1
|
Du X, Zhou L, Li Y, Zhang F, Wang L, Yao J, Chen X, Liu S, Cao Y. Effects of yak rumen anaerobic fungus Orpinomyces sp. YF3 fermented on in vitro wheat straw fermentation and microbial communities in dairy goat rumen fluid, with and without fungal flora. J Anim Physiol Anim Nutr (Berl) 2024; 108:1312-1325. [PMID: 38685575 DOI: 10.1111/jpn.13978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/19/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Rumen fungi play an essential role in the breakdown of dietary fibrous components, facilitating the provision of nutrients and energy to the host animals. This study investigated the fermentation characteristics and effects on rumen microbiota of yak rumen anaerobic fungus Orpinomyces sp. YF3 in goat rumen fluid, both with and without fungal flora, utilizing anaerobic fermentation bottles. Crushed and air-dried wheat straw served as the fermentation substrate, and cycloheximide was used to eradicate microorganisms from the rumen fluid of dairy goats. The experiment compromised four treatment groups (2×2 factorial design): control (C); yak fungus group (CF, Orpinomyces sp. YF3); goat fungi eliminated group (CA, antibiotic: 0.25 mg/mL cycloheximide); goat fungi eliminated+yak fungus group (CAF). Each treatment had six replicates. Fermentation characteristics and microbial composition of the fermentation media were analyzed using one-way analysis of variance and high-throughput sequencing technology. The findings revealed that in the Orpinomyces sp. YF3 addition group (CF and CAF groups), there were significant increases in ammonia nitrogen concentration by 70%, total volatile fatty acids (VFA) by 53%, as well as acetate, isobutyrate, and valerate concentrations, and the ratio of acetate to propionate (p < 0.05), while the propionate proportion declined by 13%, alongside a reduction of butyrate concentration (p < 0.05). Similarly, in the CF and CAF groups, there were a notable increase in the relative abundance of Bacteroidota, Synergistota, Desulfobacterota, Actinobacteria, and Fusobacteriota, alongside a decrease in the relative abundance of Fibrobacterota and Proteobacteria (p < 0.05). Bacteria exhibiting increased relative abundance were positively correlated with the activity of carboxymethyl cellulase and avicelase, total VFA concentration, and acetate proportion, while showing a negatively correlation with propionate proportion. In conclusion, supplementing rumen fermentation media with yak rumen anaerobic fungus Orpinomyces sp. YF3 led to an increase in bacteria associated with fibre degradation and acetic acid production, a decrease in propionate-producing bacteria, enhanced the activity of plant cell wall degrading enzymes, and promoted cellulose degradation, ultimately elevating total VAF concentration and acetate proportion. This presents a novel approach to enhance roughage utilization in ruminants.
Collapse
Affiliation(s)
- Xueer Du
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Linlin Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yong Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Fan Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Lamei Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xinghua Chen
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Shimin Liu
- UWA Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, Australia
| | - Yangchun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Jones AL, Clayborn J, Pribil E, Foote AP, Montogomery D, Elshahed MS, Youssef NH. Temporal progression of anaerobic fungal communities in dairy calves from birth to maturity. Environ Microbiol 2023; 25:2088-2101. [PMID: 37305988 DOI: 10.1111/1462-2920.16443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/29/2023] [Indexed: 06/13/2023]
Abstract
Establishment of microbial communities in neonatal calves is vital for their growth and overall health. While this process has received considerable attention for bacteria, our knowledge on temporal progression of anaerobic gut fungi (AGF) in calves is lacking. Here, we examined AGF communities in faecal samples from six dairy cattle collected at 24 different time points during the pre-weaning (days 1-48), weaning (days 48-60), and post-weaning (days 60-360) phases. Quantitative polymerase chain reaction indicated that AGF colonisation occurs within 24 h after birth, with loads slowly increasing during pre-weaning and weaning, then drastically increasing post-weaning. Culture-independent amplicon surveys identified higher alpha diversity during pre-weaning/weaning, compared to post-weaning. AGF community structure underwent a drastic shift post-weaning, from a community enriched in genera commonly encountered in hindgut fermenters to one enriched in genera commonly encountered in adult ruminants. Comparison of AGF community between calves day 1 post-birth and their mothers suggest a major role for maternal transmission, with additional input from cohabitating subjects. This distinct pattern of AGF progression could best be understood in-light of their narrower niche preferences, metabolic specialisation, and physiological optima compared to bacteria, hence eliciting a unique response to changes in feeding pattern and associated structural GIT development during maturation.
Collapse
Affiliation(s)
- Adrienne L Jones
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Jordan Clayborn
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Elizabeth Pribil
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Andrew P Foote
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Dagan Montogomery
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
3
|
Du Y, Gao Y, Hu M, Hou J, Yang L, Wang X, Du W, Liu J, Xu Q. Colonization and development of the gut microbiome in calves. J Anim Sci Biotechnol 2023; 14:46. [PMID: 37031166 PMCID: PMC10082981 DOI: 10.1186/s40104-023-00856-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/16/2023] [Indexed: 04/10/2023] Open
Abstract
Colonization and development of the gut microbiome are crucial for the growth and health of calves. In this review, we summarized the colonization, beneficial nutrition, immune function of gut microbiota, function of the gut barrier, and the evolution of core microbiota in the gut of calves of different ages. Homeostasis of gut microbiome is beneficial for nutritional and immune system development of calves. Disruption of the gut microbiome leads to digestive diseases in calves, such as diarrhea and intestinal inflammation. Microbiota already exists in the gut of calf fetuses, and the colonization of microbiota continues to change dynamically under the influence of various factors, which include probiotics, diet, age, and genotype. Colonization depends on the interaction between the gut microbiota and the immune system of calves. The abundance and diversity of these commensal microbiota stabilize and play a critical role in the health of calves.
