1
|
Rusciano D, Russo C. The Therapeutic Trip of Melatonin Eye Drops: From the Ocular Surface to the Retina. Pharmaceuticals (Basel) 2024; 17:441. [PMID: 38675402 PMCID: PMC11054783 DOI: 10.3390/ph17040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Melatonin is a ubiquitous molecule found in living organisms, ranging from bacteria to plants and mammals. It possesses various properties, partly due to its robust antioxidant nature and partly owed to its specific interaction with melatonin receptors present in almost all tissues. Melatonin regulates different physiological functions and contributes to the homeostasis of the entire organism. In the human eye, a small amount of melatonin is also present, produced by cells in the anterior segment and the posterior pole, including the retina. In the eye, melatonin may provide antioxidant protection along with regulating physiological functions of ocular tissues, including intraocular pressure (IOP). Therefore, it is conceivable that the exogenous topical administration of sufficiently high amounts of melatonin to the eye could be beneficial in several instances: for the treatment of eye pathologies like glaucoma, due to the IOP-lowering and neuroprotection effects of melatonin; for the prevention of other dysfunctions, such as dry eye and refractive defects (cataract and myopia) mainly due to its antioxidant properties; for diabetic retinopathy due to its metabolic influence and neuroprotective effects; for macular degeneration due to the antioxidant and neuroprotective properties; and for uveitis, mostly owing to anti-inflammatory and immunomodulatory properties. This paper reviews the scientific evidence supporting the use of melatonin in different ocular districts. Moreover, it provides data suggesting that the topical administration of melatonin as eye drops is a real possibility, utilizing nanotechnological formulations that could improve its solubility and permeation through the eye. This way, its distribution and concentration in different ocular tissues may support its pleiotropic therapeutic effects.
Collapse
Affiliation(s)
- Dario Rusciano
- Fidia Research Centre, c/o University of Catania, Via Santa Sofia 89, 95123 Catania, Italy
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 89, 95123 Catania, Italy;
| |
Collapse
|
2
|
Makris A, Alevra AI, Exadactylos A, Papadopoulos S. The Role of Melatonin to Ameliorate Oxidative Stress in Sperm Cells. Int J Mol Sci 2023; 24:15056. [PMID: 37894737 PMCID: PMC10606652 DOI: 10.3390/ijms242015056] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
It is widely accepted that oxidative stress (OS) coming from a wide variety of causes has detrimental effects on male fertility. Antioxidants could have a significant role in the treatment of male infertility, and the current systematic review on the role of melatonin to ameliorate OS clearly shows that improvement of semen parameters follows melatonin supplementation. Although melatonin has considerable promise, further studies are needed to clarify its ability to preserve or restore semen quality under stress conditions in varied species. The present review examines the actions of melatonin via receptor subtypes and its function in the context of OS across male vertebrates.
Collapse
Affiliation(s)
| | | | | | - Serafeim Papadopoulos
- Hydrobiology-Ichthyology Laboratory, Department of Ichthyology and Aquatic Environment, University of Thessaly, Fytokou Str., 38446 Volos, Greece; (A.M.); (A.I.A.); (A.E.)
| |
Collapse
|
3
|
Abstract
The pineal gland is a interface between light-dark cycle and shows neuro-endocrine functions. Melatonin is the primary hormone of pineal gland, secreted at night. The night-time melatonin peak regulates the physiological functions at dark. Melatonin has several unique features as it synchronises internal rhythm with daily and seasonal variations, regulates circadian rhythm and sleep-wake cycle. Physiologically melatonin involves in detoxification of free radicals, immune functions, neuro-protection, oncostatic effects, cardiovascular functions, reproduction, and foetal development. The precise functions of melatonin are exhibited by specific receptors. In relation to pathophysiology, impaired melatonin secretion promotes sleep disorder, cancer progression, type-2 diabetes, and neurodegenerative diseases. Several reports have highlighted the therapeutic benefits of melatonin specially related to cancer protection, sleep disorder, psychiatric disorders, and jet lag problems. This review will touch the most of the area of melatonin-oriented health impacts and its therapeutic aspects.
