1
|
Duan X, Lv X, Wang X, Zhang Y, Hu Y, Li H, Zhou Y, Jing Y. Impact of immune cell metabolism on membranous nephropathy and prospective therapy. Commun Biol 2025; 8:405. [PMID: 40065158 PMCID: PMC11893770 DOI: 10.1038/s42003-025-07816-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Membranous nephropathy (MN) is a primary glomerular disease commonly causing adult nephrotic syndrome. Characterized by thickened glomerular capillary walls due to immune complex deposition, MN is a complex autoimmune disorder. Its pathogenesis involves immune deposit formation, complement activation, and a heightened risk of renal failure. Central to MN is immune system dysfunction, particularly the dysregulation of B and T cell responses. B cells contribute to renal injury through the production of autoantibodies, particularly IgG targeting the phospholipase A2 receptor (PLA2R) on podocytes, while T cells modulate immune responses that influence disease progression. Metabolic reprogramming alters lymphocyte survival, differentiation, proliferation, and function, potentially triggering autoimmune processes. Although the link between immune cell metabolism and MN remains underexplored, this review highlights recent advances in understanding immune metabolism and its role in MN. These insights may provide novel biomarkers and therapeutic strategies for MN treatment.
Collapse
Affiliation(s)
- Xuemei Duan
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xin Lv
- Department of Nephrology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Xiaocui Wang
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yunfei Zhang
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ying Hu
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Haonan Li
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yongnian Zhou
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| | - Yukai Jing
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| |
Collapse
|
2
|
López M, Gualillo O. Rheumatic diseases and metabolism: where centre and periphery meet. Nat Rev Rheumatol 2024; 20:783-794. [PMID: 39478099 DOI: 10.1038/s41584-024-01178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/26/2024]
Abstract
Over the past few decades, the connection between metabolism and various inflammatory and rheumatic diseases has been an area of active investigation. Nonetheless, the precise mechanisms underlying these relationships remain a topic of ongoing debate, owing in part to conflicting data. This discrepancy can be attributed to the predominant focus on peripheral mechanisms in research into the metabolic consequences of rheumatic diseases. However, a wealth of evidence supports the notion that the central nervous system, specifically the hypothalamus, has an important influence on metabolic homeostasis. Notably, links have been established between crucial hypothalamic mechanisms responsible for regulating energy balance (including food intake, thermogenesis, and glucose and lipid metabolism), such as AMP-activated protein kinase, and the pathophysiology of rheumatoid arthritis. This Review aims to comprehensively examine the current understanding of central metabolic control in rheumatic diseases and explore potential therapeutic options that target this pathophysiological mechanism.
Collapse
Affiliation(s)
- Miguel López
- NeurObesity Group, Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, Spain.
| | - Oreste Gualillo
- Servizo Galego de Saude (SERGAS)-Instituto de Investigación Sanitaria de Santiago (IDIS), the Neuroendocrine Interactions in Rheumatology and Inflammatory Disease (NEIRID) Lab, Santiago University Clinical Hospital, Santiago de Compostela, Spain.
| |
Collapse
|
3
|
Ren Y, Tian J, Shi W, Feng J, Liu Y, Kang H, He Y. Evaluation of ocular surface inflammation and systemic conditions in patients with systemic lupus erythematosus: a cross-sectional study. BMC Ophthalmol 2024; 24:492. [PMID: 39533209 PMCID: PMC11556210 DOI: 10.1186/s12886-024-03760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE The cross-sectional study was designed to evaluate the association of ocular surface inflammation with systemic conditions in patients with systemic lupus erythematosus (SLE). METHODS The study enrolled 30 SLE patients and 30 controls. Ocular symptoms were evaluated using the Ocular Surface Disease Index (OSDI) questionnaire. Tear samples from all participants were collected for tear multi-cytokine and chemokine concentration analysis. All participants were assessed for dry eye disease (DED), including Schirmer I test, tear break-up time (TBUT), corneal fluorescein staining (CFS), meibomian gland secretion (MGS), lid-parallel conjunctival folds (LIPCOF), corneal clarity, and symblepharon. Besides, all participants were also examined for conjunctival impression cytology to measure the density of conjunctival goblet cells (CGCs). The peripheral blood indicators from SLE patients were also collected to measure the SLE-associated autoantibody specificities and systemic inflammatory indicators. Pearson and Spearman's analysis were uesd to examine the correlation between tear cytokines, CGCs, DED-related indicators, and systemic conditions. RESULTS The two groups were matched for age and gender in this study. 36.67% of eyes (11 in 30) of SLE patients and 13.33% of eyes (4 in 30) of controls were diagnosed with DED. OSDI scores, abnormal TBUT percentages, CFS percentages, and DED grading were all higher in SLE patients than in control group, while density of CGCs was lower. There were no significant differences in Schirmer I test, MGS, LIPCOF, corneal clarity, and symblepharon between SLE patients and controls. The levels of tear chemokine (C-X-C motif) ligand 11 (CXCL11) and cytokine interleukin-7 (IL-7) in patients with SLE were significantly higher than those in control group. Moreover, among SLE patients, the severity of DED and the level of tear chemokine CXCL11 were significantly positively correlated with SLE-associated autoantibody specificities. CONCLUSION Dry eye and tear cytokines and chemokines-mediated ocular surface inflammation persist in SLE patients and are associated with systemic conditions. Therefore, it is necessary for patients with SLE to combine systemic and ocular assessments.
