1
|
Ma G, Ayalew H, Mahmood T, Mercier Y, Wang J, Lin J, Wu S, Qiu K, Qi G, Zhang H. Methionine and vitamin E supplementation improve production performance, antioxidant potential, and liver health in aged laying hens. Poult Sci 2024; 103:104415. [PMID: 39488017 PMCID: PMC11567017 DOI: 10.1016/j.psj.2024.104415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024] Open
Abstract
Sulfur metabolites of methionine (Met) and vitamin E (VE) have antioxidant potential and can maintain liver health in chickens. This study explored the underlying mechanisms of Met sources, the ratio of total sulfur amino acids to lysine (TSAA: Lys), and VE levels on production performances, antioxidant potential, and hepatic oxidation in aged laying hens. Eight hundred and sixty-four, Hy-Line Brown laying hens (70-week age) were divided into 12 treatment groups, each having 6 repeats and 12 birds/each repeat. The dietary treatments consisted of DL-Met (DL-Met), DL-2-hydroxy-4-(methylthio)-butanoic acid (OH-Met), 3 ratios of TSAA: Lys (0.90, 0.95, and 1.00), and 2 levels of VE (20 and 40 g/ton). Albumen height and Haugh unit significantly increased at a lower level of VE (P < 0.05). Triglycerides (TG), total cholesterol (TC), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL) in serum and superoxide dismutase (SOD) and catalase activities (CAT) in the liver significantly reduced at 0.95 TSAA: Lys ratio (P < 0.05). Fatty acid synthase (FAS), lipoprotein lipase (LPL), nuclear factor erythroid 2-related factor 2 (Nrf2), and carnitine palmitoyltransferase-1 alpha (CPT-1α) also upregulated at this TSAA: Lys ratio (P < 0.05). Compared with the DL-Met group, the OH-Met group had lower Dipeptidyl Peptidase 4 (DPP4) and higher TC, LDL, and VLDL concentrations (P < 0.05).The expression of FAS,CPT-1α), glutathione (GSH), glutathione disulfide (GSSG), glutathione synthetase (GSS), and Nrf2 were significantly higher in OH-Met compared with the DL-Met group (P < 0.05). OH-Met at 0.95 and DL-Met at 0.90 TSAA: Lys ratio showed higher CAT and lower aspartate aminotransferase (AST) activities. Moreover, OH-Met at 0.90 and DL-Met at 0.95 of the TSAA: Lys ratio had a significant reduction of malondialdehyde (MDA) (P < 0.05). Overall, these results suggest that OH-Met source with a lower level of VE positively influenced production performance and improved liver health in aged laying hens through improved lipid metabolism and hepatic antioxidant function.
Collapse
Affiliation(s)
- Guangtian Ma
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Habtamu Ayalew
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; College of Veterinary Medicine and Animal Sciences, University of Gondar, Po. Box 196, Gondar, Ethiopia
| | - Tahir Mahmood
- European Laboratory of Innovation, Science and Expertise, Department of R & I in Monogastric Animal Nutrition, Adisseo France S.A.S., 20 rue Prosper Monnet, Saint Fons, 69190, France
| | - Yves Mercier
- European Laboratory of Innovation, Science and Expertise, Department of R & I in Monogastric Animal Nutrition, Adisseo France S.A.S., 20 rue Prosper Monnet, Saint Fons, 69190, France
| | - Jing Wang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Lin
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shugeng Wu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kai Qiu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guanghai Qi
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haijun Zhang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
2
|
Yuk JM, Park EJ, Kim IS, Jo EK. Itaconate family-based host-directed therapeutics for infections. Front Immunol 2023; 14:1203756. [PMID: 37261340 PMCID: PMC10228716 DOI: 10.3389/fimmu.2023.1203756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023] Open
Abstract
Itaconate is a crucial anti-infective and anti-inflammatory immunometabolite that accumulates upon disruption of the Krebs cycle in effector macrophages undergoing inflammatory stress. Esterified derivatives of itaconate (4-octyl itaconate and dimethyl itaconate) and its isomers (mesaconate and citraconate) are promising candidate drugs for inflammation and infection. Several itaconate family members participate in host defense, immune and metabolic modulation, and amelioration of infection, although opposite effects have also been reported. However, the precise mechanisms by which itaconate and its family members exert its effects are not fully understood. In addition, contradictory results in different experimental settings and a lack of clinical data make it difficult to draw definitive conclusions about the therapeutic potential of itaconate. Here we review how the immune response gene 1-itaconate pathway is activated during infection and its role in host defense and pathogenesis in a context-dependent manner. Certain pathogens can use itaconate to establish infections. Finally, we briefly discuss the major mechanisms by which itaconate family members exert antimicrobial effects. To thoroughly comprehend how itaconate exerts its anti-inflammatory and antimicrobial effects, additional research on the actual mechanism of action is necessary. This review examines the current state of itaconate research in infection and identifies the key challenges and opportunities for future research in this field.
