1
|
Gao L, Wang S, Yang M, Wang L, Li Z, Yang L, Li G, Wen T. Gut fungal community composition analysis of myostatin mutant cattle prepared by CRISPR/Cas9. Front Vet Sci 2023; 9:1084945. [PMID: 36733427 PMCID: PMC9886680 DOI: 10.3389/fvets.2022.1084945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
Myostatin (MSTN) regulates muscle development and body metabolism through a variety of pathways and is a core target gene for gene editing in livestock. Gut fungi constitute a small part of the gut microbiome and are important to host health and metabolism. The influence of MSTN mutations on bovine gut fungi remains unknown. In this study, Internal Transcribed Spacer (ITS) high-throughput sequencing was conducted to explore the composition of gut fungi in the MSTN mutant (MT) and wild-type (WT) cattle, and 5,861 operational taxonomic units (OTUs) were detected and classified into 16 phyla and 802 genera. The results of the alpha diversity analysis indicated that no notable divergence was displayed between the WT and MT cattle; however, significant differences were noticed in the composition of fungal communities. Eight phyla and 18 genera were detected. According to the prediction of fungal function, saprotroph fungi were significantly more abundant in the MT group. The correlation analysis between gut fungal and bacterial communities revealed that MSTN mutations directly changed the gut fungal composition and, at the same time, influenced some fungi and bacteria by indirectly regulating the interaction between microorganisms, which affected the host metabolism further. This study analyzed the role of MSTN mutations in regulating the host metabolism of intestinal fungi and provided a theoretical basis for the relationship between MSTN and gut fungi.
Collapse
Affiliation(s)
- Li Gao
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, China
| | - Song Wang
- College of Life Science, Northeast Agricultural University, Harbin, China,State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, China
| | - Miaomiao Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, China
| | - Lili Wang
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, China
| | - Zhen Li
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, China,*Correspondence: Lei Yang ✉
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, China,Guangpeng Li ✉
| | - Tong Wen
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, China,Tong Wen ✉
| |
Collapse
|
2
|
Impact of Probiotic Geotrichum candidum QAUGC01 on Health, Productivity, and Gut Microbial Diversity of Dairy Cattle. Curr Microbiol 2022; 79:376. [DOI: 10.1007/s00284-022-03074-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
|
3
|
Król B, Słupczyńska M, Wilk M, Asghar M, Cwynar P. Anaerobic rumen fungi and fungal direct-fed microbials
in ruminant feeding. JOURNAL OF ANIMAL AND FEED SCIENCES 2022. [DOI: 10.22358/jafs/153961/2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Wei Y, Yang H, Wang Z, Zhao J, Qi H, Wang C, Zhang J, Yang T. Roughage biodegradation by natural co-cultures of rumen fungi and methanogens from Qinghai yaks. AMB Express 2022; 12:123. [PMID: 36121525 PMCID: PMC9485394 DOI: 10.1186/s13568-022-01462-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 09/10/2022] [Indexed: 11/10/2022] Open
Abstract
Anaerobic fungus–methanogen co-cultures from rumen liquids and faeces can degrade lignocellulose efficiently. In this study, 31 fungus–methanogen co-cultures were first obtained from the rumen of yaks grazing in Qinghai Province, China, using the Hungate roll-tube technique. The fungi were identified according to morphological characteristics and internal transcribed spacer (ITS) sequences. The methanogens associated with each fungus were identified by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and 16S rRNA gene sequencing. They were five co-culture types: Neocallimastix frontalis + Methanobrevibacter ruminantium, Neocallimastix frontalis + Methanobrevibacter gottschalkii, Orpinomyces joyonii + Methanobrevibacter ruminantium, Caecomyces communis + Methanobrevibacter ruminantium, and Caecomyces communis + Methanobrevibacter millerae. Among the 31 co-cultures, during the 5-day incubation, the N. frontalis + M. gottschalkii co-culture YakQH5 degraded 59.0%–68.1% of the dry matter (DM) and 49.5%–59.7% of the neutral detergent fiber (NDF) of wheat straw, corn stalk, rice straw, oat straw and sorghum straw to produce CH4 (3.0–4.6 mmol/g DM) and acetate (7.3–8.6 mmol/g DM) as end-products. Ferulic acid (FA) released at 4.8 mg/g DM on corn stalk and p-coumaric acid (PCA) released at 11.7 mg/g DM on sorghum straw showed the highest values, with the following peak values of enzyme activities: xylanase at 12,910 mU/mL on wheat straw, ferulic acid esterase (FAE) at 10.5 mU/mL on corn stalk, and p-coumaric acid esterase (CAE) at 20.5 mU/mL on sorghum straw. The N. frontalis + M. gottschalkii co-culture YakQH5 from Qinghai yaks represents a new efficient combination for lignocellulose biodegradation, performing better than previously reported fungus–methanogen co-cultures from the digestive tract of ruminants.
