1
|
Kawczak P, Feszak IJ, Bączek T. Abatacept, Golimumab, and Sarilumab as Selected Bio-Originator Disease-Modifying Antirheumatic Drugs with Diverse Mechanisms of Action in Their Current Use in Treatment. J Clin Med 2025; 14:2107. [PMID: 40142915 PMCID: PMC11943273 DOI: 10.3390/jcm14062107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Arthritis encompasses a range of joint-related conditions, including osteoarthritis and rheumatoid arthritis, along with inflammatory diseases such as gout and lupus. This research study explores the underlying causes, challenges, and treatment options for arthritis, aiming to enhance the effectiveness of therapies. Methods: This research study evaluated current treatment strategies and examined the effectiveness of selected biological disease-modifying antirheumatic drugs (bDMARDs), i.e., abatacept, golimumab, and sarilumab, with a focus on emerging drug classes and their distinct mechanisms of action. Results: Biologic DMARDs like abatacept, golimumab, and sarilumab offer hopeful treatment alternatives for patients who fail to respond to conventional therapies. However, individual outcomes differ because of the disease's complexity and the influence of accompanying health conditions. Conclusions: Treating arthritis continues to be challenging due to its numerous underlying causes and the varied ways in which patients respond to treatment. Although biologics and targeted therapies have brought progress, additional research is needed to identify new treatment targets and enhance patient results.
Collapse
Affiliation(s)
- Piotr Kawczak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland;
| | - Igor Jarosław Feszak
- Institute of Health Sciences, Pomeranian University in Słupsk, 76-200 Słupsk, Poland;
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland;
- Department of Nursing and Medical Rescue, Institute of Health Sciences, Pomeranian University in Słupsk, 76-200 Słupsk, Poland
| |
Collapse
|
2
|
Rani L, Mathur P, Verma R, Kumar V, Mishra AK, Sahoo PK. Translation Research in Therapeutic Approaches from Conventional to Novel Nano-therapeutics for Rheumatoid Arthritis Treatment. Curr Rheumatol Rev 2025; 21:37-53. [PMID: 38629371 DOI: 10.2174/0115733971288433240408062359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2025]
Abstract
Rheumatoid arthritis is a systemic autoimmune disorder related to joint inflammation, bone erosion, and deformity. Numerous studies indicate that the causes and consequences of RA are still being debated, and therapeutic strategies are in the translation stage. Non-steroidal anti-inflammatory drugs continue to be often used to relieve pain. Still, due to their poor efficacy, failure to halt the spread of the disease, and undesirable adverse effects, they are no longer regarded as first-line treatments. The development of biologic DMRDs designed to reduce the inflammatory response led to substantial changes to the strategy for managing this disease. Although biologic DMRDs have made significant strides in the management of Rheumatoid arthritis, certain patients' lack of response to biological approaches and therapy cessation due to systemic toxicity are unresolved problems. Therefore, to improve the in vivo effect and reduce systemic adverse effects, new approaches are needed to proactively target and transport therapeutic molecules to target sites. The intriguing method of nanotechnology enables the encapsulation of drugs to prevent their deterioration and systemic adverse effects. The next generation of Rheumatoid arthritis therapies might be based on advances in nanomaterial-based drug delivery, Trojan horse, and antibody targeting approaches. This article presents an overview of the advancements in Rheumatoid arthritis therapy, ranging from traditional methods to recent cutting-edge, ongoing pre-clinical and clinical approaches.
Collapse
Affiliation(s)
- Laxmi Rani
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Science and Research, DPSR University, Sector-3, MB Road Pushp Vihar, New Delhi, 110017, India
| | - Pooja Mathur
- Department of Pharmacy, School of Medical and Allied Sciences, G D Goenka University, Sohna, Gurugram, Haryana, 122103, India
| | - Ravinder Verma
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, 127021, India
| | - Vivek Kumar
- Institute of Pharmacy, Shri Ram College of Pharmacy, Karnal, India
| | - Ashwini Kumar Mishra
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Science and Research, DPSR University, Sector-3, MB Road Pushp Vihar, New Delhi, 110017, India
| | - Pravat Kumar Sahoo
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Science and Research, DPSR University, Sector-3, MB Road Pushp Vihar, New Delhi, 110017, India
| |
Collapse
|
3
|
Zewail MB, Doghish AS, El-Husseiny HM, Mady EA, Mohammed OA, Elbadry AMM, Elbokhomy AS, Bhnsawy A, El-Dakroury WA. Lipid-based nanocarriers: an attractive approach for rheumatoid arthritis management. Biomater Sci 2024; 12:6163-6195. [PMID: 39484700 DOI: 10.1039/d4bm01058b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Lipid nanoparticles (LNPs) have emerged as transformative tools in modern drug delivery, offering unparalleled potential in enhancing the efficacy and safety of various therapeutics. In the context of rheumatoid arthritis (RA), a disabling autoimmune disorder characterized by chronic inflammation, joint damage, and limited patient mobility, LNPs hold significant promise for revolutionizing treatment strategies. LNPs offer several advantages over traditional drug delivery systems, including improved pharmacokinetics, enhanced tissue penetration, and reduced systemic toxicity. This article concisely summarizes the pathogenesis of RA, its associated risk factors, and therapeutic techniques and their challenges. Additionally, it highlights the noteworthy advancements made in managing RA through LNPs, including liposomes, niosomes, bilosomes, cubosomes, spanlastics, ethosomes, solid lipid nanoparticles, lipid micelles, lipid nanocapsules, nanostructured lipid carriers, etc. It also delves into the specific functional attributes of these nanocarrier systems, focusing on their role in treating and monitoring RA.
Collapse
Affiliation(s)
- Moataz B Zewail
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 17 Cairo, 11829, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, 13736, Egypt
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi, Tokyo 183-8538, Japan
| | - Eman A Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, 10 Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan
- Department of Animal Hygiene, Behavior, and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah M M Elbadry
- Badr University in Cairo Research Center, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Amir S Elbokhomy
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Abdelmenem Bhnsawy
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| |
Collapse
|
4
|
Obi ON, Saketkoo LA, Maier LA, Baughman RP. Developmental drugs for sarcoidosis. J Autoimmun 2024; 149:103179. [PMID: 38548579 DOI: 10.1016/j.jaut.2024.103179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/04/2023] [Accepted: 02/08/2024] [Indexed: 12/15/2024]
Abstract
Sarcoidosis is a multi-organ granulomatous inflammatory disease of unknown etiology. Over 50% of patients will require treatment at some point in their disease and 10%-30% will develop a chronic progressive disease with pulmonary fibrosis leading to significant morbidity and mortality. Recently published guidelines recommend immunosuppressive therapy for sarcoidosis patients at risk of increased disease-related morbidity and mortality, and in whom disease has negatively impacted quality of life. Prednisone the currently recommended first line therapy is associated with significant toxicity however none of the other guideline recommended steroid sparing therapy is approved by regulatory agencies for use in sarcoidosis, and data in support of their use is weak. For patients with severe refractory disease requiring prolonged therapy, treatment options are limited. The need for expanding treatment options in sarcoidosis has been emphasized. Well conducted large, randomized trials evaluating currently available therapeutic options as well as novel pathways for targeting disease are necessary to better guide treatment decisions. These trials will not be without significant challenges. Sarcoidosis is a rare disease with heterogenous presentation and variable progression and clinical outcome. There are no universally agreed upon biomarkers of disease activity and measurement of outcomes is confounded by the need to balance patient centric measures and objective measures of disease activity. Our paper provides an update on developmental drugs in sarcoidosis and outlines several novel pathways that may be targeted for future drug development. Currently available trials are highlighted and ongoing challenges to drug development and clinical trial design are briefly discussed.
Collapse
Affiliation(s)
- Ogugua Ndili Obi
- Division of Pulmonary Critical Care and Sleep Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| | - Lesley Ann Saketkoo
- New Orleans Scleroderma and Sarcoidosis Patient Care and Research Center, New Orleans, USA; University Medical Center - Comprehensive Pulmonary Hypertension Center and Interstitial Lung Disease Clinic Programs, New Orleans, USA; Louisiana State University School of Medicine, Section of Pulmonary Medicine, New Orleans, LA, USA; Tulane University School of Medicine, Undergraduate Honors Department, New Orleans, LA, USA
| | - Lisa A Maier
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Health, Denver, CO, USA; Division of Pulmonary and Critical Care Sciences, Department of Medicine, University of Colorado School of Medicine, Denver, CO, USA
| | - Robert P Baughman
- Emeritus Professor of Medicine, Department of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
5
|
Tian X, Wang Q, Jiang N, Zhao Y, Huang C, Liu Y, Xu H, Chen Y, Wu L, Xu J, Li H, Lu L, Lin J, Dai L, Li F, Jiang Z, Zheng Z, Shuai Z, Xu S, Zhao D, Zhang M, Sun Y, Liu S, Li C, Yang P, Li M, Zeng X. Chinese guidelines for the diagnosis and treatment of rheumatoid arthritis: 2024 update. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2024; 5:189-208. [PMID: 39802551 PMCID: PMC11720473 DOI: 10.1515/rir-2024-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 11/16/2024] [Indexed: 01/16/2025]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease with destructive arthritis as its main clinical manifestation, which is a major cause of disability. It is very important to formulate and update a guideline for the diagnosis and treatment of RA that adhere to international guideline development standards and can be applied to clinical practice in China. This guideline is endorsed and developed by the National Clinical Research Center for Dermatologic and Immunologic Diseases, collaborated with Rheumatologists Branch of Chinese Medical Doctor Association, Rheumatology Rehabilitation Branch of Chinese Association of Rehabilitation Medicine, Rheumatology Branch of Chinese Research Hospital Association, and Rheumatology Branch of Beijing Association of Holistic Integrative Medicine, based on grading of recommendations assessment, development and evaluation (GRADE) and reporting items for practice guidelines in healthcare (RIGHT). Evidence-based recommendation were developed for 10 clinical scenario that are most relevant to Chinese rheumatologists, aiming to improve and standardize the diagnosis and treatment of RA in China, which may finally improve the quality of life and prognosis of patients.