Collapse
Affiliation(s)
- Yufeng Du
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ya Gao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingyang Hu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiu Hou
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Linhai Yang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianghuang Wang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjuan Du
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianxin Liu
- MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qingbiao Xu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Reuben RC, Elghandour MMMY, Alqaisi O, Cone JW, Márquez O, Salem AZM. Influence of microbial probiotics on ruminant health and nutrition: sources, mode of action and implications. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1319-1340. [PMID: 34775613 DOI: 10.1002/jsfa.11643] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 10/21/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Globally, ruminant production contributes immensely to the supply of the highest quality and quantity of proteins for human consumption, sustenance of livelihoods, and attainment of food security. Nevertheless, the phasing out of antibiotics in animal production has posed a myriad of challenges, including poor growth, performance and nutrient utilization, pathogen colonization, dysbiosis, and food safety issues in ruminants. Probiotics (direct-fed microbials), comprising live microbial strains that confer health and nutritional benefits to the host when administered in appropriate quantities, are emerging as a viable, safe, natural and sustainable alternative to antibiotics. Although the mechanisms of action exerted by probiotics on ruminants are not well elucidated, dietary probiotic dosage to ruminants enhances development and maturation, growth and performance, milk production and composition, nutrient digestibility, feed efficiency, pathogen reduction, and mitigation of gastrointestinal diseases. However, the beneficial response to probiotic supplementation in ruminants is not consistent, being dependent on the microbial strain selected, combination of strains, dose, time and frequency of supplementation, diet, animal breed, physiological stage, husbandry practice, and farm management. Nonetheless, several studies have recently reported beneficial effects of probiotics on ruminant performance, health and production. This review conclusively re-iterates the need for probiotics inclusion for the sustainability of ruminant production. Considering the role that ruminants play in food production and employment, global acceptance of sustainable ruminant production through supplementation with probiotics will undoubtedly ensure food security and food safety for the world. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rine C Reuben
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig University, Leipzig, Germany
| | - Mona M M Y Elghandour
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Othman Alqaisi
- Animal and Veterinary Sciences Department, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - John W Cone
- Animal Nutrition Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Ofelia Márquez
- Centro Universitario UAEM Amecameca, Universidad Autónoma del Estado de México, Amecameca, Mexico
| | - Abdelfattah Z M Salem
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico
| |
Collapse
|
5
|
Dos Santos TAX, Fernandes LMG, Carvalho PPX, Júnior VSM, Fonseca SA, Chaves AS, Duarte ER. Performance and microbiota of the digestive tract of Nellore calves supplemented with fungi isolated from bovine rumen. Vet World 2021; 14:2686-2693. [PMID: 34903926 PMCID: PMC8654770 DOI: 10.14202/vetworld.2021.2686-2693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim In tropical semiarid regions, supplementation with fungi could contribute to rumen modulation, promoting greater production of fibrolytic enzymes and degradation of forage. The objective of this study was to analyze the effect of supplementation with fungi, isolated from the bovine rumen, on the performance and microbiota of the digestive tract of Nellore calves. Materials and Methods The experiment was conducted in randomized blocks evaluating eight Nellore calves that were daily supplemented with isolates of Aspergillus terreus and Trichoderma longibrachiatum, along with eight calves that were not supplemented. After 55 days, the animals were weighed, and samples of rumen fluid and feces were collected for analysis. The characteristics that showed normal distribution were subjected to analysis of variance and compared using Tukey's test. Whereas, the variables that did not show normal distribution were subjected to the Kruskal-Wallis test, and the frequencies of the bacterial and fungal genera were compared using the Chi-square test. Results Supplementation with fungi promoted the reduction in ruminal pH (p<0.05). However, the final live weight; average daily weight gain; total weight gain; rumen protozoa; and the count of Enterobacteriaceae, mycelial fungi, and yeasts of ruminal fluid and feces were not influenced by supplementation (p>0.05). Moreover, the protozoa Eodinium spp. was identified only in supplemented calves (p<0.05). Conclusion Supplementation with the fungi presented the potential for use as possible additives because it did not alter the physiological parameters of the facultative anaerobic microbiota composition in the rumen and feces. In addition, it favored the presence of the ciliate genus Eodinium. However, further studies should be performed to better define suitable dosages for supplementation.
Collapse
Affiliation(s)
| | | | - Pedro Paulo Xavier Carvalho
- Institute of Agricultural Science, Universidade Federal de Minas Gerais, Campus Montes Claros - MG, 39404-547, Brazil
| | - Valdo Soares Martins Júnior
- Institute of Agricultural Science, Universidade Federal de Minas Gerais, Campus Montes Claros - MG, 39404-547, Brazil
| | - Suze Adriane Fonseca
- Institute of Agricultural Science, Universidade Federal de Minas Gerais, Campus Montes Claros - MG, 39404-547, Brazil
| | - Amalia Saturnino Chaves
- Department of Veterinary Medicine, Universidade Federal de Juiz de Fora, Juiz de Fora - MG, 36036-900, Brazil
| | - Eduardo Robson Duarte
- Institute of Agricultural Science, Universidade Federal de Minas Gerais, Campus Montes Claros - MG, 39404-547, Brazil
| |
Collapse
|
6
|
Cox MS, Deblois CL, Suen G. Assessing the Response of Ruminal Bacterial and Fungal Microbiota to Whole-Rumen Contents Exchange in Dairy Cows. Front Microbiol 2021; 12:665776. [PMID: 34140943 PMCID: PMC8203821 DOI: 10.3389/fmicb.2021.665776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
A major goal for the dairy industry is to improve overall milk production efficiency (MPE). With the advent of next-generation sequencing and advanced methods for characterizing microbial communities, efforts are underway to improve MPE by manipulating the rumen microbiome. Our previous work demonstrated that a near-total exchange of whole rumen contents between pairs of lactating Holstein dairy cows of disparate MPE resulted in a reversal of MPE status for ∼10 days: historically high-efficiency cows decreased in MPE, and historically low-efficiency cows increased in MPE. Importantly, this switch in MPE status was concomitant with a reversal in the ruminal bacterial microbiota, with the newly exchanged bacterial communities reverting to their pre-exchange state. However, this work did not include an in-depth analysis of the microbial community response or an interrogation of specific taxa correlating to production metrics. Here, we sought to better understand the response of rumen communities to this exchange protocol, including consideration of the rumen fungi. Rumen samples were collected from 8 days prior to, and 56 days following the exchange and were subjected to 16S rRNA and ITS amplicon sequencing to assess bacterial and fungal community composition, respectively. Our results show that the ruminal fungal community did not differ significantly between hosts of disparate efficiency prior to the exchange, and no change in community structure was observed over the time course. Correlation of microbial taxa to production metrics identified one fungal operational taxonomic unit (OTU) in the genus Neocallimastix that correlated positively to MPE, and several bacterial OTUs classified to the genus Prevotella. Within the Prevotella, Prevotella_1 was found to be more abundant in high-efficiency cows whereas Prevotella_7 was more abundant in low-efficiency cows. Overall, our results suggest that the rumen bacterial community is a primary microbial driver of host efficiency, that the ruminal fungi may not have as significant a role in MPE as previously thought, and that more work is needed to better understand the functional roles of specific ruminal microbial community members in modulating MPE.