Collapse
Affiliation(s)
- Yuerong Ren
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Jing Tian
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wen Shi
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Jianing Feng
- Xi'an People's Hospital (Xi'an Fourth Hospital), Shaanxi Eye Hospital, Northwest University Affiliated People's Hospital, Xi'an, Shaanxi Province, China
| | - Yingyi Liu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Huanmin Kang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yan He
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmic and Visual Science Key Laboratory, Beijing, China.
| |
Collapse
|
4
|
Klekotka P, Lavoie L, Mitchell B, Iheanacho I, Burge R, Cohee A, Puckett J, Nirula A. Systematic literature review on early clinical evidence for immune-resolution therapies and potential benefits to patients and healthcare providers. Front Immunol 2024; 15:1425478. [PMID: 39483464 PMCID: PMC11524942 DOI: 10.3389/fimmu.2024.1425478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/13/2024] [Indexed: 11/03/2024] Open
Abstract
Introduction Several current therapies for autoimmune diseases do not provide sustained remission. Therapies that focus on the restoration of homeostasis within the immune system (i.e., immune resolution) could overcome the limitations of current therapies and provide more durable remission. However, there is no established consensus on appropriate clinical trial designs and endpoints to evaluate such therapies. Therefore, we conducted a systematic literature review (SLR) focusing on five index diseases (asthma, atopic dermatitis, rheumatoid arthritis, systemic lupus erythematosus [SLE], and ulcerative colitis) to explore published literature on 1) expert opinion on immune-resolution outcomes that should be measured in clinical trials; and 2) quantification of immune resolution in previous clinical trials. Methods The SLR was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Embase and MEDLINE databases were systematically searched (2013-2023) for published English language articles. Conference proceedings (2020-2022) from American Academy of Dermatology, American College of Rheumatology, Digestive Disease Week, European Alliance of Associations for Rheumatology, and European Academy of Dermatology and Venereology were searched to include relevant abstracts. The study protocol was registered in PROSPERO (CRD42023406489). Results The SLR included 26 publications on 20 trials and 12 expert opinions. Expert opinions generally lacked specific recommendations on the assessment of immune resolution in clinical trials and instead suggested targets or biomarkers for future therapies. The targets included thymic stromal lymphopoietin (TSLP) in asthma; T helper (Th)2 and Th22 cells and their respective cytokines (interleukin [IL]-4R and IL-22) in atopic dermatitis; inhibitory/regulatory molecules involved in T-cell modulation, and protein tyrosine phosphatase, non-receptor type 22 (PTPN22) in rheumatoid arthritis; low-dose IL-2 therapy in SLE; and pro-resolution mediators in ulcerative colitis and asthma. In the interventional studies, direct biomarker assessments of immune resolution were the number/proportion of regulatory T-cells (Treg) and the ratio Th17/Treg in SLE and rheumatoid arthritis; the number of T follicular helper cells (Tfh), Th1, Th2, Th17, and Th22 in atopic dermatitis, rheumatoid arthritis, and SLE; and mucosal proinflammatory gene signatures (tumor necrosis factor [TNF], interleukin 1 alpha [IL1A], regenerating family member 1 alpha [REG1A], IL8, interleukin 1 beta [IL1B], and leukocyte immunoglobulin-like receptors A [LILRA]) in ulcerative colitis. Several studies reported a statistically significant relationship between clinical remission and immune-resolution biomarkers, suggesting a link between T-cell homeostasis, cytokine production, and disease activity in autoimmune diseases. Discussion Existing literature does not offer clear guidance on the evaluation of immune resolution in interventional studies. Further research and consensus are needed to assess a treatment's ability to induce long-term remission or low disease activity. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023406489, identifier CRD42023406489.