Collapse
|
4
|
Melatonin Receptors: A Key Mediator in Animal Reproduction. Vet Sci 2022; 9:vetsci9070309. [PMID: 35878326 PMCID: PMC9320721 DOI: 10.3390/vetsci9070309] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 01/26/2023] Open
Abstract
Melatonin, a hormone produced by the mammalian pineal gland, influences various physiological activities, many of which are related to animal reproduction, including neuroendocrine function, rhythm regulation, seasonal behavior, gonadogenesis, gamete development and maturation, sexual maturation, and thermoregulation. Melatonin exerts beneficial actions mainly via binding with G-protein-coupled receptors (GPCR), termed MT1 and MT2. Melatonin receptors are crucial for mediating animal reproduction. This paper reviews the characteristics of melatonin receptors including MT1 and MT2, as well as their roles in mediating signal transduction and biological effects, with a focus on their function in animal reproduction. In addition, we briefly summarize the developments in pharmacological research regarding melatonin receptors as drug targets. It is expected that this review will provide a reference for further exploration and unveiling of melatonin receptor function in reproductive regulation.
Collapse
|
5
|
Barrón-González M, Rosales-Hernández MC, Abad-García A, Ocampo-Néstor AL, Santiago-Quintana JM, Pérez-Capistran T, Trujillo-Ferrara JG, Padilla-Martínez II, Farfán-García ED, Soriano-Ursúa MA. Synthesis, In Silico, and Biological Evaluation of a Borinic Tryptophan-Derivative That Induces Melatonin-like Amelioration of Cognitive Deficit in Male Rat. Int J Mol Sci 2022; 23:3229. [PMID: 35328650 PMCID: PMC8952423 DOI: 10.3390/ijms23063229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
Preclinical and clinical evidence supports melatonin and its analogues as potential treatment for diseases involving cognitive deficit such as Alzheimer's disease. In this work, we evaluated by in silico studies a set of boron-containing melatonin analogues on MT1 and MT2 receptors. Then, we synthesized a compound (borolatonin) identified as potent agonist. After chemical characterization, its evaluation in a rat model with cognitive deficit showed that it induced ameliorative effects such as those induced by equimolar administration of melatonin in behavioral tests and in neuronal immunohistochemistry assays. Our results suggest the observed effects are by means of action on the melatonin system. Further studies are required to clarify the mechanism(s) of action, as the beneficial effects on disturbed memory by gonadectomy in male rats are attractive.
Collapse
Affiliation(s)
- Mónica Barrón-González
- Academias de Fisiología, Bioquímica Médica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Mexico City 11340, Mexico; (M.B.-G.); (A.A.-G.); (J.M.S.-Q.); (T.P.-C.); (J.G.T.-F.)
| | - Martha C. Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Mexico City 11340, Mexico;
| | - Antonio Abad-García
- Academias de Fisiología, Bioquímica Médica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Mexico City 11340, Mexico; (M.B.-G.); (A.A.-G.); (J.M.S.-Q.); (T.P.-C.); (J.G.T.-F.)
| | - Ana L. Ocampo-Néstor
- Departamento de Nefrología, Hospital General de México, “Dr. Eduardo Liceaga”, Dr. Balmis 148, Alc. Cuauhtémoc, Mexico City 06720, Mexico;
| | - José M. Santiago-Quintana
- Academias de Fisiología, Bioquímica Médica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Mexico City 11340, Mexico; (M.B.-G.); (A.A.-G.); (J.M.S.-Q.); (T.P.-C.); (J.G.T.-F.)
- Laboratorio de Química Supramolecular y Nanociencias, Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional, Av. Acueducto s/n Barrio la Laguna, Ticomán, Mexico City 07340, Mexico;
| | - Teresa Pérez-Capistran
- Academias de Fisiología, Bioquímica Médica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Mexico City 11340, Mexico; (M.B.-G.); (A.A.-G.); (J.M.S.-Q.); (T.P.-C.); (J.G.T.-F.)
| | - José G. Trujillo-Ferrara
- Academias de Fisiología, Bioquímica Médica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Mexico City 11340, Mexico; (M.B.-G.); (A.A.-G.); (J.M.S.-Q.); (T.P.-C.); (J.G.T.-F.)
| | - Itzia I. Padilla-Martínez
- Laboratorio de Química Supramolecular y Nanociencias, Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional, Av. Acueducto s/n Barrio la Laguna, Ticomán, Mexico City 07340, Mexico;
| | - Eunice D. Farfán-García
- Academias de Fisiología, Bioquímica Médica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Mexico City 11340, Mexico; (M.B.-G.); (A.A.-G.); (J.M.S.-Q.); (T.P.-C.); (J.G.T.-F.)
