1
|
Mirzaei-Alamouti H, Abdollahi A, Rahimi H, Moradi S, Vazirigohar M, Aschenbach JR. Effects of dietary oil sources (sunflower and fish) on fermentation characteristics, epithelial gene expression and microbial community in the rumen of lambs fed a high-concentrate diet. Arch Anim Nutr 2022; 75:405-421. [PMID: 35112609 DOI: 10.1080/1745039x.2021.1997539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The feeding of high-concentrate diets commonly results in lowered pH and ruminal dysbiosis which cause shifts in uptake dynamics of short-chain fatty acids (SCFA) and altered epithelial function. Therefore, the current study evaluated the effect of dietary polyunsaturated fatty acids (PUFA) on ruminal fermentation products, gene expression in the ruminal epithelium and the associated changes in ruminal microorganisms in lambs fed a high-concentrate diet. Twenty-six Afshari lambs adapted to a high-concentrate diet during a completely randomised design were fed with a basal diet supplemented with 100 g oil supplement (OS; 60 g sunflower oil and 40 g fish oil) for 10 (OS10), 20 (OS20) and 30 (OS30) d, respectively (n = 6). Lambs with no oil supplementation (OS0, n = 8) were considered as control and slaughtered at d 0 of the experiment, and the remaining lambs were slaughtered at 10, 20 and 30 d on feed. After slaughter, ruminal digesta was collected for evaluating fermentation and microbial community. Ruminal papillae were taken for assessment of epithelial gene expression. Compared with OS0 lambs, supplemental PUFA in OS30 lambs tended to decrease total SCFA concentration with decreased acetic and increased propionic acid concentrations. Acetate:propionate ratios were decreased and ruminal pH was increased in OS20 and OS30 lambs compared to OS0. All groups with included OS had decreased concentrations of iso-valeric and valeric acids compared to OS0. Relative mRNA abundance of monocarboxylate transporter isoforms 1 and 4, insulin-like growth factor binding protein 3, sterol regulatory element-binding proteins 1 and 2 decreased with increasing OS duration. The relative abundance of 3-hydroxy-3-methylglutaryl-CoA synthase 1 mRNA transcript was higher for OS10 and OS20 lambs relative to OS0 lambs. OS20 and OS30 showed a decrease of lipopolysaccharide binding protein mRNA expression compared with OS0. Feeding supplemental PUFA decreased Ciliate protozoa and increased Butyrivibrio fibrisolvens in OS20 and OS30 lambs, whereas Megasphaera elsdenii was increased in OS30 lambs. In conclusion, combined supplementation of sunflower and fish oil to a high-concentrate diet affects the ruminal microbial community with prominent decreases in ruminal ciliate protozoa and increases in B. fibrisolvens and M. elsdenii. These results lead to a more stabilised ruminal pH and a fermentation shift towards more propionate generation. Consideration of nutrients digestion will help to fully understand the benefits of feeding PUFA with a high-concentrate diet.