Collapse
Affiliation(s)
- Yaqin Wei
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, 730000, People's Republic of China. .,Center for Anaerobic Microbes, Institute of Biology, Gansu Academy of Sciences, No. 197 Dingxi South Road, Lanzhou, 730000, Gansu, People's Republic of China.
| | - Hui Yang
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, 730000, People's Republic of China.,Center for Anaerobic Microbes, Institute of Biology, Gansu Academy of Sciences, No. 197 Dingxi South Road, Lanzhou, 730000, Gansu, People's Republic of China
| | - Zhiye Wang
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, 730000, People's Republic of China.,Center for Anaerobic Microbes, Institute of Biology, Gansu Academy of Sciences, No. 197 Dingxi South Road, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jiang Zhao
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, 730000, People's Republic of China.,Center for Anaerobic Microbes, Institute of Biology, Gansu Academy of Sciences, No. 197 Dingxi South Road, Lanzhou, 730000, Gansu, People's Republic of China
| | - Hongshan Qi
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, 730000, People's Republic of China.,Center for Anaerobic Microbes, Institute of Biology, Gansu Academy of Sciences, No. 197 Dingxi South Road, Lanzhou, 730000, Gansu, People's Republic of China
| | - Chuan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730000, People's Republic of China
| | - Jingrong Zhang
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, 730000, People's Republic of China.,Center for Anaerobic Microbes, Institute of Biology, Gansu Academy of Sciences, No. 197 Dingxi South Road, Lanzhou, 730000, Gansu, People's Republic of China
| | - Tao Yang
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, 730000, People's Republic of China.,Center for Anaerobic Microbes, Institute of Biology, Gansu Academy of Sciences, No. 197 Dingxi South Road, Lanzhou, 730000, Gansu, People's Republic of China
| |
Collapse
|
5
|
Hanafy RA, Dagar SS, Griffith GW, Pratt CJ, Youssef NH, Elshahed MS. Taxonomy of the anaerobic gut fungi ( Neocallimastigomycota): a review of classification criteria and description of current taxa. Int J Syst Evol Microbiol 2022; 72. [PMID: 35776761 DOI: 10.1099/ijsem.0.005322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Members of the anaerobic gut fungi (Neocallimastigomycota) reside in the rumen and alimentary tract of larger mammalian and some reptilian, marsupial and avian herbivores. The recent decade has witnessed a significant expansion in the number of described Neocallimastigomycota genera and species. However, the difficulties associated with the isolation and maintenance of Neocallimastigomycota strains has greatly complicated comparative studies to resolve inter- and intra-genus relationships. Here, we provide an updated outline of Neocallimastigomycota taxonomy. We critically evaluate various morphological, microscopic and phylogenetic traits previously and currently utilized in Neocallimastigomycota taxonomy, and provide an updated key for quick characterization of all genera. We then synthesize data from taxa description manuscripts, prior comparative efforts and molecular sequence data to present an updated list of Neocallimastigomycota genera and species, with an emphasis on resolving relationships and identifying synonymy between recent and historic strains. We supplement data from published manuscripts with information and illustrations from strains in the authors' collections. Twenty genera and 36 species are recognized, but the status of 10 species in the genera Caecomyces, Piromyces, Anaeromyces and Cyllamyces remains uncertain due to the unavailability of culture and conferre (cf.) strains, lack of sequence data, and/or inadequacy of available microscopic and phenotypic data. Six cases of synonymy are identified in the genera Neocallimastix and Caecomyces, and two names in the genus Piromyces are rejected based on apparent misclassification.
Collapse
Affiliation(s)
- Radwa A Hanafy
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Sumit S Dagar
- Bioenergy Group, Agharkar Research Institute, Pune, India
| | - Gareth W Griffith
- Institute of Biological, Environmental, and Rural Sciences (IBERS) Aberystwyth University, Aberystwyth, Wales, UK
| | - Carrie J Pratt
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
6
|
Wang B, Sun H, Wang D, Liu H, Liu J. Constraints on the utilization of cereal straw in lactating dairy cows: A review from the perspective of systems biology. ANIMAL NUTRITION 2022; 9:240-248. [PMID: 35600542 PMCID: PMC9097690 DOI: 10.1016/j.aninu.2022.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/17/2021] [Accepted: 01/24/2022] [Indexed: 10/24/2022]
|
7
|
