1
|
Viggers R, Rasmussen NH, Vestergaard P. Effects of Incretin Therapy on Skeletal Health in Type 2 Diabetes-A Systematic Review. JBMR Plus 2023; 7:e10817. [PMID: 38025038 PMCID: PMC10652182 DOI: 10.1002/jbm4.10817] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 12/01/2023] Open
Abstract
Diabetes poses a significant risk to bone health, with Type 1 diabetes (T1D) having a more detrimental impact than Type 2 diabetes (T2D). The group of hormones known as incretins, which includes gastric inhibitory peptide (GIP) and glucagon-like peptide 1 (GLP-1), play a role in regulating bowel function and insulin secretion during feeding. GLP-1 receptor agonists (GLP-1 RAs) are emerging as the primary treatment choice in T2D, particularly when atherosclerotic cardiovascular disease is present. Dipeptidyl peptidase 4 inhibitors (DPP-4is), although less potent than GLP-1 RAs, can also be used. Additionally, GLP-1 RAs, either alone or in combination with GIP, may be employed to address overweight and obesity. Since feeding influences bone turnover, a relationship has been established between incretins and bone health. To explore this relationship, we conducted a systematic literature review following the PRISMA guidelines. While some studies on cells and animals have suggested positive effects of incretins on bone cells, turnover, and bone density, human studies have yielded either no or limited and conflicting results regarding their impact on bone mineral density (BMD) and fracture risk. The effect on fracture risk may vary depending on the choice of comparison drug and the duration of follow-up, which was often limited in several studies. Nevertheless, GLP-1 RAs may hold promise for people with T2D who have multiple fracture risk factors and poor metabolic control. Furthermore, a potential new area of interest is the use of GLP-1 RAs in fracture prevention among overweight and obese people. Based on this systematic review, existing evidence remains insufficient to support a positive or a superior effect on bone health to reduce fracture risk in people with T2D. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Rikke Viggers
- Steno Diabetes Center North DenmarkAalborgDenmark
- Department of EndocrinologyAalborg University HospitalAalborgDenmark
| | | | - Peter Vestergaard
- Steno Diabetes Center North DenmarkAalborgDenmark
- Department of EndocrinologyAalborg University HospitalAalborgDenmark
| |
Collapse
|
2
|
Hilkens L, Boerboom M, van Schijndel N, Bons J, van Loon LJC, van Dijk JW. Bone turnover following high-impact exercise is not modulated by collagen supplementation in young men: A randomized cross-over trial. Bone 2023; 170:116705. [PMID: 36804484 DOI: 10.1016/j.bone.2023.116705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/23/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
INTRODUCTION We assessed whether collagen supplementation augments the effects of high-impact exercise on bone turnover and whether a higher exercise frequency results in a greater benefit for bone metabolism. METHODS In this randomized, cross-over trial, 14 healthy males (age 24 ± 4 y, BMI 22.0 ± 2.1 kg/m2) performed 5-min of high-impact exercise once (JUMP+PLA and JUMP+COL) or twice daily (JUMP2+COL2) during a 3-day intervention period, separated by a 10-day wash out period. One hour before every exercise bout participants ingested 20 g hydrolysed collagen (JUMP+COL and JUMP2+COL2) or a placebo control (JUMP+PLA). Blood markers of bone formation (P1NP) and resorption (CTXI) were assessed in the fasted state before the ingestion of the initial test drinks and 24, 48, and 72 h thereafter. In JUMP+PLA and JUMP+COL, additional blood samples were collected in the postprandial state at 1, 2, 3, 4, 5 and 13 h after ingestion of the test drink. RESULTS In the postprandial state, serum P1NP concentrations decreased marginally from 99 ± 37 to 93 ± 33 ng/mL in JUMP+COL, and from 97 ± 32 to 92 ± 31 ng/mL in JUMP+PLA, with P1NP levels having returned to baseline levels after 13 h (time-effect, P = 0.053). No differences in serum P1NP concentrations were observed between JUMP+PLA and JUMP+COL (time x treatment, P = 0.58). Serum CTX-I concentrations showed a ~ 50 % decline (time, P < 0.001) in the postprandial state in JUMP+COL (0.9 ± 0.3 to 0.4 ± 0.2 ng/mL) and JUMP+PLA (0.9 ± 0.3 to 0.4 ± 0.2 ng/mL), with no differences between treatments (time x treatment, P = 0.17). Fasted serum P1NP concentrations increased ~8 % by daily jumping exercise (time-effect, P < 0.01), with no differences between treatments (time x treatment, P = 0.71). Fasted serum CTX-I concentrations did not change over time (time-effect, P = 0.41) and did not differ between treatments (time x treatment, P = 0.58). CONCLUSIONS Five minutes of high-impact exercise performed daily stimulates bone formation during a 3-day intervention period. This was indicated by an increase in fasted serum P1NP concentrations, rather than an acute increase in post-exercise serum P1NP concentrations. Collagen supplementation or an increase in exercise frequency does not further increase serum P1NP concentrations. The bone resorption marker CTX-I was not affected by daily short-duration high-impact exercise with or without concurrent collagen supplementation.
