faculty of Chemical Technology, Department of General and Inorganic Chemistry, 53210 Pardubice, Czech Republic
| | - Gregor A Zickler
- University of Salzburg, Department of Chemistry and Physics of Materials, 5020 Salzburg, Austria
| | - Laura Sigg
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich, Switzerland
| | - Kristin Schirmer
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland
| | - Miloslav Pouzar
- University of Pardubice, Faculty of Chemical Technology, Institute of Environmental and Chemical Engineering, 53210 Pardubice, Czech Republic; Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, 53002 Pardubice, Czech Republic
| | - Mark Geppert
- Eawag - Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; University of Salzburg, Department of Biosciences, 5020 Salzburg, Austria.
| |
Collapse
|
19
|
Scott J, Belden JB, Minghetti M. Applications of the RTgill-W1 Cell Line for Acute Whole-Effluent Toxicity Testing: In Vitro-In Vivo Correlation and Optimization of Exposure Conditions. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1050-1061. [PMID: 33617022 DOI: 10.1002/etc.4947] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/16/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
The cell line RTgill-W1 was evaluated as an in vitro alternative model for acute fish whole-effluent toxicity (WET) testing. We determined the 50% effective concentration (EC50) that reduces the viability of RTgill-W1 cells for selected toxicants commonly found in effluent samples and correlated those values with the respective 50% lethal concentration (LC50) of freshwater (fathead minnow, Pimephales promelas) and marine (sheepshead minnow, Cyprinodon variegatus) fish species obtained from the literature. Excluding low water-soluble organics and the volatile sodium hypochlorite, significant correlations were measured for metal, metalloids, ammonia, and higher water-soluble organics between in vitro EC50 values and in vivo LC50 values for both species. Typically, toxicity studies with RTgill-W1 cells are conducted by adding salts to the exposure medium, which may affect the bioavailability of toxicants. Osmotic tolerance of RTgill-W1 cells was found between 150 and 450 mOsm/kg, which were set as the hypoosmotic and hyperosmotic limits. A subset of the toxicants were then reexamined in hypoosmotic and hyperosmotic media. Copper toxicity decreased in hyperosmotic medium, and nickel toxicity increased in hypoosmotic and hyperosmotic media. Linear alkylbenzene sulfonate toxicity was not affected by the medium osmolality. Overall, RTgill-W1 cells have shown potential for applications in measuring metal, metalloids, ammonia, and water-soluble organic chemicals in acute WET tests, as well as complementing current toxicity identification and reduction evaluation strategies. In the present study, RTgill-W1 cells have been established as a valid animal alternative for WET testing, and we show that through manipulation of medium osmotic ranges, sensitivity to nickel was enhanced. Environ Toxicol Chem 2021;40:1050-1061. © 2020 SETAC.
Collapse
Affiliation(s)
- Justin Scott
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Jason B Belden
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Matteo Minghetti
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
20
|
Quevedo AC, Lynch I, Valsami-Jones E. Silver nanoparticle induced toxicity and cell death mechanisms in embryonic zebrafish cells. NANOSCALE 2021; 13:6142-6161. [PMID: 33734251 DOI: 10.1039/d0nr09024g] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cell death is the process that regulates homeostasis and biochemical changes in healthy cells. Silver nanoparticles (AgNPs) act as powerful cell death inducers through the disruption of cellular signalling functions. In this study, embryonic zebrafish cells (ZF4) were used as a potential early-stage aquatic model to evaluate the molecular and cell death mechanisms implicated in the toxicity of AgNPs and Ag+. Here, a low, medium, and high concentration (2.5, 5, and 10 μg mL-1) of three different sizes of AgNPs (10, 30 and 100 nm) and ionic Ag+ (1, 1.5 and 2 μg mL-1) were used to investigate whether the size of the nanomaterial, ionic form, and mass concentration were related to the activation of particular cell death mechanisms and/or induction of different signalling pathways. Changes in the physicochemical properties of the AgNPs were also assessed in the presence of complex medium (cell culture) and reference testing medium (ultra-pure water). Results demonstrated that AgNPs underwent dissolution, as well as changes in hydrodynamic size, zeta potential and polydispersity index in both tested media depending on particle size and concentration. Similarly, exposure dose played a key role in regulating the different cell death modalities (apoptosis, necrosis, autophagy), and the signalling pathways (repair mechanisms) in cells that were activated in the attempt to overcome the induced damage. This study contributes to the 3Rs initiative to replace, reduce and refine animal experimentation through the use of alternative models for nanomaterials assessment.