Collapse
Affiliation(s)
- Xinping Tian
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Qian Wang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Nan Jiang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Yan Zhao
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Cibo Huang
- Department of Rheumatoilogy, South China Hospital, Medical School, Shenzhen University, Shenzhen, Guangdong Province, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Huji Xu
- Department of rheumatology and immunology, Shanghai Changzheng hospital, the second military medical university, Shanghai, China
| | - Yaolong Chen
- Institute of Health Data Science, Lanzhou University, Chinese GRADE Center, Lanzhou, Gansu Province, China
| | - Lijun Wu
- Department of Rheumatology, Xinjiang Uygur Autonomous Region People’s Hospital, Urumuqi, Xinjiang Uygur Autonomous Region, China
| | - Jian Xu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Hongbing Li
- Department of Rheumatology and Immunology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Liangjing Lu
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Lin
- Department of Rheumatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Lie Dai
- Department of Rheumatology and Immunology, Sun Yatsen Memorial Hospital, Sun Yatsen University, 107 Yan Jiang West Road, Guangzhou, Guangdong Province, GuangzhouChina
| | - Fen Li
- Department of Rheumatology and Immunology, the Second Xiangya Hospital, Central South University, Clinical Medical Research Center for Systemic Autoimmune Diseases in Hunan Province, Changsha, Hunan, China
| | - Zhenyu Jiang
- Department of Rheumatology and Immunology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhaohui Zheng
- Department of Clinical Immunology Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Shengqian Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Dongbao Zhao
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University/Naval Medical University, Shanghai, China
| | - Miaojia Zhang
- Department of Rheumatology, the First Affiliated Hospital with Nanjing Medical University. Nanjing, JiangSu Province, China
| | - Yunlin Sun
- Department of Rheumatology, Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, JiangSu Province, China
| | - Shengyun Liu
- Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Caifeng Li
- Department of Rheumatology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Pingting Yang
- Department of Rheumatology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Beijing, China
| |
Collapse
|
6
|
Lee KA, Kim BY, Kim SS, Cheon YH, Lee SI, Kim SH, Jung JH, Kim GT, Hur JW, Lee MS, Kim YS, Hong SJ, Park S, Kim HS. Effect of abatacept versus conventional synthetic disease modifying anti-rheumatic drugs on rheumatoid arthritis-associated interstitial lung disease. Korean J Intern Med 2024; 39:855-864. [PMID: 39252490 PMCID: PMC11384256 DOI: 10.3904/kjim.2023.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/11/2023] [Accepted: 12/11/2023] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND/AIMS To compare the effects of abatacept and conventional synthetic disease modifying anti-rheumatic drugs (csDMARDs) on the progression and development of rheumatoid arthritis-associated interstitial lung disease (RA-ILD). METHODS This multi-center retrospective study included RA patients receiving abatacept or csDMARDs who underwent at least two pulmonary function tests and/or chest high-resolution computed tomography (HRCT). We compared the following outcomes between the groups: progression of RA-ILD, development of new ILD in RA patients without ILD at baseline, 28-joint Disease Activity Score with the erythrocyte sedimentation rate (DAS28-ESR), and safety. Longitudinal changes were compared between the groups by using a generalized estimating equation. RESULTS The study included 123 patients who were treated with abatacept (n = 59) or csDMARDs (n = 64). Nineteen (32.2%) and 38 (59.4%) patients treated with abatacept and csDMARDs, respectively, presented with RA-ILD at baseline. Newly developed ILD occurred in one patient receiving triple csDMARDs for 32 months. Among patients with RA-ILD at baseline, ILD progressed in 21.1% of cases treated with abatacept and 34.2% of cases treated with csDMARDs during a median 21-month follow-up. Longitudinal changes in forced vital capacity and diffusing capacity for carbon monoxide were comparable between the two groups. However, the abatacept group showed a more significant decrease in DAS28-ESR and glucocorticoid doses than csDMARDs group during the follow-up. The safety of both regimens was comparable. CONCLUSION Abatacept and csDMARDs showed comparable effects on the development and stabilization of RA-ILD. Nevertheless, compared to csDMARDs, abatacept demonstrated a significant improvement in disease activity and led to reduced glucocorticoid use.
Collapse
Affiliation(s)
- Kyung-Ann Lee
- Division of Rheumatology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Bo Young Kim
- Division of Rheumatology, Department of Internal Medicine, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Korea
| | - Sung Soo Kim
- Division of Rheumatology, Department of Internal Medicine, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Korea
| | - Yun Hong Cheon
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Sang-Il Lee
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Sang-Hyon Kim
- Division of Rheumatology, Department of Internal Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea
| | - Jae Hyun Jung
- Division of Rheumatology, Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Korea
| | - Geun-Tae Kim
- Division of Rheumatology, Department of Internal Medicine, Kosin University Gospel Hospital, Busan, Korea
| | - Jin-Wuk Hur
- Division of Rheumatology, Department of Internal Medicine, Nowon Eulji Medical Center, Seoul, Korea
| | - Myeung-Su Lee
- Division of Rheumatology, Department of Internal Medicine, Wonkwang University Hospital, Iksan, Korea
| | - Yun Sung Kim
- Division of Rheumatology, Department of Internal Medicine, Chosun University Hospital, Gwangju, Korea
| | - Seung-Jae Hong
- Division of Rheumatology, Department of Internal Medicine, Kyung Hee University Medical Center, Seoul, Korea
| | - Suyeon Park
- Biostatistics, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Hyun-Sook Kim
- Division of Rheumatology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea
| |
Collapse
|
7
|
Ma Y, Shi R, Li F, Chang H. Emerging strategies for treating autoimmune disease with genetically modified dendritic cells. Cell Commun Signal 2024; 22:262. [PMID: 38715122 PMCID: PMC11075321 DOI: 10.1186/s12964-024-01641-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/28/2024] [Indexed: 05/12/2024] Open
Abstract
Gene editing of living cells has become a crucial tool in medical research, enabling scientists to address fundamental biological questions and develop novel strategies for disease treatment. This technology has particularly revolutionized adoptive transfer cell therapy products, leading to significant advancements in tumor treatment and offering promising outcomes in managing transplant rejection, autoimmune disorders, and inflammatory diseases. While recent clinical trials have demonstrated the safety of tolerogenic dendritic cell (TolDC) immunotherapy, concerns remain regarding its effectiveness. This review aims to discuss the application of gene editing techniques to enhance the tolerance function of dendritic cells (DCs), with a particular focus on preclinical strategies that are currently being investigated to optimize the tolerogenic phenotype and function of DCs. We explore potential approaches for in vitro generation of TolDCs and provide an overview of emerging strategies for modifying DCs. Additionally, we highlight the primary challenges hindering the clinical adoption of TolDC therapeutics and propose future research directions in this field.
Collapse
Affiliation(s)
- Yunhan Ma
- School of Medicine, Jiangsu University, Zhenjiang, 212000, China
| | - Ruobing Shi
- School of Medicine, Jiangsu University, Zhenjiang, 212000, China
| | - Fujun Li
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Haocai Chang
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
8
|
Vafaeian A, Mahmoudi H, Daneshpazhooh M. What is novel in the clinical management of pemphigus vulgaris? Expert Rev Clin Pharmacol 2024; 17:489-503. [PMID: 38712540 DOI: 10.1080/17512433.2024.2350943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
INTRODUCTION Pemphigus, an uncommon autoimmune blistering disorder affecting the skin and mucous membranes, currently with mortality primarily attributed to adverse reactions resulting from treatment protocols. Additionally, the existing treatments exhibit a notable recurrence rate. The high incidence of relapse and the considerable adverse effects associated with treatment underscore the imperative to explore safer and more effective therapeutic approaches. Numerous potential therapeutic targets have demonstrated promising outcomes in trials or preliminary research stages. These encompass anti-CD-20 agents, anti-CD-25 agents, TNF-α inhibition, FAS Ligand Inhibition, FcRn inhibition, BAFF inhibition, Bruton's tyrosine kinase (BTK) inhibition, CAAR T Cells, JAK inhibition, mTOR inhibition, abatacept, IL-4 inhibition, IL-17 inhibition, IL-6 inhibition, polyclonal Regulatory T Cells, and autologous hematopoietic stem cell transplantation. AREAS COVERED The most significant studies regarding the impact and efficacy of the mentioned treatments on pemphigus were meticulously curated through a comprehensive search conducted on the PubMed database. Moreover, the investigations of interest cited in these studies were also integrated. EXPERT OPINION The efficacy and safety profiles of the other treatments under discussion do not exhibit the same level of robustness as anti-CD20 therapy, which is anticipated to endure as a critical element in pemphigus treatment well into the foreseeable future.
Collapse
Affiliation(s)
- Ahmad Vafaeian
- Autoimmune Bullous Diseases Research Center, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Mahmoudi
- Autoimmune Bullous Diseases Research Center, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Daneshpazhooh
- Autoimmune Bullous Diseases Research Center, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Yamada Z, Muraoka S, Kawazoe M, Hirose W, Kono H, Yasuda S, Sugihara T, Nanki T. Long-term effects of abatacept on atherosclerosis and arthritis in older vs. younger patients with rheumatoid arthritis: 3-year results of a prospective, multicenter, observational study. Arthritis Res Ther 2024; 26:87. [PMID: 38627782 PMCID: PMC11022315 DOI: 10.1186/s13075-024-03323-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/14/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND We aimed to reveal the effect of abatacept (ABT) on atherosclerosis in rheumatoid arthritis (RA) patients, 3-year efficacy for arthritis, and safety in a population of older vs. younger patients. METHODS In this open-label, prospective, observational study, patients were stratified into four groups: younger (20-64 years old) and older (≥ 65 years) patients taking ABT (AY and AO) and conventional synthetic disease-modifying antirheumatic drugs (csDMARDs) (CY and CO). Primary endpoints were change from baseline in mean intima-media thickness (IMT) of the common carotid artery, IMT max (bulbus, bifurcation, and internal and common carotid artery), and plaque score at Week 156. Disease activity, retention rate, and adverse effects were also evaluated. RESULTS The ABT group (AY + AO) tended to have smaller increases in mean IMT, max IMT, and plaque score than the csDMARD group (CY + CO) at Week 156, although the differences between groups were not statistically significant. Multivariate analysis showed significantly lower increases in plaque score with ABT than with csDMARDs, only when considering disease activity at 156 weeks (p = 0.0303). Proportions of patients with good or good/moderate European League Against Rheumatism response were higher in the ABT group, without significant difference between older and younger patients. No significant differences were observed in ABT retention rates between older and younger patients. Serious adverse effects, especially infection, tended to be more frequent with ABT than with csDMARDs, although no significant differences were found. CONCLUSIONS ABT may decelerate atherosclerosis progression and may be useful for patients with high risk of cardiovascular disease, such as older patients. TRIAL REGISTRATION NUMBER UMIN000014913.