Collapse
Affiliation(s)
- Luuk Hilkens
- School of Sport and Exercise, HAN University of Applied Sciences, Nijmegen, the Netherlands; Department of Human Biology, NUTRIM, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Marleen Boerboom
- School of Sport and Exercise, HAN University of Applied Sciences, Nijmegen, the Netherlands
| | - Nick van Schijndel
- School of Sport and Exercise, HAN University of Applied Sciences, Nijmegen, the Netherlands
| | - Judith Bons
- Central Diagnostic Laboratory, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Luc J C van Loon
- School of Sport and Exercise, HAN University of Applied Sciences, Nijmegen, the Netherlands; Department of Human Biology, NUTRIM, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Jan-Willem van Dijk
- School of Sport and Exercise, HAN University of Applied Sciences, Nijmegen, the Netherlands.
| |
Collapse
|
3
|
Fuglsang-Nielsen R, Rakvaag E, Vestergaard P, Hermansen K, Gregersen S, Starup-Linde J. The Effects of 12-Weeks Whey Protein Supplements on Markers of Bone Turnover in Adults With Abdominal Obesity - A Post Hoc Analysis. Front Endocrinol (Lausanne) 2022; 13:832897. [PMID: 35422766 PMCID: PMC9001834 DOI: 10.3389/fendo.2022.832897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND While osteoporosis is characterized by skeletal fragility due to increased bone turnover and low bone mineral density (BMD), subjects with abdominal obesity and type-2 diabetes have increased risk of bone fractures despite low bone turnover and increased BMD. Diets with increased protein content are reported to increase bone turnover in healthy adults and may be a point of interest in preserving bone strength in subjects with abdominal obesity and/or type-2 diabetes. METHODS We examined the effect of 12-weeks dietary intervention on bone turnover in 64 adults with abdominal obesity using data from the MERITS trial. The trial was a randomized, controlled, double blinded study in which participants were allocated to receive either 60 g/d of whey protein hydrolysate or maltodextrin in combination with either high (30 g/d) or low dietary fiber intake (10 g/d). Primarily, we assessed changes in plasma markers of bone turnover Procollagen type 1 N-terminal propeptide (p1NP), C-terminal telopeptide type-1 collagen (CTX), and parathyroid hormone (PTH) within the four intervention groups. In addition, we measured u-calcium and u-carbamide excretion, 25(OH)D, and BMD by whole body DXA scans. Finally, we compared changes in insulin resistance (Homeostasis-model assessment of insulin resistance, HOMA-IR) with changes in bone turnover markers.The trial was registered at www.clinicaltrials.gov as NCT02931630. RESULTS Sixty-four subjects were included in the study. We did not find any effect of twelve weeks of high protein or high fiber intake on plasma levels of P1NP or CTX. There was a nonsignificant positive association between protein intake and PTH levels (p=0.06). U-calcium and u-carbamide increased in both protein groups. There was a positive association between change in HOMA-IR and PTH (p=0.042), while changes in P1NP and CTX did not associate to changes in HOMA-IR. CONCLUSION Twelve weeks of increased whey protein intake in subjects with abdominal obesity did not affect markers of bone turnover significantly, although tended to increase PTH levels. Dietary fiber intake did not affect bone turnover. We report a positive association between change in HOMA-IR and PTH supporting a hypothesis of insulin resistance as a potential key factor in the expanding field of bone fragility in T2D subjects.