Collapse
Affiliation(s)
- Ana C Quevedo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, Edgbaston, UK.
| | | | | |
Collapse
|
21
|
Chanda D, Dudefoi W, Anadu J, Minghetti M. Evaluation of the effect of silver and silver nanoparticles on the function of selenoproteins using an in-vitro model of the fish intestine: The cell line RTgutGC. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111930. [PMID: 33472113 DOI: 10.1016/j.ecoenv.2021.111930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/21/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
Emerging research in mammalian cells suggests that ionic (AgNO3) and nano silver (AgNP) can disrupt the metabolism of selenium which plays a vital role in oxidative stress control. However, the effect of silver (Ag) on selenoprotein function in fish is poorly understood. Here we evaluate the effects of AgNO3 and citrate coated AgNP (cit-AgNP) on selenoprotein function and oxidative stress using a fish cell line derived from the rainbow trout (Oncorhynchus mykiss) intestine (RTgutGC). Cell viability was evaluated using a cytotoxicity assay which measures simultaneously metabolic activity, membrane integrity and lysosome integrity. Cells exposed to equimolar amounts of AgNO3 and cit-AgNP accumulated the same amount of silver intracellularly, however AgNO3 was more toxic than cit-AgNP. Selenoenzymes glutathione peroxidase (GPx) and thioredoxin reductase (TrxR) mRNA levels and enzyme activity were measured. While mRNA levels remained unaffected by AgNO3 or cit-AgNP, the enzyme activity of GPx was inhibited by AgNO3 (1 µM) and cit-AgNP (5 µM) and TrxR activity was inhibited by AgNO3 (0.4 µM) and cit-AgNP (1, 5 µM). Moreover, cells exposed to 1 µM of AgNO3 and cit-AgNP showed an increase in metallothionein b (MTb) mRNA levels at 24 h of exposure, confirming the uptake of silver, but returned to control levels at 72 h suggesting silver scavenging by MTb. Oxidative stress was not observed at any of the doses of AgNO3 or cit-AgNP tested. Overall, this study shows that AgNO3 or cit-AgNP can inhibit the activity of selenoenzymes but do not induce oxidative stress in RTgutGC cells.
Collapse
Affiliation(s)
- Debarati Chanda
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - William Dudefoi
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA; Department of Earth and Planetary Sciences, Washington University, Saint Louis, MO, USA
| | - Joshua Anadu
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Matteo Minghetti
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
22
|
Kuehr S, Kaegi R, Maletzki D, Schlechtriem C. Testing the bioaccumulation potential of manufactured nanomaterials in the freshwater amphipod Hyalella azteca. CHEMOSPHERE 2021; 263:127961. [PMID: 32829223 DOI: 10.1016/j.chemosphere.2020.127961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/20/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
Standardized experimental approaches for the quantification of the bioaccumulation potential of nanomaterials in general and in (benthic) invertebrates in particular are currently lacking. We examined the suitability of the benthic freshwater amphipod Hyalella azteca for the examination of the bioaccumulation potential of nanomaterials. A flow-through test system that allows the generation of bioconcentration and biomagnification factors was applied. The feasibility of the system was confirmed in a 2-lab comparison study. By carrying out bioconcentration and biomagnification studies with gold, titanium dioxide and silver nanoparticles as well as dissolved silver (AgNO3) we were able to assess the bioaccumulation potential of different types of nanomaterials and their exposure pathways. For this, the animals were examined for their total metal body burden using inductively coupled mass spectroscopy (ICP-MS) and for the presence of nanoparticulate burdens using single-particle ICP-MS. The role of released ions was highlighted as being very important for the bioavailability and bioaccumulation of metals from nanoparticles for both examined uptake paths examined (bioconcentration and biomagnification). In 2018 a tiered testing strategy for engineered nanomaterials was proposed by Handy et al. that may allow a waiver of bioaccumulation fish studies using inter alia invertebrates. Data gained in studies carried out with invertebrates like the developed Hyalella azteca test may be included in this proposed tiered testing strategy.
Collapse
Affiliation(s)
- Sebastian Kuehr
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany; Department Chemistry and Biology, "Ecotoxicology" Work Group, University of Siegen, Germany
| | - R Kaegi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - D Maletzki
- German Environment Agency, 12307, Berlin-Marienfelde, Germany
| | - C Schlechtriem
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany; Department Chemistry and Biology, "Ecotoxicology" Work Group, University of Siegen, Germany; Institute of Environmental Research (Biology V), RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
23
|
Ibrahim M, Oldham D, Minghetti M. Role of metal speciation in the exposure medium on the toxicity, bioavailability and bio-reactivity of copper, silver, cadmium and zinc in the rainbow trout gut cell line (RTgutGC). Comp Biochem Physiol C Toxicol Pharmacol 2020; 236:108816. [PMID: 32502601 DOI: 10.1016/j.cbpc.2020.108816] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/24/2020] [Accepted: 05/29/2020] [Indexed: 12/15/2022]
Abstract
The role of metal speciation on metal bioavailability, bio-reactivity and toxicity at the fish intestine is poorly understood. To investigate these processes, we used an in vitro model of the rainbow trout (Oncorhynchus mykiss) intestine, the RTgutGC cell line. Cells were exposed to two essential metals (copper and zinc) and two non-essential metals (cadmium and silver) in a medium of well-defined composition, which allowed the determination of metal speciation in solution. Concentrations resulting in a 50% cell viability reduction (EC50) were measured using a viability assay based on two endpoints: metabolic activity and membrane integrity. Metal bioavailability and bio-reactivity was studied at non-toxic (300 nM all metals) and toxic (EC10; Ag-0.6, Cu-0.9, Cd-3, and Zn-9 μM) concentrations. Bioavailability (i.e. intracellular metal accumulation) was determined by ICP-MS, while bio-reactivity (i.e. induction of a metal specific transcriptional response) was determined by measuring the mRNA levels of a known biomarker of metal exposure (i.e. metallothionein) and of copper and zinc transporters (i.e. ATP7A and ZnT1). Dominant metal species in the exposure medium were Zn2+, CuHPO4, CdCl+, and AgCl2- respectively for Zn, Cu, Cd, and Ag. The EC50s showed the metal toxicity hierarchy: Ag > Cu > Cd > Zn. In RTgutGC cells, essential metal homeostasis was tightly regulated while non-essential metals accumulated more readily. Non-essential metals were also more bio-reactive inducing higher MT and ZnT1 mRNA levels. Taken together these findings indicate that metal toxicity in RTgutGC cannot solely be explained by extracellular metal speciation but requires the evaluation of metal bioavailability and bio-reactivity.