Collapse
Affiliation(s)
| | - Arman Abdollahi
- Department of Animal Science, Faculty of Agriculture, Shiraz University, Shiraz, Iran
| | - Hasan Rahimi
- Department of Animal Sciences, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Saeedeh Moradi
- Department of Animal Sciences, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Mina Vazirigohar
- Zist Dam Group, University of Zanjan Incubator Center, Zanjan, Iran
| | - Jörg R Aschenbach
- Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
2
|
Wang Y, Yu S, Li Y, Zhang S, Qi X, Guo K, Guo Y, Fortina R. Pilot Study of the Effects of Polyphenols from Chestnut Involucre on Methane Production, Volatile Fatty Acids, and Ammonia Concentration during In Vitro Rumen Fermentation. Animals (Basel) 2021; 11:E108. [PMID: 33430307 PMCID: PMC7825775 DOI: 10.3390/ani11010108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/04/2021] [Indexed: 01/08/2023] Open
Abstract
Nutritional strategies can be employed to mitigate greenhouse emissions from ruminants. This article investigates the effects of polyphenols extracted from the involucres of Castanea mollissima Blume (PICB) on in vitro rumen fermentation. Three healthy Angus bulls (350 ± 50 kg), with permanent rumen fistula, were used as the donors of rumen fluids. A basic diet was supplemented with five doses of PICB (0%-0.5% dry matter (DM)), replicated thrice for each dose. Volatile fatty acids (VFAs), ammonia nitrogen concentration (NH3-N), and methane (CH4) yield were measured after 24 h of in vitro fermentation, and gas production was monitored for 96 h. The trial was carried out over three runs. The results showed that the addition of PICB significantly reduced NH3-N (p < 0.05) compared to control. The 0.1%-0.4% PICB significantly decreased acetic acid content (p < 0.05). Addition of 0.2% and 0.3% PICB significantly increased the propionic acid content (p < 0.05) and reduced the acetic acid/propionic acid ratio, CH4 content, and yield (p < 0.05). A highly significant quadratic response was shown, with increasing PICB levels for all the parameters abovementioned (p < 0.01). The increases in PICB concentration resulted in a highly significant linear and quadratic response by 96-h dynamic fermentation parameters (p < 0.01). Our results indicate that 0.2% PICB had the best effect on in-vitro rumen fermentation efficiency and reduced greenhouse gas production.
Collapse
Affiliation(s)
- Yichong Wang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (Y.W.); (S.Y.); (Y.L.); (S.Z.); (X.Q.); (Y.G.)
| | - Sijiong Yu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (Y.W.); (S.Y.); (Y.L.); (S.Z.); (X.Q.); (Y.G.)
| | - Yang Li
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (Y.W.); (S.Y.); (Y.L.); (S.Z.); (X.Q.); (Y.G.)
| | - Shuang Zhang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (Y.W.); (S.Y.); (Y.L.); (S.Z.); (X.Q.); (Y.G.)
| | - Xiaolong Qi
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (Y.W.); (S.Y.); (Y.L.); (S.Z.); (X.Q.); (Y.G.)
| | - Kaijun Guo
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (Y.W.); (S.Y.); (Y.L.); (S.Z.); (X.Q.); (Y.G.)
| | - Yong Guo
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (Y.W.); (S.Y.); (Y.L.); (S.Z.); (X.Q.); (Y.G.)
| | - Riccardo Fortina
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Largo Paolo Braccini 2, Grugliasco, TO 10095, Italy
| |
Collapse
|
3
|
Bu D, Zhang X, Ma L, Park T, Wang L, Wang M, Xu J, Yu Z. Repeated Inoculation of Young Calves With Rumen Microbiota Does Not Significantly Modulate the Rumen Prokaryotic Microbiota Consistently but Decreases Diarrhea. Front Microbiol 2020; 11:1403. [PMID: 32670244 PMCID: PMC7326819 DOI: 10.3389/fmicb.2020.01403] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 05/29/2020] [Indexed: 12/25/2022] Open
Abstract