Collapse
Affiliation(s)
- Jae-Min Yuk
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Eun-Jin Park
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - In Soo Kim
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Eun-Kyeong Jo
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
3
|
Jankowski J, Ognik K, Całyniuk Z, Stępniowska A, Konieczka P, Mikulski D. The effect of different dietary ratios of lysine, arginine and methionine on protein nitration and oxidation reactions in turkey tissues and DNA. Animal 2021; 15:100183. [PMID: 33637439 DOI: 10.1016/j.animal.2021.100183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/31/2022] Open
Abstract
An assumption was made in the study that the optimal inclusion levels and ratios of lysine (Lys), arginine (Arg) and methionine (Met) in diets with Lys content consistent with National Research Council (NRC) recommendations (1994) contribute to stimulate the antioxidant defense system and prevent disorders resulting from the oxidation and nitration of biologically important molecules. The experiment was carried out on 864 one-day-old Hybrid Converter turkeys divided into six experimental groups (8 replicates per group and 18 birds per replicate) receiving different levels of Arg and Met. Chickens from group Arg90Met30 received 90% Arg and 30% Met relative to Lys; Arg90Met45 - 90% Arg and 45% Met relative to Lys; Arg100Met30 - 100% Arg and 30% Met relative to Lys; Arg100Met45 - 100% Arg and 45% Met relative to Lys; Arg110Met30 - 110% Arg and 30% Met relative to Lys and Arg110Met45 - 110% Arg level and 45% Met level relative to the content of dietary Lys. In comparison with turkeys fed diets with moderate Arg content (100% of Lys content), a decrease in dietary Arg level (90% of Lys content) led to a decrease in plasma 3-nitrotyrosine (3-NT) concentration (163.6 vs. 141.0), whereas an increase in dietary Arg level (110% of Lys content) led to an increase in plasma 3-NT concentration (163.6 vs. 202.6). In comparison with turkeys fed diets with moderate Arg content (100% of Lys content), the lowest dietary Arg level (90% of Lys content) decreased superoxide dismutase (SOD) activity in the intestinal wall (19.68 vs. 17.41) and in the liver (11.51 vs. 7.94), increased SOD activity in the blood (507.6 vs. 961.4) and in breast muscles (6.26 vs. 7.43) and increased the concentration of malondiadehyde in breast muscles (1.10 vs. 1.50). An increase in dietary Met content from 30 to 45% of Lys content caused a decrease in plasma protein carbonyl concentration (4.33 vs. 3.8) and catalase activity in breast muscles (54.70 vs. 49.66), and an increase in SOD activity in the liver (8.90 vs. 10.41). The highest dietary Arg level (110% of Lys content) did not induce the oxidation of lipids, proteins or DNA, but it increased the risk of protein nitration. The lowest dietary Arg level (90% of Lys content) deteriorated the antioxidant status of turkeys. Regardless of dietary Arg levels, an increase in Met content from 30 to 45% of Lys content stimulated the antioxidant defense system of turkeys.