Collapse
Affiliation(s)
- Madison S Cox
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States.,Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Courtney L Deblois
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States.,Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
7
|
Hartinger T, Zebeli Q. The Present Role and New Potentials of Anaerobic Fungi in Ruminant Nutrition. J Fungi (Basel) 2021; 7:200. [PMID: 33802104 PMCID: PMC8000393 DOI: 10.3390/jof7030200] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 01/18/2023] Open
Abstract
The ruminal microbiota allows ruminants to utilize fibrous feeds and is in the limelight of ruminant nutrition research for many years. However, the overwhelming majority of investigations have focused on bacteria, whereas anaerobic fungi (AF) have been widely neglected by ruminant nutritionists. Anaerobic fungi are not only crucial fiber degraders but also important nutrient sources for the host. This review summarizes the current findings on AF and, most importantly, discusses their new application potentials in modern ruminant nutrition. Available data suggest AF can be applied as direct-fed microbials to enhance ruminal fiber degradation, which is indeed of interest for high-yielding dairy cows that often show depressed ruminal fibrolysis in response to high-grain feeding. Moreover, these microorganisms have relevance for the nutrient supply and reduction of methane emissions. However, to reach AF-related improvements in ruminal fiber breakdown and animal performance, obstacles in large-scale AF cultivation and applicable administration options need to be overcome. At feedstuff level, silage production may benefit from the application of fungal enzymes that cleave lignocellulosic structures and consequently enable higher energy exploitation from forages in the rumen. Concluding, AF hold several potentials in improving ruminant feeding and future research efforts are called for to harness these potentials.
Collapse
Affiliation(s)
- Thomas Hartinger
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| | | |
Collapse
|
8
|
|
9
|
Hess M, Paul SS, Puniya AK, van der Giezen M, Shaw C, Edwards JE, Fliegerová K. Anaerobic Fungi: Past, Present, and Future. Front Microbiol 2020; 11:584893. [PMID: 33193229 PMCID: PMC7609409 DOI: 10.3389/fmicb.2020.584893] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/29/2020] [Indexed: 11/13/2022] Open
Abstract
Anaerobic fungi (AF) play an essential role in feed conversion due to their potent fiber degrading enzymes and invasive growth. Much has been learned about this unusual fungal phylum since the paradigm shifting work of Colin Orpin in the 1970s, when he characterized the first AF. Molecular approaches targeting specific phylogenetic marker genes have facilitated taxonomic classification of AF, which had been previously been complicated by the complex life cycles and associated morphologies. Although we now have a much better understanding of their diversity, it is believed that there are still numerous genera of AF that remain to be described in gut ecosystems. Recent marker-gene based studies have shown that fungal diversity in the herbivore gut is much like the bacterial population, driven by host phylogeny, host genetics and diet. Since AF are major contributors to the degradation of plant material ingested by the host animal, it is understandable that there has been great interest in exploring the enzymatic repertoire of these microorganisms in order to establish a better understanding of how AF, and their enzymes, can be used to improve host health and performance, while simultaneously reducing the ecological footprint of the livestock industry. A detailed understanding of AF and their interaction with other gut microbes as well as the host animal is essential, especially when production of affordable high-quality protein and other animal-based products needs to meet the demands of an increasing human population. Such a mechanistic understanding, leading to more sustainable livestock practices, will be possible with recently developed -omics technologies that have already provided first insights into the different contributions of the fungal and bacterial population in the rumen during plant cell wall hydrolysis.