The complex rumen microbiota exhibits some degree of host specificity. The undeveloped simple rumen microbiota is hypothetically more amendable. The objective of this study was to investigate if the rumen prokaryotic microbial assemblage of young calves can be reprogrammed by oral inoculation with rumen microbiota of adult cows. Twenty newborn male calves were randomly assigned to four groups (n = 5 per group), with two groups being orally inoculated with rumen microbiota (fresh rumen fluid) collected from two lactating dairy cows, while the other two groups receiving autoclaved rumen fluid collected from another two donor cows. Each calf was orally drenched with 100, 200, 300, 400, and 500 mL of the rumen fluid at d3, d7, d21, d42, and d50, respectively, after birth. The inoculation with rumen microbiota did not affect (P > 0.05) feed intake, average daily gain (ADG), heart girth, or feed conversion ratio but significantly (P < 0.01) lowered instance of diarrhea. At the age of 77 days (27 days post-weaning), all the calves were slaughtered for the sampling of rumen content and determination of empty rumen weight. Rumen fermentation characteristics were not affected (P > 0.05) by the inoculation. Rumen prokaryotic microbiota analysis using metataxonomics (targeting the V4 region of the 16S rRNA genes) showed that the calf rumen prokaryotic microbiota differed from that of the donors. Two Succinivibrionaceae OTUs, two Prevotella OTUs, and one Succiniclasticum OTU were predominant (relative abundance > 2%) in the donors, but only one Succinivibrionaceae OTU was found in the calves. On the other hand, five other Prevotella OTUs were predominant (>3%) in the calves, but none of them was a major OTU in the donors. No correlation was observed in relative abundance of major OTUs or genera between the donor and the calves. Principal coordinates analysis (PCoA) based on weighted UniFrac distance showed no significant (P > 0.05) difference in the overall rumen prokaryotic microbiota profiles among the four calf groups, and principal component analysis (PCA) based on Bray-Curtis dissimilarity showed no significant (P > 0.05) difference in functional features predicted from the detected taxa. Nor the calf rumen microbiota showed any clustering with their donor's. Repeated oral inoculation with rumen microbiota probably has a limited effect on the development of rumen microbiota, and the rumen microbiota seems to develop following a program determined by the host and other factors.
Collapse
Affiliation(s)
- Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- CAAS-ICRAF Joint Lab on Agroforestry and Sustainable Animal Husbandry, Beijing, China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, China
| | - Xin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Lu Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tansol Park
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Lingling Wang
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jianchu Xu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
4
|
Parente MDOM, Rocha KS, Bessa RJB, Parente HN, Zanine ADM, Machado NAF, Lourenço Júnior JDB, Bezerra LR, Landim AV, Alves SP. Effects of the dietary inclusion of babassu oil or buriti oil on lamb performance, meat quality and fatty acid composition. Meat Sci 2019; 160:107971. [PMID: 31669864 DOI: 10.1016/j.meatsci.2019.107971] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 12/29/2022]
Abstract
The effects of adding babassu oil (BAO) or buriti oil (BUO) to lamb diets, on performance, carcass characteristics, meat quality and fatty acid (FA) composition were evaluated. Feeding BAO reduced (P = .02) dry matter intake, kidney fat and dressing percentage, but did not change energy intake and performance. Meat pH, color, protein content and sensorial evaluation were not affected by diet. However, BUO increased (P = .02) intramuscular and subcutaneous fat contents, but decreased shear force. BAO increased (P < .05) trans-monounsaturated FA, total biohydrogenation intermediates (BHI) and the t10:t11 ratio, in meat and subcutaneous fat, but decreased total FA and cis-monounsaturated FA, did not change SFA, and increased (P = .04) PUFA in meat. BUO supplementation promoted the highest (P < .05) SFA and total FA content in subcutaneous fat but did not change PUFA. BAO can be used as an alternative energy source for growing lambs, but does not improve the meat FA composition.