Collapse
Affiliation(s)
- J Jankowski
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - K Ognik
- Department of Biochemistry and Toxicology, University of Life Sciences in Lublin, Akademicka 13, 20-95 Lublin, Poland.
| | - Z Całyniuk
- Department of Biochemistry and Toxicology, University of Life Sciences in Lublin, Akademicka 13, 20-95 Lublin, Poland
| | - A Stępniowska
- Department of Biochemistry and Toxicology, University of Life Sciences in Lublin, Akademicka 13, 20-95 Lublin, Poland
| | - P Konieczka
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - D Mikulski
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| |
Collapse
|
4
|
Ognik K, Całyniuk Z, Mikulski D, Stępniowska A, Konieczka P, Jankowski J. The effect of different dietary ratios of lysine, arginine and methionine on biochemical parameters and hormone secretion in turkeys. J Anim Physiol Anim Nutr (Berl) 2020; 105:108-118. [PMID: 32815585 DOI: 10.1111/jpn.13433] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 11/29/2022]
Abstract
We postulated that the use of optimal levels and proportions of Lys, Arg and Met in compound feed allows for optimal exploitation of the growth potential of contemporary slaughter turkey hybrids and reduces metabolic disorders. The aim of the study was to determine the effect of different proportions of Lys, Arg and Met in diets whose Lys content is in accordance with NRC recommendations, that is a low level, on selected parameters of protein, lipid and carbohydrate metabolism and on hormone secretion in turkeys. The lowest Arg content (90% Lys) in the diet resulted in an increase in plasma total cholesterol levels in the turkeys as compared to higher Arg content (100% or 110% of Lys), (2.50 vs. 2.09 vs. 1.83). Plasma HDL and creatinine concentration increased in turkeys fed diets with higher Arg content (100% and 110% Lys) compared to turkeys receiving the diet with the lowest Arg content (90% Lys). Compared to turkeys receiving the lowest and intermediate Arg content (90% and 100% Lys), the diet with the highest content of this AA (110% Lys) resulted in an increase in the plasma T4 level (71.21 vs. 86.60 vs. 128.2). The varied Arg and Met levels relative to Lys did not affect the secretion of neurotransmitters or hormones regulating glucose metabolism. At low levels of Met in the diet, an decrease in Arg relative to Lys from 100% to 90% caused a growth depression of turkeys (10.68 vs. 10.21 kg), which was not noted in the case of the higher Met content. When using the Lys level recommended by NRC in the turkey diet, the optimal Arg level is 100% and Met is 45% compared to Lys.
Collapse
Affiliation(s)
- Katarzyna Ognik
- Department of Biochemistry and Toxicology, University of Life Sciences in Lublin, Lublin, Poland
| | - Zuzanna Całyniuk
- Department of Biochemistry and Toxicology, University of Life Sciences in Lublin, Lublin, Poland
| | - Dariusz Mikulski
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Anna Stępniowska
- Department of Biochemistry and Toxicology, University of Life Sciences in Lublin, Lublin, Poland
| | - Paweł Konieczka
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Jan Jankowski
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
5
|
Jankowski J, Mikulski D, Mikulska M, Ognik K, Całyniuk Z, Mróz E, Zduńczyk Z. The effect of different dietary ratios of arginine, methionine, and lysine on the performance, carcass traits, and immune status of turkeys. Poult Sci 2019; 99:1028-1037. [PMID: 32036960 PMCID: PMC7587641 DOI: 10.1016/j.psj.2019.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 01/07/2023] Open
Abstract