Collapse
Affiliation(s)
- Matthias Hess
- Systems Microbiology & Natural Product Discovery Laboratory, Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Shyam S. Paul
- Gut Microbiome Lab, ICAR-Directorate of Poultry Research, Indian Council of Agricultural Research, Hyderabad, India
| | - Anil K. Puniya
- Anaerobic Microbiology Lab, ICAR-National Dairy Research Institute, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Mark van der Giezen
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Claire Shaw
- Systems Microbiology & Natural Product Discovery Laboratory, Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Joan E. Edwards
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Kateřina Fliegerová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
10
|
Wang D, Zhao C, Liu S, Zhang T, Yao J, Cao Y. Effects of Piromyces sp. CN6 CGMCC 14449 on fermentation quality, nutrient composition and the in vitro degradation rate of whole crop maize silage. AMB Express 2019; 9:121. [PMID: 31359220 PMCID: PMC6663944 DOI: 10.1186/s13568-019-0846-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/23/2019] [Indexed: 11/28/2022] Open
Abstract
This study investigated the effects of the rumen fungus Piromyces sp. CN6 CGMCC 14449 as a silage additive on the fermentation quality, nutrient composition and in vitro digestibility of whole crop maize silage. Whole crop maize served as the silage material and was vacuum packed in polyethylene bags. Three ensiling treatments were applied: a control (CK), addition of a fungus (FU) at 105 thallus-forming units per gram, and addition of compound enzyme (EN) at 0.033 mg/g (containing cellulase and xylanase at activities of 90 filter paper units and 6000 IU per gram, respectively). Compared with the CK, the FU and EN treatments decreased the pH after 30 days fermentation (P <0.05). Both FU and EN treatments increased the lactate, crude protein, and water-soluble carbohydrate contents (P <0.05), whereas reduced the acetate, ADF and NDF contents as well as the ammonia nitrogen to total nitrogen ratio in silage after 30 days of ensilaging (P <0.05), compared with those for the CK, while no changes were found in the dry matter and dry matter recovery (P > 0.05). The fungal inoculant increased the in vitro digestibility of dry matter, NDF and ADF in silage after 30 days fermentation (P <0.05). In conclusion, the rumen fungus Piromyces sp. CN6 CGMCC 14449 can improve the quality and nutrient composition of whole crop maize silage and increase the crude fibre digestibility.
Collapse
|
11
|
Huws SA, Creevey CJ, Oyama LB, Mizrahi I, Denman SE, Popova M, Muñoz-Tamayo R, Forano E, Waters SM, Hess M, Tapio I, Smidt H, Krizsan SJ, Yáñez-Ruiz DR, Belanche A, Guan L, Gruninger RJ, McAllister TA, Newbold CJ, Roehe R, Dewhurst RJ, Snelling TJ, Watson M, Suen G, Hart EH, Kingston-Smith AH, Scollan ND, do Prado RM, Pilau EJ, Mantovani HC, Attwood GT, Edwards JE, McEwan NR, Morrisson S, Mayorga OL, Elliott C, Morgavi DP. Addressing Global Ruminant Agricultural Challenges Through Understanding the Rumen Microbiome: Past, Present, and Future. Front Microbiol 2018; 9:2161. [PMID: 30319557 PMCID: PMC6167468 DOI: 10.3389/fmicb.2018.02161] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/23/2018] [Indexed: 12/24/2022] Open
Abstract
The rumen is a complex ecosystem composed of anaerobic bacteria, protozoa, fungi, methanogenic archaea and phages. These microbes interact closely to breakdown plant material that cannot be digested by humans, whilst providing metabolic energy to the host and, in the case of archaea, producing methane. Consequently, ruminants produce meat and milk, which are rich in high-quality protein, vitamins and minerals, and therefore contribute to food security. As the world population is predicted to reach approximately 9.7 billion by 2050, an increase in ruminant production to satisfy global protein demand is necessary, despite limited land availability, and whilst ensuring environmental impact is minimized. Although challenging, these goals can be met, but depend on our understanding of the rumen microbiome. Attempts to manipulate the rumen microbiome to benefit global agricultural challenges have been ongoing for decades with limited success, mostly due to the lack of a detailed understanding of this microbiome and our limited ability to culture most of these microbes outside the rumen. The potential to manipulate the rumen microbiome and meet global livestock challenges through animal breeding and introduction of dietary interventions during early life have recently emerged as promising new technologies. Our inability to phenotype ruminants in a high-throughput manner has also hampered progress, although the recent increase in “omic” data may allow further development of mathematical models and rumen microbial gene biomarkers as proxies. Advances in computational tools, high-throughput sequencing technologies and cultivation-independent “omics” approaches continue to revolutionize our understanding of the rumen microbiome. This will ultimately provide the knowledge framework needed to solve current and future ruminant livestock challenges.
Collapse
Affiliation(s)
- Sharon A Huws
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
| | - Christopher J Creevey
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
| | - Linda B Oyama
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
| | - Itzhak Mizrahi
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Stuart E Denman
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Queensland Bioscience Precinct, St Lucia, QLD, Australia
| | - Milka Popova
- Institute National de la Recherche Agronomique, UMR1213 Herbivores, Clermont Université, VetAgro Sup, UMR Herbivores, Clermont-Ferrand, France
| | - Rafael Muñoz-Tamayo
- UMR Modélisation Systémique Appliquée aux Ruminants, INRA, AgroParisTech, Université Paris-Saclay, Paris, France
| | - Evelyne Forano
- UMR 454 MEDIS, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Sinead M Waters
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Grange, Ireland
| | - Matthias Hess
- College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
| | - Ilma Tapio
- Natural Resources Institute Finland, Jokioinen, Finland
| | - Hauke Smidt
- Department of Agrotechnology and Food Sciences, Wageningen, Netherlands
| | - Sophie J Krizsan
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - David R Yáñez-Ruiz
- Estacion Experimental del Zaidin, Consejo Superior de Investigaciones Cientificas, Granada, Spain
| | - Alejandro Belanche
- Estacion Experimental del Zaidin, Consejo Superior de Investigaciones Cientificas, Granada, Spain
| | - Leluo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Robert J Gruninger
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Tim A McAllister
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | | | - Rainer Roehe
- Scotland's Rural College, Edinburgh, United Kingdom
| | | | - Tim J Snelling
- The Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom
| | - Mick Watson
- The Roslin Institute and the Royal (Dick) School of Veterinary Studies (R(D)SVS), University of Edinburgh, Edinburgh, United Kingdom