Collapse
Affiliation(s)
- Rasmus Fuglsang-Nielsen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- *Correspondence: Rasmus Fuglsang-Nielsen,
| | - Elin Rakvaag
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Vestergaard
- Steno Diabetes Center North Jutland, Aalborg University Hospital, Aalborg, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Kjeld Hermansen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Søren Gregersen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Jakob Starup-Linde
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
4
|
Bjørnshave A, Lykkeboe S, Hartmann B, Holst JJ, Hermansen K, Starup-Linde J. Effects of a whey protein pre-meal on bone turnover in participants with and without type 2 diabetes-A post hoc analysis of a randomised, controlled, crossover trial. Diabet Med 2021; 38:e14471. [PMID: 33259643 DOI: 10.1111/dme.14471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 12/28/2022]
Abstract
AIMS Whey protein may improve bone turnover and have anti-osteoporotic effects. The aim of the present randomised, controlled, crossover trial was to evaluate the effects of a whey protein pre-meal on bone turnover in people with type 2 diabetes and controls. METHODS Two groups, matched on sex, age and body mass index, comprising 12 participants with and 12 participants without type 2 diabetes were randomly given a pre-meal of whey protein (20 g) or water, which was consumed 15 min before a fat-rich meal or a fat-rich meal supplemented with 20 g whey protein. During a 360-min period, postprandial responses in bone turnover were examined. RESULTS Osteocalcin, P-procollagen type 1 amino terminal propeptide (P1NP), C-terminal cross-linked telopeptide of type-I collagen (CTX) and parathyroid hormone (PTH) were lower at baseline and PTH, osteocalcin and P1NP were lower during the entire postprandial phase in participants with type 2 diabetes than in participants without type 2 diabetes. We observed similar postprandial responses in bone turnover markers between persons with and without type 2 diabetes. We observed no effect of the whey protein or the water pre-meal on bone turnover markers. The changes were unrelated to secretion of hormones of the gut-bone axis. CONCLUSION Osteocalcin, P1NP, CTX and PTH all decreased following meal ingestion. We observed no convincing effect of a whey protein pre-meal on bone turnover. However, these results confirm that people with type 2 diabetes have low bone turnover and that the decreased bone formation markers are also extend into the postprandial responses.
Collapse
Affiliation(s)
- Ann Bjørnshave
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus C, Denmark
- Danish Diabetes Academy, Odense, Denmark
| | - Simon Lykkeboe
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Bolette Hartmann
- NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kjeld Hermansen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus C, Denmark
| | - Jakob Starup-Linde
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus C, Denmark
| |
Collapse
|
5
|
Viggers R, Al-Mashhadi Z, Fuglsang-Nielsen R, Gregersen S, Starup-Linde J. The Impact of Exercise on Bone Health in Type 2 Diabetes Mellitus-a Systematic Review. Curr Osteoporos Rep 2020; 18:357-370. [PMID: 32529455 DOI: 10.1007/s11914-020-00597-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Type 2 diabetes mellitus (T2DM) is associated with an increased fracture risk. Weight loss in T2DM management may result in lowering of bone mass. In this systematic literature review, we aimed to investigate how exercise affects bone health in people with T2DM. Furthermore, we examined the types of exercise with the potential to prevent and treat bone fragility in people with T2DM. RECENT FINDINGS Exercise differs in type, mechanical load, and intensity, as does the osteogenic response to exercise. Aerobic exercise improves metabolic health in people with T2DM. However, the weight-bearing component of exercise is essential to bone health. Weight loss interventions in T2DM induce a loss of bone mass that may be attenuated if accompanied by resistance or weight-bearing exercise. Combination of weight-bearing aerobic and resistance exercise seems to be preventive against excessive bone loss in people with T2DM. However, evidence is sparse and clinical trials investigating the effects of exercise on bone health in people with T2DM are warranted.
Collapse
Affiliation(s)
- R Viggers
- Steno Diabetes Center North Jutland, Aalborg University Hospital, Mølleparkvej 4, 9000, Aalborg, Denmark.
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| | - Z Al-Mashhadi
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - R Fuglsang-Nielsen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus C, Denmark
- Department of Internal Medicine, Regional Hospital Randers, Randers, Denmark
| | - S Gregersen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus C, Denmark
| | - J Starup-Linde
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus C, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus C, Denmark
| |
Collapse
|
6
|
Fuglsang-Nielsen R, Rakvaag E, Vestergaard P, Hartmann B, Holst JJ, Hermansen K, Gregersen S, Starup-Linde J. Consumption of nutrients and insulin resistance suppress markers of bone turnover in subjects with abdominal obesity. Bone 2020; 133:115230. [PMID: 31954199 DOI: 10.1016/j.bone.2020.115230] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/13/2019] [Accepted: 01/13/2020] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Abdominal obesity and type 2 diabetes are associated with insulin resistance and low bone turnover along with an increased fracture risk. The mode of action is poorly understood. The bone resorption marker, C-terminal telopeptide type 1 collagen (CTX), and to a lesser extent, the bone formation marker, Procollagen type 1 N-terminal propeptide (P1NP) appear to be inhibited by food consumption. The link between food consumption, insulin resistance and bone turnover remains to be clarified. Primarily we aimed to compare the postprandial CTX, P1NP and PTH responses by two frequently applied methods in assessing metabolic health; oral glucose tolerance test (OGTT) and mixed meal tolerance test. Secondly, we explored the effect of insulin resistance on bone marker responses. METHODS We enrolled 64 subjects with abdominal obesity. Following 10 h of fasting, subjects initially underwent a standard OGTT (300 kcal) and approximately one week later a mixed meal tolerance test (1130 kcal). Circulating CTX, P1NP and PTH were assessed on both days at time = 0, after 30 min and after 90 min for comparison of the two interventions. We analyzed glucose and insulin levels for the assessment of insulin resistance. Additionally, we measured plasma calcium levels along with the gut hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like-peptide 2 (GLP-2) in an attempt to identify possible mediators of the postprandial bone response. RESULTS CTX, P1NP and PTH were suppressed by OGTT and the mixed meal; the latter induced a more pronounced suppression after 90 min. Calcium levels were similar between OGTT and meal. GIP and GLP-2 levels increased after both interventions, although only the meal induced a sustained increase after 90 min. Fasting P1NP was inversely associated with insulin resistance. The meal-induced suppression of P1NP (but not CTX or PTH) was inversely associated with level of insulin resistance. CONCLUSION The acute postprandial suppression of bone turnover markers is extended after ingestion of a mixed meal compared to an OGTT. The response appears to be independent of gender and prompted by a reduction in PTH. The study additionally indicates a possible link between the development of insulin resistance and low bone turnover - which may be of key essence in the development of the fragile bone structure and increased fracture risk demonstrated in subjects with abdominal obesity and T2D.