The research hypothesis postulated that the optimal dietary inclusion levels and ratios of lysine (Lys), arginine (Arg), and methionine (Met) can increase the growth potential of hybrid turkeys and limit metabolic disorders that weaken immune function. The experiment was carried out in a full rearing cycle, from 1 to 16 wk of age, in a two-factorial randomized design with 3 levels of Arg and 2 levels of Met (90, 100 and 110% of Arg, and 30 or 45% of Met, relative to the content of dietary Lys), with 6 groups of 8 replicates per group and 18 turkeys per replicate. In the first and second month of rearing, a significant dietary Arg-by-Met interaction was noted for daily feed intake and body weight gain, and a more beneficial effect was exerted by higher Met content and medium Arg content. Throughout the experiment, the higher dietary Met level increased the final body weight (BW) of turkeys (P = 0.001). Different dietary Arg levels had no influence on the growth performance of turkeys, but the lowest level decreased dressing yield (P = 0.001), and the highest level increased the percentage of breast muscles in the final BW of turkeys (P = 0.003). The lowest Arg level (90% of Lys content) undesirably increased the concentration of the proinflammatory cytokine IL-6 (P = 0.028) and decreased globulin concentration (P = 0.001) in the blood plasma of turkeys. The higher dietary Met level (45% of Lys content) increased plasma albumin concentration (P = 0.016). It can be concluded that higher dietary levels of Met (45 vs. 30% of Lys content) and Arg (100 and 110 vs. 90% of Lys content) have a more beneficial effect on the growth performance and immune status of turkeys.
Collapse
Affiliation(s)
- Jan Jankowski
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Dariusz Mikulski
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Marzena Mikulska
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, University of Life Sciences, 20-950 Lublin, Poland.
| | - Zuzanna Całyniuk
- Department of Biochemistry and Toxicology, University of Life Sciences, 20-950 Lublin, Poland
| | - Emilia Mróz
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Zenon Zduńczyk
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, 10-748 Olsztyn, Poland
| |
Collapse
|
6
|
The Effect of a Probiotic Preparation Containing Bacillus subtilis PB6 in the Diet of Chickens on Redox and Biochemical Parameters in Their Blood. ANNALS OF ANIMAL SCIENCE 2019. [DOI: 10.2478/aoas-2018-0059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
The aim of the study was to select a dosage and time of administration of a probiotic preparation containing live cultures of Bacillus subtilis and enriched with choline to obtain the most beneficial effect on the antioxidant and biochemical status of the blood of chickens and to improve their growth performance. A total of 980 one-day-old Ross 308 chickens (7 replications of 20 individuals each) reared until their 42nd day of life were used in the experiment. The chickens were divided into seven groups of 140 each. The control group did not receive any additives. The T1 groups received a probiotic in the amount of 0.05 g/L (T1-0.05), 0.1 g/l (T1-0.1) or 0.25 g/l (T1-0.25) throughout the rearing period, while the T2 groups received the same doses of the probiotic, but only during days 1–7, 15–21 and 29–35 of rearing. Administration of a preparation containing Bacillus subtilis bacteria was shown to increase the level of ferric reducing ability of plasma (FRAP), vitamin C, and uric acid (UA), while reducing the level of peroxides (LOOH), malondialdehyde (MDA), non-esterified fatty acids (NEFA), the share of low-density fractions of cholesterol (LDL), and activity of alanine aminotransferase (ALT), asparagine aminotransferase (AST), γ-glutamyltransferase (GGT) and creatinine kinase (CK). An increase in the high-density fractions of cholesterol (HDL) and a decrease in lactate dehydrogenase (LDH) and alkaline phosphatase (ALP) were noted as well. The results of the study indicate that 0.25 g/l of the probiotic, administered continuously (T1), clearly has the most beneficial effect in terms of enhancing antioxidant potential and reducing the level of stress indicators, without disturbing overall metabolism in the body. During the 42 days of rearing each chicken received 33.3 CFUx1011
Bacillus subtilis from the probiotic preparation. The body weight gain of chickens from T1-0.1, T1-0.2 and T2-0.25 groups was higher (P≤0.027) and more favourable compared to G–C group.