| | - Marvin A. Soriano-Ursúa
- Academias de Fisiología, Bioquímica Médica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Mexico City 11340, Mexico; (M.B.-G.); (A.A.-G.); (J.M.S.-Q.); (T.P.-C.); (J.G.T.-F.)
| |
Collapse
|
6
|
Yapislar H, Haciosmanoglu E, Sarioglu T, Ekmekcioglu C. The melatonin MT 2 receptor is involved in the anti-apoptotic effects of melatonin in rats with type 2 diabetes mellitus. Tissue Cell 2022; 76:101763. [PMID: 35247789 DOI: 10.1016/j.tice.2022.101763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 01/14/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a widely prevalent chronic disease and risk factor for several other diseases, such as cardiovascular diseases, neuropathy, nephropathy, and retinopathy. Apoptosis is a homeostatic mechanism to maintain cell numbers at a certain level in tissues. Chronic high blood glucose levels might lead to mitochondrial dysfunction and trigger undesirable apoptosis in T2DM. The pineal hormone melatonin has been shown to regulate apoptosis. The aim of this study was to investigate the impact of the melatonin MT2 receptor in the role of melatonin to prevent undesirable apotosis in different tissues of diabetic rats. Male Sprague Dawley rats were randomly divided into 4 groups; 1. Control group (only vehicle), 2. Diabetic group (streptozotozin/nicotinamide treated), 3. Diabetic group treated with melatonin (500μg/kg/day), and 4. Diabetic group treated with melatonin (500 μg/kg/day for 6 weeks) and the selective MT2 receptor antagonist luzindole (0.25 g/kg/day for 6 weeks). Various tissue samples (kidney, liver, adipose tissue, pancreas) were removed after 6 weeks for immunohistochemistry and western blot analysis. Our results demonstrated an increased rate of apoptosis in different tissues of diabetic rats compared to controls with melatonin reducing the apoptotic rate in the tissues of rats with T2DM. Furthermore, the anti-apoptotic effects of melatonin were partly mediated by the melatonin MT2 receptor.
Collapse
Affiliation(s)
- Hande Yapislar
- Acibadem University, School of Medicine, Department of Physiology, 34684, Istanbul, Turkey.
| | - Ebru Haciosmanoglu
- Faculty of Medicine, Department of Biophysics, Bezmialem Vakif University, Istanbul, Turkey
| | - Turkan Sarioglu
- Department of Histology and Embryology, Fundamental Sciences, Faculty of Dentistry, Istanbul Kent University Istanbul, Turkey
| | - Cem Ekmekcioglu
- Department of Environmental Health, Center for Public Health, Medical University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
7
|
Study of the molecular interaction between hormone and anti-cancer drug using DFT and vibrational spectroscopic methods. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Usefulness of Melatonin and Other Compounds as Antioxidants and Epidrugs in the Treatment of Head and Neck Cancer. Antioxidants (Basel) 2021; 11:antiox11010035. [PMID: 35052539 PMCID: PMC8773331 DOI: 10.3390/antiox11010035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
Along with genetic mutations, aberrant epigenetic alterations are the initiators of head and neck cancer carcinogenesis. Currently, several drugs are being developed to correct these epigenetic alterations, known as epidrugs. Some compounds with an antioxidant effect have been shown to be effective in preventing these malignant lesions and in minimizing the complications derived from cytotoxic treatment. Furthermore, in vitro and in vivo studies show a promising role in the treatment of head and neck squamous cell carcinoma (HNSCC). This is the case of supplements with DNA methylation inhibitory function (DNMTi), such as epigallocatechin gallate, sulforaphane, and folic acid; histone deacetylase inhibitors (HDACi), such as sodium butyrate and melatonin or histone acetyltransferase inhibitors (HATi), such as curcumin. The objective of this review is to describe the role of some antioxidants and their epigenetic mechanism of action, with special emphasis on melatonin and butyric acid given their organic production, in the prevention and treatment of HNSCC.