Collapse
Affiliation(s)
- Paul Klekotka
- Eli Lilly and Company, Indianapolis, IN, United States
| | | | - Beth Mitchell
- Eli Lilly and Company, Indianapolis, IN, United States
| | | | - Russel Burge
- Eli Lilly and Company, Indianapolis, IN, United States
- Division of Pharmaceutical Sciences, Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
| | - Andrea Cohee
- Eli Lilly and Company, Indianapolis, IN, United States
| | | | - Ajay Nirula
- Eli Lilly and Company, Indianapolis, IN, United States
| |
Collapse
|
5
|
Tevlek A. Diagnostic use of circulating cells and sub-cellular bio-particles. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 192:19-36. [PMID: 39159788 DOI: 10.1016/j.pbiomolbio.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 08/21/2024]
Abstract
In the bloodstream or other physiological fluids, "circulating cells and sub-cellular bio-particles" include many microscopic biological elements such as circulating tumor cells (CTCs), cell-free DNA (cfDNA), exosomes, microRNAs, platelets, immune cells, and proteins are the most well-known and investigated. These structures are crucial biomarkers in healthcare and medical research for the early detection of cancer and other disorders, enabling treatment to commence before the onset of clinical symptoms and enhancing the efficacy of treatments. As the size of these biomarkers to be detected decreases and their numbers in body fluids diminishes, the detection materials, ranging from visual inspection to advanced microscopy techniques, begin to become smaller, more sensitive, faster, and more effective, thanks to developing nanotechnology. This review first defines the circulating cells and subcellular bio-particles with their biological, physical, and mechanical properties and second focuses on their diagnostic importance, including their most recent applications as biomarkers, the biosensors that are utilized to detect them, the present obstacles that must be surmounted, and prospective developments in the domain. As technology advances and biomolecular pathways are deepens, diagnostic tests will become more sensitive, specific, and thorough. Finally, integrating recent advances in the diagnostic use of circulating cells and bioparticles into clinical practice is promising for precision medicine and patient outcomes.
Collapse
Affiliation(s)
- Atakan Tevlek
- Department of Medical Biology, Faculty of Medicine, Atilim University, Ankara, 06836, Turkey.
| |
Collapse
|
6
|
Cartes-Velásquez R, Vera A, Antilef B, Sanhueza S, Lamperti L, González-Ortiz M, Nova-Lamperti E. Metformin Restrains the Proliferation of CD4+ T Lymphocytes by Inducing Cell Cycle Arrest in Normo- and Hyperglycemic Conditions. Biomolecules 2024; 14:846. [PMID: 39062560 PMCID: PMC11274706 DOI: 10.3390/biom14070846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 07/28/2024] Open
Abstract
CD4+ T lymphocytes play a key role in the modulation of the immune response by orchestrating both effector and regulatory functions. The effect of metformin on the immunometabolism of CD4+ T lymphocytes has been scarcely studied, and its impact under high glucose conditions, particularly concerning effector responses and glucose metabolism, remains unknown. This study aims to evaluate the effect of metformin on the modulation of the effector functions and glucose metabolism of CD4+ T lymphocytes under normo- and hyperglycemic conditions. CD4+ T lymphocytes, obtained from peripheral blood from healthy volunteers, were anti-CD3/CD28-activated and cultured for 4 days with three concentrations of metformin (0.1 mM, 1 mM, and 5 mM) under normoglycemic (5.5 mM) and hyperglycemic (25 mM) conditions. Effector functions such as proliferation, cell count, cell cycle analysis, activation markers and cytokine secretion were analyzed by flow cytometry. Glucose uptake was determined using the 2-NBDG assay, and levels of glucose, lactate, and phosphofructokinase (PFK) activity were assessed by colorimetric assays. Metformin at 5 mM restrained the cell counts and proliferation of CD4+ T lymphocytes by arresting the cell cycle in the S/G2 phase at the beginning of the cell culture, without affecting cell activation, cytokine production, and glucose metabolism. In fact, CD69 expression and IL4 secretion by CD4+ T lymphocytes was higher in the presence of 5 mM than the untreated cells in both glucose conditions. Overall, metformin inhibited proliferation through mechanisms associated with cell cycle arrest, leading to an increase in the S/G2 phases at the expense of G1 in activated CD4+ T lymphocytes in normo- and hyperglycemic conditions. Despite the cell cycle arrest, activated CD4+ T lymphocytes remained metabolically, functionally, and phenotypically activated.
