1
|
Wang X, Sun L, Han X, Li Z, Xing Y, Chen X, Xi R, Sun Y, Wang G, Zhao P. The molecular mechanisms underlying retinal ganglion cell apoptosis and optic nerve regeneration in glaucoma (Review). Int J Mol Med 2025; 55:63. [PMID: 39950327 PMCID: PMC11878485 DOI: 10.3892/ijmm.2025.5504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/30/2025] [Indexed: 03/06/2025] Open
Abstract
Glaucoma is a neurodegenerative disease characterized by progressive and irreversible necrosis and apoptosis of retinal ganglion cells (RGCs). Deformation of the lamina cribrosa (LC) has been identified as a factor leading to damage to the optic nerve and capillaries passing through the LC, ultimately causing visual field defects and glaucoma development. Recent advancements in molecular biology, both domestically and internationally, have enabled a more comprehensive and in‑depth understanding of glaucoma pathogenesis. In the present review, the role of molecular signaling pathways associated with RGCs apoptosis, optic nerve protection and regeneration, and LC damage and remodeling in the development of glaucoma, are summarized and discussed. The insights provided herein may offer new targets and ideas for interventions and treatment strategies for glaucoma.
Collapse
Affiliation(s)
- Xiaotong Wang
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Liang Sun
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xudong Han
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Zhanglong Li
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Yuqing Xing
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Xinyue Chen
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Ruofan Xi
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Yuecong Sun
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Guilong Wang
- Shandong Provincial Education Department, Jinan, Shandong 250012, P.R. China
| | - Ping Zhao
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
2
|
Abbasi M, Gupta V, Chitranshi N, Moustardas P, Ranjbaran R, Graham SL. Molecular Mechanisms of Glaucoma Pathogenesis with Implications to Caveolin Adaptor Protein and Caveolin-Shp2 Axis. Aging Dis 2024; 15:2051-2068. [PMID: 37962455 PMCID: PMC11346403 DOI: 10.14336/ad.2023.1012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023] Open
Abstract
Glaucoma is a common retinal disorder characterized by progressive optic nerve damage, resulting in visual impairment and potential blindness. Elevated intraocular pressure (IOP) is a major risk factor, but some patients still experience disease progression despite IOP-lowering treatments. Genome-wide association studies have linked variations in the Caveolin1/2 (CAV-1/2) gene loci to glaucoma risk. Cav-1, a key protein in caveolae membrane invaginations, is involved in signaling pathways and its absence impairs retinal function. Recent research suggests that Cav-1 is implicated in modulating the BDNF/TrkB signaling pathway in retinal ganglion cells, which plays a critical role in retinal ganglion cell (RGC) health and protection against apoptosis. Understanding the interplay between these proteins could shed light on glaucoma pathogenesis and provide potential therapeutic targets.
Collapse
Affiliation(s)
- Mojdeh Abbasi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping Sweden.
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
| | - Petros Moustardas
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping Sweden.
| | - Reza Ranjbaran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Stuart L. Graham
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
| |
Collapse
|
3
|
Sahli E, Özmert E, Günel MD, Atilla H. Evaluation of the efficacy of subtenon autologous platelet-rich plasma therapy in patients with retinitis pigmentosa and factors affecting response to the treatment. Int Ophthalmol 2024; 44:388. [PMID: 39313744 DOI: 10.1007/s10792-024-03305-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024]
Abstract
PURPOSE To evaluate the effect of subtenon platelet-rich plasma (PRP) treatment in retinitis pigmentosa (RP) patients and to determine the factors affecting the response to treatment. METHODS For this purpose, 85 eyes of 43 RP patients with visual acuity of 1 logMAR and above were included in the study and subtenon autologous PRP treatment was applied 3 times at two-week intervals. In addition to a full ophthalmological examination, functional tests such as visual acuity, visual field, central retinal sensitivity measurement, and electroretinography (ERG) and structural measurements including the thickness of the outer retinal layers, and the length of the ellipsoid zone in optic coherence tomography, and the dimensions of the hyperautofluorescent ring in fundus autofluorescence imaging (FAF) were performed on the patients before and one month after the treatment. RESULTS A statistically significant improvement was achieved in the patient's visual acuity, visual field MD and PSD index, and dark-adapted 10.0 ERG response b wave amplitude. There was no significant change in average central retinal sensitivity, fixation stability, outer retinal layer thickness and ellipsoid zone length. No statistically significant change was detected in the diameter and area of the hyperautofluorescence ring measured by FAF. It was found that the age of the patients and the age of onset of the disease were parameters affecting the treatment response. CONCLUSION With PRP treatment applied periodically in RP patients, it may be possible to improve visual function and stop the progression of the disease, which can be detected by structural evaluations.