Collapse
|
9
|
Kong X, Gao R, Wang Z, Wang X, Fang Y, Gao J, Reiter RJ, Wang J. Melatonin: A Potential Therapeutic Option for Breast Cancer. Trends Endocrinol Metab 2020; 31:859-871. [PMID: 32893084 DOI: 10.1016/j.tem.2020.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/01/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023]
Abstract
Melatonin has significant inhibitory effects in numerous cancers, especially breast cancer. In estrogen receptor (ER)-positive human breast cancer, the oncostatic actions of melatonin are mainly achieved by suppressing ER mRNA expression and ER transcriptional activity via the MT1 receptor. Melatonin also regulates the transactivation of nuclear receptors, estrogen-metabolizing enzymes, and the expression of related genes. Furthermore, melatonin suppresses tumor aerobic glycolysis, critical cell-signaling pathways relevant to cell proliferation, survival, metastasis, and overcomes drug resistance. Studies in animal and human models indicate that disruption of the circadian nocturnal melatonin signal promotes the growth, metabolism, and signaling of human breast cancer, resulting in resistance to hormone therapy and chemotherapy, which may be reversed by melatonin.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ran Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhongzhao Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiangyu Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jidong Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, 518116, China.
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
10
|
Kleszczyński K, Böhm M. Can melatonin and its metabolites boost the efficacy of targeted therapy in patients with advanced melanoma? Exp Dermatol 2020; 29:860-863. [DOI: 10.1111/exd.14144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022]
Affiliation(s)
| | - Markus Böhm
- Department of Dermatology University of Münster Münster Germany
| |
Collapse
|
11
|
Song XQ, Liu RP, Wang SQ, Li Z, Ma ZY, Zhang R, Xie CZ, Qiao X, Xu JY. Anticancer Melatplatin Prodrugs: High Effect and Low Toxicity, MT1-ER-Target and Immune Response In Vivo. J Med Chem 2020; 63:6096-6106. [PMID: 32401032 DOI: 10.1021/acs.jmedchem.0c00343] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multitargeted therapy could rectify various oncogenic pathways to block tumorigenesis and progression. The combination of endocrine-, immune-, and chemotherapy might exert a highly synergistic effect against certain tumors. Herein, a series of smart Pt(IV) prodrugs 3-6, named Melatplatin, were rationally designed not only to multitarget DNA, MT1, and estrogen receptor (ER) but also to activate immune response. Melatplatin, conjugating first-line chemotherapeutic Pt drugs with human endogenous melatonin (MT), significantly enhanced drug efficacy especially in ER high-expression (ER+) cells, among which 3 presented the most potent cytotoxicity toward ER+ MCF-7 with nanomolar IC50 values 100-fold lower than cisplatin. Melatplatin could bind well to melatonin receptor (MT1) according to molecular docking. Besides, 3 evidently increased intracellular accumulation and DNA damage, upregulated γH2AX and P53, and silenced NF-κB to induce massive apoptosis. Most strikingly, 3 effectively inhibited tumor growth and attenuated systemic toxicity compared to cisplatin in vivo, promoting lymphocyte proliferation in spleen to achieve immune modulation.
Collapse
Affiliation(s)
- Xue-Qing Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Rui-Ping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Shu-Qing Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Zhe Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Zhong-Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Ran Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Cheng-Zhi Xie
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xin Qiao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jing-Yuan Xu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
12
|
Patel N, Huang XP, Grandner JM, Johansson LC, Stauch B, McCorvy JD, Liu Y, Roth B, Katritch V. Structure-based discovery of potent and selective melatonin receptor agonists. eLife 2020; 9:e53779. [PMID: 32118583 PMCID: PMC7080406 DOI: 10.7554/elife.53779] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Melatonin receptors MT1 and MT2 are involved in synchronizing circadian rhythms and are important targets for treating sleep and mood disorders, type-2 diabetes and cancer. Here, we performed large scale structure-based virtual screening for new ligand chemotypes using recently solved high-resolution 3D crystal structures of agonist-bound MT receptors. Experimental testing of 62 screening candidates yielded the discovery of 10 new agonist chemotypes with sub-micromolar potency at MT receptors, with compound 21 reaching EC50 of 0.36 nM. Six of these molecules displayed selectivity for MT2 over MT1. Moreover, two most potent agonists, including 21 and a close derivative of melatonin, 28, had dramatically reduced arrestin recruitment at MT2, while compound 37 was devoid of Gi signaling at MT1, implying biased signaling. This study validates the suitability of the agonist-bound orthosteric pocket in the MT receptor structures for the structure-based discovery of selective agonists.