Collapse
Affiliation(s)
- Md Ibrahim
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Dean Oldham
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Matteo Minghetti
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
24
|
Xu L, Xu M, Wang R, Yin Y, Lynch I, Liu S. The Crucial Role of Environmental Coronas in Determining the Biological Effects of Engineered Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003691. [PMID: 32780948 DOI: 10.1002/smll.202003691] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/26/2020] [Indexed: 06/11/2023]
Abstract
In aquatic environments, a large number of ecological macromolecules (e.g., natural organic matter (NOM), extracellular polymeric substances (EPS), and proteins) can adsorb onto the surface of engineered nanomaterials (ENMs) to form a unique environmental corona. The presence of environmental corona as an eco-nano interface can significantly alter the bioavailability, biocompatibility, and toxicity of pristine ENMs to aquatic organisms. However, as an emerging field, research on the impact of the environmental corona on the fate and behavior of ENMs in aquatic environments is still in its infancy. To promote a deeper understanding of its importance in driving or moderating ENM toxicity, this study systemically recapitulates the literature of representative types of macromolecules that are adsorbed onto ENMs; these constitute the environmental corona, including NOM, EPS, proteins, and surfactants. Next, the ecotoxicological effects of environmental corona-coated ENMs on representative aquatic organisms at different trophic levels are discussed in comparison to pristine ENMs, based on the reported studies. According to this analysis, molecular mechanisms triggered by pristine and environmental corona-coated ENMs are compared, including membrane adhesion, membrane damage, cellular internalization, oxidative stress, immunotoxicity, genotoxicity, and reproductive toxicity. Finally, current knowledge gaps and challenges in this field are discussed from the ecotoxicology perspective.
Collapse
Affiliation(s)
- Lining Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Ruixia Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Iseult Lynch
- School of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
25
|
Clark NJ, Woznica W, Handy RD. Dietary bioaccumulation potential of silver nanomaterials compared to silver nitrate in wistar rats using an ex vivo gut sac technique. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110745. [PMID: 32460051 DOI: 10.1016/j.ecoenv.2020.110745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 05/21/2023]
Abstract
Chronic dietary bioaccumulation tests with rodents are required for new substances, including engineered nanomaterials (ENMs), in order to provide information on the potential hazards to human health. However, screening tools are needed to manage the diversity of ENMs and alternative methods are desirable with respect to animal welfare. Here, an ex vivo gut sac method was used to estimate the dietary bioaccumulation potential of silver nanomaterials. The entire gastrointestinal tract (except the caecum) was removed and filled with a gut saline containing 1 mg L-1 of Ag as either AgNO3, silver nanoparticles (Ag NPs) or silver sulphide nanoparticles (Ag2S NPs), and compared to controls with no added Ag. The gut sacs were incubated for 4 h, rinsed to remove excess media, and the total Ag determined in the mucosa and muscularis. There was no detected Ag in the control treatments. Within the Ag treatments, 1.4-22% of the exposure dose was associated with the tissues and serosal saline. Within the mucosa of the AgNO3 treatment, the highest Ag concentration was associated with the intestinal regions (3639-7087 ng g-1) compared to the stomach (639 ± 128 ng g-1). This pattern was also observed in the Ag NP and Ag2S NP treatments, but there was no significant differences between any Ag treatments for the mucosa. However, differences between treatments were observed in the muscularis concentration. For example, both the Ag NP (907 ± 284 ng g -1) and Ag2S NP (1482 ± 668 ng g-1) treatments were significantly lower compared to the AgNO3 treatment (2514 ± 267 ng g-1). The duodenum demonstrated serosal accumulation in both the AgNO3 (~10 ng mL-1) and Ag NP (~3 ng mL-1) treatments. The duodenum showed some of the highest Ag accumulation with 41, 61 and 57% of the total Ag in the mucosa compared to the muscularis for the AgNO3, Ag NP and Ag2S NP treatments, respectively. In conclusion, the ex vivo gut sac method demonstrates the uptake of Ag in all Ag treatments, with the duodenum the site of highest accumulation. Based on the serosal saline accumulation, the ranked order of accumulation is AgNO3 > Ag NPs > Ag2S NPs.
