1
|
Taguchi K, Sakai Y, Furuhashi T, Hara S, Wada A. Development of Uniform Ribosome Display Technology Enabling Easy and Efficient Identification of Full-Length Proteins that Interact with Bioactive Small and Large Molecules. Chembiochem 2025; 26:e202400352. [PMID: 39073256 DOI: 10.1002/cbic.202400352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Identifying target proteins that interact with bioactive molecules is indispensable for understanding their mechanisms of action. In this study, we developed a uniform ribosome display technology using equal-length DNAs and mRNAs to improve molecular display principle for target identification. The equal-length DNAs were designed to contain various coding sequences for full-length proteins with molecular weights of up to 130 kDa and were used to synthesize equal-length mRNAs, which allowed the formation of full-length protein-ribosome-equal-length mRNA complexes. Uniform ribosome display selections of dihydrofolate reductase and haloalkane dehalogenase mutant were performed against methotrexate and chlorohexane, respectively. Quantitative changes of proteins after each selection indicated that the target protein-displaying ribosomal complexes were specifically selected through non-covalent or covalent interactions with the corresponding bioactive molecules. Furthermore, selection of full-length proteins interacting with methotrexate or anti-DDX46 antibody from protein pools showed that only the target proteins could be precisely identified even though the molar amounts of equal-length mRNAs encoding them were adjusted to 1/20,000 of the total equal-length mRNAs. Thus, the uniform ribosome display technology enabled efficient identification of target proteins that interact with bioactive small and large molecules through simplified operations without deep sequencing.
Collapse
Affiliation(s)
- Kenshiro Taguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuichi Sakai
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Takuto Furuhashi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Shuta Hara
- Department of Material and Life Chemistry, Kanagawa University, 3-6-1, Kanagawa-ku, Yokohama, Kanagawa, 221-8686, Japan
| | - Akira Wada
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
2
|
Lee J, Nguyen NT, Tran LM, Kim YH, Min J. Targeted Killing of Staphylococcus aureus Using Specific Peptides Displayed on Yeast Vacuoles. Microbiol Spectr 2023; 11:e0092023. [PMID: 37098917 PMCID: PMC10269669 DOI: 10.1128/spectrum.00920-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/04/2023] [Indexed: 04/27/2023] Open
Abstract
Staphylococcus aureus is a common pathogen that causes health care-related and community-associated infections. In this study, we provide a novel system that can recognize and kill S. aureus bacteria. The system is specifically based on a combination of the phage display library technique and yeast vacuoles. A phage clone displaying a peptide capable of specific binding to a whole S. aureus cell was selected from a 12-mer phage peptide library. The peptide sequence was SVPLNSWSIFPR. The selected phage's ability to bind specifically with S. aureus was confirmed using an enzyme-linked immunosorbent assay, and the chosen peptide was then synthesized. The results showed that the synthesized peptides displayed high affinity with S. aureus but low binding ability with other strains, including Gram-negative and Gram-positive bacteria such as Salmonella sp., Shigella spp., Escherichia coli, and Corynebacterium glutamicum. In addition, yeast vacuoles were used as a drug carrier by encapsulating daptomycin, a lipopeptide antibiotic used to treat Gram-positive bacterial infections. The expression of specific peptides at the encapsulated vacuole membrane created an efficient system that can specifically recognize and kill S. aureus bacteria. IMPORTANCE The phage display method was used to select peptides with high affinity and specificity for S. aureus, and these peptides were then induced to be expressed on the surface of yeast vacuoles. These surface-modified vacuoles can act as drug carriers, with drugs such as the lipopeptide antibiotic daptomycin loaded inside. An advantage of using yeast vacuoles as a drug carrier is that they can be easily produced through yeast culture, making the approach cost-effective and suitable for large-scale production and potential implementation in clinical settings. This novel approach offers a promising way to specifically target and eliminate S. aureus that could ultimately lead to improved treatment of bacterial infections and reduced risk of antibiotic resistance.