Collapse
Affiliation(s)
- Nilkanth Patel
- Department of Biological Sciences and Department of Chemistry, Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern CaliforniaLos AngelesUnited States
| | - Xi Ping Huang
- Department of Pharmacology, University of North Carolina Chapel Hill Medical SchoolChapel HillUnited States
- National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical SchoolChapel HillUnited States
| | - Jessica M Grandner
- Department of Biological Sciences and Department of Chemistry, Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern CaliforniaLos AngelesUnited States
| | - Linda C Johansson
- Department of Biological Sciences and Department of Chemistry, Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern CaliforniaLos AngelesUnited States
| | - Benjamin Stauch
- Department of Biological Sciences and Department of Chemistry, Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern CaliforniaLos AngelesUnited States
| | - John D McCorvy
- Department of Pharmacology, University of North Carolina Chapel Hill Medical SchoolChapel HillUnited States
- National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical SchoolChapel HillUnited States
| | - Yongfeng Liu
- Department of Pharmacology, University of North Carolina Chapel Hill Medical SchoolChapel HillUnited States
- National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical SchoolChapel HillUnited States
| | - Bryan Roth
- Department of Pharmacology, University of North Carolina Chapel Hill Medical SchoolChapel HillUnited States
- National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical SchoolChapel HillUnited States
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina Chapel Hill Medical SchoolChapel HillUnited States
| | - Vsevolod Katritch
- Department of Biological Sciences and Department of Chemistry, Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|
13
|
Zhou Y, Wang C, Si J, Wang B, Zhang D, Ding D, Zhang J, Wang H. Melatonin up-regulates bone marrow mesenchymal stem cells osteogenic action but suppresses their mediated osteoclastogenesis via MT 2 -inactivated NF-κB pathway. Br J Pharmacol 2020; 177:2106-2122. [PMID: 31900938 DOI: 10.1111/bph.14972] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/20/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Melatonin is a neurohormone involved in bone homeostasis. Melatonin directs bone remodelling and the role of bone marrow mesenchymal stem cells (BMMSCs) in the regulating melatonin-mediated bone formation-resorption balance remains undefined. EXPERIMENTAL APPROACH Osteoporosis models were established and bone tissue and serum were collected to test the effects of melatonin on bone homeostasis. Melatonin receptors were knocked down, the NF-κB signalling pathway and receptor activator of NF-κB ligand (RANKL) expression were investigated. Communication between bone marrow mesenchymal stem cells and osteoclasts was detected with direct-contact or indirect-contact system. KEY RESULTS Bone loss and microstructure disorder in mice were reversed after melatonin treatment, as a result of anabolic and anti-resorptive effects. In vitro, a physiological (low) concentration of melatonin promoted the bone marrow mesenchymal stem cells, osteogenic lineage commitment and extracellular mineralization but had no impact on extracellular matrix synthesis. After MT knockdown, especially MT2 , the positive effects of melatonin on osteogenesis were attenuated. The canonical NF-κB signalling pathway was the first discovered downstream signalling pathway after MT receptor activation and was found to be down-regulated by melatonin during osteogenesis. Melatonin suppressed BMMSC-mediated osteoclastogenesis by inhibiting RANKL production in BMMSCs and this effect only occurred when BMMSCs and osteoclast precursors were co-cultured in an indirect-contact manner. CONCLUSION AND IMPLICATIONS Our work suggests that melatonin plays a crucial role in bone balance, significantly accelerates the osteogenic differentiation of bone marrow mesenchymal stem cells by suppressing the MT2 -dependent NF-κB signalling pathway, and down-regulates osteoclastogenesis via RANKL paracrine secretion.