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Elizabeth H Hart
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Alison H Kingston-Smith
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Nigel D Scollan
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
| | - Rodolpho M do Prado
- Laboratório de Biomoléculas e Espectrometria de Massas-Labiomass, Departamento de Química, Universidade Estadual de Maringá, Maringá, Brazil
| | - Eduardo J Pilau
- Laboratório de Biomoléculas e Espectrometria de Massas-Labiomass, Departamento de Química, Universidade Estadual de Maringá, Maringá, Brazil
| | | | - Graeme T Attwood
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Joan E Edwards
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Neil R McEwan
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Steven Morrisson
- Sustainable Livestock, Agri-Food and Bio-Sciences Institute, Hillsborough, United Kingdom
| | - Olga L Mayorga
- Colombian Agricultural Research Corporation, Mosquera, Colombia
| | - Christopher Elliott
- Institute for Global Food Security, Queen's University of Belfast, Belfast, United Kingdom
| | - Diego P Morgavi
- Institute National de la Recherche Agronomique, UMR1213 Herbivores, Clermont Université, VetAgro Sup, UMR Herbivores, Clermont-Ferrand, France
| |
Collapse
|
12
|
Calkins SS, Elledge NC, Mueller KE, Marek SM, Couger MB, Elshahed MS, Youssef NH. Development of an RNA interference (RNAi) gene knockdown protocol in the anaerobic gut fungus Pecoramyces ruminantium strain C1A. PeerJ 2018; 6:e4276. [PMID: 29404209 PMCID: PMC5796279 DOI: 10.7717/peerj.4276] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/29/2017] [Indexed: 12/25/2022] Open
Abstract
Members of the anaerobic gut fungi (AGF) reside in rumen, hindgut, and feces of ruminant and non-ruminant herbivorous mammals and reptilian herbivores. No protocols for gene insertion, deletion, silencing, or mutation are currently available for the AGF, rendering gene-targeted molecular biological manipulations unfeasible. Here, we developed and optimized an RNA interference (RNAi)-based protocol for targeted gene silencing in the anaerobic gut fungus Pecoramyces ruminantium strain C1A. Analysis of the C1A genome identified genes encoding enzymes required for RNA silencing in fungi (Dicer, Argonaute, Neurospora crassa QDE-3 homolog DNA helicase, Argonaute-interacting protein, and Neurospora crassa QIP homolog exonuclease); and the competency of C1A germinating spores for RNA uptake was confirmed using fluorescently labeled small interfering RNAs (siRNA). Addition of chemically-synthesized siRNAs targeting D-lactate dehydrogenase (ldhD) gene to C1A germinating spores resulted in marked target gene silencing; as evident by significantly lower ldhD transcriptional levels, a marked reduction in the D-LDH specific enzymatic activity in intracellular protein extracts, and a reduction in D-lactate levels accumulating in the culture supernatant. Comparative transcriptomic analysis of untreated versus siRNA-treated cultures identified a few off-target siRNA-mediated gene silencing effects. As well, significant differential up-regulation of the gene encoding NAD-dependent 2-hydroxyacid dehydrogenase (Pfam00389) in siRNA-treated C1A cultures was observed, which could possibly compensate for loss of D-LDH as an electron sink mechanism in C1A. The results demonstrate the feasibility of RNAi in anaerobic fungi, and opens the door for gene silencing-based studies in this fungal clade.
Collapse
Affiliation(s)
- Shelby S Calkins
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Nicole C Elledge
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA.,Current affiliation: University of Texas A&M Corpus Christi, Department of Life Sciences, Marine Biology Program, USA
| | - Katherine E Mueller
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Stephen M Marek
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA
| | - M B Couger
- High Performance Computing Center, Oklahoma State University, Stillwater, OK, USA
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
13
|
Edwards JE, Forster RJ, Callaghan TM, Dollhofer V, Dagar SS, Cheng Y, Chang J, Kittelmann S, Fliegerova K, Puniya AK, Henske JK, Gilmore SP, O'Malley MA, Griffith GW, Smidt H. PCR and Omics Based Techniques to Study the Diversity, Ecology and Biology of Anaerobic Fungi: Insights, Challenges and Opportunities. Front Microbiol 2017; 8:1657. [PMID: 28993761 PMCID: PMC5622200 DOI: 10.3389/fmicb.2017.01657] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/15/2017] [Indexed: 11/25/2022] Open
Abstract
Anaerobic fungi (phylum Neocallimastigomycota) are common inhabitants of the digestive tract of mammalian herbivores, and in the rumen, can account for up to 20% of the microbial biomass. Anaerobic fungi play a primary role in the degradation of lignocellulosic plant material. They also have a syntrophic interaction with methanogenic archaea, which increases their fiber degradation activity. To date, nine anaerobic fungal genera have been described, with further novel taxonomic groupings known to exist based on culture-independent molecular surveys. However, the true extent of their diversity may be even more extensively underestimated as anaerobic fungi continue being discovered in yet unexplored gut and non-gut environments. Additionally many studies are now known to have used primers that provide incomplete coverage of the Neocallimastigomycota. For ecological studies the internal transcribed spacer 1 region (ITS1) has been the taxonomic marker of choice, but due to various limitations the large subunit rRNA (LSU) is now being increasingly used. How the continued expansion of our knowledge regarding anaerobic fungal diversity will impact on our understanding of their biology and ecological role remains unclear; particularly as it is becoming apparent that anaerobic fungi display niche differentiation. As a consequence, there is a need to move beyond the broad generalization of anaerobic fungi as fiber-degraders, and explore the fundamental differences that underpin their ability to exist in distinct ecological niches. Application of genomics, transcriptomics, proteomics and metabolomics to their study in pure/mixed cultures and environmental samples will be invaluable in this process. To date the genomes and transcriptomes of several characterized anaerobic fungal isolates have been successfully generated. In contrast, the application of proteomics and metabolomics to anaerobic fungal analysis is still in its infancy. A central problem for all analyses, however, is the limited functional annotation of anaerobic fungal sequence data. There is therefore an urgent need to expand information held within publicly available reference databases. Once this challenge is overcome, along with improved sample collection and extraction, the application of these techniques will be key in furthering our understanding of the ecological role and impact of anaerobic fungi in the wide range of environments they inhabit.