Zeng J, Huang W, Tian X, Hu X, Wu Z. Brewer’s spent grain fermentation improves its soluble sugar and protein as well as enzymatic activities using Bacillus velezensis. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Effect of Cellulase Enzyme Produced from Penicilliumchrysogenum on the Milk Production, Composition, Amino Acid, and Fatty Acid Profiles of Egyptian Buffaloes Fed a High-Forage Diet. Animals (Basel) 2021; 11:ani11113066. [PMID: 34827797 PMCID: PMC8614441 DOI: 10.3390/ani11113066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Exogenous fibrolytic enzymes can improve nutrient digestibility of feeds high in fibrous content offered to Egyptian lactating buffaloes. The proposed cellulase exclusively produced in-farm using Penicillium Chrysogenum showed higher activity in previous in vitro studies. That is why it was chosen to get tested against a well-known commercial source of cellulase enzyme from the Egyptian markets for its efficiency in increasing milk productivity and composition. Profiles of amino acids and fatty acids were also recorded. The initial results highlighted a superiority of the produced enzyme (FENZ) against the commercial source (CENZ). It was also clear that FENZ can preserve higher proportions of fatty acids in the milk, primarily conjugated linoleic acid. Based on the idea rationale, our conclusion is to promote setting a small cellulase production unit in each farm in Egypt to decrease the cost of feeding by using agricultural and agro-industrial waste during the cellulase production and feeding process. Abstract The experiment was conducted to study the effects of supplementing a cellulase enzymes cocktail to lactating buffaloes’ diet, on the nutrient intake, nutrient digestibility, and milk production performance and composition. Twenty-four lactating Egyptian buffaloes were assigned into one of the following treatments: CON—control consisted of a total mixed ration, CENZ—the total mixed ration supplemented by a commercial source of cellulase enzyme, FENZ—the total mixed ration supplemented with cellulase enzyme cocktail produced in-farm. Supplementing the diet with the in-farm source of cellulase (FENZ) had a significantly higher impact on crude protein, neutral detergent fiber, and acid detergent fiber digestibility. However, FENZ tended to increase the EE digestibility compared to CENZ. FENZ showed significantly higher nutrient digestibility percentages compared to other groups. Supplementing the diet with cellulase enzymes (CON vs. ENZ) significantly increased the daily milk yield and the fat correct milk yield; both yields were significantly higher with FENZ than all groups. Oleic, linoleic, and linolenic acid concentration were significantly higher with cellulase enzymes supplementation (CON vs. ENZ) and the conjugated linoleic acid concentration. Supplementing fungal cellulase enzyme produced on a farm-scale has improved milk productivity, fat yield, and milk fat unsaturated fatty acids profile in lactating buffaloes.
Collapse
|
9
|
The Effect of a High-Grain Diet on the Rumen Microbiome of Goats with a Special Focus on Anaerobic Fungi. Microorganisms 2021; 9:microorganisms9010157. [PMID: 33445538 PMCID: PMC7827659 DOI: 10.3390/microorganisms9010157] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/17/2022] Open
Abstract
This work investigated the changes of the rumen microbiome of goats switched from a forage to a concentrate diet with special attention to anaerobic fungi (AF). Female goats were fed an alfalfa hay (AH) diet (0% grain; n = 4) for 20 days and were then abruptly shifted to a high-grain (HG) diet (40% corn grain, 60% AH; n = 4) and treated for another 10 days. Rumen content samples were collected from the cannulated animals at the end of each diet period (day 20 and 30). The microbiome structure was studied using high-throughput sequencing for bacteria, archaea (16S rRNA gene) and fungi (ITS2), accompanied by qPCR for each group. To further elucidate unclassified AF, clone library analyses were performed on the ITS1 spacer region. Rumen pH was significantly lower in HG diet fed goats, but did not induce subacute ruminal acidosis. HG diet altered prokaryotic communities, with a significant increase of Bacteroidetes and a decrease of Firmicutes. On the genus level Prevotella 1 was significantly boosted. Methanobrevibacter and Methanosphaera were the most abundant archaea regardless of the diet and HG induced a significant augmentation of unclassified Thermoplasmatales. For anaerobic fungi, HG triggered a considerable rise in Feramyces observed with both ITS markers, while a decline of Tahromyces was detected by ITS2 and decrease of Joblinomyces by ITS1 only. The uncultured BlackRhino group revealed by ITS1 and further elucidated in one sample by LSU analysis, formed a considerable part of the AF community of goats fed both diets. Results strongly indicate that the rumen ecosystem still acts as a source for novel microorganisms and unexplored microbial interactions and that initial rumen microbiota of the host animal considerably influences the reaction pattern upon diet change.
Collapse
|
10
|
Enzymatic reactions in the production of biomethane from organic waste. Enzyme Microb Technol 2019; 132:109410. [PMID: 31731967 DOI: 10.1016/j.enzmictec.2019.109410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/06/2019] [Accepted: 08/15/2019] [Indexed: 11/23/2022]
Abstract
Enzymatic reactions refer to organic reactions catalyzed by enzymes. This review aims to enrich the documentation relative to enzymatic reactions occurring during the anaerobic degradation of residual organic substances with emphasis on the structures of organic compounds and reaction mechanisms. This allows to understand the displacement of electrons between electron-rich and electron-poor entities to form new bonds in products. The detailed mechanisms of enzymatic reactions relative to the production of biomethane have not yet been reviewed in the scientific literature. Hence, this review is novel and timely since it discusses the chemical behavior or reactivity of different functional groups, thereby allowing to better understand the enzymatic catalysis in the transformations of residual proteins, carbohydrates, and lipids into biomethane and fertilizers. Such understanding allows to improve the overall biomethanation efficiency in industrial applications.