Collapse
Affiliation(s)
- Yi Zhou
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Chaowei Wang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Jinyan Si
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Baixiang Wang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Denghui Zhang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Ding Ding
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Jian Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huiming Wang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
14
|
Navarro Gil FJ, Huete-Toral F, Crooke A, Dominguez Godinez CO, Carracedo G, Pintor J. Effect of Melatonin and Its Analogs on Tear Secretion. J Pharmacol Exp Ther 2019; 371:186-190. [PMID: 31371479 DOI: 10.1124/jpet.119.259192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/30/2019] [Indexed: 11/22/2022] Open
Abstract
Melatonin has been shown to enhance tear secretion associated with dinucleotide diadenosine tetraphosphate. This study investigated the isolated action of melatonin and its analogs, agomelatine, N-butanoyl-2-(2-methoxy-6H-isoindolo[2,1-a]indol-11-yl) ethanamine (IIK7), and 5-methoxycarbonylamino-N-cetyltryptamine (5-MCA-NAT) (10 µl at 100 µM), on tear secretion when applied topically in the rabbit cornea and its relationship with the melatonin MT1, MT2, and MT3/quinone reductase QR2 receptors. The results showed a significant increase in tear secretion, with a maximal effect at 60 minutes for the agonists (138.9% ± 6.5%, 128.9% ± 6.4%, and 120.0% ± 5.2%, respectively; P < 0.05; 100% control) but not for melatonin (101.6% ± 7.9%; P > 0.05). Agonist action was tested combined with the antagonists DH97 (MT2 selective), prazosin (MT3/QR2 inhibitor), and luzindole (nonselective MT membrane receptor) (10 µl at 100 µM). DH97 reversed the effect of agomelatine, IIK7, and 5-MCA-NAT up to 30.85% ± 7.6%,108% ± 7.2%, and 87.01% ± 7.6%, respectively (P < 0.05; 100% control). Luzindole antagonized agomelatine and 5-MCA-NAT up to 67.35% ± 7.6% and 92.12% ± 8%, respectively (P < 0.05). Prazosin only reversed 5-MCA-NAT action up to 84.2% ± 7.7% (P < 0.05). These results suggest different pathways for the agonists to act through MT membrane receptors. Therefore, agomelatine, IIK7, and 5-MCA-NAT act through MT membrane receptors as secretagogues of tear secretion, and these analogs could be considered excellent therapeutic candidates for dry eye treatment. SIGNIFICANCE STATEMENT: Currently, dry eye with aqueous deficit is treated by adding artificial tears palliatively. This study shows that topical installation of three melatonin analogs (agomelatine, IIK7, and 5-MCA-NAT), but not melatonin, in therapeutic doses in the rabbit cornea significantly increases tear production, acting through different melatonin membrane receptor subtypes. Therefore, this study suggests that melatoninergic compounds could be considered excellent therapeutic candidates for dry eye treatment and ocular surface diseases occurring with a reduction in tear production.
Collapse
Affiliation(s)
- Francisco Javier Navarro Gil
- Departamentos de Optometría y Visión (F.J.N.G., C.O.D.G., G.C.) and Bioquímica y Biología Molecular (F.H.-T., A.C., J.P.), Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - Fernando Huete-Toral
- Departamentos de Optometría y Visión (F.J.N.G., C.O.D.G., G.C.) and Bioquímica y Biología Molecular (F.H.-T., A.C., J.P.), Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - Almudena Crooke
- Departamentos de Optometría y Visión (F.J.N.G., C.O.D.G., G.C.) and Bioquímica y Biología Molecular (F.H.-T., A.C., J.P.), Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - Carmen Olalla Dominguez Godinez
- Departamentos de Optometría y Visión (F.J.N.G., C.O.D.G., G.C.) and Bioquímica y Biología Molecular (F.H.-T., A.C., J.P.), Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - Gonzalo Carracedo
- Departamentos de Optometría y Visión (F.J.N.G., C.O.D.G., G.C.) and Bioquímica y Biología Molecular (F.H.-T., A.C., J.P.), Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - Jesús Pintor
- Departamentos de Optometría y Visión (F.J.N.G., C.O.D.G., G.C.) and Bioquímica y Biología Molecular (F.H.-T., A.C., J.P.), Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
15
|
Lee SB, Lee KW, Wang T, Lee JS, Jung US, Nejad JG, Oh YK, Baek YC, Kim KH, Lee HG. Intravenous administration of L-tryptophan stimulates gastrointestinal hormones and melatonin secretions: study on beef cattle. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2019; 61:239-244. [PMID: 31452911 PMCID: PMC6686141 DOI: 10.5187/jast.2019.61.4.239] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/05/2019] [Accepted: 06/10/2019] [Indexed: 01/26/2023]
Abstract
This study aimed to determine the effective dose of intravenous administration of L-tryptophan (L-T) on gastrointestinal hormones (GIH) secretions and melatonin using Hanwoo cattle. Three steers (362 ± 23 kg) fitted with indwelling jugular vein catheters were assigned in a 3 × 3 Latin square design. Treatments were intravenous administration of saline (control), 28.9 mg L-T/kg body weight (BW; low) and 57.8 mg L-T/kg BW (high) L-T for 1 day with 7 days of adaptation. Samples were collected after adaptation period at -60, 0, 30, 60, 90, 120, 150, 180, 240, and 300 min of sampling day. The levels of serum cholecystokinin (CCK) and secretin were higher (p < 0.05) in the high L-T group than those in the other groups. Serum Melatonin (MEL) levels were increased upon L-T administration (p < 0.05) in the high L-T group. Taken together, the effective dose of L-T administration was defined at 57.8 mg L-T/kg BW in order to stimulate increase of GIH and MEL.