Collapse
Affiliation(s)
- Zento Yamada
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Sei Muraoka
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Mai Kawazoe
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Wataru Hirose
- Hirose Clinic of Rheumatology, 2-14-7 Midoricho, Tokorozawa, 359-1111, Saitama, Japan
| | - Hajime Kono
- Department of Internal Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabshi- ku, Tokyo, 173-8606, Japan
| | - Shinsuke Yasuda
- Department of Rheumatology, Endocrinology and Nephrology, Graduate School of Medicine, Faculty of Medicine, Hokkaido University, Kita 14, Nishi 5, Kita-ku, Sapporo, 060-8648, Japan
| | - Takahiko Sugihara
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
- Department of Medicine and Rheumatology, Tokyo Metropolitan Geriatric Hospital, 35-2, Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Toshihiro Nanki
- Division of Rheumatology, Department of Internal Medicine, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan.
| |
Collapse
|
10
|
Chasov V, Zmievskaya E, Ganeeva I, Gilyazova E, Davletshin D, Khaliulin M, Kabwe E, Davidyuk YN, Valiullina A, Rizvanov A, Bulatov E. Immunotherapy Strategy for Systemic Autoimmune Diseases: Betting on CAR-T Cells and Antibodies. Antibodies (Basel) 2024; 13:10. [PMID: 38390871 PMCID: PMC10885098 DOI: 10.3390/antib13010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Systemic autoimmune diseases (SAIDs), such as systemic lupus erythematosus (SLE), systemic sclerosis (SSc) and rheumatoid arthritis (RA), are fully related to the unregulated innate and adaptive immune systems involved in their pathogenesis. They have similar pathogenic characteristics, including the interferon signature, loss of tolerance to self-nuclear antigens, and enhanced tissue damage like necrosis and fibrosis. Glucocorticoids and immunosuppressants, which have limited specificity and are prone to tolerance, are used as the first-line therapy. A plethora of novel immunotherapies have been developed, including monoclonal and bispecific antibodies, and other biological agents to target cellular and soluble factors involved in disease pathogenesis, such as B cells, co-stimulatory molecules, cytokines or their receptors, and signaling molecules. Many of these have shown encouraging results in clinical trials. CAR-T cell therapy is considered the most promising technique for curing autoimmune diseases, with recent successes in the treatment of SLE and SSc. Here, we overview novel therapeutic approaches based on CAR-T cells and antibodies for targeting systemic autoimmune diseases.
Collapse
Affiliation(s)
- Vitaly Chasov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ekaterina Zmievskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Irina Ganeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Elvina Gilyazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Damir Davletshin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Marat Khaliulin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Emmanuel Kabwe
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Yuriy N Davidyuk
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Aygul Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
11
|
da Rosa LC, Scales HE, Benson RA, Brewer JM, McInnes IB, Garside P. The effect of abatacept on T-cell activation is not long-lived in vivo. DISCOVERY IMMUNOLOGY 2024; 3:kyad029. [PMID: 38567291 PMCID: PMC10917171 DOI: 10.1093/discim/kyad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/06/2023] [Accepted: 01/03/2024] [Indexed: 04/04/2024]
Abstract
Abatacept, a co-stimulatory blocker comprising the extracellular portion of human CTLA-4 linked to the Fc region of IgG1, is approved for the treatment of rheumatoid arthritis. By impairing the interaction between CD28 on T cells and CD80/CD86 on APCs, its mechanisms of action include the suppression of follicular T helper cells (preventing the breach of self-tolerance in B cells), inhibition of cell cycle progression holding T cells in a state described as 'induced naïve' and reduction in DC conditioning. However, less is known about how long these inhibitory effects might last, which is a critical question for therapeutic use in patients. Herein, employing a murine model of OVA-induced DTH, we demonstrate that the effect of abatacept is short-lived in vivo and that the inhibitory effects diminish markedly when treatment is ceased.
Collapse
Affiliation(s)
- Larissa C da Rosa
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Hannah E Scales
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Robert A Benson
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - James M Brewer
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Iain B McInnes
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Paul Garside
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
12
|
Ma C, Wu J, Lei H, Huang H, Li Y. Significance of m6A in subtype identification, immunological evolution, and therapeutic sensitivity of RA. Immunobiology 2024; 229:152781. [PMID: 38154164 DOI: 10.1016/j.imbio.2023.152781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
N6-methyladenosine (m6A) is one kind of important epigenetic modification pattern which is extensively involved in immune regulation. The development and progression of autoimmune diseases are closely related to immune dysregulation. Considering that rheumatoid arthritis (RA) is a typical autoimmune disease, the m6A process might be one of the important regulatory mechanisms in the pathogenesis of RA. In this study, we identified five differentially expressed m6A regulators in normal and RA samples from the GEO database. With these five regulators, we constructed the nomogram, and it could accurately identify the risk of RA morbidity. Next, we identified 121 differentially expressed genes (DEGs) between normal and RA samples, of which 36 DEGs were co-expressed with these five m6A regulators. We noted that these DEGs were highly enriched in multiple immunoregulatory signaling pathways, such as cytokine-mediated immune cell chemotaxis, adhesion, and activation. To further characterize the heterogeneity of immunological features, we clustered the RA samples into two subtypes. The C2 subtype has higher infiltration levels of pro-inflammatory cells and activity of pro-inflammatory signaling pathways. Thus, the inflammatory response might be more vigorous in the C2 subtype. Next, we constructed the m6Asig system with the SVM machine learning algorithms and least absolute shrinkage and selection operator (LASSO) regression. The m6Asig could accurately distinguish the C1 and C2 subtypes, which indicated that the m6Asig could be a potential biomarker for the inflammatory activity of RA. Finally, by comparing the information from the CellMiner, TTD, and DrugBank databases, we determined 25 drugs. The targets of these drugs were positively correlated with m6Asig. To be clarified, the above findings were derived from bioinformatics and statistical analyses, and further experimental validation still requires. In summary, this study further revealed the m6A and immunoregulation mechanisms in RA pathogenesis. Also, the m6Asig could be a novel biomarker with potential applicability in the clinical management of RA.
Collapse
Affiliation(s)
- Chenxi Ma
- Department of Rheumatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jiasheng Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Hongwei Lei
- Department of Rheumatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - He Huang
- Department of Rheumatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yingnan Li
- Department of Rheumatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
13
|
Zhang C, Ma P, Qin A, Wang L, Dai K, Liu Y, Zhao J, Lu Z. Current Immunotherapy Strategies for Rheumatoid Arthritis: The Immunoengineering and Delivery Systems. RESEARCH (WASHINGTON, D.C.) 2023; 6:0220. [PMID: 39902178 PMCID: PMC11789687 DOI: 10.34133/research.0220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/16/2023] [Indexed: 02/05/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease accompanied by persistent multiarticular synovitis and cartilage degradation. The present clinical treatments are limited to disease-modifying anti-rheumatic drugs (DMARDs) and aims to relieve pain and control the inflammation of RA. Despite considerable advances in the research of RA, the employment of current clinical procedure is enormous, hindered by systemic side effect, frequent administration, tolerance from long-lasting administration, and high costs. Emerging immunoengineering-based strategies, such as multiple immune-active nanotechnologies via mechanism-based immunology approaches, have been developed to improve specific targeting and to reduce adverse reactions for RA treatments. Here, we review recent studies in immunoengineering for the treatment of RA. The prospect of future immunoengineering treatment for RA has also been discussed.
Collapse
Affiliation(s)
- Chenyu Zhang
- School of Medicine, Shanghai University, Shanghai, China
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai, China
| | - An Qin
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai, China
| | - Liao Wang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kerong Dai
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Liu
- School of Medicine, Shanghai University, Shanghai, China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai, China
| | - Zuyan Lu
- Clinical and Translational Research Center for 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Bessette L, Haraoui B, Rampakakis E, Dembowy J, Trépanier MO, Pope J. Effectiveness of a treat-to-target strategy in patients with moderate to severely active rheumatoid arthritis treated with abatacept. Arthritis Res Ther 2023; 25:183. [PMID: 37759330 PMCID: PMC10537125 DOI: 10.1186/s13075-023-03151-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND To compare a treat-to-target (T2T) approach and routine care (RC) in adults with active to severely active rheumatoid arthritis (RA) initiating subcutaneous abatacept. METHODS A 12-month cluster-randomized trial in active RA patients treated with abatacept was conducted. Physicians were randomized to RC or T2T with a primary endpoint of achieving sustained Clinical Disease Activity Index (CDAI) low disease activity (LDA) at two consecutive assessments approximately 3 months apart. Additional outcomes included Simple Disease Activity Index (SDAI), Disease Activity Score 28-CRP (DAS28-CRP), Routine Assessment of Patient Index Data 3 (RAPID3), and the Health Assessment Questionnaire-Disability Index (HAQ-DI). Time to achieve therapeutic endpoints was assessed with survival analysis. RESULTS Among the 284 enrolled patients, 130 were in the T2T group and 154 in RC. Primary endpoint was achieved by 36.9% and 40.3% of patients in T2T and RC groups, respectively. No significant between-group differences were observed in the odds of achieving secondary outcomes, except for a higher likelihood of CDAI LDA in the T2T group vs. RC (odds ratio [95% confidence interval]: 1.33 [1.03-1.71], p = 0.0263). Compared with RC, patients in the T2T group achieved SDAI remission significantly faster (Kaplan-Meier-estimated mean [standard error]: 14.0 [0.6] vs. 19.3 [0.8] months, p = 0.0428) with a trend toward faster achievement of CDAI LDA/remission, DAS28-CRP remission, and HAQ-DI minimum clinically important difference. CONCLUSIONS Patients managed per T2T and those under RC experienced significant improvements in RA disease activity at 12 months of abatacept treatment. T2T was associated with higher odds of CDAI LDA and a shorter time to achieving therapeutic endpoints. TRIAL REGISTRATION Name of the registry: ClinicalTrials.gov. TRIAL REGISTRATIONS NCT03274141 . Date of registration: September 6, 2017.