Collapse
Affiliation(s)
| | - Karlyene Sousa Rocha
- Federal University of Maranhão, Center of Environment and Agriculture Science, Chapadinha, Maranhão, Brazil; Federal University of Pará, Brazilian Agricultural Research Corporation, Rural Federal University of Amazonia, Postgraduate Program in Agricultural Science, Belém, Pará, Brazil
| | | | - Henrique Nunes Parente
- Federal University of Maranhão, Center of Environment and Agriculture Science, Chapadinha, Maranhão, Brazil
| | - Anderson de Moura Zanine
- Federal University of Maranhão, Center of Environment and Agriculture Science, Chapadinha, Maranhão, Brazil
| | | | - José de Brito Lourenço Júnior
- Federal University of Pará, Brazilian Agricultural Research Corporation, Rural Federal University of Amazonia, Postgraduate Program in Agricultural Science, Belém, Pará, Brazil
| | | | - Aline Vieira Landim
- State University of Vale do Acaraú, Animal Science Departament, Sobral, Brazil
| | - Susana Paula Alves
- CIISA, Faculty of Veterinary Medicine, University of Lisboa, Lisboa, Portugal
| |
Collapse
|
5
|
Henderson G, Cook GM, Ronimus RS. Enzyme- and gene-based approaches for developing methanogen-specific compounds to control ruminant methane emissions: a review. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an15757] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Methane emissions from ruminants are of worldwide concern due to their potential to adversely affect climate patterns. Methane emissions can be mitigated in several ways, including dietary manipulation, the use of alternative hydrogen sinks, and by the direct inhibition of methanogens. In the present review, we summarise and emphasise studies where defined chemically synthesised compounds have been used to mitigate ruminant methane emissions by direct targeting of methanogens and discuss the future potential of such inhibitors. We also discuss experiments, where methanogen-specific enzymes and pure cultures of methanobacterial species have been used to aid development of inhibitors. Application of certain compounds can result in dramatic reductions of methane emissions from ruminant livestock, demonstrating ‘proof of principle’ of chemical inhibitors of methanogenesis. More recently, genome sequencing of rumen methanogens has enabled an in-depth analysis of the enzymatic pathways required for methane formation. Chemogenomic methods, similar to those used in the fight against cancer and infectious diseases, can now be used to specifically target a pathway or enzyme in rumen methanogens. However, few rumen methanogen enzymes have been structurally or biochemically characterised. Any compound, whether natural or man-made, that is used as a mitigation strategy will need to be non-toxic to the host animal (and humans), cost-effective, environmentally friendly, and not accumulate in host tissues or milk products. Chemically synthesised inhibitors offer potentially significant advantages, including high levels of sustained inhibition, the ability to be easily and rapidly produced for global markets, and have the potential to be incorporated into slow-release vehicles for grazing animals.
Collapse
|
6
|
Effects of partial replacement of maize in the diet with crude glycerin and/or soyabean oil on ruminal fermentation and microbial population in Nellore steers. Br J Nutr 2017; 118:651-660. [PMID: 29185932 DOI: 10.1017/s0007114517002689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The objective of this study was to determine whether a combination of crude glycerin (CG) and soyabean oil (SO) could be used to partially replace maize in the diet of Nellore steers while maintaining optimum feed utilisation. Eight castrated Nellore steers fitted with ruminal and duodenal cannulas were used in a double 4×4 Latin square design balanced for residual effects, in a factorial arrangement (A×B), when factor A corresponded to the provision of SO, and factor B to the provision of CG. Steers feed SO and CG showed similar DM intake, DM, organic matter and neutral-detergent fibre digestibility to that of steers fed diets without oil and without glycerine (P>0·05). Both diets with CG additions reduced the acetate:propionate ratio and increased the proportion of iso-butyrate, butyrate, iso-valerate and valerate (P<0·05). Steers fed diets containing SO had less total N excretion (P<0·001) and showed greater retained N expressed as % N intake (P=0·022). SO and CG diet generated a greater ruminal abundance of Prevotella, Succinivibrio, Ruminococcus, Syntrophococcus and Succiniclasticum. Archaea abundance (P=0·002) and total ciliate protozoa were less in steers fed diets containing SO (P=0·011). CG associated with lipids could be an energy source, which is a useful strategy for the partial replacement of maize in cattle diets, could result in reduced total N excretion and ruminal methanogens without affecting intake and digestibility.