Collapse
|
11
|
Wang D, Zhao C, Liu S, Zhang T, Yao J, Cao Y. Effects of Piromyces sp. CN6 CGMCC 14449 on fermentation quality, nutrient composition and the in vitro degradation rate of whole crop maize silage. AMB Express 2019; 9:121. [PMID: 31359220 PMCID: PMC6663944 DOI: 10.1186/s13568-019-0846-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/23/2019] [Indexed: 11/28/2022] Open
Abstract
This study investigated the effects of the rumen fungus Piromyces sp. CN6 CGMCC 14449 as a silage additive on the fermentation quality, nutrient composition and in vitro digestibility of whole crop maize silage. Whole crop maize served as the silage material and was vacuum packed in polyethylene bags. Three ensiling treatments were applied: a control (CK), addition of a fungus (FU) at 105 thallus-forming units per gram, and addition of compound enzyme (EN) at 0.033 mg/g (containing cellulase and xylanase at activities of 90 filter paper units and 6000 IU per gram, respectively). Compared with the CK, the FU and EN treatments decreased the pH after 30 days fermentation (P <0.05). Both FU and EN treatments increased the lactate, crude protein, and water-soluble carbohydrate contents (P <0.05), whereas reduced the acetate, ADF and NDF contents as well as the ammonia nitrogen to total nitrogen ratio in silage after 30 days of ensilaging (P <0.05), compared with those for the CK, while no changes were found in the dry matter and dry matter recovery (P > 0.05). The fungal inoculant increased the in vitro digestibility of dry matter, NDF and ADF in silage after 30 days fermentation (P <0.05). In conclusion, the rumen fungus Piromyces sp. CN6 CGMCC 14449 can improve the quality and nutrient composition of whole crop maize silage and increase the crude fibre digestibility.
Collapse
|
12
|
Wei YQ, Yang HJ, Long RJ, Wang ZY, Cao BB, Ren QC, Wu TT. Characterization of natural co-cultures of Piromyces with Methanobrevibacter ruminantium from yaks grazing on the Qinghai-Tibetan Plateau: a microbial consortium with high potential in plant biomass degradation. AMB Express 2017; 7:160. [PMID: 28789484 PMCID: PMC5545993 DOI: 10.1186/s13568-017-0459-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/20/2017] [Indexed: 11/10/2022] Open
Abstract
Anaerobic fungi reside in the gut of herbivore and synergize with associated methanogenic archaea to decompose ingested plant biomass. Despite their potential for use in bioconversion industry, only a few natural fungus–methanogen co-cultures have been isolated and characterized. In this study we identified three co-cultures of Piromyces with Methanobrevibacter ruminantium from the rumen of yaks grazing on the Qinghai Tibetan Plateau. The representative co-culture, namely (Piromyces + M. ruminantium) Yak-G18, showed remarkable polysaccharide hydrolase production, especially xylanase. Consequently, it was able to degrade various lignocellulose substrates with a biodegrading capability superior to most previously identified fungus or fungus–methanogen co-culture isolates. End-product profiling analysis validated the beneficial metabolic impact of associated methanogen on fungus as revealed by high-yield production of methane and acetate and sustained growth on lignocellulose. Together, our data demonstrated a great potential of (Piromyces + M. ruminantium) Yak-G18 co-culture for use in industrial bioconversion of lignocellulosic biomass.
Collapse
|
13
|
Wei YQ, Yang HJ, Luan Y, Long RJ, Wu YJ, Wang ZY. Isolation, identification and fibrolytic characteristics of rumen fungi grown with indigenous methanogen from yaks (Bos grunniens) grazing on the Qinghai-Tibetan Plateau. J Appl Microbiol 2016; 120:571-87. [PMID: 26910857 DOI: 10.1111/jam.13035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/25/2015] [Accepted: 12/07/2015] [Indexed: 11/27/2022]
Abstract
AIM To obtain co-cultures of anaerobic fungi and their indigenously associated methanogens from the rumen of yaks grazing on the Qinghai-Tibetan Plateau and investigate their morphology features and ability to degrade lignocellulose. METHODS AND RESULTS Twenty fungus-methanogen co-cultures were obtained by Hungate roll-tube technique. The fungi were identified as Orpinomyces, Neocallimastix and Piromyces genera based on the morphological characteristics and internal transcribed spacer 1 sequences analysis. All methanogens were identified as Methanobrevibacter sp. by 16S rRNA gene sequencing. There were four types of co-cultures: Neocallimastix with Methanobrevibacter ruminantium, Orpinomyces with M. ruminantium, Orpinomyces with Methanobrevibacter millerae and Piromyces with M. ruminantium among 20 co-cultures. In vitro studies with wheat straw as substrate showed that the Neocallimastix with M. ruminantium co-cultures and Piromyces with M. ruminantium co-cultures exhibited higher xylanase, filter paper cellulase (FPase), ferulic acid esterase, acetyl esterase activities, in vitro dry matter digestibility, gas, CH4 , acetate production, ferulic acid and p-coumaric acid releases. The Neocallimastix frontalis Yak16 with M. ruminantium co-culture presented the strongest lignocellulose degradation ability among 20 co-cultures. CONCLUSIONS Twenty fungus-methanogen co-cultures were obtained from the rumen of grazing yaks. The N. frontalis with M. ruminantium co-cultures were highly effective combination for developing a fermentative system that bioconverts lignocellulose to high activity fibre-degrading enzyme, CH4 and acetate. SIGNIFICANCE AND IMPACT OF THE STUDY The N. frontalis with M. ruminantium co-cultures from yaks grazing on the Qinghai-Tibetan Plateau present great potential in lignocellulose biodegradation industry.