Collapse
Affiliation(s)
- Nathaniel J Clark
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Waldemar Woznica
- Biological Services Unit, University of Plymouth, Plymouth, United Kingdom
| | - Richard D Handy
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom.
| |
Collapse
|
26
|
Cazenave J, Ale A, Bacchetta C, Rossi AS. Nanoparticles Toxicity in Fish Models. Curr Pharm Des 2019; 25:3927-3942. [DOI: 10.2174/1381612825666190912165413] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/29/2019] [Indexed: 12/27/2022]
Abstract
The increasing production and use of nanoparticles (NP) have raised concerns regarding the potential
toxicity to human and environmental health. In this review, we address the up to date information on nanotoxicity
using fish as models. Firstly, we carried out a systematic literature search (articles published up to February 2019
in the Scopus database) in order to quantitatively assess the scientific research on nanoparticles, nanotoxicity and
fish. Next, we carried out a narrative synthesis on the main factors and mechanisms involved in NP toxicity in
fish. According to the bibliometric analysis, there is a low contribution of scientific research on nanotoxicity
compared with the general nanoparticles scientific production. The literature search also showed that silver and
titanium NP are the most studied nanomaterials and Danio rerio is the fish species most used. In comparison with
freshwater fish, the effects of nanomaterials on marine fish have been little studied. After a non-systematic literature
analysis, we identified several factors involved in nanotoxicity, as well as the effects and main toxicity
mechanisms of NP on fish. Finally, we highlighted the knowledge gaps and the need for future research.
Collapse
Affiliation(s)
- Jimena Cazenave
- Instituto Nacional de Limnologia, CONICET, UNL, Santa Fe, Argentina, Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina
| | - Analía Ale
- Instituto Nacional de Limnologia, CONICET, UNL, Santa Fe, Argentina, Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina
| | - Carla Bacchetta
- Instituto Nacional de Limnologia, CONICET, UNL, Santa Fe, Argentina, Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina
| | - Andrea Silvana Rossi
- Instituto Nacional de Limnologia, CONICET, UNL, Santa Fe, Argentina, Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina
| |
Collapse
|
27
|
Bussolaro D, Wright SL, Schnell S, Schirmer K, Bury NR, Arlt VM. Co-exposure to polystyrene plastic beads and polycyclic aromatic hydrocarbon contaminants in fish gill (RTgill-W1) and intestinal (RTgutGC) epithelial cells derived from rainbow trout (Oncorhynchus mykiss). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:706-714. [PMID: 30849588 PMCID: PMC6794159 DOI: 10.1016/j.envpol.2019.02.066] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 05/02/2023]
Abstract
Microscopic plastic (MP) particles are a ubiquitous contaminant in aquatic environments, which may bind hydrophobic chemicals, such as polycyclic aromatic hydrocarbons (PAHs), altering their environmental fate and interactions with biota. Using rainbow trout gill (RTgill-W1) and intestinal (RTgutGC) epithelial cells we investigated the effects of polystyrene microbeads (PS-MBs; 220 nm) on the cyto- and genotoxicity of the environmental pollutants benzo[a]pyrene (BaP) and 3-nitrobenzanthrone (3-NBA) over 48 h (0, 0.1, 1 and 10 μM). The Alamar Blue bioassay, used to assess cytotoxicity, showed that both pollutants significantly decreased cell viability by 10-20% at 10 μM in both cell lines after 48 h whereas PS-MBs (5 or 50 μg mL-1) were non-toxic. Cytotoxicity in cells treated with PS-MBs together with BaP or 3-NBA were similar to those observed after exposure to BaP or 3-NBA alone. Using the formamidopyrimidine-DNA glycosylase (FPG)-modified comet assay 3-NBA, but not BaP, induced DNA damage in RTgutGC cells at 10 μM (∼10% tail DNA in the absence and ∼15% tail DNA in the presence of FPG versus ∼1% in controls), whereas PS-MBs alone showed no detrimental effects. Interestingly, comet formation was substantially increased (∼4-fold) when RTgutGC cells were exposed to PS-MBs (50 μg mL-1) and 10 μM 3-NBA compared to cells treated with 3-NBA alone. Further, using 32P-postlabelling we observed strong DNA adduct formation in 3-NBA-exposed RTgutGC cells (∼900 adducts/108 nucleotides). 3-NBA-derived DNA adduct formation was significantly decreased (∼20%) when RTgutGC cells were exposed to MB and 3-NBA compared to cells treated with 3-NBA alone. Our results show that PS-MBs impact on the genotoxicity of 3-NBA, causing a significant increase in DNA damage as measured by the comet assay in the intestinal cell line, providing proof of principle that MPs may alter the genotoxic potential of PAHs in fish cells.
Collapse
Affiliation(s)
- Daniel Bussolaro
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, London, SE1 9NH, United Kingdom; Federal Institute of Education, Science and Technology of Paraná, Curitiba Campus, CEP: 80.230 - 150., Curitiba, PR, Brazil
| | - Stephanie L Wright
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, London, SE1 9NH, United Kingdom
| | - Sabine Schnell
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, London, SE1 9NH, United Kingdom
| | - Kristin Schirmer
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Überlandstrasse 133, 8600, Dübendorf, Switzerland
| | - Nicolas R Bury
- School of Science, Technology and Engineering, University of Suffolk, James Hehir Building, Neptune Quay, Ipswich, IP4 1QJ, Suffolk, United Kingdom.