Collapse
|
7
|
Durmic Z, Moate PJ, Eckard R, Revell DK, Williams R, Vercoe PE. In vitro screening of selected feed additives, plant essential oils and plant extracts for rumen methane mitigation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:1191-1196. [PMID: 24105682 DOI: 10.1002/jsfa.6396] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/28/2013] [Accepted: 09/14/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Ruminants produce large quantities of methane in their rumen as a by-product of microbial digestion of feed. Antibiotics are added to ruminant feed to reduce wasteful production of methane; however, this practice has some downsides. A search for safer and natural feed additives with anti-methanogenic properties is under way. The objective of this research was to examine selected feed additives, plant essential oils and plant extracts for their anti-methanogenic potential in the rumen using an in vitro batch fermentation system. RESULTS A significant reduction (P < 0.05) in methane production was observed with nine feed additives (up to 40% reduction), all eight essential oils (up to 75% reduction) and two plant extracts (14% reduction) when compared to their respective controls. Amongst these, only an algal meal high in docosahexaenoic acid, preparations of Nannochloropsis oculata, calcareous marine algae, yeast metabolites and two tannins did not inhibit microbial gas and volatile acid production. CONCLUSIONS The current study identified some potent dietary ingredients or plant compounds that can assist in developing novel feed additives for methane mitigation from the rumen.
Collapse
Affiliation(s)
- Zoey Durmic
- School of Animal Biology, The University of Western Australia M085, 35 Stirling Hwy, Crawley, WA, 6009, Australia; Future Farm Industries CRC, The University of Western Australia M081, 35 Stirling Hwy, Crawley, WA, 6009, Australia
| | | | | | | | | | | |
Collapse
|
8
|
O'Brien M, Navarro-Villa A, Purcell PJ, Boland TM, O'Kiely P. Reducing in vitro rumen methanogenesis for two contrasting diets using a series of inclusion rates of different additives. ANIMAL PRODUCTION SCIENCE 2014. [DOI: 10.1071/an12204] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Eleven individual additives were incubated with either perennial ryegrass or with grass silage+barley grain (50 : 50) and the in vitro methane output was assessed using the gas production technique (GPT). Additives were: fatty acids (lauric, oleic, linoleic and linolenic acids), halogenated methane analogues (bromoethanesulfonate and bromochloromethane), pyromellitic diimide, statins (mevastatin and lovastatin), a probiotic (Saccharomyces cerevisiae) and an unsaturated dicarboxylic acid (fumaric acid). Each additive was included at a range of concentrations. Effects on methane output per gram of feed dry matter (DM) incubated (CH4/DMi) and disappeared (CH4/DMd), as well as other fermentation variables, were evaluated after 24 h of incubation. The addition of increased concentrations of individual fatty acids, bromoethanesulfonate and pyromellitic diimide caused a dose-dependent decline in methane output (CH4/DMi, CH4/DMd), when incubated with either perennial ryegrass or grass silage+barley grain. No methane output was detected for either feed with the addition of ≥5 µM bromochloromethane. The statins were ineffective inhibitors of methane output regardless of feed type. For perennial ryegrass, S. cerevisiae caused a dose-dependent decline in CH4/DMd and fumaric acid a dose-dependent decline in CH4/DMi and CH4/DMd. The effectiveness of lauric, oleic, linoleic and linolenic acids and bromoethanesulfonate to reduce methane output was more pronounced when incubated with grass silage+barley grain than with perennial ryegrass, and therefore the type of feed is an important component for any future in vitro and in vivo studies to be undertaken with these additives. Thus, incorporating different feed types in the initial in vitro screening protocols of all new additives is recommended.