Collapse
|
7
|
Jankowski J, Ognik K, Kubińska M, Czech A, Juśkiewicz J, Zduńczyk Z. The effect of DL-, L-isomers and DL-hydroxy analog administered at 2 levels as dietary sources of methionine on the metabolic and antioxidant parameters and growth performance of turkeys. Poult Sci 2018; 96:3229-3238. [PMID: 28521012 DOI: 10.3382/ps/pex099] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/22/2017] [Indexed: 01/19/2023] Open
Abstract
A hypothesis was verified that dietary methionine (Met) improves the growth and antioxidant status of turkeys, and that its effects depend on dietary inclusion levels and sources. A total of 816 female Hybrid Converter turkeys was fed wheat-soybean meal-based diets supplemented with 3 sources of Met: DL-, L-isomers and DL-hydroxy analog (DLM, LM, and MHA, respectively). In 4 4-week periods (from one to 16 wk of age), dietary Met content corresponded to NRC (1994) recommendations or was increased by approximately 50% (in one to 8 wk by 44 to 46% and in 9 to 16 wk by 55 to 56% vs. the NRC guidelines) to match the recommendations of some breeding companies. Increased Met content resulted in higher final body weights of turkeys (P = 0.002), an improved feed conversion ratio (P = 0.049), increased total glutathione concentration and ferric reducing ability of plasma (FRAP) values, and decreased malondialdehyde (MDA) concentration (all P < 0.001) in the blood plasma of turkeys. In comparison with DLM, LM and MHA contributed to an increase in plasma glutathione concentration (P = 0.001), a decrease in plasma triacylglycerol (P = 0.003) and uric acid (P = 0.001) concentrations, and a decrease in liver MDA (P = 0.001) levels. A decrease in plasma MDA (vs. DLM) and lipid peroxides (LOOH) (vs. DLM and LM) concentrations as well as a decrease in plasma superoxide dismutase (SOD) activity (vs. DLM and LM) also were noted in the MHA treatment (P = 0.016, P = 0.001 and P = 0.011, respectively). In conclusion, the results of the study indicate that the antioxidant status of turkeys could be affected by dietary Met levels and sources. The dietary Met content increased by 50% relative to NRC recommendations, improved the growth performance of turkeys, and strengthened their antioxidant defense system. In comparison with DLM, LM and MHA could be considered positive nutritional factors as manifested by a beneficial decrease in plasma and hepatic MDA concentrations as well as an increase in plasma glutathione levels, and the effect of MHA was more pronounced.
Collapse
Affiliation(s)
- J Jankowski
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - K Ognik
- Department of Biochemistry and Toxicology, University of Life Sciences, Akademicka 13, 20-950 Lublin, Poland
| | - M Kubińska
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - A Czech
- Department of Biochemistry and Toxicology, University of Life Sciences, Akademicka 13, 20-950 Lublin, Poland
| | - J Juśkiewicz
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Z Zduńczyk
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| |
Collapse
|
8
|
The Effect of Different Dietary Levels and Sources of Methionine on the Growth Performance of Turkeys, Carcass and Meat Quality. ANNALS OF ANIMAL SCIENCE 2018. [DOI: 10.2478/aoas-2018-0007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The aim of this study was to determine the effect of different dietary levels and sources of methionine (Met) on the growth performance of turkeys, carcass and meat quality. A total of 816 Hybrid Converter turkeys in 6 groups and 8 replications were fed wheat-soybean meal-based diets supplemented with three sources of Met: DL-isomer, L-isomer and DL-hydroxy analog (DLM, LM and MHA, respectively). In four 4-week periods (from 1 to 16 weeks of age), the Met content of turkey diets corresponded to the level recommended by NRC (1994) or was increased by approximately 50% to match the intake recommended by some breeding companies. Increased dietary Met content resulted in a higher final body weight (BW) of turkeys (P=0.002) and a lower feed conversion ratio (FCR) (P=0.049), but had no effect on carcass dressing percentage and most parameters of carcass quality. The higher dietary Met level contributed to a decrease in meat pH, a lower contribution of redness and a smaller muscle fiber diameter (P=0.028, P=0.040 and P=0.004, respectively). The higher dietary Met level had no influence on the redox status of meat, but it reduced the incidence of lymphoid cell infiltration between muscle fibers threefold (P=0.003). Throughout the experiment, no significant differences were noted in the growth performance parameters of turkeys, irrespective of Met source. MHA contributed to higher abdominal fat content, lower dry matter (DM) content and lower catalase (CAT) activity in breast meat, compared with DLM and LM. Increased dietary Met content, approximately 50% higher than that recommended by NRC (1994), regardless of Met source, led to higher final BW of turkeys, but had no effect on carcass dressing percentage and most parameters of carcass quality.