Collapse
Affiliation(s)
- Sang-Bum Lee
- Department of Animal Science and Technology, College of Animal
Bioscience and Technology, Konkuk University, Seoul 05029,
Korea
| | | | - Tao Wang
- Department of Animal Nutrition and Feed Science, College of Animal
Science and Technology, Jilin Agricultural University, Jilin 130118,
China
| | - Jae-Sung Lee
- Department of Animal Science and Technology, College of Animal
Bioscience and Technology, Konkuk University, Seoul 05029,
Korea
- An Educational Program for Specialists in Global Animal Science,
Brain Korea 21 Plus Project, Konkuk University, Seoul 05029,
Korea
| | - U-Suk Jung
- Department of Animal Science and Technology, College of Animal
Bioscience and Technology, Konkuk University, Seoul 05029,
Korea
| | - Jalil Ghassemi Nejad
- Department of Animal Science and Technology, College of Animal
Bioscience and Technology, Konkuk University, Seoul 05029,
Korea
- An Educational Program for Specialists in Global Animal Science,
Brain Korea 21 Plus Project, Konkuk University, Seoul 05029,
Korea
| | - Young-Kyoon Oh
- Department of Nutrition and Physiology, National Institute of
Animal Science, RDA, JeonJu 55365, Korea
| | - Youl-Chang Baek
- Department of Nutrition and Physiology, National Institute of
Animal Science, RDA, JeonJu 55365, Korea
| | - Kyoung Hoon Kim
- Graduate School of International Agricultural Technology,
Pyeongchang Campus, Seoul National University, Pyeongchang 25354,
Korea
| | - Hong-Gu Lee
- Department of Animal Science and Technology, College of Animal
Bioscience and Technology, Konkuk University, Seoul 05029,
Korea
- An Educational Program for Specialists in Global Animal Science,
Brain Korea 21 Plus Project, Konkuk University, Seoul 05029,
Korea
| |
Collapse
|
16
|
Zhao D, Yu Y, Shen Y, Liu Q, Zhao Z, Sharma R, Reiter RJ. Melatonin Synthesis and Function: Evolutionary History in Animals and Plants. Front Endocrinol (Lausanne) 2019; 10:249. [PMID: 31057485 PMCID: PMC6481276 DOI: 10.3389/fendo.2019.00249] [Citation(s) in RCA: 353] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/29/2019] [Indexed: 12/12/2022] Open
Abstract
Melatonin is an ancient molecule that can be traced back to the origin of life. Melatonin's initial function was likely that as a free radical scavenger. Melatonin presumably evolved in bacteria; it has been measured in both α-proteobacteria and in photosynthetic cyanobacteria. In early evolution, bacteria were phagocytosed by primitive eukaryotes for their nutrient value. According to the endosymbiotic theory, the ingested bacteria eventually developed a symbiotic association with their host eukaryotes. The ingested α-proteobacteria evolved into mitochondria while cyanobacteria became chloroplasts and both organelles retained their ability to produce melatonin. Since these organelles have persisted to the present day, all species that ever existed or currently exist may have or may continue to synthesize melatonin in their mitochondria (animals and plants) and chloroplasts (plants) where it functions as an antioxidant. Melatonin's other functions, including its multiple receptors, developed later in evolution. In present day animals, via receptor-mediated means, melatonin functions in the regulation of sleep, modulation of circadian rhythms, enhancement of immunity, as a multifunctional oncostatic agent, etc., while retaining its ability to reduce oxidative stress by processes that are, in part, receptor-independent. In plants, melatonin continues to function in reducing oxidative stress as well as in promoting seed germination and growth, improving stress resistance, stimulating the immune system and modulating circadian rhythms; a single melatonin receptor has been identified in land plants where it controls stomatal closure on leaves. The melatonin synthetic pathway varies somewhat between plants and animals. The amino acid, tryptophan, is the necessary precursor of melatonin in all taxa. In animals, tryptophan is initially hydroxylated to 5-hydroxytryptophan which is then decarboxylated with the formation of serotonin. Serotonin is either acetylated to N-acetylserotonin or it is methylated to form 5-methoxytryptamine; these products are either methylated or acetylated, respectively, to produce melatonin. In plants, tryptophan is first decarboxylated to tryptamine which is then hydroxylated to form serotonin.