Collapse
Affiliation(s)
- Y-Q Wei
- School of Life Sciences, Lanzhou University, Lanzhou, China.,Institute of Biological Research, Gansu Academy of Sciences, Lanzhou, China
| | - H-J Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University (CAU), Beijing, China
| | - Y Luan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University (CAU), Beijing, China
| | - R-J Long
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Y-J Wu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Z-Y Wang
- Institute of Biological Research, Gansu Academy of Sciences, Lanzhou, China
| |
Collapse
|
14
|
Fiber degradation potential of natural co-cultures of Neocallimastix frontalis and Methanobrevibacter ruminantium isolated from yaks (Bos grunniens) grazing on the Qinghai Tibetan Plateau. Anaerobe 2016; 39:158-64. [PMID: 26979345 DOI: 10.1016/j.anaerobe.2016.03.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 11/23/2022]
Abstract
Several natural anaerobic fungus-methanogen co-cultures have been isolated from rumen and feces source of herbivores with strong fiber degrading ability. In this study, we isolated 7 Neocallimastix with methanogen co-cultures from the rumen of yaks grazing on the Qinghai Tibetan Plateau. Based on morphological characteristics and internal transcribed spacer 1 sequences (ITS1), all the fungi were identified as Neocallimastix frontalis. The co-cultures were confirmed as the one fungus - one methanogen pattern by the PCR-denatured gradient gel electrophoresis (DGGE) assay. All the methanogens were identified as Methanobrevibacter ruminantium by 16s rRNA gene sequencing. We investigated the biodegrading capacity of the co-culture (N. frontalis + M. ruminantium) Yaktz1 on wheat straw, corn stalk and rice straw in a 7 days-incubation. The in vitro dry matter digestibility (IVDMD), acid detergent fiber digestibility (ADFD) and neural detergent fiber digestibility (NDFD) values of the substrates in the co-culture were significantly higher than those in the mono-culture N. frontalis Yaktz1. The co-culture exhibited high polysaccharide hydrolase (xylanase and FPase) and esterase activities. The xylanase in the co-culture reached the highest activity of 12500 mU/ml on wheat straw at the day 3 of the incubation. At the end of the incubation, 3.00 mmol-3.29 mmol/g dry matter of methane were produced by the co-culture. The co-culture also produced high level of acetate (40.00 mM-45.98 mM) as the end-product during the biodegradation. Interestingly, the N. frontalis Yaktz1 mono-culture produced large amount of lactate (8.27 mM-11.60 mM) and ethanol (163.11 mM-242.14 mM), many times more than those recorded in the previously reported anaerobic fungi. Our data suggests that the (N. frontalis + M. ruminantium) Yaktz1 co-culture and the N. frontalis Yaktz1 mono-culture both have great potentials for different industrial use.
Collapse
|
15
|
Characterization of fungi from ruminal fluid of beef cattle with different ages and raised in tropical lignified pastures. Curr Microbiol 2014; 69:649-59. [PMID: 24962597 DOI: 10.1007/s00284-014-0633-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/02/2014] [Indexed: 10/25/2022]
Abstract
The objective of this study was to evaluate the aerobic rumen mycobiota from three age groups of Nelore beef cattle reared extensively on lignified pasture. The experiment was randomized and sampled 50 steers, 50 cows, and 50 calves grazed on Brachiaria spp. pasture during the dry season. Rumen fluid in all animals was aromatic, slightly viscous, and greenish-brown in color. Microscopic examination revealed monocentric and polycentric anaerobic fungi in similar proportions (P > 0.05) in the rumen fluid of cows and steers. However, these microorganisms were not identified in any of the samples from calves. In culture exams, aerobic filamentous population was significantly higher for rumen fluid of cows compared to the other two groups. Microculture and rDNA sequence analyses showed Aspergillus spp. as the most frequent aerobic fungus among the isolates from the three bovine groups evaluated. Biochemical profiles were determined by the growth level of yeast isolates with 44 nutrient sources. Ten different yeast profiles were obtained, and yeast isolates from cow ruminal fluid showed ability to catabolize greater diversity of carbon and nitrogen sources. The differences in the fungal populations observed in this study could be explained by microbial and physiological interactions existing in the ruminal ecosystem of each age bovine group. The present study showed the fungal population of the rumen related with differences among age of cattle raised in lignified pastures. Metabolic capabilities of mycelial fungi or yeast identified in this study may be employed in new probiotics or microbial additives for different bovine categories.