Collapse
Affiliation(s)
- Rasmus Fuglsang-Nielsen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Denmark.
| | - Elin Rakvaag
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Denmark
| | - Peter Vestergaard
- Steno Diabetes Center North Jutland, Aalborg University Hospital, Denmark; Department of Endocrinology, Aalborg University Hospital, Denmark; Department of Clinical Medicine, Aalborg University, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences and NNF Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences and NNF Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kjeld Hermansen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Denmark
| | - Søren Gregersen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Denmark
| | - Jakob Starup-Linde
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Denmark
| |
Collapse
|
7
|
Abstract
Drugs may cause bone loss by lowering sex steroid levels (e.g., aromatase inhibitors in breast cancer, GnRH agonists in prostate cancer, or depot medroxyprogestone acetate - DMPA), interfere with vitamin D levels (liver inducing anti-epileptic drugs), or directly by toxic effects on bone cells (chemotherapy, phenytoin, or thiazolidinedions, which diverts mesenchymal stem cells from forming osteoblasts to forming adipocytes). However, besides effects on the mineralized matrix, interactions with collagen and other parts of the unmineralized matrix may decrease bone biomechanical competence in a manner that may not correlate with bone mineral density (BMD) measured by dual energy absorptiometry (DXA).Some drugs and drug classes may decrease BMD like the thiazolidinediones and consequently increase fracture risk. Other drugs such as glucocorticoids may decrease BMD, and thus increase fracture risk. However, glucocorticoids may also interfere with the unmineralized matrix leading to an increase in fracture risk, not mirrored in BMD changes. Some drugs such as selective serotonin reuptake inhibitors (SSRI), paracetamol, and non-steroidal anti-inflammatory drugs (NSAIDs) may not per se be associated with bone loss, but fracture risk may be increased, possibly stemming from an increased risk of falls stemming from effects on postural balance mediated by effects on the central nervous system or cardiovascular system.This paper performs a systematic review of drugs inducing bone loss or associated with fracture risk. The chapter is organized by the Anatomical Therapeutic Chemical (ATC) classification.
Collapse
Affiliation(s)
- Peter Vestergaard
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark.
- Steno Diabetes Center North Jutland, Aalborg, Denmark.
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Bone turnover is a regulated process. Osteoglycin is suggested to have an important impact on bone function but may also affect cardiovascular and metabolic functions. This review investigates the action of osteoglycin in bone as well as its potential endocrine effects. RECENT FINDINGS Osteoglycin is expressed by several tissues including bone and muscle. Some studies suggest that osteoglycin increases osteoblast differentiation whereas others suggest that osteoglycin decreases osteoblast differentiation. Thus, findings on the influence of osteoglycin in bone are conflicting. A recent study found increased bone mass in osteoglycin deficient mice. Another study reported that osteoglycin is a marker of low bone mineral density and vertebral fractures in women with type 2 diabetes. Furthermore, clinical studies link osteoglycin to insulin resistance and cardiovascular disease. Osteoglycin may be a novel marker of a muscle, pancreatic, and bone axis. However, current evidence is limited and further research investigating osteoglycin in both a pre-clinical and a clinical setting is needed.
Collapse
Affiliation(s)
- Jakob Starup-Linde
- Department of Medicine, Horsens Regional Hospital, Sundvej 30, 8700, Horsens, Denmark.
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | - Rikke Viggers
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|