Collapse
Affiliation(s)
- Esra Sahli
- Department of Ophthalmology, School of Medicine, Ankara University, Ankara, Turkey.
- Graduate School of Health Sciences, Vision Artificial Vision and Rehabilitation of Low Vision Doctorate Program, Ankara University, Ankara, Turkey.
| | - Emin Özmert
- Department of Ophthalmology, School of Medicine, Ankara University, Ankara, Turkey
| | - Murat Doğuş Günel
- Department of Biostatistics, School of Medicine, Ankara University, Ankara, Turkey
| | - Huban Atilla
- Department of Ophthalmology, School of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
4
|
Sulak R, Liu X, Smedowski A. The concept of gene therapy for glaucoma: the dream that has not come true yet. Neural Regen Res 2024; 19:92-99. [PMID: 37488850 PMCID: PMC10479832 DOI: 10.4103/1673-5374.375319] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 07/26/2023] Open
Abstract
Gene therapies, despite of being a relatively new therapeutic approach, have a potential to become an important alternative to current treatment strategies in glaucoma. Since glaucoma is not considered a single gene disease, the identified goals of gene therapy would be rather to provide neuroprotection of retinal ganglion cells, especially, in intraocular-pressure-independent manner. The most commonly reported type of vector for gene delivery in glaucoma studies is adeno-associated virus serotype 2 that has a high tropism to retinal ganglion cells, resulting in long-term expression and low immunogenic profile. The gene therapy studies recruit inducible and genetic animal models of optic neuropathy, like DBA/2J mice model of high-tension glaucoma and the optic nerve crush-model. Reported gene therapy-based neuroprotection of retinal ganglion cells is targeting specific genes translating to growth factors (i.e., brain derived neurotrophic factor, and its receptor TrkB), regulation of apoptosis and neurodegeneration (i.e., Bcl-xl, Xiap, FAS system, nicotinamide mononucleotide adenylyl transferase 2, Digit3 and Sarm1), immunomodulation (i.e., Crry, C3 complement), modulation of neuroinflammation (i.e., erythropoietin), reduction of excitotoxicity (i.e., CamKIIα) and transcription regulation (i.e., Max, Nrf2). On the other hand, some of gene therapy studies focus on lowering intraocular pressure, by impacting genes involved in both, decreasing aqueous humor production (i.e., aquaporin 1), and increasing outflow facility (i.e., COX2, prostaglandin F2α receptor, RhoA/RhoA kinase signaling pathway, MMP1, Myocilin). The goal of this review is to summarize the current state-of-art and the direction of development of gene therapy strategies for glaucomatous neuropathy.
Collapse
Affiliation(s)
- Robert Sulak
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Xiaonan Liu
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Adrian Smedowski
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
- GlaucoTech Co., Katowice, Poland
| |
Collapse
|
5
|
Basavarajappa D, Galindo-Romero C, Gupta V, Agudo-Barriuso M, Gupta VB, Graham SL, Chitranshi N. Signalling pathways and cell death mechanisms in glaucoma: Insights into the molecular pathophysiology. Mol Aspects Med 2023; 94:101216. [PMID: 37856930 DOI: 10.1016/j.mam.2023.101216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Glaucoma is a complex multifactorial eye disease manifesting in retinal ganglion cell (RGC) death and optic nerve degeneration, ultimately causing irreversible vision loss. Research in recent years has significantly enhanced our understanding of RGC degenerative mechanisms in glaucoma. It is evident that high intraocular pressure (IOP) is not the only contributing factor to glaucoma pathogenesis. The equilibrium of pro-survival and pro-death signalling pathways in the retina strongly influences the function and survival of RGCs and optic nerve axons in glaucoma. Molecular evidence from human retinal tissue analysis and a range of experimental models of glaucoma have significantly contributed to unravelling these mechanisms. Accumulating evidence reveals a wide range of molecular signalling pathways that can operate -either alone or via intricate networks - to induce neurodegeneration. The roles of several molecules, including neurotrophins, interplay of intracellular kinases and phosphates, caveolae and adapter proteins, serine proteases and their inhibitors, nuclear receptors, amyloid beta and tau, and how their dysfunction affects retinal neurons are discussed in this review. We further underscore how anatomical alterations in various animal models exhibiting RGC degeneration and susceptibility to glaucoma-related neuronal damage have helped to characterise molecular mechanisms in glaucoma. In addition, we also present different regulated cell death pathways that play a critical role in RGC degeneration in glaucoma.