Collapse
Affiliation(s)
- Joan E. Edwards
- Laboratory of Microbiology, Wageningen University & ResearchWageningen, Netherlands
| | - Robert J. Forster
- Lethbridge Research and Development Centre, Agriculture and Agri-Food CanadaLethbridge, AB, Canada
| | - Tony M. Callaghan
- Department for Quality Assurance and Analytics, Bavarian State Research Center for AgricultureFreising, Germany
| | - Veronika Dollhofer
- Department for Quality Assurance and Analytics, Bavarian State Research Center for AgricultureFreising, Germany
| | | | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, Nanjing Agricultural UniversityNanjing, China
| | - Jongsoo Chang
- Department of Agricultural Science, Korea National Open UniversitySeoul, South Korea
| | - Sandra Kittelmann
- Grasslands Research Centre, AgResearch Ltd.Palmerston North, New Zealand
| | - Katerina Fliegerova
- Institute of Animal Physiology and Genetics, Czech Academy of SciencesPrague, Czechia
| | - Anil K. Puniya
- College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences UniversityLudhiana, India
- Dairy Microbiology Division, ICAR-National Dairy Research InstituteKarnal, India
| | - John K. Henske
- Department of Chemical Engineering, University of California, Santa BarbaraSanta Barbara, CA, United States
| | - Sean P. Gilmore
- Department of Chemical Engineering, University of California, Santa BarbaraSanta Barbara, CA, United States
| | - Michelle A. O'Malley
- Department of Chemical Engineering, University of California, Santa BarbaraSanta Barbara, CA, United States
| | - Gareth W. Griffith
- Institute of Biological Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & ResearchWageningen, Netherlands
| |
Collapse
|
14
|
Dias J, Marcondes MI, Noronha MF, Resende RT, Machado FS, Mantovani HC, Dill-McFarland KA, Suen G. Effect of Pre-weaning Diet on the Ruminal Archaeal, Bacterial, and Fungal Communities of Dairy Calves. Front Microbiol 2017; 8:1553. [PMID: 28861065 PMCID: PMC5559706 DOI: 10.3389/fmicb.2017.01553] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/31/2017] [Indexed: 01/01/2023] Open
Abstract
At birth, calves display an underdeveloped rumen that eventually matures into a fully functional rumen as a result of solid food intake and microbial activity. However, little is known regarding the gradual impact of pre-weaning diet on the establishment of the rumen microbiota. Here, we employed next-generation sequencing to investigate the effects of the inclusion of starter concentrate (M: milk-fed vs. MC: milk plus starter concentrate fed) on archaeal, bacterial and anaerobic fungal communities in the rumens of 45 crossbred dairy calves across pre-weaning development (7, 28, 49, and 63 days). Our results show that archaeal, bacterial, and fungal taxa commonly found in the mature rumen were already established in the rumens of calves at 7 days old, regardless of diet. This confirms that microbiota colonization occurs in the absence of solid substrate. However, diet did significantly impact some microbial taxa. In the bacterial community, feeding starter concentrate promoted greater diversity of bacterial taxa known to degrade readily fermentable carbohydrates in the rumen (e.g., Megasphaera, Sharpea, and Succinivribrio). Shifts in the ruminal bacterial community also correlated to changes in fermentation patterns that favored the colonization of Methanosphaera sp. A4 in the rumen of MC calves. In contrast, M calves displayed a bacterial community dominated by taxa able to utilize milk nutrients (e.g., Lactobacillus, Bacteroides, and Parabacteroides). In both diet groups, the dominance of these milk-associated taxa decreased with age, suggesting that diet and age simultaneously drive changes in the structure and abundance of bacterial communities in the developing rumen. Changes in the composition and abundance of archaeal communities were attributed exclusively to diet, with more highly abundant Methanosphaera and less abundant Methanobrevibacter in MC calves. Finally, the fungal community was dominated by members of the genus SK3 and Caecomyces. Relative anaerobic fungal abundances did not change significantly in response to diet or age, likely due to high inter-animal variation and the low fiber content of starter concentrate. This study provides new insights into the colonization of archaea, bacteria, and anaerobic fungi communities in pre-ruminant calves that may be useful in designing strategies to promote colonization of target communities to improve functional development.
Collapse
Affiliation(s)
- Juliana Dias
- Department of Animal Science, Universidade Federal de ViçosaViçosa, Brazil.,Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Ministério da EducaçãoBrasília, Brazil
| | - Marcos I Marcondes
- Department of Animal Science, Universidade Federal de ViçosaViçosa, Brazil
| | - Melline F Noronha
- Division of Microbial Resources, Research Centre for Chemistry, Biology and Agriculture, University of CampinasCampinas, Brazil
| | - Rafael T Resende
- Forestry Department, Universidade Federal de ViçosaViçosa, Brazil
| | | | | | | | - Garret Suen
- Department of Bacteriology, University of Wisconsin-MadisonMadison, WI, United States
| |
Collapse
|
15
|
McCann JC, Elolimy AA, Loor JJ. Rumen Microbiome, Probiotics, and Fermentation Additives. Vet Clin North Am Food Anim Pract 2017; 33:539-553. [PMID: 28764865 DOI: 10.1016/j.cvfa.2017.06.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Fermentation of a variety of feedstuffs by the ruminal microbiome is the distinctive feature of the ruminant digestive tract. The host derives energy and nutrients from microbiome activity; these organisms are essential to survival. Advances in DNA sequencing and bioinformatics have redefined the rumen microbial community. Current research seeks to connect our understanding of the rumen microbiome with nutritional strategies in ruminant livestock systems and their associated digestive disorders. These efforts align with a growing number of products designed to improve ruminal fermentation to benefit the overall efficiency of ruminant livestock production and health.