Collapse
Affiliation(s)
- Ricardo Cartes-Velásquez
- School of Medicine, University of Concepcion, Concepcion 4070409, Chile
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, University of Concepcion, Concepcion 4070409, Chile; (A.V.)
| | - Agustín Vera
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, University of Concepcion, Concepcion 4070409, Chile; (A.V.)
| | - Bárbara Antilef
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, University of Concepcion, Concepcion 4070409, Chile; (A.V.)
| | - Sergio Sanhueza
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, University of Concepcion, Concepcion 4070409, Chile; (A.V.)
| | - Liliana Lamperti
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, University of Concepcion, Concepcion 4070409, Chile; (A.V.)
| | - Marcelo González-Ortiz
- Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Universidad de Concepción, Concepción 4070409, Chile
| | - Estefanía Nova-Lamperti
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, University of Concepcion, Concepcion 4070409, Chile; (A.V.)
| |
Collapse
|
7
|
Wang S, Yang N, Zhang H. Metabolic dysregulation of lymphocytes in autoimmune diseases. Trends Endocrinol Metab 2024; 35:624-637. [PMID: 38355391 DOI: 10.1016/j.tem.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
Lymphocytes are crucial for protective immunity against infection and cancers; however, immune dysregulation can lead to autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Metabolic adaptation controls lymphocyte fate; thus, metabolic reprogramming can contribute to the pathogenesis of autoimmune diseases. Here, we summarize recent advances on how metabolic reprogramming determines the autoreactive and proinflammatory nature of lymphocytes in SLE and RA, unraveling molecular mechanisms and providing therapeutic targets for human autoimmune diseases.
Collapse
Affiliation(s)
- Shuyi Wang
- Department of Rheumatology and Clinical Immunology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Niansheng Yang
- Department of Rheumatology and Clinical Immunology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui Zhang
- Department of Rheumatology and Clinical Immunology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Precision Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
8
|
Zhao X, Wang S, Wang S, Xie J, Cui D. mTOR signaling: A pivotal player in Treg cell dysfunction in systemic lupus erythematosus. Clin Immunol 2022; 245:109153. [DOI: 10.1016/j.clim.2022.109153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/03/2022]
|
9
|
Liu K. Immune, metabolism and therapeutic targets in RA (Rheumatoid Arthritis). BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20225501016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Rheumatoid arthritis is a classic autoimmune disease, the pathogenesis of which is closely linked to the auto-reactivity of immune cells and joint inflammation. Three cell types, namely T cells, macrophages and fibroblast-like synoviocytes (FLS), play an important role in the pathogenesis of RA. Numerous studies have pointed to a metabolic reprogramming of T cells, macrophages and FLS in the pathogenesis of RA arthritis, with alterations in different metabolic pathways of cells, mainly producing a shift from oxidative phosphorylation (OXPHOS) to glycolysis, in addition to lipid metabolism and amino acid metabolism which are also altered in the cellular activation state. Metabolic changes are regulated by metabolism-related signalling pathways, and RA is associated with two representative signalling pathways, namely the mTOR signalling pathway and the AMPK signalling pathway. In RA, both signalling pathways are activated or inhibited, and through a series of cascade reactions, different gene expressions are ultimately induced, altering intracellular metabolic pathways and promoting pro-inflammatory functions (e.g. pro-inflammatory cytokine release and FLS phenotypes), or inhibiting the expression of genes related to immune tolerance. Targeting key components of metabolic signalling pathways and key enzymes in cellular metabolic pathways in RA has emerged as a new way of finding drugs for RA, and many modulators targeting these targets have been extensively studied for their therapeutic effects in RA. In this article, we focus on cellular metabolic alterations in RA, related signalling pathways and possible drugs targeting RA metabolic pathways.
Collapse
|