Collapse
Affiliation(s)
- Devaraj Basavarajappa
- Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
| | - Caridad Galindo-Romero
- Experimental Ophthalmology Group, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) & Ophthalmology Department, Universidad de Murcia, Murcia, Spain
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Marta Agudo-Barriuso
- Experimental Ophthalmology Group, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) & Ophthalmology Department, Universidad de Murcia, Murcia, Spain
| | - Veer B Gupta
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Stuart L Graham
- Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
| |
Collapse
|
6
|
Boccaccini A, Cavaterra D, Carnevale C, Tanga L, Marini S, Bocedi A, Lacal PM, Manni G, Graziani G, Sbardella D, Tundo GR. Novel frontiers in neuroprotective therapies in glaucoma: Molecular and clinical aspects. Mol Aspects Med 2023; 94:101225. [PMID: 38000334 DOI: 10.1016/j.mam.2023.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
In the last years, neuroprotective therapies have attracted the researcher interests as modern and challenging approach for the treatment of neurodegenerative diseases, aimed at protecting the nervous system from injuries. Glaucoma is a neurodegenerative disease characterized by progressive excavation of the optic nerve head, retinal axonal injury and corresponding vision loss that affects millions of people on a global scale. The molecular basis of the pathology is largely uncharacterized yet, and the therapeutic approaches available do not change the natural course of the disease. Therefore, in accordance with the therapeutic regimens proposed for other neurodegenerative diseases, a modern strategy to treat glaucoma includes prescription of drugs with neuroprotective activities. With respect to this, several preclinical and clinical investigations on a plethora of different drugs are currently ongoing. In this review, first, the conceptualization of the rationale for the adoption of neuroprotective strategies for retina is summarized. Second, the molecular aspects highlighting glaucoma as a neurodegenerative disease are reported. In conclusion, the molecular and pharmacological properties of most promising direct neuroprotective drugs used to delay glaucoma progression are examined, including: neurotrophic factors, NMDA receptor antagonists, the α2-adrenergic agonist, brimonidine, calcium channel blockers, antioxidant agents, nicotinamide and statins.
Collapse
Affiliation(s)
| | - Dario Cavaterra
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Tor Vergata, Via Della Ricerca Scientifica 1, 00133, Rome, Italy
| | | | | | - Stefano Marini
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Via Montpellier n. 1, 00133, Roma, Italy
| | - Alessio Bocedi
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Tor Vergata, Via Della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Pedro M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Via Monti di Creta 104, 00167, Rome, Italy
| | - Gianluca Manni
- IRCCS - Fondazione Bietti, Rome, Italy; Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Via Montpellier n. 1, 00133, Roma, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy
| | | | - Grazia Raffaella Tundo
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Via Montpellier n. 1, 00133, Roma, Italy.
| |
Collapse
|
7
|
Lo J, Mehta K, Dhillon A, Huang YK, Luo Z, Nam MH, Al Diri I, Chang KC. Therapeutic strategies for glaucoma and optic neuropathies. Mol Aspects Med 2023; 94:101219. [PMID: 37839232 PMCID: PMC10841486 DOI: 10.1016/j.mam.2023.101219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Glaucoma is a neurodegenerative eye disease that causes permanent vision impairment. The main pathological characteristics of glaucoma are retinal ganglion cell (RGC) loss and optic nerve degeneration. Glaucoma can be caused by elevated intraocular pressure (IOP), although some cases are congenital or occur in patients with normal IOP. Current glaucoma treatments rely on medicine and surgery to lower IOP, which only delays disease progression. First-line glaucoma medicines are supported by pharmacotherapy advancements such as Rho kinase inhibitors and innovative drug delivery systems. Glaucoma surgery has shifted to safer minimally invasive (or microinvasive) glaucoma surgery, but further trials are needed to validate long-term efficacy. Further, growing evidence shows that adeno-associated virus gene transduction and stem cell-based RGC replacement therapy hold potential to treat optic nerve fiber degeneration and glaucoma. However, better understanding of the regulatory mechanisms of RGC development is needed to provide insight into RGC differentiation from stem cells and help choose target genes for viral therapy. In this review, we overview current progress in RGC development research, optic nerve fiber regeneration, and human stem cell-derived RGC differentiation and transplantation. We also provide an outlook on perspectives and challenges in the field.
Collapse
Affiliation(s)
- Jung Lo
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Kamakshi Mehta
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Armaan Dhillon
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Yu-Kai Huang
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Ziming Luo
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Mi-Hyun Nam
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Issam Al Diri
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
| | - Kun-Che Chang
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA; Department of Neurobiology, Center of Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
8
|
Zhang QQ, Qu Y. Brain-derived neurotrophic factor in degenerative retinal diseases: Update and novel perspective. J Neurosci Res 2023; 101:1624-1632. [PMID: 37334646 DOI: 10.1002/jnr.25226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/16/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023]
Abstract
Dysfunction and death of neuronal cells are cardinal features of degenerative retinal diseases that are known to arise as the disease progresses. Increasingly evidence suggests that abnormal expression of brain-derived neurotrophic factor (BDNF) may serve as an obligatory relay of the dysfunction and death of neuronal cells in degenerative retinal diseases. Although disorder of BDNF, whether depletion or augmentation, has been connected with neuronal apoptosis and neuroinflammation, the exact mechanisms underlying the effect of impaired BDNF expression on degenerative retinal diseases remain unclear. Here, we present an overview of how BDNF is linked to pathological mechanism of retinal degenerative diseases, summarize BDNF-based treatment strategies, and discuss possible research perspectives in the future.