Collapse
Affiliation(s)
- Louis Bessette
- Department of Medicine, Laval University, Quebec, QC, Canada
| | - Boulos Haraoui
- Centre Hospitalier de L'Université de Montréal, Montreal, Québec, Canada
| | - Emmanouil Rampakakis
- Department of Pediatrics, McGill University, Montreal, Canada
- JSS Medical Research, Montreal, Canada
| | | | | | - Janet Pope
- Division of Rheumatology, Department of Medicine, Western University, 268 Grosvenor Street, London, ON, N6A 4V2, Canada.
| |
Collapse
|
15
|
Gottardi F, Leardini D, Muratore E, Baccelli F, Cerasi S, Venturelli F, Zanaroli A, Belotti T, Prete A, Masetti R. Treatment of steroid-refractory graft versus host disease in children. FRONTIERS IN TRANSPLANTATION 2023; 2:1251112. [PMID: 38993897 PMCID: PMC11235274 DOI: 10.3389/frtra.2023.1251112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/17/2023] [Indexed: 07/13/2024]
Abstract
Systemic steroids are still the first-line approach in acute graft-versus-host disease (aGvHD), and the backbone of chronic GvHD management. Refractoriness to steroid represent a major cause of morbidity and non-relapse mortality after hematopoietic stem cell transplantation (HSCT). In both backgrounds, several second-line immunosuppressive agents have been tested with variable results in terms of efficacy and toxicity. Solid evidence regarding these approaches is still lacking in the pediatric setting where results are mainly derived from adult experiences. Furthermore, the number of treated patients is limited and the incidence of acute and chronic GvHD is lower, resulting in a very heterogeneous approach to this complication by pediatric hematologists. Some conventional therapies and anti-cytokine monoclonal antibodies used in the adult setting have been evaluated in children. In recent years, the increasing understanding of the biological mechanisms underpinning the pathogenesis of GvHD justified the efforts toward the adoption of targeted therapies and non-pharmacologic approaches, with higher response rates and lower immunosuppressive effects. Moreover, many questions regarding the precise timing and setting in which to integrate these new approaches remain unanswered. This Review aims to critically explore the current evidence regarding novel approaches to treat SR-GvHD in pediatric HSCT recipients.
Collapse
Affiliation(s)
- Francesca Gottardi
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Davide Leardini
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Edoardo Muratore
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Baccelli
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Sara Cerasi
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Venturelli
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Andrea Zanaroli
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tamara Belotti
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Arcangelo Prete
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Riccardo Masetti
- Pediatric Oncology and Hematology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
16
|
Eyraud E, Maurat E, Sac-Epée JM, Henrot P, Zysman M, Esteves P, Trian T, Dupuy JW, Leipold A, Saliba AE, Begueret H, Girodet PO, Thumerel M, Hustache-Castaing R, Marthan R, Levet F, Vallois P, Contin-Bordes C, Berger P, Dupin I. Short-range interactions between fibrocytes and CD8 + T cells in COPD bronchial inflammatory response. eLife 2023; 12:RP85875. [PMID: 37494277 PMCID: PMC10371228 DOI: 10.7554/elife.85875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023] Open
Abstract
Bronchi of chronic obstructive pulmonary disease (COPD) are the site of extensive cell infiltration, allowing persistent contact between resident cells and immune cells. Tissue fibrocytes interaction with CD8+ T cells and its consequences were investigated using a combination of in situ, in vitro experiments and mathematical modeling. We show that fibrocytes and CD8+ T cells are found in the vicinity of distal airways and that potential interactions are more frequent in tissues from COPD patients compared to those of control subjects. Increased proximity and clusterization between CD8+ T cells and fibrocytes are associated with altered lung function. Tissular CD8+ T cells from COPD patients promote fibrocyte chemotaxis via the CXCL8-CXCR1/2 axis. Live imaging shows that CD8+ T cells establish short-term interactions with fibrocytes, that trigger CD8+ T cell proliferation in a CD54- and CD86-dependent manner, pro-inflammatory cytokines production, CD8+ T cell cytotoxic activity against bronchial epithelial cells and fibrocyte immunomodulatory properties. We defined a computational model describing these intercellular interactions and calibrated the parameters based on our experimental measurements. We show the model's ability to reproduce histological ex vivo characteristics, and observe an important contribution of fibrocyte-mediated CD8+ T cell proliferation in COPD development. Using the model to test therapeutic scenarios, we predict a recovery time of several years, and the failure of targeting chemotaxis or interacting processes. Altogether, our study reveals that local interactions between fibrocytes and CD8+ T cells could jeopardize the balance between protective immunity and chronic inflammation in the bronchi of COPD patients.
Collapse
Affiliation(s)
- Edmée Eyraud
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
| | - Elise Maurat
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
| | - Jean-Marc Sac-Epée
- Univ-Lorraine, Institut Elie Cartan de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Pauline Henrot
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Maeva Zysman
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Pauline Esteves
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
| | - Thomas Trian
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
| | - Jean-William Dupuy
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
| | - Alexander Leipold
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Hugues Begueret
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
- CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Pessac, France
| | - Pierre-Olivier Girodet
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
- CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Pessac, France
| | - Matthieu Thumerel
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
- CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Pessac, France
| | - Romain Hustache-Castaing
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
- CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Pessac, France
| | - Roger Marthan
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
- CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Pessac, France
| | - Florian Levet
- Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, Bordeaux, France
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, Bordeaux, France
| | - Pierre Vallois
- Univ-Lorraine, Institut Elie Cartan de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Cécile Contin-Bordes
- CNRS, UMR5164 ImmunoConcEpT, Université de Bordeaux, Bordeaux, France
- CHU de Bordeaux, Laboratoire d'Immunologie et Immunogénétique, Bordeaux, France
| | - Patrick Berger
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Département de Pharmacologie, CIC1401, Proteomics Facility, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
- CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Pessac, France
| | - Isabelle Dupin
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Pessac, France
| |
Collapse
|
17
|
Pizano-Martinez O, Mendieta-Condado E, Vázquez-Del Mercado M, Martínez-García EA, Chavarria-Avila E, Ortuño-Sahagún D, Márquez-Aguirre AL. Anti-Drug Antibodies in the Biological Therapy of Autoimmune Rheumatic Diseases. J Clin Med 2023; 12:jcm12093271. [PMID: 37176711 PMCID: PMC10179320 DOI: 10.3390/jcm12093271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Autoimmune rheumatic diseases are a cluster of heterogeneous disorders that share some clinical symptoms such as pain, tissue damage, immune deregulation, and the presence of inflammatory mediators. Biologic disease-modifying antirheumatic drugs are some of the most effective treatments for rheumatic diseases. However, their molecular and pharmacological complexity makes them potentially immunogenic and capable of inducing the development of anti-drug antibodies. TNF inhibitors appear to be the main contributors to immunogenicity because they are widely used, especially in rheumatoid arthritis. Immunogenicity response on these treatments is crucial since the appearance of ADAs has consequences in terms of safety and efficacy. Therefore, this review proposes an overview of the immunogenicity of biological agents used in autoimmune rheumatic diseases highlighting the prevalence of anti-drug antibodies.
Collapse
Affiliation(s)
- Oscar Pizano-Martinez
- Instituto de Investigación en Reumatología y del Sistema Músculo-Esquelético (IIRSME), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, JAL, Mexico
- Departamento de Morfología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, JAL, Mexico
- Cuerpo Académico UDG-CA-703, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, JAL, Mexico
| | - Edgar Mendieta-Condado
- Laboratorio Estatal de Salud Pública (LESP), Secretaría de Salud Jalisco, Zapopan 46170, JAL, Mexico
| | - Mónica Vázquez-Del Mercado
- Instituto de Investigación en Reumatología y del Sistema Músculo-Esquelético (IIRSME), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, JAL, Mexico
- Cuerpo Académico UDG-CA-703, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, JAL, Mexico
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, JAL, Mexico
| | - Erika Aurora Martínez-García
- Instituto de Investigación en Reumatología y del Sistema Músculo-Esquelético (IIRSME), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, JAL, Mexico
- Cuerpo Académico UDG-CA-703, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, JAL, Mexico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, JAL, Mexico
| | - Efrain Chavarria-Avila
- Instituto de Investigación en Reumatología y del Sistema Músculo-Esquelético (IIRSME), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, JAL, Mexico
- Departamento de Disciplinas Filosófico, Metodológicas e Instrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, JAL, Mexico
| | - Daniel Ortuño-Sahagún
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, JAL, Mexico
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, JAL, Mexico
| | - Ana Laura Márquez-Aguirre
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, JAL, Mexico
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara 44270, JAL, Mexico
| |
Collapse
|
18
|
Chi XK, Xu XL, Chen BY, Su J, Du YZ. Combining nanotechnology with monoclonal antibody drugs for rheumatoid arthritis treatments. J Nanobiotechnology 2023; 21:105. [PMID: 36964609 PMCID: PMC10039584 DOI: 10.1186/s12951-023-01857-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic immune disease characterized by synovial inflammation. Patients with RA commonly experience significant damage to their hand and foot joints, which can lead to joint deformities and even disability. Traditional treatments have several clinical drawbacks, including unclear pharmacological mechanisms and serious side effects. However, the emergence of antibody drugs offers a promising approach to overcome these limitations by specifically targeting interleukin-1 (IL-1), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and other cytokines that are closely related to the onset of RA. This approach reduces the incidence of adverse effects and contributes to significant therapeutic outcomes. Furthermore, combining these antibody drugs with drug delivery nanosystems (DDSs) can improve their tissue accumulation and bioavailability.Herein, we provide a summary of the pathogenesis of RA, the available antibody drugs and DDSs that improve the efficacy of these drugs. However, several challenges need to be addressed in their clinical applications, including patient compliance, stability, immunogenicity, immunosupression, target and synergistic effects. We propose strategies to overcome these limitations. In summary, we are optimistic about the prospects of treating RA with antibody drugs, given their specific targeting mechanisms and the potential benefits of combining them with DDSs.