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, London, SE1 9NH, United Kingdom; NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, King's College London in partnership with Public Health England and Imperial College London, Franklin-Wilkins Building, London, SE1 9NH, United Kingdom
| |
Collapse
|
28
|
Jorge de Souza TA, Rosa Souza LR, Franchi LP. Silver nanoparticles: An integrated view of green synthesis methods, transformation in the environment, and toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:691-700. [PMID: 30658305 DOI: 10.1016/j.ecoenv.2018.12.095] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 05/24/2023]
Abstract
Nowadays, silver nanoparticles (AgNPs) are the most widely used nanoparticles (NPs) in the industry due to their peculiar biocidal features. However, the use of these NPs still runs into limitations mainly because of the low efficiency of environmental friendly synthesis methods and lack of size standardization. When NPs are release in the environment, they can be transformed by oxidation, adsorption or aggregation. These modification shows a dual role in toxic response of AgNPs. The adsorption of natural organic matter from environment on AgNPs, for example, can decrease their toxicity. Otherwise oxidation occurred in the environment is also able to increase the release of toxic Ag+ from NPs. Thus, the current review proposes an integrated approach of AgNP synthetic methods using bacteria, fungi, and plants, AgNP cytotoxic and genotoxic effects as well as their potential therapeutic applications are also presented.
Collapse
Affiliation(s)
- Tiago Alves Jorge de Souza
- Department of Genetics, FMRP-USP, University of São Paulo - USP, Bloco G. Av. Bandeirantes, 3900, Monte Alegre Zip Code: 14049-900, Ribeirão Preto, SP, Brazil; Department of Agronomic Engineering, Adventist University of São Paulo - UNASP, Engenheiro Coelho, SP, Brazil.
| | | | - Leonardo Pereira Franchi
- Department of Genetics, FMRP-USP, University of São Paulo - USP, Bloco G. Av. Bandeirantes, 3900, Monte Alegre Zip Code: 14049-900, Ribeirão Preto, SP, Brazil; Department of Chemistry, FFCLRP-USP, University of São Paulo - USP, Ribeirão Preto, SP, Brazil
| |
Collapse
|
29
|
Liu H, Wang X, Wu Y, Hou J, Zhang S, Zhou N, Wang X. Toxicity responses of different organs of zebrafish (Danio rerio) to silver nanoparticles with different particle sizes and surface coatings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:414-422. [PMID: 30579210 DOI: 10.1016/j.envpol.2018.12.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/13/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Silver nanoparticles (AgNPs) in aquatic ecosystems are toxic to aquatic organisms. In this study, we aimed to investigate the toxicities and molecular mechanisms of AgNPs with different surface coatings (sodium citrate and polyvinylpyrrolidone) and particle sizes (20 nm and 100 nm) in the gills, intestines, and muscles of zebrafish after 96 h of exposure. Our results indicated that the contribution of particle size to AgNP toxicity was greater than that of the surface coating. Citrate-coated AgNPs were more toxic than polyvinylpyrrolidone-coated AgNPs, and 20-nm AgNPs were more toxic than 100-nm AgNPs. The toxic effects of AgNPs to the tissues were in the order intestines > gills > muscles. Differential expression of genes with the different AgNPs confirmed that they had toxic effects in the zebrafish tissues at the molecular level. Our comprehensive comparison of the toxicities of different AgNPs to aquatic ecosystems will be helpful for further risk assessments of AgNPs.
Collapse
Affiliation(s)
- Haiqiang Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Xinxin Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Yazhou Wu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Jing Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| | - Siyi Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Nan Zhou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Xiangke Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| |
Collapse
|
30
|
Yang Y, Xu S, Xu G, Liu R, Xu A, Chen S, Wu L. Effects of ionic strength on physicochemical properties and toxicity of silver nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:1088-1096. [PMID: 30180317 DOI: 10.1016/j.scitotenv.2018.08.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/01/2018] [Accepted: 08/04/2018] [Indexed: 06/08/2023]
Abstract
In the environment, silver nanoparticles (AgNPs) undergo a number of potential transformations, such as aggregation, dissolution, and redox reactions. However, the transformation in ionic strength condition, as well as their related toxicity was not quite clear, especially in the in vivo system. In the present study, we comprehensively evaluated three different characteristics (ddH2O, EPA water and K+ medium (KM)) mediated changes in the physical morphology of AgNPs and the alteration of the toxicity to Caenorhabditis elegans (C. elegans). Our results showed besides the changes of AgNPs behavior such as the transformation of morphological, with the transmission electron microscopy we found for the first time that smaller nanoparticles (<5 nm) appeared around the pristine AgNPs after incubation in EPA or KM for 5 days. Together with these changes, the toxicity of AgNPs to C. elegans changed significantly, showing that a higher ionic strength medium resulted in greater toxicity to C. elegans, as measured by germ cell apoptosis, brood size and lifespan. More importantly, our results indicated that the higher toxicity of AgNPs to C. elegans reproduction was probably related to the appearance of the smaller-size AgNPs in higher ionic strength media. These findings highlight that toxicity assessments for the release of nanomaterial to the environment need to be improved to assess environmental safety more accurately.