Collapse
Affiliation(s)
- Qing-Qing Zhang
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Yi Qu
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
9
|
Contartese DS, Rey-Funes M, Peláez R, Soliño M, Fernández JC, Nakamura R, Ciranna NS, Sarotto A, Dorfman VB, López-Costa JJ, Zapico JM, Ramos A, de Pascual-Teresa B, Larrayoz IM, Loidl CF, Martínez A. A hypothermia mimetic molecule (zr17-2) reduces ganglion cell death and electroretinogram distortion in a rat model of intraorbital optic nerve crush (IONC). Front Pharmacol 2023; 14:1112318. [PMID: 36755945 PMCID: PMC9899795 DOI: 10.3389/fphar.2023.1112318] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/10/2023] [Indexed: 01/24/2023] Open
Abstract
Introduction: Ocular and periocular traumatisms may result in loss of vision. Our previous work showed that therapeutic hypothermia prevents retinal damage caused by traumatic neuropathy. We also generated and characterized small molecules that elicit the beneficial effects of hypothermia at normal body temperature. Here we investigate whether one of these mimetic molecules, zr17-2, is able to preserve the function of eyes exposed to trauma. Methods: Intraorbital optic nerve crush (IONC) or sham manipulation was applied to Sprague-Dawley rats. One hour after surgery, 5.0 µl of 330 nmol/L zr17-2 or PBS, as vehicle, were injected in the vitreum of treated animals. Electroretinograms were performed 21 days after surgery and a- and b-wave amplitude, as well as oscillatory potentials (OP), were calculated. Some animals were sacrificed 6 days after surgery for TUNEL analysis. All animal experiments were approved by the local ethics board. Results: Our previous studies showed that zr17-2 does not cross the blood-ocular barrier, thus preventing systemic treatment. Here we show that intravitreal injection of zr17-2 results in a very significant prevention of retinal damage, providing preclinical support for its pharmacological use in ocular conditions. As previously reported, IONC resulted in a drastic reduction in the amplitude of the b-wave (p < 0.0001) and OPs (p < 0.05), a large decrease in the number of RGCs (p < 0.0001), and a large increase in the number of apoptotic cells in the GCL and the INL (p < 0.0001). Interestingly, injection of zr17-2 largely prevented all these parameters, in a very similar pattern to that elicited by therapeutic hypothermia. The small molecule was also able to reduce oxidative stress-induced retinal cell death in vitro. Discussion: In summary, we have shown that intravitreal injection of the hypothermia mimetic, zr17-2, significantly reduces the morphological and electrophysiological consequences of ocular traumatism and may represent a new treatment option for this cause of visual loss.
Collapse
Affiliation(s)
- Daniela S Contartese
- Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Manuel Rey-Funes
- Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rafael Peláez
- Biomarkers and Molecular Signaling, Neurodegenerative Diseases Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Manuel Soliño
- Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan C Fernández
- Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ronan Nakamura
- Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nicolás S Ciranna
- Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Aníbal Sarotto
- Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Verónica B Dorfman
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina
| | - Juan J López-Costa
- Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - José M Zapico
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Ana Ramos
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Beatriz de Pascual-Teresa
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Ignacio M Larrayoz
- Biomarkers and Molecular Signaling, Neurodegenerative Diseases Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - César F Loidl
- Departamento de Biología Celular, Histología, Embriología y Genética, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alfredo Martínez
- Angiogenesis Group, Center for Biomedical Research of La Rioja, Logroño, Spain
| |
Collapse
|
10
|
Trifluoro-icaritin ameliorates spared nerve injury-induced neuropathic pain by inhibiting microglial activation through α7nAChR-mediated blockade of BDNF/TrkB/KCC2 signaling in the spinal cord of rats. Biomed Pharmacother 2023; 157:114001. [PMID: 36375307 DOI: 10.1016/j.biopha.2022.114001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
Neuropathic pain is still a serious and unsolved health problem. Activation of α7 nicotinic acetylcholine receptor (α7nAChR) is known to modulate neuropathic pain by inhibiting microglial activation and BDNF/TrkB/KCC2 signaling. We previously identified that trifluoro-icaritin (ICTF) has an attenuated effect on spared nerve injury (SNI)-induced neuropathic pain, but its potential mechanisms remain unknown. Here, the pain-related behaviors were determined by paw withdrawal threshold (PWT), CatWalk gait analysis, rotarod test, open field test and elevated plus maze test. The expression of pain-related signal molecules was evaluated by Western blot and immunofluorescence staining. The results showed that ICTF (5.0 mg/kg, i.p.) successfully relieved SNI-induced mechanical allodynia and anxiety-like behavior, we subsequently found there existed either positive or negative correlation between mechanical allodynia