Collapse
|
9
|
Pinloche E, McEwan N, Marden JP, Bayourthe C, Auclair E, Newbold CJ. The effects of a probiotic yeast on the bacterial diversity and population structure in the rumen of cattle. PLoS One 2013; 8:e67824. [PMID: 23844101 PMCID: PMC3699506 DOI: 10.1371/journal.pone.0067824] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 05/22/2013] [Indexed: 12/31/2022] Open
Abstract
It has been suggested that the ability of live yeast to improve milk yield and weight gain in cattle is because the yeast stimulates bacterial activity within the rumen. However it remains unclear if this is a general stimulation of all species or a specific stimulation of certain species. Here we characterised the change in the bacterial population within the rumen of cattle fed supplemental live yeast. Three cannulated lactating cows received a daily ration (24 kg/d) of corn silage (61% of DM), concentrates (30% of DM), dehydrated alfalfa (9% of DM) and a minerals and vitamins mix (1% of DM). The effect of yeast (BIOSAF SC 47, Lesaffre Feed Additives, France; 0.5 or 5 g/d) was compared to a control (no additive) in a 3×3 Latin square design. The variation in the rumen bacterial community between treatments was assessed using Serial Analysis of V1 Ribosomal Sequence Tag (SARST-V1) and 454 pyrosequencing based on analysis of the 16S rRNA gene. Compared to the control diet supplementation of probiotic yeast maintained a healthy fermentation in the rumen of lactating cattle (higher VFA concentration [high yeast dose only], higher rumen pH, and lower Eh and lactate). These improvements were accompanied with a shift in the main fibrolytic group (Fibrobacter and Ruminococcus) and lactate utilising bacteria (Megasphaera and Selenomonas). In addition we have shown that the analysis of short V1 region of 16s rRNA gene (50–60 bp) could give as much phylogenetic information as a longer read (454 pyrosequencing of 250 bp). This study also highlights the difficulty of drawing conclusions on composition and diversity of complex microbiota because of the variation caused by the use of different methods (sequencing technology and/or analysis).
Collapse
Affiliation(s)
- Eric Pinloche
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
- Lesaffre Feed Additives, Marcq-en-Barœul, France
| | - Neil McEwan
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | | | - Corinne Bayourthe
- INRA, UMR1289 TANDEM, Tissus Animaux Nutrition Digestion Ecosystème et Métabolisme, Castanet-Tolosan, France
- Université de Toulouse, INPT ENSAT, INP-ENVT, UMR1289 TANDEM, Castanet-Tolosan, France
| | - Eric Auclair
- Lesaffre Feed Additives, Marcq-en-Barœul, France
| | - C. Jamie Newbold
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Bhatta R, Mani S, Baruah L, Sampath KT. Phenolic Composition, Fermentation Profile, Protozoa Population and Methane Production from Sheanut (Butryospermum Parkii) Byproducts In vitro. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2012; 25:1389-94. [PMID: 25049494 PMCID: PMC4093008 DOI: 10.5713/ajas.2012.12229] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 07/02/2012] [Accepted: 06/25/2012] [Indexed: 11/27/2022]
Abstract
Sheanut cake (SNC), expeller (SNE) and solvent extractions (SNSE) samples were evaluated to determine their suitability in animal feeding. The CP content was highest in SNSE (16.2%) followed by SNE (14.7%) and SNC (11.6%). However, metabolizable energy (ME, MJ/kg) was maximum in SNC (8.2) followed by SNE (7.9) and SNSE (7.0). The tannin phenol content was about 7.0 per cent and mostly in the form of hydrolyzable tannin (HT), whereas condensed tannin (CT) was less than one per cent. The in vitro gas production profiles indicated similar y max (maximum potential of gas production) among the 3 by-products. However, the rate of degradation (k) was maximum in SNC followed by SNE and SNSE. The t(1/2) (time taken for reaching half asymptote) was lowest in SNC (14.4 h) followed by SNE (18.7 h) and SNSE (21.9 h). The increment in the in vitro gas volume (ml/200 mg DM) with PEG (polyethylene glycol)-6000 (as a tannin binder) addition was 12.0 in SNC, 9.6 in SNE and 11.0 in SNSE, respectively. The highest ratio of CH4 (ml) reduction per ml of the total gas, an indicator of the potential of tannin, was recorded in SNE (0.482) followed by SNC (0.301) and SNSE (0.261). There was significant (p<0.05) reduction in entodinia population and total protozoa population. Differential protozoa counts revealed that Entodinia populations increased to a greater extent than Holotricha when PEG was added. This is the first report on the antimethanogenic property of sheanut byproducts. It could be concluded that all the three forms of SN byproducts are medium source of protein and energy for ruminants. There is a great potential for SN by-products to be incorporated in ruminant feeding not only as a source of energy and protein, but also to protect the protein from rumen degradation and suppress enteric methanogenesis.