Collapse
Affiliation(s)
- Yaning Yang
- Department of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Shengmin Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China.
| | - Guangmin Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China
| | - Rui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
| | - An Xu
- Department of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China
| | - Shaopeng Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China
| | - Lijun Wu
- Department of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China.
| |
Collapse
|
31
|
Yang Y, Xu G, Xu S, Chen S, Xu A, Wu L. Effect of ionic strength on bioaccumulation and toxicity of silver nanoparticles in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:291-298. [PMID: 30205331 DOI: 10.1016/j.ecoenv.2018.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/29/2018] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
The behavior of silver nanoparticles (AgNPs) is influenced by environmental factors which altered their bioaccumulation and toxicity. In this study, we comprehensively investigated the influence of ionic strength on the ecotoxicity of AgNPs to Caenorhabditis elegans (C. elegans) through the transfer from Escherichia coli (E. coli). Three different exposure media (deionized water, EPA water and KM) were used to pretreat AgNPs. E. coli was then exposed to these transformed AgNPs and fed to C. elegans. Our results indicated that ionic strength significantly enhanced the reproductive toxicity (germ cell corpses, brood size and lifespan) and neurotoxicity (head trash and body bend) of AgNPs in C. elegans. Moreover, ICP-MS analysis showed that higher ionic strength increased bioaccumulation of AgNPs in E. coli and the resulting Ag body burden of E. coli affected the transfer of AgNPs to C. elegans, which might be responsible for the increased toxicity to nematodes. Furthermore, we also found that the reactive oxygen species (ROS) level in C. elegans was significantly increased after exposed to E. coli contaminated with ionic strength-treated AgNPs, which might play another important role for the enhanced toxicity of AgNPs. Overall, this study showed that the bioavailability and potential ecotoxicity of AgNPs are associated with the environmental factors.
Collapse
Affiliation(s)
- Yaning Yang
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Guangmin Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China
| | - Shengmin Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China.
| | - Shaopeng Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China
| | - An Xu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China
| | - Lijun Wu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China.
| |
Collapse
|
32
|
Antony Jesu Prabhu P, Stewart T, Silva M, Amlund H, Ørnsrud R, Lock EJ, Waagbo R, Hogstrand C. Zinc uptake in fish intestinal epithelial model RTgutGC: Impact of media ion composition and methionine chelation. J Trace Elem Med Biol 2018; 50:377-383. [PMID: 30262308 DOI: 10.1016/j.jtemb.2018.07.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 12/16/2022]
Abstract
Apical uptake of zinc as ionic Zn(II) or as Zn-methionine (Zn-Met) was studied in RTgutGC cell line in vitro under media compositions mirroring the gut luminal ionic concentration of freshwater (FW) and seawater (SW) acclimated salmonids. Viability of the RTgutGC cells exposed to experimental media preparations showed a time-dependent decrease in SW treated cells, with the effect being significant at 48 h (P < 0.01), but not at 12 h or 24 h. Half effective concentration of Zn exposure over 12 h (EC50, in μM) was not differentially affected by media composition (FW, 59.7 ± 12.1 or SW, 83.2 ± 7.2; mean ± SE, P = 0.43). Zinc (65Zn) influx in RTgutGC was not different between FW or SW treated cells, but increased significantly in the presence of methionine (2 mM, L-Met or DL-Met). An interaction effect was observed between Zn concentration and media ionic composition on the impact of Met on apical Zn uptake (L-met, P < 0.001; DL-met, P = 0.02). In the presence of Met, apical Zn uptake in SW medium was significantly lower compared to FW, but only at higher Zn concentrations (12 and 25 μM, P < 0.01). Further, Met facilitated Zn uptake was reduced in cells treated with an amino acid transport system blocker with the effect being more significant and stereospecific in SW ionic conditions. The findings of this study showed that (i) Zn speciation in the presence of Met improved apical Zn uptake in RTgutGC cells and Zn-Met species were possibly taken up through Met uptake system. (ii) The effect was differentially affected by the ionic composition of the medium. Implications and limitations of the observations towards practical Zn nutrition of salmonids are discussed.
Collapse
Affiliation(s)
- P Antony Jesu Prabhu
- Fish Nutrition program, Institute of Marine Research, P.O. Box 1870, 5817, Bergen, Norway; Metal metabolism group, Department of Nutritional Sciences, Kings College London, Franklin-Wilkins Building, 150 Stamford street, SE1 9NH, London, United Kingdom.