and gait parameters or rotating speed following ICTF treatment. Moreover, ICTF not only enhanced the expression of spinal α7nAChR, KCC2, CD206 and IL-10, but also decreased the levels of spinal BDNF, TrkB, CD11b, Iba-1, CD40 and IL-1β in SNI rats. Conversely, α7nAChR antagonist α-Bgtx (I.T.) effectively reversed the inhibitory effects of ICTF on SNI rats, resulting in a remarkable improvement of mechanical allodynia, activation of microglia. and suppression of α7nAChR-mediated BDNF/TrkB/KCC2 signaling. Additionally, exogenous BDNF (I.T.) dramatically abrogated both blockade of BDNF/TrkB/KCC2 cascade and alleviation of mechanical allodynia by ICTF treatment. Altogether, the study highlighted that ICTF could relieve SNI-induced neuropathic pain by suppressing microglial activation via α7nAChR-mediated inhibition of BDNF/TrkB/KCC2 signaling in the spinal cord, suggesting that ICTF may be served as a possible painkiller against neuropathic pain.
Collapse
|
11
|
Xu K, Yu L, Wang Z, Lin P, Zhang N, Xing Y, Yang N. Use of gene therapy for optic nerve protection: Current concepts. Front Neurosci 2023; 17:1158030. [PMID: 37090805 PMCID: PMC10117674 DOI: 10.3389/fnins.2023.1158030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
Gene therapy has become an essential treatment for optic nerve injury (ONI) in recent years, and great strides have been made using animal models. ONI, which is characterized by the loss of retinal ganglion cells (RGCs) and axons, can induce abnormalities in the pupil light reflex, visual field defects, and even vision loss. The eye is a natural organ to target with gene therapy because of its high accessibility and certain immune privilege. As such, numerous gene therapy trials are underway for treating eye diseases such as glaucoma. The aim of this review was to cover research progress made in gene therapy for ONI. Specifically, we focus on the potential of gene therapy to prevent the progression of neurodegenerative diseases and protect both RGCs and axons. We cover the basic information of gene therapy, including the classification of gene therapy, especially focusing on genome editing therapy, and then we introduce common editing tools and vector tools such as Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) -Cas9 and adeno-associated virus (AAV). We also summarize the progress made on understanding the roles of brain derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), phosphatase-tensin homolog (PTEN), suppressor of cytokine signal transduction 3 (SOCS3), histone acetyltransferases (HATs), and other important molecules in optic nerve protection. However, gene therapy still has many challenges, such as misalignment and mutations, immunogenicity of AAV, time it takes and economic cost involved, which means that these issues need to be addressed before clinical trials can be considered.
Collapse
Affiliation(s)
- Kexin Xu
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lu Yu
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Ophthalmology, Aier Eye Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhiyi Wang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Pei Lin
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ningzhi Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Ophthalmology, Aier Eye Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Yiqiao Xing,
| | - Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Ning Yang,
| |
Collapse
|
12
|
Wu Y, Hu Y, Jiang N, Anantharanjit R, Yetisen AK, Cordeiro MF. Quantitative brain-derived neurotrophic factor lateral flow assay for point-of-care detection of glaucoma. LAB ON A CHIP 2022; 22:3521-3532. [PMID: 35979801 DOI: 10.1039/d2lc00431c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glaucoma, a ruinous group of eye diseases with progressive degeneration of the optic nerve and vision loss, is the leading cause of irreversible blindness. Accurate and timely diagnosis of glaucoma is critical to promote secondary prevention and early disease-modifying therapies. Reliable, cheap, and rapid tests for measuring disease activities are highly required. Brain-derived neurotrophic factor (BDNF) plays an important role in maintaining the function and survival of the central nervous system. Decreased BDNF levels in tear fluid can be seen in glaucoma patients, which indicates that BDNF can be regarded as a novel biomarker for glaucoma. Conventional ELISA is the standard method to measure the BDNF level, but the multi-step operation and strict storage conditions limit its usage in point-of-care settings. Herein, a one-step and a portable glaucoma detection method was developed based on the lateral flow assay (LFA) to quantify the BDNF concentration in artificial tear fluids. The results of the LFA were analyzed by using a portable and low-cost system consisting of a smartphone camera and a dark readout box fabricated by 3D printing. The concentration of BDNF was quantified by analyzing the colorimetric intensity of the test line and the control line. This assay yields reliable quantitative results from 25 to 300 pg mL-1 with an experimental detection limit of 14.12 pg mL-1. The LFA shows a high selectivity for BDNF and high stability in different pH environments. It can be readily adapted for sensitive and quantitative testing of BDNF in a point-of-care setting. The BDNF LFA strip shows it has great potential to be used in early glaucoma detection.