Collapse
Affiliation(s)
- Joshua C McCann
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, 1207 West Gregory Drive, Urbana, IL 61801, USA.
| | - Ahmed A Elolimy
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, 1207 West Gregory Drive, Urbana, IL 61801, USA
| | - Juan J Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, 1207 West Gregory Drive, Urbana, IL 61801, USA.
| |
Collapse
|
16
|
Gruninger RJ, Puniya AK, Callaghan TM, Edwards JE, Youssef N, Dagar SS, Fliegerova K, Griffith GW, Forster R, Tsang A, McAllister T, Elshahed MS. Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol Ecol 2014; 90:1-17. [PMID: 25046344 DOI: 10.1111/1574-6941.12383] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 02/05/2023] Open
Abstract
Anaerobic fungi (phylum Neocallimastigomycota) inhabit the gastrointestinal tract of mammalian herbivores, where they play an important role in the degradation of plant material. The Neocallimastigomycota represent the earliest diverging lineage of the zoosporic fungi; however, understanding of the relationships of the different taxa (both genera and species) within this phylum is in need of revision. Issues exist with the current approaches used for their identification and classification, and recent evidence suggests the presence of several novel taxa (potential candidate genera) that remain to be characterised. The life cycle and role of anaerobic fungi has been well characterised in the rumen, but not elsewhere in the ruminant alimentary tract. Greater understanding of the 'resistant' phase(s) of their life cycle is needed, as is study of their role and significance in other herbivores. Biotechnological application of anaerobic fungi, and their highly active cellulolytic and hemi-cellulolytic enzymes, has been a rapidly increasing area of research and development in the last decade. The move towards understanding of anaerobic fungi using -omics based (genomic, transcriptomic and proteomic) approaches is starting to yield valuable insights into the unique cellular processes, evolutionary history, metabolic capabilities and adaptations that exist within the Neocallimastigomycota.
Collapse
|
17
|
Isolation, characterization and fibre degradation potential of anaerobic rumen fungi from cattle. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0577-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
18
|
Nagpal R, Puniya AK, Sehgal JP, Singh K. Survival of anaerobic fungus Caecomyces sp. in various preservation methods: a comparative study. MYCOSCIENCE 2012. [DOI: 10.1007/s10267-012-0187-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Kittelmann S, Naylor GE, Koolaard JP, Janssen PH. A proposed taxonomy of anaerobic fungi (class neocallimastigomycetes) suitable for large-scale sequence-based community structure analysis. PLoS One 2012; 7:e36866. [PMID: 22615827 PMCID: PMC3353986 DOI: 10.1371/journal.pone.0036866] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/14/2012] [Indexed: 01/21/2023] Open
Abstract
Anaerobic fungi are key players in the breakdown of fibrous plant material in the rumen, but not much is known about the composition and stability of fungal communities in ruminants. We analyzed anaerobic fungi in 53 rumen samples from farmed sheep (4 different flocks), cattle, and deer feeding on a variety of diets. Denaturing gradient gel electrophoresis fingerprinting of the internal transcribed spacer 1 (ITS1) region of the rrn operon revealed a high diversity of anaerobic fungal phylotypes across all samples. Clone libraries of the ITS1 region were constructed from DNA from 11 rumen samples that had distinctly different fungal communities. A total of 417 new sequences were generated to expand the number and diversity of ITS1 sequences available. Major phylogenetic groups of anaerobic fungi in New Zealand ruminants belonged to the genera Piromyces, Neocallimastix, Caecomyces and Orpinomyces. In addition, sequences forming four novel clades were obtained, which may represent so far undetected genera or species of anaerobic fungi. We propose a revised phylogeny and pragmatic taxonomy for anaerobic fungi, which was tested and proved suitable for analysis of datasets stemming from high-throughput next-generation sequencing methods. Comparing our revised taxonomy to the taxonomic assignment of sequences deposited in the GenBank database, we believe that >29% of ITS1 sequences derived from anaerobic fungal isolates or clones are misnamed at the genus level.
Collapse
Affiliation(s)
- Sandra Kittelmann
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
| | - Graham E. Naylor
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
| | - John P. Koolaard
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
| | - Peter H. Janssen
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
- * E-mail:
| |
Collapse
|
20
|
Saxena S, Sehgal JP, Puniya AK, Singh K. Effect of administration of rumen fungi on production performance of lactating buffaloes. Benef Microbes 2011; 1:183-8. [PMID: 21840805 DOI: 10.3920/bm2009.0018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Anaerobic fungi were orally dosed to lactating buffaloes to study their effect on the digestibility of a diet (composed of 50% wheat straw and 50% concentrate along with six kg maize green/animal/day), rumen fermentation patterns and milk production. Group I (control) was administered with fungus-free anaerobic broth, while group II and III were administered with Orpinomyces sp. C-14 or Piromyces sp. WNG-12 (250 ml; 3-5 days of growth/animal/ week), respectively. Milk production was higher in group II and III (8.42 and 8.48 kg/d) than in the control (8.03 kg/d) with virtually the same feed intake (i.e. 11.50 and 10.62 and 11.79 kg, respectively). There was an increase of 6% fat-corrected milk yield/animal/day in group II and III, respectively compared to the control. The milk fat was higher in the fungal culture administered groups than in the control group. The digestibility of dry matter, crude protein, neutral detergent fibre, acid detergent fibre, cellulose and digestible energy also increased significantly in group II and III. The pH and ammonia nitrogen were lower, whereas total volatile fatty acids, total nitrogen, trichloroacid precipitable nitrogen and number of zoospores/ml of rumen liquor were higher in group II and III when compared to the control. Hence, it can be stated that rumen fungi can be used as a direct-fed microbial in lactating buffaloes, to enhance the digestibility of wheat straw based diets leading to higher production.