| | - T Stewart
- Metal metabolism group, Department of Nutritional Sciences, Kings College London, Franklin-Wilkins Building, 150 Stamford street, SE1 9NH, London, United Kingdom
| | - M Silva
- Fish Nutrition program, Institute of Marine Research, P.O. Box 1870, 5817, Bergen, Norway; Institute of Biology, University of Bergen, P.O. Box 7803, 5020, Bergen, Norway
| | - H Amlund
- Fish Nutrition program, Institute of Marine Research, P.O. Box 1870, 5817, Bergen, Norway
| | - R Ørnsrud
- Fish Nutrition program, Institute of Marine Research, P.O. Box 1870, 5817, Bergen, Norway
| | - E-J Lock
- Fish Nutrition program, Institute of Marine Research, P.O. Box 1870, 5817, Bergen, Norway
| | - R Waagbo
- Fish Nutrition program, Institute of Marine Research, P.O. Box 1870, 5817, Bergen, Norway; Institute of Biology, University of Bergen, P.O. Box 7803, 5020, Bergen, Norway
| | - C Hogstrand
- Metal metabolism group, Department of Nutritional Sciences, Kings College London, Franklin-Wilkins Building, 150 Stamford street, SE1 9NH, London, United Kingdom
| |
Collapse
|
33
|
Lead JR, Batley GE, Alvarez PJJ, Croteau MN, Handy RD, McLaughlin MJ, Judy JD, Schirmer K. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects-An updated review. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2029-2063. [PMID: 29633323 DOI: 10.1002/etc.4147] [Citation(s) in RCA: 282] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/14/2018] [Accepted: 03/29/2018] [Indexed: 05/21/2023]
Abstract
The present review covers developments in studies of nanomaterials (NMs) in the environment since our much cited review in 2008. We discuss novel insights into fate and behavior, metrology, transformations, bioavailability, toxicity mechanisms, and environmental impacts, with a focus on terrestrial and aquatic systems. Overall, the findings were that: 1) despite substantial developments, critical gaps remain, in large part due to the lack of analytical, modeling, and field capabilities, and also due to the breadth and complexity of the area; 2) a key knowledge gap is the lack of data on environmental concentrations and dosimetry generally; 3) substantial evidence shows that there are nanospecific effects (different from the effects of both ions and larger particles) on the environment in terms of fate, bioavailability, and toxicity, but this is not consistent for all NMs, species, and relevant processes; 4) a paradigm is emerging that NMs are less toxic than equivalent dissolved materials but more toxic than the corresponding bulk materials; and 5) translation of incompletely understood science into regulation and policy continues to be challenging. There is a developing consensus that NMs may pose a relatively low environmental risk, but because of uncertainty and lack of data in many areas, definitive conclusions cannot be drawn. In addition, this emerging consensus will likely change rapidly with qualitative changes in the technology and increased future discharges. Environ Toxicol Chem 2018;37:2029-2063. © 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Jamie R Lead
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Graeme E Batley
- Centre for Environmental Contaminants Research, CSIRO Land and Water, Kirrawee, New South Wales, Australia
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | | | | | | | - Jonathan D Judy
- Soil and Water Sciences Department, University of Florida, Gainesville, Florida, USA
| | - Kristin Schirmer
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland
- School of Architecture, Civil and Environmental Engineering, Federal Institute of Technology Lausanne, Lausanne, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology Zürich, Zürich, Switzerland
| |
Collapse
|
34
|
Felix LC, Ortega VA, Goss GG. Cellular uptake and intracellular localization of poly (acrylic acid) nanoparticles in a rainbow trout (Oncorhynchus mykiss) gill epithelial cell line, RTgill-W1. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:58-68. [PMID: 28917946 DOI: 10.1016/j.aquatox.2017.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 06/07/2023]
Abstract
The ever-growing production of engineered nanoparticles (NPs) for use in many agricultural, commercial, consumer, and industrial applications will lead to their accidental or intentional release into the environment. Potential routes of environmental exposure include manufacturing or transport spills, disposal of NP-containing products down the drain and/or in landfills, as well as direct usage on agricultural land. Therefore, NPs will inevitably contaminate aquatic environments and interact with resident organisms. However, there is limited information regarding the mechanisms that regulate NP transport into fish from the environment. Thus, our primary objective was to elucidate the mechanism(s) underlying cellular uptake and intracellular fate of 3-9nm poly (acrylic acid) NPs loaded with the fluorescent dye Nile red using a rainbow trout (Oncorhynchus mykiss) gill epithelial cell line (RTgill-W1). In vitro measurements with NP-treated RTgill-W1 cells were carried out using a combination of laser scanning confocal microscopy, flow cytometry, fluorescent biomarkers (transferrin, cholera toxin B subunit, and dextran), endocytosis inhibitors (chlorpromazine, genistein, and wortmannin), and stains (4', 6-diamidino-2-phenylindole, Hoechst 33342, CellMask Deep Red, and LysoTracker Yellow). Clathrin-mediated endocytosis (CME), caveolae-mediated endocytosis and macropinocytosis pathways were active in RTgill-W1 cells, and these pathways were exploited by the non-cytotoxic NPs to enter these cells. We have demonstrated that NP uptake by RTgill-W1 cells was impeded when clathrin-coated pit formation was blocked by chlorpromazine. Furthermore, colocalization analysis revealed a moderate positive relationship between NPs and LysoTracker Yellow-positive lysosomal compartments indicating that CME was the dominant operative mechanism involved in NP internalization by RTgill-W1 cells. Overall, our results clearly show that fish gill epithelial cells internalized NPs via energy-dependent endocytotic processes. This study enhances our understanding of complex NP-cell interactions and the results obtained in vitro imply a potential risk to aquatic organisms.
Collapse
Affiliation(s)
- Lindsey C Felix
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada.
| | - Van A Ortega
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada.