Collapse
Affiliation(s)
- Jaewoong Lee
- School of Chemical Engineering, Jeonbuk National University, Deokjin-Gu Jeonju, Jeonbuk, South Korea
- Center for Ecology and Environmental Toxicology (CEET), Chungbuk National University, Seowon-Gu, Cheongju, South Korea
| | - Ngoc-Tu Nguyen
- School of Chemical Engineering, Jeonbuk National University, Deokjin-Gu Jeonju, Jeonbuk, South Korea
- Center for Ecology and Environmental Toxicology (CEET), Chungbuk National University, Seowon-Gu, Cheongju, South Korea
| | - Le-Minh Tran
- School of Chemical Engineering, Jeonbuk National University, Deokjin-Gu Jeonju, Jeonbuk, South Korea
| | - Yang-Hoon Kim
- Center for Ecology and Environmental Toxicology (CEET), Chungbuk National University, Seowon-Gu, Cheongju, South Korea
- School of Biological Sciences, Chungbuk National University, Seowon-Gu, Cheongju, South Korea
| | - Jiho Min
- School of Chemical Engineering, Jeonbuk National University, Deokjin-Gu Jeonju, Jeonbuk, South Korea
| |
Collapse
|
3
|
Bailly C, Thuru X. Targeting of Tetraspanin CD81 with Monoclonal Antibodies and Small Molecules to Combat Cancers and Viral Diseases. Cancers (Basel) 2023; 15:cancers15072186. [PMID: 37046846 PMCID: PMC10093296 DOI: 10.3390/cancers15072186] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Tetraspanin CD81 plays major roles in cell-cell interactions and the regulation of cellular trafficking. This cholesterol-embarking transmembrane protein is a co-receptor for several viruses, including HCV, HIV-1 and Chikungunya virus, which exploits the large extracellular loop EC2 for cell entry. CD81 is also an anticancer target implicated in cancer cell proliferation and mobility, and in tumor metastasis. CD81 signaling contributes to the development of solid tumors (notably colorectal, liver and gastric cancers) and has been implicated in the aggressivity of B-cell lymphomas. A variety of protein partners can interact with CD81, either to regulate attachment and uptake of viruses (HCV E2, claudin-1, IFIM1) or to contribute to tumor growth and dissemination (CD19, CD44, EWI-2). CD81-protein interactions can be modulated with molecules targeting the extracellular domain of CD81, investigated as antiviral and/or anticancer agents. Several monoclonal antibodies anti-CD81 have been developed, notably mAb 5A6 active against invasion and metastasis of triple-negative breast cancer cells. CD81-EC2 can also be targeted with natural products (trachelogenin and harzianoic acids A-B) and synthetic compounds (such as benzothiazole-quinoline derivatives). They are weak CD81 binders but offer templates for the design of new compounds targeting the open EC2 loop. There is no anti-CD81 compound in clinical development at present, but this structurally well-characterized tetraspanin warrants more substantial considerations as a drug target.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, F-59290 Lille, France
- Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, F-59006 Lille, France
- CNRS, Inserm, CHU Lille, UMR9020-U1277-Canther-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institut, University of Lille, F-59000 Lille, France
| | - Xavier Thuru
- CNRS, Inserm, CHU Lille, UMR9020-U1277-Canther-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institut, University of Lille, F-59000 Lille, France
| |
Collapse
|
4
|
Lim TS, Ch'ng ACW, Song BPC, Lai JY. Streptavidin-Coated Solid-Phase Extraction (SPE) Tips for Antibody Phage Display Biopanning. Methods Mol Biol 2023; 2702:275-290. [PMID: 37679625 DOI: 10.1007/978-1-0716-3381-6_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Phage display is a technique that allows the presentation of unique proteins on the surface of bacteriophages. The phage particles are usually screened via repetitive rounds of antigen-guided selection and phage amplification. The main advantage of this approach lies in the physical linkage between phenotype and genotype. This feature allows the isolation of single unique clones from a panning campaign consisting of a highly diverse population of clones. Due to the high-throughput nature of this technique, different approaches have been developed to assist phage display selections. One of which involves utilizing a streptavidin-coated solid-phase extraction (SPE) tip that is mounted to an electronically controlled motorized multichannel pipette. In this chapter, we will entail the procedures involved in the adaptation of a commercial SPE tip (MSIA™ streptavidin D.A.R.T's®) as the solid phase. This protocol is an updated version of a previous protocol with some minor refinements.