Collapse
Affiliation(s)
- Xiao-Kai Chi
- College of Pharmacy, Jiamusi University, 258 Xuefu Road, Jiamusi, 154007, China
- Shulan International Medical College, Zhejiang Shuren University), 8 Shuren Street, Hangzhou, 310015, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University), 8 Shuren Street, Hangzhou, 310015, China.
| | - Bang-Yao Chen
- Shulan International Medical College, Zhejiang Shuren University), 8 Shuren Street, Hangzhou, 310015, China
| | - Jin Su
- College of Pharmacy, Jiamusi University, 258 Xuefu Road, Jiamusi, 154007, China.
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China.
| |
Collapse
|
19
|
Zheng C, Shi Y, Zou Y. T cell co-stimulatory and co-inhibitory pathways in atopic dermatitis. Front Immunol 2023; 14:1081999. [PMID: 36993982 PMCID: PMC10040887 DOI: 10.3389/fimmu.2023.1081999] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
The use of immune checkpoint inhibitors (ICIs) targeting the T cell inhibitory pathways has revolutionized cancer treatment. However, ICIs might induce progressive atopic dermatitis (AD) by affecting T cell reactivation. The critical role of T cells in AD pathogenesis is widely known. T cell co-signaling pathways regulate T cell activation, where co-signaling molecules are essential for determining the magnitude of the T cell response to antigens. Given the increasing use of ICIs in cancer treatment, a timely overview of the role of T cell co-signaling molecules in AD is required. In this review, we emphasize the importance of these molecules involved in AD pathogenesis. We also discuss the potential of targeting T cell co-signaling pathways to treat AD and present the unresolved issues and existing limitations. A better understanding of the T cell co-signaling pathways would aid investigation of the mechanism, prognosis evaluation, and treatment of AD.
Collapse
Affiliation(s)
- Chunjiao Zheng
- Skin and Cosmetic Research Department, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuling Shi
- Institute of Psoriasis, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Yuling Shi, ; Ying Zou,
| | - Ying Zou
- Skin and Cosmetic Research Department, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Yuling Shi, ; Ying Zou,
| |
Collapse
|
20
|
Azuma T, Misaki K, Kusaoi M, Suzuki Y, Higa S, Kumon Y, Yoshitama T, Naniwa T, Yamada S, Okano T, Takeuchi K, Ikeda K, Higami K, Inoo M, Sawada T, Kang C, Hayashi M, Nagaya Y, Hagiwara T, Shono E, Himeno S, Tanaka E, Inoue E, Yoshizawa Y, Kadode M, Yamanaka H, Harigai M. Influence of concomitant methotrexate use on the clinical effectiveness, retention, and safety of abatacept in biologic-naïve patients with rheumatoid arthritis: Post-hoc subgroup analysis of the ORIGAMI study. Mod Rheumatol 2023; 33:271-278. [PMID: 35389481 DOI: 10.1093/mr/roac032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/30/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVES We performed post-hoc analyses of the ORIGAMI study to investigate whether concomitant methotrexate (MTX) influences the clinical outcomes of abatacept in biologic-naïve patients with rheumatoid arthritis. METHODS Enrolled patients (n = 325) were divided into two groups according to whether abatacept was prescribed without (MTX-) or with (MTX+) concomitant MTX. We compared the changes in Simplified Disease Activity Index (SDAI), Disease Activity Score-28 with C-reactive protein (DAS28-CRP), and Japanese Health Assessment Questionnaire (J-HAQ) through to 52 weeks of treatment, the abatacept retention rate, and safety. RESULTS At Week 52, the mean SDAI (8.9 vs. 8.8), DAS28-CRP (2.6 vs. 2.6), and J-HAQ (0.92 vs. 0.91) scores were comparable in the MTX- (n = 129) and MTX+ (n = 150) groups. Multivariable logistic regression revealed no significant association between MTX use and SDAI (low disease activity) or J-HAQ (minimum clinically important difference). The abatacept retention rates, estimated using the Kaplan-Meier method, were 73.2% and 66.7% in the MTX- and MTX+ groups, respectively. Adverse events occurred in 47.5% (of 139) and 52.2% (of 159) of patients in the MTX- and MTX+ groups, respectively. CONCLUSION The effectiveness and safety of abatacept appeared comparable with or without concomitant MTX in this real-world clinical setting.
Collapse
Affiliation(s)
| | - Kenta Misaki
- Department of Rheumatology, Kita-Harima Medical Center, Hyogo, Japan
| | - Makio Kusaoi
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | | | - Shinji Higa
- Division of Rheumatology, Daini Osaka Police Hospital, Osaka, Japan
| | - Yoshitaka Kumon
- Department of Rheumatology, Chikamori Hospital, Kochi, Japan
| | | | - Taio Naniwa
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University, Aichi, Japan
| | - Shinsuke Yamada
- Department of Clinical Immunology, Osaka City University, Osaka, Japan
| | - Tadashi Okano
- Department of Orthopedic Surgery, Osaka City University, Osaka, Japan
| | - Kimihiko Takeuchi
- Departments of Orthopedics and Rheumatology, Isesaki Fukushima Hospital, Gunma, Japan
| | - Kei Ikeda
- Department of Allergy and Clinical Immunology, Chiba University, Chiba, Japan
| | - Kenshi Higami
- Higami Clinic of Rheumatology and Diabetology, Nara, Japan
| | | | - Tetsuji Sawada
- Department of Rheumatology, Tokyo Medical University, Tokyo, Japan
| | - Chonte Kang
- Kang Clinic Rheumatology Orthopedic, Kanagawa, Japan
| | | | - Yuko Nagaya
- Center of Joint Surgery for Rheumatic Diseases and Osteoporosis, Nagoya City University East Medical Center, Aichi, Japan
| | | | | | | | - Eiichi Tanaka
- Division of Rheumatology, Department of Internal Medicine, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Eisuke Inoue
- Division of Rheumatology, Department of Internal Medicine, Tokyo Women's Medical University School of Medicine, Tokyo, Japan.,Showa University Research Administration Center, Showa University, Tokyo, Japan
| | - Yuri Yoshizawa
- Department of Immunology Medical, Bristol-Myers Squibb K.K., Tokyo, Japan
| | | | - Hisashi Yamanaka
- Division of Rheumatology, Department of Internal Medicine, Tokyo Women's Medical University School of Medicine, Tokyo, Japan.,Department of Rheumatology, Sanno Medical Center, Tokyo, Japan
| | - Masayoshi Harigai
- Division of Rheumatology, Department of Internal Medicine, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| |
Collapse
|
21
|
Signaling pathways in rheumatoid arthritis: implications for targeted therapy. Signal Transduct Target Ther 2023; 8:68. [PMID: 36797236 PMCID: PMC9935929 DOI: 10.1038/s41392-023-01331-9] [Citation(s) in RCA: 152] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/16/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is an incurable systemic autoimmune disease. Disease progression leads to joint deformity and associated loss of function, which significantly impacts the quality of life for sufferers and adds to losses in the labor force. In the past few decades, RA has attracted increased attention from researchers, the abnormal signaling pathways in RA are a very important research field in the diagnosis and treatment of RA, which provides important evidence for understanding this complex disease and developing novel RA-linked intervention targets. The current review intends to provide a comprehensive overview of RA, including a general introduction to the disease, historical events, epidemiology, risk factors, and pathological process, highlight the primary research progress of the disease and various signaling pathways and molecular mechanisms, including genetic factors, epigenetic factors, summarize the most recent developments in identifying novel signaling pathways in RA and new inhibitors for treating RA. therapeutic interventions including approved drugs, clinical drugs, pre-clinical drugs, and cutting-edge therapeutic technologies. These developments will hopefully drive progress in new strategically targeted therapies and hope to provide novel ideas for RA treatment options in the future.
Collapse
|
22
|
Abstract
INTRODUCTION Rheumatoid Arthritis (RA) remains a challenge for rheumatologists and patients despite implementation of intensive treat-to-target strategies in shared decision with patients and an increasing availability of drugs. Janus kinase inhibitors (JAKi) are a new generation of oral targeted drugs. Filgotinib preferentially inhibits JAK1 and is the latest JAKi to be approved for use in RA. AREAS COVERED This narrative review focuses on drug characteristics, efficacy, and safety of filgotinib in patients with RA, summarizing available literature. Trial data are detailed, put into perspective for practice and discussed in regulatory perspective. EXPERT OPINION Preclinical studies demonstrate preferential inhibition of JAK1 and a promising pharmacokinetic profile with few drug-drug interactions. Increase in hemoglobin in line with preferential inhibition of JAK1 over JAK2 is seen in early-phase clinical trials. A phase III program demonstrates efficacy in several disease stages, numerically higher with 200 mg versus 100 mg daily. In the overall RA population such dose-related effect is not observed for safety except for herpes zoster and increases in lipids and creatine phosphokinase. This reassuring safety profile is to be confirmed in future practice. It also needs to be unraveled if JAK1 preferential inhibition plays a key role in this safety profile.