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada; National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta, T6G 2M9, Canada.
| |
Collapse
|
35
|
Minghetti M, Drieschner C, Bramaz N, Schug H, Schirmer K. A fish intestinal epithelial barrier model established from the rainbow trout (Oncorhynchus mykiss) cell line, RTgutGC. Cell Biol Toxicol 2017; 33:539-555. [PMID: 28251411 PMCID: PMC5658468 DOI: 10.1007/s10565-017-9385-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/02/2017] [Indexed: 12/22/2022]
Abstract
The intestine of fish is a multifunctional organ: lined by only a single layer of specialized epithelial cells, it has various physiological roles including nutrient absorption and ion regulation. It moreover comprises an important barrier for environmental toxicants, including metals. Thus far, knowledge of the fish intestine is limited largely to in vivo or ex vivo investigations. Recently, however, the first fish intestinal cell line, RTgutGC, was established, originating from a rainbow trout (Oncorhynchus mykiss). In order to exploit the opportunities arising from RTgutGC cells for exploring fish intestinal physiology and toxicology, we present here the establishment of cells on commercially available permeable membrane supports and evaluate its suitability as a model of polarized intestinal epithelia. Within 3 weeks of culture, RTgutGC cells show epithelial features by forming tight junctions and desmosomes between adjacent cells. Cells develop a transepithelial electrical resistance comparable to in vivo measured values, reflecting the leaky nature of the fish intestine. Immunocytochemistry reveals evidence of polarization, such as basolateral localization of Na+/K+-ATPase (NKA) and apical localization of the tight junction protein ZO-1. NKA mRNA abundance was induced as physiological response toward a saltwater buffer, mimicking the migration of rainbow trout from fresh to seawater. Permeation of fluorescent molecules proved the barrier function of the cells, with permeation coefficients being comparable to those reported in fish. Finally, we demonstrate that cells on permeable supports are more resistant to the toxicity elicited by silver ions than cells grown the conventional way, likely due to improved cellular silver excretion.
Collapse
Affiliation(s)
- Matteo Minghetti
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland.,Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Carolin Drieschner
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland.,School of Architecture, Microsystems Laboratory 4, EPF Lausanne, Lausanne, Switzerland
| | - Nadine Bramaz
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland
| | - Hannah Schug
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland.,School of Architecture, Civil and Environmental Engineering, EPF Lausanne, Lausanne, Switzerland
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland. .,School of Architecture, Civil and Environmental Engineering, EPF Lausanne, Lausanne, Switzerland. .,Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
36
|
Yue Y, Li X, Sigg L, Suter MJF, Pillai S, Behra R, Schirmer K. Interaction of silver nanoparticles with algae and fish cells: a side by side comparison. J Nanobiotechnology 2017; 15:16. [PMID: 28245850 PMCID: PMC5331694 DOI: 10.1186/s12951-017-0254-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 02/22/2017] [Indexed: 12/05/2022] Open
Abstract
Background Silver nanoparticles (AgNP) are widely applied and can, upon use, be released into the aquatic environment. This raises concerns about potential impacts of AgNP on aquatic organisms. We here present a side by side comparison of the interaction of AgNP with two contrasting cell types: algal cells, using the algae Euglena gracilis as model, and fish cells, a cell line originating from rainbow trout (Oncorhynchus mykiss) gill (RTgill-W1). The comparison is based on the AgNP behavior in exposure media, toxicity, uptake and interaction with proteins. Results (1) The composition of exposure media affected AgNP behavior and toxicity to algae and fish cells. (2) The toxicity of AgNP to algae was mediated by dissolved silver while nanoparticle specific effects in addition to dissolved silver contributed to the toxicity of AgNP to fish cells. (3) AgNP did not enter into algal cells; they only adsorbed onto the cell surface. In contrast, AgNP were taken up by fish cells via endocytic pathways. (4) AgNP can bind to both extracellular and intracellular proteins and inhibit enzyme activity. Conclusion Our results showed that fish cells take up AgNP in contrast to algal cells, where AgNP sorbed onto the cell surface, which indicates that the cell wall of algae is a barrier to particle uptake. This particle behaviour results in different responses to AgNP exposure in algae and fish cells. Yet, proteins from both cell types can be affected by AgNP exposure: for algae, extracellular proteins secreted from cells for, e.g., nutrient acquisition. For fish cells, intracellular and/or membrane-bound proteins, such as the Na+/K+-ATPase, are susceptible to AgNP binding and functional impairment. Electronic supplementary material The online version of this article (doi:10.1186/s12951-017-0254-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Yue
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland.,School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.,Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences (NMBU), Oslo, 0454, Norway
| | - Xiaomei Li
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland.,School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Laura Sigg
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland.,Department of Environmental Systems Science (D-USYS), ETH-Zürich, 8092, Zürich, Switzerland.,, Wattstrasse 13a, 8307, Effretikon, Switzerland
| | - Marc J-F Suter
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland.,Department of Environmental Systems Science (D-USYS), ETH-Zürich, 8092, Zürich, Switzerland
| | - Smitha Pillai
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland.,Department of Environmental Systems Science (D-USYS), ETH-Zürich, 8092, Zürich, Switzerland
| | - Renata Behra
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland. .,Department of Environmental Systems Science (D-USYS), ETH-Zürich, 8092, Zürich, Switzerland.
| | - Kristin Schirmer
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland. .,School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland. .,Department of Environmental Systems Science (D-USYS), ETH-Zürich, 8092, Zürich, Switzerland.
| |
Collapse
|