Collapse
Affiliation(s)
- Yue Wu
- Department of Chemical Engineering, Imperial College London, South Kensington, London, UK.
- Department of Surgery and Cancer, Imperial College London, South Kensington, London, UK.
| | - Yubing Hu
- Department of Chemical Engineering, Imperial College London, South Kensington, London, UK.
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Rajeevan Anantharanjit
- Department of Surgery and Cancer, Imperial College London, South Kensington, London, UK.
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London, UK
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, South Kensington, London, UK.
| | - M Francesca Cordeiro
- Department of Surgery and Cancer, Imperial College London, South Kensington, London, UK.
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London, UK
- The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London, UK
- Glaucoma and Retinal Neurodegeneration Group, Department of Visual Neuroscience, UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
13
|
Zhou M, Abid M, Cao S, Zhu S. Progress of Research into Novel Drugs and Potential Drug Targets against Porcine Pseudorabies Virus. Viruses 2022; 14:v14081753. [PMID: 36016377 PMCID: PMC9416328 DOI: 10.3390/v14081753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/06/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
Pseudorabies virus (PRV) is the causative agent of pseudorabies (PR), infecting most mammals and some birds. It has been prevalent around the world and caused huge economic losses to the swine industry since its discovery. At present, the prevention of PRV is mainly through vaccination; there are few specific antivirals against PRV, but it is possible to treat PRV infection effectively with drugs. In recent years, some drugs have been reported to treat PR; however, the variety of anti-pseudorabies drugs is limited, and the underlying mechanism of the antiviral effect of some drugs is unclear. Therefore, it is necessary to explore new drug targets for PRV and develop economic and efficient drug resources for prevention and control of PRV. This review will focus on the research progress in drugs and drug targets against PRV in recent years, and discuss the future research prospects of anti-PRV drugs.
Collapse
Affiliation(s)
- Mo Zhou
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225306, China
| | - Muhammad Abid
- Viral Oncogenesis Group, The Pirbright Institute, Ash Road Pirbright, Woking, Surrey GU24 0NF, UK
| | - Shinuo Cao
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225306, China
- Correspondence: (S.C.); (S.Z.)
| | - Shanyuan Zhu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225306, China
- Correspondence: (S.C.); (S.Z.)
| |
Collapse
|
14
|
Rizkiawan DE, Evelyn M, Tjandra KC, Setiawan B. Utilization of Modified Induced Pluripotent Stem Cells as the Advance Therapy of Glaucoma: A Systematic Review. Clin Ophthalmol 2022; 16:2851-2859. [PMID: 36061629 PMCID: PMC9439642 DOI: 10.2147/opth.s372114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Glaucoma is an optic neuropathy disease that causes cupping of the optic disc and decreased visual field. Glaucoma is still the second leading cause of blindness globally, with a worldwide prevalence of more than 76 million people in 2020. However, no therapy can cure glaucoma completely, especially when optic nerve damage has occurred. Available treatments only play a role in keeping the intraocular pressure stable This research aims to determine the potential use of modified stem cell therapy to treat intraocular damage in glaucoma cases. Literature research was conducted by involving seven online databases, namely Pubmed, ScienceDirect®, Proquest, EBSCOhost®, SAGE®, Clinicalkey®, and Scopus, published between 2010–2020 with the keywords stem cells; therapy; glaucoma; optic nerve. Six articles were selected, and out of the six articles, all writings were experimental research. The entire literature states that modified stem cell therapy has the potential as a therapeutic option in treating intraocular damage in patients with glaucoma. Based on the systematic literature review that has been carried out, it is known that stem cell therapy has the potential to be a therapeutic option in treating glaucoma cases. Much more research is needed to assess the effectiveness of modified stem cell therapy in managing intraocular damage due to glaucoma.