Collapse
|
16
|
Isolation, characterization and fibre degradation potential of anaerobic rumen fungi from cattle. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0577-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
17
|
Nagpal R, Puniya AK, Sehgal JP, Singh K. Survival of anaerobic fungus Caecomyces sp. in various preservation methods: a comparative study. MYCOSCIENCE 2012. [DOI: 10.1007/s10267-012-0187-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Sirohi SK, Singh N, Dagar SS, Puniya AK. Molecular tools for deciphering the microbial community structure and diversity in rumen ecosystem. Appl Microbiol Biotechnol 2012; 95:1135-54. [PMID: 22782251 DOI: 10.1007/s00253-012-4262-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 06/20/2012] [Accepted: 06/22/2012] [Indexed: 12/30/2022]
Abstract
Rumen microbial community comprising of bacteria, archaea, fungi, and protozoa is characterized not only by the high population density but also by the remarkable diversity and the most complex microecological interactions existing in the biological world. This unprecedented biodiversity is quite far from full elucidation as only about 15-20 % of the rumen microbes are identified and characterized till date using conventional culturing and microscopy. However, the last two decades have witnessed a paradigm shift from cumbersome and time-consuming classical methods to nucleic acid-based molecular approaches for deciphering the rumen microbial community. These techniques are rapid, reproducible and allow both the qualitative and quantitative assessment of microbial diversity. This review describes the different molecular methods and their applications in elucidating the rumen microbial community.
Collapse
Affiliation(s)
- Sunil Kumar Sirohi
- Nutrition Biotechnology Laboratory, Dairy Cattle Nutrition Division, National Dairy Research Institute, Karnal, 132001, Haryana, India.
| | | | | | | |
Collapse
|
19
|
Saxena S, Sehgal JP, Puniya AK, Singh K. Effect of administration of rumen fungi on production performance of lactating buffaloes. Benef Microbes 2011; 1:183-8. [PMID: 21840805 DOI: 10.3920/bm2009.0018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Anaerobic fungi were orally dosed to lactating buffaloes to study their effect on the digestibility of a diet (composed of 50% wheat straw and 50% concentrate along with six kg maize green/animal/day), rumen fermentation patterns and milk production. Group I (control) was administered with fungus-free anaerobic broth, while group II and III were administered with Orpinomyces sp. C-14 or Piromyces sp. WNG-12 (250 ml; 3-5 days of growth/animal/ week), respectively. Milk production was higher in group II and III (8.42 and 8.48 kg/d) than in the control (8.03 kg/d) with virtually the same feed intake (i.e. 11.50 and 10.62 and 11.79 kg, respectively). There was an increase of 6% fat-corrected milk yield/animal/day in group II and III, respectively compared to the control. The milk fat was higher in the fungal culture administered groups than in the control group. The digestibility of dry matter, crude protein, neutral detergent fibre, acid detergent fibre, cellulose and digestible energy also increased significantly in group II and III. The pH and ammonia nitrogen were lower, whereas total volatile fatty acids, total nitrogen, trichloroacid precipitable nitrogen and number of zoospores/ml of rumen liquor were higher in group II and III when compared to the control. Hence, it can be stated that rumen fungi can be used as a direct-fed microbial in lactating buffaloes, to enhance the digestibility of wheat straw based diets leading to higher production.
Collapse
Affiliation(s)
- S Saxena
- Dairy Cattle Nutrition Division, National Dairy Research Institute, Karnal, Haryana, India
| | | | | | | |
Collapse
|
20
|
Wang TY, Chen HL, Lu MYJ, Chen YC, Sung HM, Mao CT, Cho HY, Ke HM, Hwa TY, Ruan SK, Hung KY, Chen CK, Li JY, Wu YC, Chen YH, Chou SP, Tsai YW, Chu TC, Shih CCA, Li WH, Shih MC. Functional characterization of cellulases identified from the cow rumen fungus Neocallimastix patriciarum W5 by transcriptomic and secretomic analyses. BIOTECHNOLOGY FOR BIOFUELS 2011; 4:24. [PMID: 21849025 PMCID: PMC3177772 DOI: 10.1186/1754-6834-4-24] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Accepted: 08/17/2011] [Indexed: 05/10/2023]
Abstract
BACKGROUND Neocallimastix patriciarum is one of the common anaerobic fungi in the digestive tracts of ruminants that can actively digest cellulosic materials, and its cellulases have great potential for hydrolyzing cellulosic feedstocks. Due to the difficulty in culture and lack of a genome database, it is not easy to gain a global understanding of the glycosyl hydrolases (GHs) produced by this anaerobic fungus. RESULTS We have developed an efficient platform that uses a combination of transcriptomic and proteomic approaches to N. patriciarum to accelerate gene identification, enzyme classification and application in rice straw degradation. By conducting complementary studies of transcriptome (Roche 454 GS and Illumina GA IIx) and secretome (ESI-Trap LC-MS/MS), we identified 219 putative GH contigs and classified them into 25 GH families. The secretome analysis identified four major enzymes involved in rice straw degradation: β-glucosidase, endo-1,4-β-xylanase, xylanase B and Cel48A exoglucanase. From the sequences of assembled contigs, we cloned 19 putative cellulase genes, including the GH1, GH3, GH5, GH6, GH9, GH18, GH43 and GH48 gene families, which were highly expressed in N. patriciarum cultures grown on different feedstocks. CONCLUSIONS These GH genes were expressed in Pichia pastoris and/or Saccharomyces cerevisiae for functional characterization. At least five novel cellulases displayed cellulytic activity for glucose production. One β-glucosidase (W5-16143) and one exocellulase (W5-CAT26) showed strong activities and could potentially be developed into commercial enzymes.