Collapse
|
11
|
Liu H, Vaddella V, Zhou D. Effects of chestnut tannins and coconut oil on growth performance, methane emission, ruminal fermentation, and microbial populations in sheep. J Dairy Sci 2011; 94:6069-77. [DOI: 10.3168/jds.2011-4508] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 09/01/2011] [Indexed: 11/19/2022]
|
12
|
Pilajun R, Wanapat M, Wachirapak C, Navanukroa C. Effect of Coconut Oil and Sunflower Oil Ratio on Ruminal Fermentation, Rumen Microorganisms, N-balance and Digestibility in Cattle. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/javaa.2010.1868.1874] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Bauer E, Williams BA, Smidt H, Mosenthin R, Verstegen MWA. Influence of dietary components on development of the microbiota in single-stomached species. Nutr Res Rev 2007; 19:63-78. [DOI: 10.1079/nrr2006123] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractAfter birth, development of a normal microbial community occurs gradually, and is affected by factors such as the composition of the maternal gut microbiota, the environment, and the host genome. Diet also has a direct influence, both on composition and activity of this community. This influence begins with the milk, when specific components exert their growth-promoting effect on a beneficial microbiota, thereby suppressing potential pathogens. For example, breast-fed infants compared with formula-fed babies usually have a microbial community dominated by bifidobacteria. When solid food is introduced (weaning), dramatic changes in microbial composition occur, so pathogens can gain access to the disturbed gastrointestinal (GI) ecosystem. However, use of specific dietary components can alter the composition and activity of the microbiota positively. Of all dietary components, fermentable carbohydrates seem to be most promising in terms of promoting proliferation of beneficial bacterial species. Carbohydrate fermentation results in the production of SCFA which are known for their trophic and health-promoting effects. Fermentation of proteins, on the other hand, is often associated with growth of potential pathogens, and results in production of detrimental substances including NH3and amines. In terms of the GI microbiota, lipids are often associated with the antimicrobial activity of medium-chain fatty acids and their derivatives. The present review aims to provide deeper insights into the composition and development of the neonatal GI microbiota, how this microbiota can be influenced by certain dietary components, and how this might ultimately lead to improvements in host health.
Collapse
|
14
|
Jalc D, Kisidayová S, Nerud F. Effect of plant oils and organic acids on rumen fermentation in vitro. Folia Microbiol (Praha) 2003; 47:171-7. [PMID: 12058397 DOI: 10.1007/bf02817677] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We determined the effect of plant oils (rapeseed, sunflower, linseed) and organic acids (aspartic and malic) on the fermentation of diet consisting of hay, barley and sugar beet molasses. Rumen fluid was collected from two sheep (Slovak Merino) fed with the same diet twice daily. Mixed rumen microorganisms were incubated in fermentation fluid, which contained rumen fluid and Mc Dougall's buffer. All supplemented diets significantly increased pH, molar proportion of propionate, and numerically decreased methane production. Lactate production was also decreased significantly (except with malate). Incorporation of plant oils into aspartate- and malate-treated incubations negated the decrease of butyrate, lactate and the increase of pH and ammonia with malate treatment, as well as in vitro dry matter digestibility and pH with aspartate treatment. The effect of combined additives on methane production and molar proportion of propionate was lower compared with additives supplemented separately. Combination of additives had no additive effect on rumen fermentation. All additives decreased total protozoan counts in rumen fluid.