Collapse
Affiliation(s)
| | - Malinda Evelyn
- Faculty of Medicine, Diponegoro University, Semarang, Central Java, Indonesia
| | | | - Budi Setiawan
- Department of Internal Medicine, Diponegoro University, Semarang, Central Java, Indonesia
- Correspondence: Budi Setiawan, Department of Internal Medicine, Diponegoro University, Jl. Badak Raya 74, Kota Semarang, Central Java, Indonesia, 50167, Tel +6285865118118, Fax +622467412115, Email
| |
Collapse
|
15
|
Shi ZL, Fan ZY, Zhang H, Li ST, Yuan H, Tong JH. Localized delivery of brain-derived neurotrophic factor from PLGA microspheres promotes peripheral nerve regeneration in rats. J Orthop Surg Res 2022; 17:172. [PMID: 35303915 PMCID: PMC8931983 DOI: 10.1186/s13018-022-02985-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 02/03/2022] [Indexed: 01/29/2023] Open
Abstract
Background Repair of peripheral nerve defect presents a considerable challenge for reconstructive surgeons. The aim of this study is to develop a brain-derived neurotrophic factor (BDNF) from poly(D,L-lactide-co-glycolide) (PLGA) microspheres for the treatment of the peripheral nerve defect. Method BDNF microspheres were prepared by using an oil-in-water emulsification-solvent evaporation method. The morphology, particle size, encapsulation efficiency, drug loading and sustained release performance of microspheres was observed and calculated. Adipose mesenchymal stem cells (ADSCs) were isolated and expanded. ADSCs were divided into four groups: control, BDNF, blank microsphere and BDNF microsphere groups. Cell count kit-8 (CCK-8) assays were used to assess cell proliferation. Cell migration was determined by Transwell assays. Twenty-eight male Sprague–Dawley rats underwent transection damage model on the right sciatic nerve. The wet weight ratio of the gastrocnemius muscle was calculated by comparing the weight of the gastrocnemius muscle from the operated side to that of the normal side. Neuroelectrophysiological testing was performed to assess nerve function recovery. Nerve regeneration was evaluated by histological analysis and immunohistochemical staining. Results The microspheres were spherical and had uniform size (46.38 ± 1.00 μm), high encapsulation efficiency and high loading capacity. In vitro release studies showed that BDNF-loaded microspheres had good sustained release characteristics. The duration of BDNF release was extended to more than 50 days. BDNF or BDNF microsphere promote the proliferation and migration of ADSCs than control group (P < 0.05). Compared with control group, BDNF significantly decreased the nerve conduction velocity (NCV) and compound amplitude (AMP) (P < 0.05). The nerve fibers in the BDNF microsphere group were closely arranged and uniformly distributed than control group. Conclusion BDNF/PLGA sustained-release microsphere could promote the migration of ADSCs and promoted neural differentiation of ADSCs. Moreover, BDNF/PLGA sustained-release microsphere ameliorated nerve conduction velocity and prevented neuralgic amyotrophy.
Collapse
Affiliation(s)
- Zheng-Liang Shi
- Department of Orthopedics, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang, 050000, Hebei Province, China
| | - Zhi-Yong Fan
- Department of Orthopedics, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang, 050000, Hebei Province, China.
| | - Hua Zhang
- Department of Orthopedics, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang, 050000, Hebei Province, China
| | - Shen-Tai Li
- Department of Orthopedics, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang, 050000, Hebei Province, China
| | - He Yuan
- Department of Orthopedics, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang, 050000, Hebei Province, China
| | - Jiu-Hui Tong
- Department of Orthopedics, The Second Hospital of Hebei Medical University, No. 215, Hepingxi Road, Shijiazhuang, 050000, Hebei Province, China
| |
Collapse
|
16
|
Zhao J, Gonsalvez GB, Mysona BA, Smith SB, Bollinger KE. Sigma 1 Receptor Contributes to Astrocyte-Mediated Retinal Ganglion Cell Protection. Invest Ophthalmol Vis Sci 2022; 63:1. [PMID: 35103752 PMCID: PMC8819349 DOI: 10.1167/iovs.63.2.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/28/2021] [Indexed: 01/22/2023] Open
Abstract
Purpose Sigma 1 receptor (S1R) is expressed in retinal ganglion cells (RGCs) and astrocytes, and its activation is neuroprotective. We evaluated the contribution of S1R within optic nerve head astrocytes (ONHAs) to growth and survival of RGCs in vitro. Methods Wild-type (WT) RGCs and WT or S1R knockout (S1R KO) ONHAs were cocultured for 2, 4, or 7 days. Total and maximal neurite length, neurite root, and extremity counts were measured. Cell death was measured using a TUNEL assay. Signal transducer and activator of transcription 3 phosphorylation levels were evaluated in ONHA-derived lysates by immunoblotting. Results The coculture of WT RGCs with WT or S1R KO ONHAs increased the total and maximal neurite length. Neurite root and extremity counts increased at 4 and 7 days when WT RGCs were cocultured with WT or S1R KO ONHAs. At all timepoints, the total and maximal neurite length decreased for WT RGCs in coculture with S1R KO ONHAs compared with WT ONHAs. Root and extremity counts decreased for WT RGCs in coculture with S1R KO ONHAs compared with WT ONHAs at 2 and 7, but not 4 days. RGC apoptosis increased in S1R KO ONHA coculture and S1R KO-conditioned medium, compared with WT ONHA coculture or WT-conditioned medium. S1R KO ONHA-derived lysates showed decreased phosphorylated signal transducer and activator of transcription 3 levels compared with WT ONHA-derived lysates. Conclusions The absence of S1R within ONHAs has a deleterious effect on RGC neurite growth and RGC survival, reflected in analysis of WT RGC + S1R KO ONHA indirect cocultures. The data suggest that S1R may enhance ganglion cell survival via glia-mediated mechanisms.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- Culver Vision Discovery Institute, Augusta, Georgia, United States