Collapse
Affiliation(s)
- Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Hsin-Liang Chen
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Mei-Yeh J Lu
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yo-Chia Chen
- Graduate Institute of Biotechnology, National Pingtung University of Science & Technology, Neipu Hsiang, Pingtung 91201, Taiwan
| | - Huang-Mo Sung
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Chi-Tang Mao
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University - Academia Sinica, Taipei 115, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan
| | - Hsing-Yi Cho
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University - Academia Sinica, Taipei 115, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Huei-Mien Ke
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- PhD Program in Microbial Genomics, National Chung Hsing University, Taichung 402, Taiwan
| | - Teh-Yang Hwa
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Sz-Kai Ruan
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Kuo-Yen Hung
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chih-Kuan Chen
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Department of Life Sciences, National Taiwan University, Taipei 106, Taiwan
| | - Jeng-Yi Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yueh-Chin Wu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Hsiang Chen
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Shao-Pei Chou
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ya-Wen Tsai
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Te-Chin Chu
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
- Department of Computer Science and Information Engineering, National Taiwan Normal University, Taipei 116, Taiwan
| | - Chun-Chieh A Shih
- Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University - Academia Sinica, Taipei 115, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | - Ming-Che Shih
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University - Academia Sinica, Taipei 115, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan
| |
Collapse
|
21
|
D1/D2 domain of large-subunit ribosomal DNA for differentiation of Orpinomyces spp. Appl Environ Microbiol 2011; 77:6722-5. [PMID: 21784906 DOI: 10.1128/aem.05441-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study presents the suitability of D1/D2 domain of large-subunit (LSU) ribosomal DNA (rDNA) for differentiation of Orpinomyces joyonii and Orpinomyces intercalaris based on PCR-restriction fragment length polymorphism (RFLP). A variation of G/T in O. intercalaris created an additional restriction site for AluI, which was used as an RFLP marker. The results demonstrate adequate heterogeneity in the LSU rDNA for species-level differentiation.
Collapse
|
22
|
Chaji M, Mohammadabadi T. Fibrolytic activity of rumen anaerobic fungi on sodium hydroxide treated paddy straw. JOURNAL OF APPLIED ANIMAL RESEARCH 2011. [DOI: 10.1080/09712119.2011.558615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Nagpal R, Puniya AK, Sehgal JP, Singh K. In vitro fibrolytic potential of anaerobic rumen fungi from ruminants and non-ruminant herbivores. MYCOSCIENCE 2011. [DOI: 10.1007/s10267-010-0071-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Abrão F, Barreto S, Geraseev L, Duarte E. Fungos anaeróbios do rúmen de bovinos e caprinos de corte criados em pastagens tropicais. ARQ BRAS MED VET ZOO 2010. [DOI: 10.1590/s0102-09352010000300036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
25
|
Liggenstoffer AS, Youssef NH, Couger MB, Elshahed MS. Phylogenetic diversity and community structure of anaerobic gut fungi (phylum Neocallimastigomycota) in ruminant and non-ruminant herbivores. ISME JOURNAL 2010; 4:1225-35. [PMID: 20410935 DOI: 10.1038/ismej.2010.49] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The phylogenetic diversity and community structure of members of the gut anaerobic fungi (AF) (phylum Neocallimastigomycota) were investigated in 30 different herbivore species that belong to 10 different mammalian and reptilian families using the internal transcribed spacer region-1 (ITS-1) ribosomal RNA (rRNA) region as a phylogenetic marker. A total of 267 287 sequences representing all known anaerobic fungal genera were obtained in this study. Sequences affiliated with the genus Piromyces were the most abundant, being encountered in 28 different samples, and representing 36% of the sequences obtained. On the other hand, sequences affiliated with the genera Cyllamyces and Orpinomyces were the least abundant, being encountered in 2, and 8 samples, and representing 0.7%, and 1.1% of the total sequences obtained, respectively. Further, 38.3% of the sequences obtained did not cluster with previously identified genera and formed eight phylogenetically distinct novel anaerobic fungal lineages. Some of these novel lineages were widely distributed (for example NG1 and NG3), whereas others were animal specific, being encountered in only one or two animals (for example NG4, NG6, NG7, and NG8). The impact of various physiological and environmental factors on the diversity and community structure of AF was examined. The results suggest that animal host phylogeny exerts the most significant role on shaping anaerobic fungal diversity and community composition. These results greatly expand the documented global phylogenetic diversity of members of this poorly studied group of fungi that has an important function in initiating plant fiber degradation during fermentative digestion in ruminant and non-ruminant herbivores.