Collapse
Affiliation(s)
- Rene Westhovens
- Emeritus Professor KU Leuven, Skeletal Biology and Engineering Research Center Department of Development and Regeneration, Leuven, Belgium
| |
Collapse
|
23
|
Rheumatoid arthritis: advances in treatment strategies. Mol Cell Biochem 2023; 478:69-88. [PMID: 35725992 DOI: 10.1007/s11010-022-04492-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/31/2022] [Indexed: 01/17/2023]
Abstract
Rheumatoid arthritis (RA) is characterised by severe joint and bone damage due to heightened autoimmune response at the articular sites. Worldwide annual incidence and prevalence rate of RA is 3 cases per 10,000 population and 1%, respectively. Several genetic and environmental (microbiota, smoking, infectious agents) factors contribute to its pathogenesis. Although convention treatment strategies, predominantly Disease Modifying Anti Rheumatic Drugs (DMARDs) and Glucocorticoids (GC), are unchanged as the primary line of treatment; novel strategies consisting of biological DMARDs, are being developed and explored. Personalized approaches using biologicals targetspecific pathways associated with disease progression. However, considering the economic burden and side-effects associated with these, there is an unmet need on strategies for early stratification of the inadequate responders with cDMARDs. As RA is a complex disease with a variable remission rate, it is important not only to evaluate the current status of drugs in clinical practice but also those with the potential of personalised therapeutics. Here, we provide comprehensive data on the treatment strategies in RA, including studies exploring various combination strategies in clinical trials. Our systematic analysis of current literature found that conventional DMARDs along with glucocorticoid may be best suited for early RA cases and a combination of conventional and targeted DMARDs could be effective for treating seronegative patients with moderate to high RA activity. Clinical trials with insufficient responders to Methotrexate suggest that adding biologicals may help in such cases. However, certain adverse events associated with the current therapy advocate exploring novel therapeutic approaches such as gene therapy, mesenchymal stem cell therapy in future.
Collapse
|
24
|
Ambrogio F, Laface C, Perosa F, Lospalluti L, Ranieri G, De Prezzo S, Prete M, Cazzato G, Guarneri F, Romita P, Foti C. An 82-year-old woman with new onset of multiple purple-reddish nodules during treatment with abatacept for rheumatoid arthritis. Intern Emerg Med 2022; 17:2339-2341. [PMID: 35781779 DOI: 10.1007/s11739-022-03025-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/02/2022] [Indexed: 01/15/2023]
Affiliation(s)
- Francesca Ambrogio
- Department of Biomedical Science and Human Oncology, Dermatological Clinic, University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy.
| | - Carmelo Laface
- Interventional and Medical Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Federico Perosa
- Department of Biomedical Science and Human Oncology, Systemic Rheumatic and Autoimmune Diseases Unit, University of Bari, Bari, Italy
| | - Lucia Lospalluti
- Department of Biomedical Science and Human Oncology, Dermatological Clinic, University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Girolamo Ranieri
- Interventional and Medical Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Serena De Prezzo
- Department of Biomedical Science and Human Oncology, Dermatological Clinic, University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Marcella Prete
- Department of Biomedical Science and Human Oncology, Systemic Rheumatic and Autoimmune Diseases Unit, University of Bari, Bari, Italy
| | - Gerardo Cazzato
- Department of Emergency and Organ Transplantations, Pathology Unit, University of Bari, Bari, Italy
| | - Fabrizio Guarneri
- Dermatology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Paolo Romita
- Department of Biomedical Science and Human Oncology, Dermatological Clinic, University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Caterina Foti
- Department of Biomedical Science and Human Oncology, Dermatological Clinic, University of Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy
| |
Collapse
|
25
|
Fukue R, Okazaki Y, Gono T, Kuwana M. Abatacept downregulates Fcγ receptor I on circulating monocytes: a potential therapeutic mechanism in patients with rheumatoid arthritis. Arthritis Res Ther 2022; 24:194. [PMID: 35964055 PMCID: PMC9375333 DOI: 10.1186/s13075-022-02886-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/03/2022] [Indexed: 11/22/2022] Open
Abstract
Background Abatacept is a recombinant fusion protein composed of the extracellular domain of cytotoxic T-lymphocyte antigen 4 and the Fc portion of immunoglobulin (Ig) G. The mechanism of action of abatacept in rheumatoid arthritis (RA) is believed to be competitive inhibition of T cell costimulation mediated by the binding of CD28 to CD80/CD86 on antigen-presenting cells, and recent studies have shown that abatacept induces reverse signaling in macrophages and osteoclast precursors in a T cell-independent manner. This study aimed to investigate the therapeutic effects of abatacept on circulating monocytes that contribute to RA pathogenesis. Methods Purified circulating monocytes derived from RA patients and controls were cultured in the absence or presence of abatacept or CD28-Ig for 24 h. The recovered cells were subjected to flow cytometry to evaluate the expression levels of cell surface molecules, and cytokines and chemokines in the culture supernatant were measured by multiplex bead arrays. The expression of candidate molecules was further examined by immunoblotting using total cellular extracts of the cultured monocytes. Finally, the effects of abatacept on cytokine production in monocytes stimulated with the immune complex of anti-citrullinated peptide antibodies (ACPAs) were examined. Results CD64/FcγRI was identified as a monocyte-derived molecule that was downregulated by abatacept but not CD28-Ig. This effect was observed in both RA patients and controls. The abatacept-induced downregulation of CD64/FcγRI was abolished by treatment with anti-CD86 antibodies but not anti-CD80 antibodies. Abatacept suppressed the production of interleukin (IL)-1β, IL-6, C-C motif chemokine ligand 2, and tumor necrosis factor-α in cultured monocytes stimulated with the ACPA immune complex. Conclusions The therapeutic effects of abatacept on RA are mediated, in part, by the downregulation of CD64/FcγRI on circulating monocytes via direct binding to CD86 and the suppression of immune complex-mediated inflammatory cytokine production. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02886-8.
Collapse
Affiliation(s)
- Ryosuke Fukue
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Yuka Okazaki
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Takahisa Gono
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan.
| |
Collapse
|
26
|
Guiteras J, Crespo E, Fontova P, Bolaños N, Gomà M, Castaño E, Bestard O, Grinyó JM, Torras J. Dual Costimulatory and Coinhibitory Targeting with a Hybrid Fusion Protein as an Immunomodulatory Therapy in Lupus Nephritis Mice Models. Int J Mol Sci 2022; 23:ijms23158411. [PMID: 35955542 PMCID: PMC9369380 DOI: 10.3390/ijms23158411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Systemic lupus erythematosus is a complex autoimmune disorder mostly mediated by B-cells in which costimulatory signals are involved. This immune dysregulation can cause tissue damage and inflammation of the kidney, resulting in lupus nephritis and chronic renal failure. Given the previous experience reported with CTLA4-Ig as well as recent understanding of the PD-1 pathway in this setting, our group was encouraged to evaluate, in the NZBWF1 model, a human fusion recombinant protein (Hybri) with two domains: CTLA4, blocking the CD28—CD80 costimulatory pathway, and PD-L2, exacerbating the PD-1–PD-L2 coinhibitory pathway. After achieving good results in this model, we decided to validate the therapeutic effect of Hybri in the more severe MRL/lpr model of lupus nephritis. The intraperitoneal administration of Hybri prevented the progression of proteinuria and anti-dsDNA antibodies to levels like those of cyclophosphamide and reduced the histological score, infiltration of B-cells, T-cells, and macrophages and immune deposition in both lupus-prone models. Additionally, Hybri treatment produced changes in both inflammatory-related circulating cytokines and kidney gene expression. To summarize, both in vivo studies revealed that the Hybri effect on costimulatory-coinhibitory pathways may effectively mitigate lupus nephritis, with potential for use as a maintenance therapy.
Collapse
Affiliation(s)
- Jordi Guiteras
- Experimental Nephrology Laboratory, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.G.); (P.F.)
- Fundació Bosch i Gimpera, University of Barcelona, 08028 Barcelona, Spain
| | - Elena Crespo
- Experimental Nephrology and Renal Transplantation Laboratory, Nephrology Department, Vall d’Hebrón University Hospital, 08035 Barcelona, Spain; (E.C.); (N.B.); (O.B.)
| | - Pere Fontova
- Experimental Nephrology Laboratory, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.G.); (P.F.)
| | - Nuria Bolaños
- Experimental Nephrology and Renal Transplantation Laboratory, Nephrology Department, Vall d’Hebrón University Hospital, 08035 Barcelona, Spain; (E.C.); (N.B.); (O.B.)
| | - Montse Gomà
- Pathology Department, Bellvitge University Hospital, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain;
| | - Esther Castaño
- Centres Científics i Tecnològics, L’Hospitalet de Llobregat, University of Barcelona, 08907 Barcelona, Spain;
| | - Oriol Bestard
- Experimental Nephrology and Renal Transplantation Laboratory, Nephrology Department, Vall d’Hebrón University Hospital, 08035 Barcelona, Spain; (E.C.); (N.B.); (O.B.)
| | - Josep M. Grinyó
- Faculty of Medicine, Bellvitge Campus, L’Hospitalet de Llobregat, University of Barcelona, 08907 Barcelona, Spain
- Correspondence: (J.M.G.); (J.T.)
| | - Joan Torras
- Experimental Nephrology Laboratory, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.G.); (P.F.)