Collapse
Affiliation(s)
- Dake Zhao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China
- School of Life Science, Yunnan University, Kunming, China
| | - Yang Yu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Yong Shen
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Qin Liu
- School of Landscape and Horticulture, Yunnan Vocational and Technical College of Agriculture, Kunming, China
| | - Zhiwei Zhao
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio (UT Health), San Antonio, TX, United States
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio (UT Health), San Antonio, TX, United States
| |
Collapse
|
17
|
Gao Y, Wu X, Zhao S, Zhang Y, Ma H, Yang Z, Yang W, Zhao C, Wang L, Zhang Q. Melatonin receptor depletion suppressed hCG-induced testosterone expression in mouse Leydig cells. Cell Mol Biol Lett 2019; 24:21. [PMID: 30915128 PMCID: PMC6416941 DOI: 10.1186/s11658-019-0147-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/04/2019] [Indexed: 12/22/2022] Open
Abstract
Melatonin receptors MT1 and MT2 (genes officially named MTNR1A and MTNR1B, respectively) play crucial roles in melatonin-mediated regulation of circadian rhythms, the immune system, and control of reproduction in seasonally breeding animals. In this study, immunolocalization assay showed that MT1 and MT2 are highly expressed in Leydig cell membrane. To understand the biological function of melatonin receptors in hCG-induced testosterone synthesis, we generated melatonin receptor knockdown cells using specific siRNA and performed testosterone detection after hCG treatment. We found that knockdown of melatonin receptors, especially MTNR1A, led to an obvious decrease (> 60%) of testosterone level. Our further study revealed that knockdown of melatonin receptors repressed expression, at both the mRNA level and the protein level, of key steroidogenic genes, such as p450scc, p450c17 and StAR, which are essential for testosterone synthesis. hCG triggered endoplasmic reticulum (ER) stress to regulate steroidogenic genes' expression and apoptosis. To further investigate the potential roles of melatonin receptors in hCG-induced regulation of ER stress and apoptosis, we examined expression of some crucial ER stress markers, including Grp78, Chop, ATF4, Xbp1, and IRE1. We found that inhibition of melatonin receptors increased hCG-induced expression of Grp78, Chop and ATF4, but not Xbp1 and IRE1, suggesting that hCG may modulate IRE1 signaling pathways in a melatonin receptor-dependent manner. In addition, our further data showed that knockdown of MTNR1A and MTNR1B promoted hCG-induced expression of apoptosis markers, including p53, caspase-3 and Bcl-2. These results suggested that the melatonin receptors MTNR1A and MTNR1B are essential to repress hCG-induced ER stress and cell apoptosis. Our studies demonstrated that the mammalian melatonin receptors MT1 and MT2 are involved in testosterone synthesis via mediating multiple cell pathways.
Collapse
Affiliation(s)
- Yuan Gao
- 1College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 Gansu China
| | - Xiaochun Wu
- 2College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu China
| | - Shuqin Zhao
- 1College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 Gansu China
| | - Yujun Zhang
- 1College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 Gansu China
| | - Hailong Ma
- 1College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 Gansu China
| | - Zhen Yang
- 1College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 Gansu China
| | - Wanghao Yang
- 1College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 Gansu China
| | - Chen Zhao
- 1College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 Gansu China
| | - Li Wang
- 1College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 Gansu China
| | - Quanwei Zhang
- 1College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 Gansu China.,2College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu China
| |
Collapse
|