Collapse
Affiliation(s)
- Audra S Liggenstoffer
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | | | | | | |
Collapse
|
26
|
Shelke SK, Chhabra A, Puniya AK, Sehgal JP. In vitro degradation of sugarcane bagasse based ruminant rations using anaerobic fungi. ANN MICROBIOL 2009. [DOI: 10.1007/bf03175124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
27
|
Fliegerová K, Hoffmann K, Mrázek J, Voigt K. The design of oligonucleotide primers for the universal amplification of the N-acetylglucosaminidase gene (nag1) in Chytridiomycetes with emphasis on the anaerobic Neocallimastigales. Folia Microbiol (Praha) 2008; 53:209-13. [PMID: 18661293 DOI: 10.1007/s12223-008-0027-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 01/17/2008] [Indexed: 11/29/2022]
Abstract
The common feature of all chytridiomycetous fungi, aerobic as well as anaerobic, is an abundance of chitin in their cell wall. The genes coding for chitinases have therefore been widely used as phylogenetic markers in ascomycetes. As their utility for Chytridiomycetes has not been determined we chose the gene encoding an enzyme involved in chitin degradation and energy metabolism, the beta-(1,4)-N-acetylglucosaminidase (nag1). Primer pair Nag-forward and Nag-reverse was used to create PCR product from 5 strains of anaerobic and 7 strains of aerobic chytrids. However, Blast search of sequenced amplicons showed that these primers are specific only for fungus Emericella nidulans. Amino acid alignment of Nag1 proteins of fungal, protozoal and bacterial origin available in GenBank database was therefore performed. Five amino acid regions were found to be conserved enough to serve as a suitable domain for the design of a set of primers for the universal amplification of the nag1 gene in the Neocallimastigales fungi.
Collapse
Affiliation(s)
- K Fliegerová
- Institute of Animal Physiology and Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czechia.
| | | | | | | |
Collapse
|
28
|
Tripathi VK, Sehgal JP, Puniya AK, Singh K. Effect of administration of anaerobic fungi isolated from cattle and wild blue bull (Boselaphus tragocamelus) on growth rate and fibre utilization in buffalo calves. Arch Anim Nutr 2007; 61:416-23. [PMID: 18030922 DOI: 10.1080/17450390701556759] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Fifteen Murrah buffalo calves (age about 10 months, 163-176 kg BW) were divided into three groups. Group I (Control) was fed a complete feed mixture consisted of 50% wheat straw and 50% concentrate mixture (contained per kg: maize 330 g, groundnut cake 210 g, mustard cake 120 g, wheat bran 200 g, de-oiled rice bran 110 g, mineral mixture 20 g and common salt 10 g) along with 2 kg green oats per animal and day to meet the vitamin A requirements. Calves of Groups II and III were fed with the Control diet supplemented with Orpinomyces sp. C-14 and Piromyces sp. WNG-12 cultures, respectively. The digestibility of DM was significantly highest with Piromyces sp. WNG-12 in Group III (62.2%) followed by Orpinomyces sp. C-14 in Group II (60.3%), and Control (53.5%). A similar pattern of increase in digestibility of crude protein and cell-wall contents was observed in treatment groups. The digestible energy in terms of percent total digestible nutrients was also significantly enhanced in Groups II (56.6%) and III (59.9%) when compared to Control (49.2%). The rumen fermentation parameters such as pH and NH3-N were found to be lower, whereas total nitrogen, tricarboxylic acid precipitable-, nitrogen, total volatile fatty acids and zoospore counts per millilitre of rumen liquor were significantly higher in fungal administered groups. After administration of fungal cultures, improvements of animal growth rate (i.e. body weight gain) and feed efficiency were also observed.
Collapse
Affiliation(s)
- Vimal K Tripathi
- Dairy Cattle Nutrition Division, National Dairy Research Institute, Karnal, India
| | | | | | | |
Collapse
|
29
|
Tripathi VK, Sehgal JP, Puniya AK, Singh K. Hydrolytic activities of anaerobic fungi from wild blue bull (Boselaphus tragocamelus). Anaerobe 2007; 13:36-9. [PMID: 17218123 DOI: 10.1016/j.anaerobe.2006.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 11/07/2006] [Accepted: 11/09/2006] [Indexed: 11/25/2022]
Abstract
The anaerobic fungi play an active role in the plant fibre degradation by producing a wide array of potential hydrolytic enzymes in the rumen. In present study, 12 anaerobic fungal strains were isolated from the faecal samples of wild blue bull, and identified as species of Piromyces, Anaeromyces, Orpinomyces and Neocallimastix based on their morphological characteristics. Isolate WNG-12 (Piromyces sp.), showed maximum filter paper cellulase (23 mIU ml(-1)) and xylanase (127 mIU ml(-1)) activity, while WNG-5 (Piromyces sp.) showed maximum carboxymethyl cellulase activity (231 mIU ml(-1)). Based on the results obtained, it can be stated that Piromyces sp. WNG-12 may be a promising isolate in utilizing fibre rich diets in the rumen as evidenced by the production of hydrolytic enzymes in vitro.
Collapse
Affiliation(s)
- Vimal Kumar Tripathi
- Dairy Cattle Nutrition Division, National Dairy Research Institute, Karnal 132001, Haryana, India
| | | | | | | |
Collapse
|