- Faculty of Medicine, Bellvitge Campus, L’Hospitalet de Llobregat, University of Barcelona, 08907 Barcelona, Spain
- Correspondence: (J.M.G.); (J.T.)
| |
Collapse
|
27
|
Yang D, Li H, Chen Y, Ren W, Dong M, Li C, Jiao Q. Immunomodulatory mechanisms of abatacept: A therapeutic strategy for COVID-19. Front Med (Lausanne) 2022; 9:951115. [PMID: 35957855 PMCID: PMC9357915 DOI: 10.3389/fmed.2022.951115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by coronavirus-2 (SARS-CoV-2) infection has rapidly spread throughout the world and become a major threat to human beings. Cytokine storm is a major cause of death in severe patients. Abatacept can suppress cytokines used as antirheumatic drugs in clinical applications. This study analyzed the molecular mechanisms of abatacept treatment for COVID-19. Differentially expressed genes (DEGs) were identified by analyzing expression profiling of abatacept treatment for rheumatoid arthritis (RA) patients and SARS-CoV-2 infection patients. We found that 59 DEGs were upregulated in COVID-19 patients and downregulated following abatacept treatment. Gene set enrichment analysis (GSEA) and Gene Ontology (GO) analysis showed that immune and inflammatory responses were potential regulatory mechanisms. Moreover, we verified 8 targeting genes and identified 15 potential drug candidates for the treatment of COVID-19. Our study illustrated that abatacept could be a promising property for preventing severe COVID-19, and we predicted alternative potential drugs for the treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Dinglong Yang
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Hetong Li
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yujing Chen
- School of Public Health, Xi'an Jiaotong University, Xi'an, China
| | - Weiping Ren
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Mingjie Dong
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Chunjiang Li
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Qiang Jiao
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Qiang Jiao
| |
Collapse
|
28
|
Nooreen R, Nene S, Jain H, Prasannanjaneyulu V, Chitlangya P, Otavi S, Khatri DK, Raghuvanshi RS, Singh SB, Srivastava S. Polymer nanotherapeutics: A versatile platform for effective rheumatoid arthritis therapy. J Control Release 2022; 348:397-419. [PMID: 35660632 DOI: 10.1016/j.jconrel.2022.05.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 11/27/2022]
Abstract
Rheumatoid arthritis is an aggressive and severely debilitating disorder that is characterized by joint pain and cartilage damage. It restricts mobility in patients, leaving them unable to carry out simple tasks. RA presents itself with severe lasting pain, swelling and stiffness in the joints and may cause permanent disability in patients. Treatment regimens currently employed for rheumatoid arthritis revolve around keeping clinical symptoms like joint pain, inflammation, swelling and stiffness at bay. The current therapeutic interventions in rheumatoid arthritis involve the use of non-steroidal anti-inflammatory drugs, glucocorticoids, disease-modifying anti-rheumatic drugs and newer biological drugs that are engineered for inhibiting the expression of pro-inflammatory mediators. These conventional drugs are plagued with severe adverse effects because of their higher systemic distribution, lack of specificity and higher doses. Oral, intra-articular, and intravenous routes are routinely used for drug delivery which is associated with decreased patient compliance, high cost, poor bioavailability and rapid systemic clearance. All these drawbacks have enticed researchers to create novel strategies for drug delivery, the main approach being nanocarrier-based systems. In this article, we aim to consolidate the remarkable contributions of polymeric carrier systems including microneedle technology and smart trigger-responsive polymeric carriers in the management of rheumatoid arthritis along with its detailed pathophysiology. This review also briefly describes the safety and regulatory aspects of polymer therapeutics.
Collapse
Affiliation(s)
- Rimsha Nooreen
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Shweta Nene
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Harsha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Velpula Prasannanjaneyulu
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Palak Chitlangya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Shivam Otavi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Dharmendra Kumar Khatri
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Rajeev Singh Raghuvanshi
- Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, India
| | - Shashi Bala Singh
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India.
| |
Collapse
|
29
|
Padoan R, Campaniello D, Iorio L, Doria A, Schiavon F. Biologic therapy in relapsing polychondritis: navigating between options. Expert Opin Biol Ther 2022; 22:661-671. [PMID: 35230215 DOI: 10.1080/14712598.2022.2048647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Relapsing polychondritis (RP) is a rare systemic inflammatory disease of unknown etiology, primarily affecting cartilaginous tissue and proteoglycan-rich structures. Clinical manifestations vary from mild symptoms to occasional organ or life-threatening complications. Treatment can be challenging and is mostly based on experience or case reports/series. AREAS COVERED There is growing literature investigating the role of biologics in the management of RP. TNFα antagonists, abatacept, tocilizumab, rituximab, anakinra and tofacitinib have been prescribed in several RP patients, mainly as second-line treatment, after conventional immunosuppressive agents' failure. EXPERT OPINION : Glucocorticoids represent the gold standard treatment of RP. Conventional immunosuppressants should be administered in refractory patients or when a glucocorticoid-sparing effect is needed. Biologic therapy should be used after failure of conventional treatments or in severe manifestations. TNFα inhibitors are the most prescribed biologic agent, with partial or complete response in several cases; but loss of efficacy may occur over time. Infliximab and adalimumab should be preferred among TNFα antagonists. Abatacept and tocilizumab proved to be effective as second-line biologic agents, but frequent infections are reported with the former. Data on anakinra and rituximab are controversial, therefore they are not recommended as first-line biologic drugs. The use of JAK inhibitors is still anecdotal.
Collapse
Affiliation(s)
- Roberto Padoan
- Division of Rheumatology, Department of Medicine DIMED, University of Padova, Italy
| | - Debora Campaniello
- Division of Rheumatology, Department of Medicine DIMED, University of Padova, Italy
| | - Luca Iorio
- Division of Rheumatology, Department of Medicine DIMED, University of Padova, Italy
| | - Andrea Doria
- Division of Rheumatology, Department of Medicine DIMED, University of Padova, Italy
| | - Franco Schiavon
- Division of Rheumatology, Department of Medicine DIMED, University of Padova, Italy
| |
Collapse
|
30
|
Mueller AL, Payandeh Z, Mohammadkhani N, Mubarak SMH, Zakeri A, Alagheband Bahrami A, Brockmueller A, Shakibaei M. Recent Advances in Understanding the Pathogenesis of Rheumatoid Arthritis: New Treatment Strategies. Cells 2021; 10:cells10113017. [PMID: 34831240 PMCID: PMC8616543 DOI: 10.3390/cells10113017] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is considered a chronic systemic, multi-factorial, inflammatory, and progressive autoimmune disease affecting many people worldwide. While patients show very individual courses of disease, with RA focusing on the musculoskeletal system, joints are often severely affected, leading to local inflammation, cartilage destruction, and bone erosion. To prevent joint damage and physical disability as one of many symptoms of RA, early diagnosis is critical. Auto-antibodies play a pivotal clinical role in patients with systemic RA. As biomarkers, they could help to make a more efficient diagnosis, prognosis, and treatment decision. Besides auto-antibodies, several other factors are involved in the progression of RA, such as epigenetic alterations, post-translational modifications, glycosylation, autophagy, and T-cells. Understanding the interplay between these factors would contribute to a deeper insight into the causes, mechanisms, progression, and treatment of the disease. In this review, the latest RA research findings are discussed to better understand the pathogenesis, and finally, treatment strategies for RA therapy are presented, including both conventional approaches and new methods that have been developed in recent years or are currently under investigation.
Collapse
Affiliation(s)
- Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.-L.M.); (A.B.)
| | - Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran;
| | - Niloufar Mohammadkhani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
- Children’s Medical Center, Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
| | - Shaden M. H. Mubarak
- Department of Clinical Laboratory Science, Faculty of Pharmacy, University of Kufa, Najaf 1967365271, Iraq;
| | - Alireza Zakeri
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran 1678815811, Iran;
| | - Armina Alagheband Bahrami
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
| | - Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.-L.M.); (A.B.)
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.-L.M.); (A.B.)
- Correspondence: ; Tel.: +49-89-2180-72624
| |
Collapse
|
31
|
Ostrov BE, Amsterdam D. Interplay of Anti-Viral Vaccines with Biologic Agents and Immunomodulators in Individuals with Autoimmune and Autoinflammatory Diseases. Immunol Invest 2021; 50:833-856. [PMID: 33941025 DOI: 10.1080/08820139.2021.1900863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vaccines are an essential part of a preventative healthcare strategy. However, response to vaccines may be less predictable in immunocompromised people. While outcomes for individuals with autoimmune and autoinflammatory diseases have dramatically improved with treatment using immunomodulating and biologic agents, infections have caused significant morbidity in these people today often more than due to their underlying diseases. Immune-based biologic therapies contribute to these infectious complications. This review addresses anti-viral vaccines, their effectiveness and safety in patients treated with approved biologic agents and immune targeted therapy with a focus on vaccines against influenza, human papillomavirus, hepatitis B virus and varicella zoster virus. Preliminary information regarding SARS-CoV-2 anti-viral vaccines is addressed. Additionally, we present recommendations regarding the safe use of vaccines in immunocompromised individuals with the goal to enhance awareness of the safety and efficacy of these anti-viral vaccines in these high-risk populations.
Collapse
Affiliation(s)
- Barbara E Ostrov
- Department of Pediatrics, Division of Pediatric Rheumatology, Albany Medical College, Albany, New York, USA
| | - Daniel Amsterdam
- Departments of Microbiology & Immunology, Medicine and Pathology, Jacobs School of Medicine and Biomedical Sciences, SUNY at Buffalo, Buffalo, New York, USA
| |
Collapse
|
32
|
Liu M, Yu Y, Hu S. A review on applications of abatacept in systemic rheumatic diseases. Int Immunopharmacol 2021; 96:107612. [PMID: 33823429 DOI: 10.1016/j.intimp.2021.107612] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/11/2021] [Accepted: 03/22/2021] [Indexed: 12/26/2022]
Abstract
Abatacept is a CTLA-4Ig fusion protein that selectively modulates the CD80/CD86:CD28 costimulatory pathway required for full T-cell activation. The FDA has approved it to be used to treat adult rheumatoid arthritis, juvenile idiopathic arthritis, and adult active psoriatic arthritis. Considering the vital pathogenic role of the CTLA-4 pathway in autoimmune diseases, abatacept could efficiently treat other systemic rheumatic diseases. Here we reviewed the published literature to profile the perspectives about the off-label uses of abatacept, especially in those refractory cases with inadequate responses to conventional therapies and biologic agents. Abatacept can be a promising therapeutic option and contribute to reducing hormone dependence and correlated adverse events.
Collapse
Affiliation(s)
- Min Liu
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yikai Yu
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaoxian Hu
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
33
|
Kanta A, Lyka E, Koufakis T, Zebekakis P, Kotsa K. Prevention strategies for type 1 diabetes: a story of promising efforts and unmet expectations. Hormones (Athens) 2020; 19:453-465. [PMID: 32415650 DOI: 10.1007/s42000-020-00207-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
A number of studies have investigated primary and secondary prevention strategies for type 1 diabetes (T1D), since early interventions might improve long-term outcomes through the amelioration of immune processes and the preservation of beta-cell mass. Primary prevention trials focus on genetically at-risk individuals prior to the appearance of autoimmunity, whereas secondary prevention trials aim to halt the progression of complete beta-cell destruction in subjects with established islet autoimmunity (IA). Different approaches have been tested so far, focusing on both pharmaceutical (insulin and monoclonal antibodies) and non-pharmaceutical (vitamin D, omega-3 fatty acids, probiotics, and nicotinamide) interventions, as well as on environmental factors that are believed to trigger autoimmunity in T1D (cow's milk, gluten, and bovine insulin). Albeit certain strategies have displayed efficacy in reducing IA development rates, most efforts have been unsuccessful in preventing the onset of the disease in high-risk individuals. Moreover, significant heterogeneity in study designs, included populations, and explored outcomes renders the interpretation of study results challenging. The aim of this narrative review is to present and critically evaluate primary and secondary prevention strategies for T1D, seeking to fill existing knowledge gaps and providing insight into future directions.