Collapse
Affiliation(s)
- Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia.
| | - Angela Chiew Wen Ch'ng
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | - Brenda Pei Chui Song
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | - Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
5
|
Huang J, Takakusagi Y, Ru B. Editorial: Phage display: Technique and applications. Front Microbiol 2022; 13:1097661. [PMID: 36560941 PMCID: PMC9767457 DOI: 10.3389/fmicb.2022.1097661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- Jian Huang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China,*Correspondence: Jian Huang
| | - Yoichi Takakusagi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Beibei Ru
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
6
|
Yeoh SG, Sum JS, Lai JY, W Isa WYH, Lim TS. Potential of Phage Display Antibody Technology for Cardiovascular Disease Immunotherapy. J Cardiovasc Transl Res 2021; 15:360-380. [PMID: 34467463 DOI: 10.1007/s12265-021-10169-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/22/2021] [Indexed: 11/26/2022]
Abstract
Cardiovascular disease (CVD) is one of the leading causes of death worldwide. CVD includes coronary artery diseases such as angina, myocardial infarction, and stroke. "Lipid hypothesis" which is also known as the cholesterol hypothesis proposes the linkage of plasma cholesterol level with the risk of developing CVD. Conventional management involves the use of statins to reduce the serum cholesterol levels as means for CVD prevention or treatment. The regulation of serum cholesterol levels can potentially be regulated with biological interventions like monoclonal antibodies. Phage display is a powerful tool for the development of therapeutic antibodies with successes over the recent decade. Although mainly for oncology, the application of monoclonal antibodies as immunotherapeutic agents could potentially be expanded to CVD. This review focuses on the concept of phage display for antibody development and discusses the potential target antigens that could potentially be beneficial for serum cholesterol management.
Collapse
Affiliation(s)
- Soo Ghee Yeoh
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Jia Siang Sum
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - W Y Haniff W Isa
- School of Medical Sciences, Department of Medicine, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800, Penang, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
7
|
Zhang J, Yuan J, Li Z, Fu C, Xu M, Yang J, Jiang X, Zhou B, Ye X, Xu C. Exploring and exploiting plant cyclic peptides for drug discovery and development. Med Res Rev 2021; 41:3096-3117. [PMID: 33599316 DOI: 10.1002/med.21792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/10/2021] [Accepted: 01/31/2021] [Indexed: 01/07/2023]
Abstract
Ever since the discovery of insulin, natural peptides have become an important resource for therapeutic development. Decades of research has led to the discovery of a long list of peptide drugs with broad applications in clinics, from antibiotics to hypertension treatment to pain management. Many of these US FDA-approved peptide drugs are derived from microorganisms and animals. By contrast, the great potential of plant cyclic peptides as therapeutics remains largely unexplored. These macrocyclic peptides typically have rigid structures, good bioavailability and membrane permeability, making them appealing candidates for drug development and engineering. In this review, we introduce the three major classes of plant cyclic peptides and summarize their potential medical applications. We discuss how we can leverage the genome information of many different plants to quickly search for new cyclic peptides and how we can take advantage of the insights gained from their biosynthetic pathways to transform the process of production and drug development. These recent developments have provided a new angle for exploring and exploiting plant cyclic peptides, and we believe that many more peptide drugs derived from plants are about to come.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, China
| | - Jimin Yuan
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Zhijie Li
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Chunjin Fu
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Menglong Xu
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Jing Yang
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Xin Jiang
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Boping Zhou
- Department of Infectious Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Xiufeng Ye
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Chengchao Xu
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China.,Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| |
Collapse
|
8
|
Liu PR, Lu L, Zhang JY, Huo TT, Liu SX, Ye ZW. Application of Artificial Intelligence in Medicine: An Overview. Curr Med Sci 2021; 41:1105-1115. [PMID: 34874486 PMCID: PMC8648557 DOI: 10.1007/s11596-021-2474-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
Artificial intelligence (AI) is a new technical discipline that uses computer technology to research and develop the theory, method, technique, and application system for the simulation, extension, and expansion of human intelligence. With the assistance of new AI technology, the traditional medical environment has changed a lot. For example, a patient's diagnosis based on radiological, pathological, endoscopic, ultrasonographic, and biochemical examinations has been effectively promoted with a higher accuracy and a lower human workload. The medical treatments during the perioperative period, including the preoperative preparation, surgical period, and postoperative recovery period, have been significantly enhanced with better surgical effects. In addition, AI technology has also played a crucial role in medical drug production, medical management, and medical education, taking them into a new direction. The purpose of this review is to introduce the application of AI in medicine and to provide an outlook of future trends.
Collapse
Affiliation(s)
- Peng-ran Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Lin Lu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Jia-yao Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Tong-tong Huo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Song-xiang Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Zhe-wei Ye
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| |
Collapse
|