Collapse
Affiliation(s)
- S Saxena
- Dairy Cattle Nutrition Division, National Dairy Research Institute, Karnal, Haryana, India
| | | | | | | |
Collapse
|
21
|
Paul SS, Deb SM, Punia BS, Das KS, Singh G, Ashar MN, Kumar R. Effect of feeding isolates of anaerobic fungus Neocallimastix sp. CF 17 on growth rate and fibre digestion in buffalo calves. Arch Anim Nutr 2011; 65:215-28. [PMID: 21776838 DOI: 10.1080/1745039x.2011.559722] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this investigation, the effects of feeding encapsulated cells (rhizomycelia and zoospores) of a fibrolytic isolate from an anaerobic fungus (Neocallimastix sp. CF 17) on nutrient digestion, ruminal fermentation, microbial populations, enzyme profile and growth performance were evaluated in buffaloes. In three in vitro studies, the true digestibility of wheat straw was increased after addition of CF 17 to buffalo rumen fluid (p < 0.05). In Exp. 1, three groups of six buffaloes each (initial BW [body weight] 148 +/- 12.0 kg) were allotted to three dosing regimes: Group 1 received 200 ml of liquid culture of Neocallimastix sp. CF 17 (about 10(6) TFU [thallus-forming units]/ml); Group 2 received an encapsulated culture of the same fungi prepared from 200 ml liquid culture; Group 3: received 200 ml of autoclaved culture (Control). The supplementations were given weekly for four weeks (on days 1,7, 14 and 21). During the dosing period, the average daily gain of Group 2 was higher than in the Control group (444 g/d compared with 264 g/d; p < 0.05). Furthermore, the digestibility of organic matter increased in Group 1 and 2 compared with the Control (64.8, 64.0 and 60.4% respectively; p < 0.05), resulting in an increase in the total digestible nutrient (TDN) percent of ration (p < 0.05). But these effects disappeared post-dosing. There were also an increase in concentration of volatile fatty acids, trichloroacetic acid precipitable N and number of fibrolytic microbes in the rumen during the dosing period (p < 0.05), but these effects declined post-dosing. Results of Exp 2., where the encapsulated culture was applied at intervals of 4 d or 8 d for 120 d, showed that a shorter dosing frequency did not improve growth performance or feed intake. However, independent of the dosing frequency the growth rate of both groups fed the encapsulated culture were about 20% higher than in the Control group (p < 0.05). The present study showed that encapsulated fungi have a high potential to be used as feed additive at the farmers' level and that weekly dosing can increase growth performance of wheat straw based diets.
Collapse
Affiliation(s)
- Shyam S Paul
- Central Institute for Research on Buffaloes, Bir Dosanjh, Punjab, India.
| | | | | | | | | | | | | |
Collapse
|
22
|
Nagpal R, Puniya AK, Sehgal JP, Singh K. In vitro fibrolytic potential of anaerobic rumen fungi from ruminants and non-ruminant herbivores. MYCOSCIENCE 2011. [DOI: 10.1007/s10267-010-0071-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Paul SS, Deb SM, Punia BS, Singh D, Kumar R. Fibrolytic potential of anaerobic fungi (Piromyces sp.) isolated from wild cattle and blue bulls in pure culture and effect of their addition on in vitro fermentation of wheat straw and methane emission by rumen fluid of buffaloes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2010; 90:1218-1226. [PMID: 20394004 DOI: 10.1002/jsfa.3952] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
BACKGROUND Ten isolates of anaerobic fungi of Piromyces genus from wild cattle and blue bulls (five isolates from each host species) were evaluated for their fibrolytic ability in pure culture, their suitability for use as a microbial additive in buffaloes and their effect on methane emission. RESULTS In pure culture, only two out of five isolates from wild cattle degraded wheat straw efficiently, whereas all five isolates from wild blue bulls did. Isolate CF1 (from cattle) showed the highest apparent digestibility (53.4%), true digestibility (70.8%) and neutral detergent fibre digestibility (75.0%) of wheat straw after 5 days of incubation. When added to buffalo rumen fluid, all five isolates from cattle increased (P < 0.05) in vitro apparent digestibility of wheat straw compared with the control (received autoclaved culture), but all five isolates from blue bulls failed to influence in vitro digestibility of wheat straw. Isolate CF1 showed the highest stimulating effect on straw digestion by buffalo rumen fluid microbes and increased apparent digestibility (51.9 vs 29.4%, P < 0.05), true digestibility (57.9 vs 36.5%, P < 0.05) and neutral detergent fibre digestibility (51.5 vs 26.9%, P < 0.05) of wheat straw compared with the control after 24 h of fermentation. There were also significant increases in fungal count and enzyme activities of carboxymethylcellulase and xylanase in the CF1-added group compared with the control group. Gas and methane production g(-1) truly digested dry matter of straw were comparable among all groups including the control. CONCLUSION Wild cattle and blue bulls harbour some anaerobic fungal strains with strong capability to hydrolyse fibre. The fungal isolate CF1 has high potential for use as a microbial feed additive in buffaloes to improve digestibility of fibrous feeds without increasing methane emission per unit of digested feed.
Collapse
Affiliation(s)
- Shyam S Paul
- Central Institute for Research on Buffaloes, Sub Campus, Bir Dosanjh, Nabha 147201, Punjab, India.
| | | | | | | | | |
Collapse
|
24
|
Shelke SK, Chhabra A, Puniya AK, Sehgal JP. In vitro degradation of sugarcane bagasse based ruminant rations using anaerobic fungi. ANN MICROBIOL 2009. [DOI: 10.1007/bf03175124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|