Collapse
Affiliation(s)
- Anna Kanta
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, AHEPA University Hospital, Aristotle University of Thessaloniki, 1 St. Kiriakidi Street, 54636, Thessaloniki, Greece
| | - Eliza Lyka
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, AHEPA University Hospital, Aristotle University of Thessaloniki, 1 St. Kiriakidi Street, 54636, Thessaloniki, Greece
| | - Theocharis Koufakis
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, AHEPA University Hospital, Aristotle University of Thessaloniki, 1 St. Kiriakidi Street, 54636, Thessaloniki, Greece
| | - Pantelis Zebekakis
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, AHEPA University Hospital, Aristotle University of Thessaloniki, 1 St. Kiriakidi Street, 54636, Thessaloniki, Greece
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, AHEPA University Hospital, Aristotle University of Thessaloniki, 1 St. Kiriakidi Street, 54636, Thessaloniki, Greece.
| |
Collapse
|
34
|
Chiu YM, Chen DY. Infection risk in patients undergoing treatment for inflammatory arthritis: non-biologics versus biologics. Expert Rev Clin Immunol 2020; 16:207-228. [PMID: 31852268 DOI: 10.1080/1744666x.2019.1705785] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Despite the therapeutic effectiveness of biologics targeting immune cells or cytokines in patients with inflammatory arthritis, which reflects their pathogenic roles, an increased infection risk is observed in those undergoing biological treatment. However, there are limited data regarding the comparison of infection risks in inflammatory arthritis patients treated with non-biologics (csDMARDs), biologics (bDMARDs), including tumor necrosis factor (TNF) inhibitors and non-TNF inhibitors, or targeted synthetic (ts)DMARDs.Areas covered: Through a review of English-language literature as of 30 June 2019, we focus on the existing evidence on the risk of infections caused by bacteria, Mycobacterium tuberculosis, and hepatitis virus in inflammatory arthritis patients undergoing treatment with csDMARDs, bDMARDs, or tsDMARDs.Expert opinion: While the risks of bacterial and mycobacterial infection are increased in arthritis patients treated with csDMARDs, the risks are further higher in those receiving bDMARDs therapy, particularly TNF inhibitors. Regarding HBV infection, antiviral therapy may effectively prevent HBV reactivation in patients receiving bDMARDs, especially rituximab. However, more data are needed to establish effective preventive strategies for HBsAg-negative/HBcAb-positive patients. It seems safe to use cyclosporine and TNF inhibitors in patients with HCV infection, while those undergoing rituximab therapies should be frequently monitored for HCV activity.Abbreviations: ABT: abatacept; ADA: adalimumab; AS: ankylosing spondylitis; bDMARDs: biologic disease-modifying anti-rheumatic drugs; CKD: chronic kidney disease; COPD: chronic obstructive pulmonary disease; CS: corticosteroids; CsA: cyclosporine A; csDMARDs: conventional synthetic disease-modifying anti-rheumatic drugs; CZP: certolizumab; DAAs: direct-acting antiviral agents; DM: diabetes mellitus; DOT: directly observed therapy; EIN: Emerging Infections Network; ETN: etanercept; GOL: golimumab; GPRD: General Practice Research Database; HBV: hepatitis B virus; HBVr: HBV reactivation; HBsAg+: HBsAg-positive; HBsAg-/anti-HBc+: HBsAg-negative anti-HBc antibodies-positive; HCV: hepatitis C virus; HCQ: hydroxychloroquine: IFX: infliximab; IL-6: interleukin-6; JAK: Janus kinase; LEF: leflunomide; LTBI: latent tuberculosis infection; mAb: monoclonal antibody; MTX: methotrexate; OR: odds ratio; PsA: psoriatic arthritis; PMS: post-marketing surveillance; RA: rheumatoid arthritis; TNF: tumor necrosis factor; TNFi: tumor necrosis factor inhibitor; SCK: secukinumab; SSZ: sulfasalazine; TOZ: tocilizumab; RCT: randomized controlled trial; RR: relative risk; RTX: rituximab; 3HP: 3-month once-weekly isoniazid plus rifapentine; TB: tuberculosis; tsDMARDs: targeted synthetic disease-modifying anti-rheumatic drugs; UTK: ustekinumab; WHO: World Health Organization.
Collapse
Affiliation(s)
- Ying-Ming Chiu
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan
| | - Der-Yuan Chen
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan.,Translational Medicine Laboratory, Rheumatic Diseases Research Center, China Medical University Hospital, Taichung, Taiwan.,Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.,Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
35
|
de Germay S, Bagheri H, Despas F, Rousseau V, Montastruc F. Abatacept in rheumatoid arthritis and the risk of cancer: a world observational post-marketing study. Rheumatology (Oxford) 2019; 59:2360-2367. [DOI: 10.1093/rheumatology/kez604] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/07/2019] [Indexed: 12/16/2022] Open
Abstract
Abstract
Objectives
We aimed to investigate whether abatacept used in patients for RA was associated with an increased risk of reporting overall cancer and specific cancers, including breast, lung, lymphoma, melanoma and non-melanoma skin cancer when compared with other biologic DMARDs (bDMARDs).
Methods
We performed an observational study within VigiBase, the World Health Organization’s global database of individual case safety reports, from 2007 to 2017 to compare the cases of cancer reported in RA patients exposed to abatacept with those reported in RA patients exposed to other bDMARDs. We conducted disproportionality analyses allowing the estimation of reporting odds ratios (RORs) with 95% CIs of the exposure odds among spontaneous reporting of cancers to the exposure odds among other reported adverse effects.
Results
We identified 15 846 adverse effects reported in RA patients who received abatacept and 290 568 adverse effects reported in RA patients treated with other bDMARDs. Compared with other bDMARDs, the use of abatacept was not associated with an increased risk of reporting cancer overall [ROR 0.98 (95% CI 0.91, 1.05)]. Analyses by specific cancer sites showed a significantly increased ROR for melanoma [1.58 (95% CI 1.17, 2.08)], but not for other specific cancer sites.
Conclusion
Compared with other bDMARDs, exposure to abatacept in RA patients was only significantly associated with an increased risk of reporting melanoma. This increased risk is consistent with the properties of abatacept (CTLA-4 agonist) since it has an opposite action than ipilimumab, an antibody that blocks CTLA-4 and is approved for the treatment of malignant melanoma.
Trial registration
ClinicalTrials.gov (http://clinicaltrials.gov), NCT03980639.
Collapse
Affiliation(s)
- Sibylle de Germay
- Department of Medical and Clinical Pharmacology, Centre of Pharmacovigilance and Pharmacoepidemiology, Toulouse University Hospital, Faculty of Medicine, Toulouse, France
- INSERM, UMR 1027 Pharmacoepidemiology, Assessment of Drug Utilization and Drug Safety, CIC 1426 - University Paul Sabatier Toulouse, Toulouse, France
| | - Haleh Bagheri
- Department of Medical and Clinical Pharmacology, Centre of Pharmacovigilance and Pharmacoepidemiology, Toulouse University Hospital, Faculty of Medicine, Toulouse, France
- INSERM, UMR 1027 Pharmacoepidemiology, Assessment of Drug Utilization and Drug Safety, CIC 1426 - University Paul Sabatier Toulouse, Toulouse, France
| | - Fabien Despas
- Department of Medical and Clinical Pharmacology, Centre of Pharmacovigilance and Pharmacoepidemiology, Toulouse University Hospital, Faculty of Medicine, Toulouse, France
- INSERM, UMR 1027 Pharmacoepidemiology, Assessment of Drug Utilization and Drug Safety, CIC 1426 - University Paul Sabatier Toulouse, Toulouse, France
- Clinical Unit of Cancer Pharmacology, Toulouse University Hospital, Faculty of Medicine, Toulouse, France
| | - Vanessa Rousseau
- Department of Medical and Clinical Pharmacology, Centre of Pharmacovigilance and Pharmacoepidemiology, Toulouse University Hospital, Faculty of Medicine, Toulouse, France
- INSERM, UMR 1027 Pharmacoepidemiology, Assessment of Drug Utilization and Drug Safety, CIC 1426 - University Paul Sabatier Toulouse, Toulouse, France
| | - François Montastruc
- Department of Medical and Clinical Pharmacology, Centre of Pharmacovigilance and Pharmacoepidemiology, Toulouse University Hospital, Faculty of Medicine, Toulouse, France
- INSERM, UMR 1027 Pharmacoepidemiology, Assessment of Drug Utilization and Drug Safety, CIC 1426 - University Paul Sabatier Toulouse, Toulouse, France
| |
Collapse
|
36
|
Abstract
PURPOSE OF THE REVIEW Dermatomyositis (DM) is an uncommon autoimmune disease that primarily affects the skin, muscle, and/or lungs, and remains a therapeutic challenge. We discuss recent studies evaluating efficacy of conventional treatments for clinically amyopathic DM (CADM), DM-associated interstitial lung (ILD) disease, and classic DM (CDM). We highlight several emerging new therapies with a focus on clinical trials, systematic reviews, and case series in the last 5 years. RECENT FINDINGS Recent studies report a significant number of patients remain refractory to antimalarials and require second- and third-line agents. Effective treatment for DM-associated ILD can vary based on patient specific antibodies. CDM requires oral glucocorticoids; recent studies have evaluated the benefits of adjunctive therapies including methotrexate and calcineurin inhibitors. New therapies target cell populations or cytokines thought to drive disease pathogenesis. Dermatomyositis is an autoimmune disease that remains challenging to treat. Many patients are refractory to conventional therapies, warranting the development and evaluation of new treatments.
Collapse
|