Collapse
Affiliation(s)
- D Jalc
- Institute of Animal Physiology, Slovak Academy of Sciences, 040 01 Kosice, Slovakia.
| | | | | |
Collapse
|
15
|
Wettstein HR, Quarella Forni MG, Kreuzer M, Sutter F. Influence of plant lecithin partly replacing rumen-protected fat on digestion, metabolic traits and performance of dairy cows. J Anim Physiol Anim Nutr (Berl) 2000. [DOI: 10.1046/j.0931-2439.2000.00293.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Sutter F, Casutt MM, Ossowski DA, Scheeder MR, Kreuzer M. Comparative evaluation of rumen-protected fat, coconut oil and various oilseeds supplemented to fattening bulls. 1. Effects on growth, carcass and meat quality. ARCHIV FUR TIERERNAHRUNG 2000; 53:1-23. [PMID: 10836255 DOI: 10.1080/17450390009381935] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Growth performance, carcass and meat quality were determined in 36 fattening Brown Swiss bulls fed with maize silage-hay-concentrate based rations supplemented with fats and various oilseeds. The concentrate diet in the control group contained only barley and soybean meal, while the treated groups included, as partial replacement of the concentrate, rumen-protected crystalline fat, coconut oil, whole crushed rapeseed, sunflower seed or linseed, providing additional 3% fat of total ration dry matter. Animals were housed in groups of six with one representative of each treatment in a monofactorial design and feed was offered using transponder controlled equipment. Daily gains were similar for control, protected fat, rapeseed and linseed treatments (1240 g/d on average), but were lower (P < 0.05) with sunflower seed (1135 g/d) and coconut oil (1038 g/d). Corresponding differences (P < 0.05) in carcass weights were observed. All fat supplemented groups had reduced rumen fluid protozoa counts (P < 0.05). Carcasses tended to be leaner with the fat supplements. Mostly no significant effects on other carcass quality (dressing percentage, conformation score) and meat quality traits (final pH, cooking loss, shear forces) as well as composition (dry matter, fat, collagen) occurred. Consequently, rumen protected fat and some oilseeds can be recommended to be fed to growing cattle as energy sources.
Collapse
Affiliation(s)
- F Sutter
- Institute of Animal Sciences, Animal Nutrition, Swiss Federal Institute of Technology (ETH) Zurich
| | | | | | | | | |
Collapse
|
17
|
Kreuzer M, Vertesy E, Kirchgessner M. Response of renal orotic acid and creatinine to treatments affecting metabolic protein supply of ruminants. ARCHIV FUR TIERERNAHRUNG 1995; 48:135-46. [PMID: 8526721 DOI: 10.1080/17450399509381835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
90 urine samples obtained in three lamb trials and one experiment using adult wethers were analyzed for their contents of orotic acid and creatinine. The average daily excretion of orotic acid accounted for 0.5 mg to 1.5 mg (35 micrograms to 130 micrograms/W0.75) with a high individual variation. Correlation coefficients between orotic acid and other urinary constituents were low indicating an entirely different response to metabolic variations. There was only a weak relationship to live weight, protein retention and rumen fluid traits. Defaunation reduced the orotic acid excretion (significant in the adult wethers) whereas the addition of rumen-protected lysine as well as the use of different dietary carbohydrate sources were without effect. The urinary excretion of creatinine increased with live weight and age from 0.4 g/d in the 20 kg lambs to 1.7 g/d in the adult 53 kg wethers. The correlations with live weight were close whereas the apparently negative correlation with protein retention was not real as could be evaluated by calculation of the partial correlations. There was a close correlation of creatinine with total N, urea and allantoin. Neither defaunation nor rumen-protected lysine and the kind of carbohydrate source had significant effects on creatinine. The use of orotic acid and creatinine as indicators of metabolic disorders were discussed. Easy application in practical diagnosis without quantitative urine collection might be possible by the determination of orotic acid in the milk of cows and of the creatinine/N ratio in urine.
Collapse
Affiliation(s)
- M Kreuzer
- Institut für Nutztierwissenschaften, Gruppe Tierernährung, ETH Zürich, Switzerland
| | | | | |
Collapse
|