Collapse
|
9
|
Effects of dietary methionine on productivity, reproductive performance, antioxidant capacity, ovalbumin and antioxidant-related gene expression in laying duck breeders. Br J Nutr 2017; 119:121-130. [PMID: 29277159 DOI: 10.1017/s0007114517003397] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The study investigated whether dietary methionine (Met) affects egg weight and antioxidant status through regulating gene expression of ovalbumin (OVAL), nuclear factor erythroid 2 like 2 (Nrf2) and haem oxygenase 1 (HO-1) in laying duck breeders. Longyan duck breeders (n 540, 19 weeks) were randomly assigned to six treatments with six replicates of fifteen birds each. Breeders were fed diets with six Met levels (2·00, 2·75, 3·50, 4·25, 5·00 and 5·75 g/kg) for 24 weeks. The egg weight (g), egg mass (g/d), feed conversion ratio, hatchability, 1-d duckling weight, albumen weight, albumen proportion and OVAL mRNA level improved with dietary Met levels, whereas yolk proportion decreased (P<0·05). The weight of total large yellow follicles increased linearly (P<0·001) and quadratically (P<0·05) with dietary Met concentration, and their weight relative to ovarian weight showed a linear (P<0·05) effect. Dietary Met level had a linear (P<0·05) and quadratic (P<0·001) effect on the gene expression of glutathione peroxidase (GPX1), HO-1 and Nrf2, and quadratically (P<0·05) increased contents of GPX and total antioxidant capacity (T-AOC) in liver of duck breeders. In addition, maternal dietary Met enhanced gene expression of GPX1, HO-1 and Nrf2, increased contents of GPX and T-AOC and reduced carbonylated protein in the brains of hatchlings. Overall, dietary Met concentration affected egg weight and albumen weight in laying duck breeders, which was partly due to gene expression of OVAL in oviduct magnum. A diet containing 4·0 g Met/kg would achieve optimal hepatic GPX1 and Nrf2 expression, maximise the activity of GPX and minimise lipid peroxidation.
Collapse
|
10
|
Zduńczyk Z, Jankowski J, Kubińska M, Ognik K, Czech A, Juśkiewicz J. The effect of different dietary levels of dl-methionine and dl-methionine hydroxy analogue on the antioxidant and immune status of young turkeys. Arch Anim Nutr 2017; 71:347-361. [DOI: 10.1080/1745039x.2017.1352328] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zenon Zduńczyk
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Jan Jankowski
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Magdalena Kubińska
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, University of Life Sciences, Lublin, Poland
| | - Anna Czech
- Department of Biochemistry and Toxicology, University of Life Sciences, Lublin, Poland
| | - Jerzy Juśkiewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
11
|
Jankowski J, Kubińska M, Juśkiewicz J, Czech A, Ognik K, Zduńczyk Z. Effect of different dietary methionine levels on the growth performance and tissue redox parameters of turkeys. Poult Sci 2017; 96:1235-1243. [DOI: 10.3382/ps/pew383] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/21/2016] [Indexed: 12/23/2022] Open
|