| | | | - Barbara A. Mysona
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- Department of Cellular Biology and Anatomy, Augusta, Georgia, United States
- Culver Vision Discovery Institute, Augusta, Georgia, United States
| | - Sylvia B. Smith
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- Department of Cellular Biology and Anatomy, Augusta, Georgia, United States
- Culver Vision Discovery Institute, Augusta, Georgia, United States
| | - Kathryn E. Bollinger
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- Department of Cellular Biology and Anatomy, Augusta, Georgia, United States
- Culver Vision Discovery Institute, Augusta, Georgia, United States
| |
Collapse
|
17
|
González Fleitas MF, Dorfman D, Rosenstein RE. A novel viewpoint in glaucoma therapeutics: enriched environment. Neural Regen Res 2021; 17:1431-1439. [PMID: 34916414 PMCID: PMC8771091 DOI: 10.4103/1673-5374.330594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Glaucoma is one of the world's most frequent visual impairment causes and leads to selective damage to retinal ganglion cells and their axons. Despite glaucoma's most accepted risk factor is increased intraocular pressure (IOP), the mechanisms behind the disease have not been fully elucidated. To date, IOP lowering remains the gold standard; however, glaucoma patients may still lose vision regardless of effective IOP management. Therefore, the exclusive IOP control apparently is not enough to stop the disease progression, and developing new resources to protect the retina and optic nerve against glaucoma is a goal of vast clinical importance. Besides pharmacological treatments, environmental conditions have been shown to prevent neurodegeneration in the central nervous system. In this review, we discuss current concepts on key pathogenic mechanisms involved in glaucoma, the effect of enriched environment on these mechanisms in different experimental models, as well as recent evidence supporting the preventive and therapeutic effect of enriched environment exposure against experimental glaucomatous damage. Finally, we postulate that stimulating vision may become a non-invasive and rehabilitative therapy that could be eventually translated to the human disease, preventing glaucoma-induced terrible sequelae resulting in permanent visual disability.
Collapse
Affiliation(s)
- María F González Fleitas
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Damián Dorfman
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Ruth E Rosenstein
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| |
Collapse
|
18
|
Shalaby WS, Ahmed OM, Waisbourd M, Katz LJ. A Review of Potential Novel Glaucoma Therapeutic Options Independent of Intraocular Pressure. Surv Ophthalmol 2021; 67:1062-1080. [PMID: 34890600 DOI: 10.1016/j.survophthal.2021.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
Glaucoma, a progressive optic neuropathy characterized by retinal ganglion cell degeneration and visual field loss, is the leading cause of irreversible blindness worldwide. Intraocular pressure (IOP) is presently the only modifiable risk factor demonstrated to slow or halt disease progression; however, glaucomatous damage persists in almost 50% of patients despite significant IOP reduction. Many studies have investigated the non-IOP-related risk factors that contribute to glaucoma progression as well as interventions that can prevent or delay glaucomatous neurodegeneration and preserve vision throughout life, independently of IOP. A vast number of experimental studies have reported effective neuroprotection in glaucoma, and clinical studies are ongoing attempting to provide strong evidence of effectiveness of these interventions. In this review, we look into the current understanding of the pathophysiology of glaucoma and explore the recent advances in non-IOP related strategies for neuroprotection and neuroregeneration in glaucoma.
Collapse
Key Words
- AMD, Age-related macular degeneration
- BDNF, Brain derived neurotrophic factor
- CNTF, Ciliary neurotrophic factor
- GDNF, Glial‐derived neurotrophic factor
- Glaucoma
- IOP, Intraocular pressure
- LoGTS, Low-Pressure Glaucoma Treatment Study
- MRI, Magnetic resonance imaging
- MSCs, Mesenchymal stem cells
- NGF, Nerve growth factor
- NTG, Normal tension glaucoma
- OCTA, Optical coherence tomography angiography
- PBM, hotobiomodulation
- PDGF, Platelet derived growth factor
- POAG, Primary open angle glaucoma
- RGCs, Retinal ganglion cells
- TNF-α, Tumor necrosis factor- α
- bFGF, Basic fibroblast growth factor
- gene therapy
- intracranial pressure
- intraocular pressure
- neuroprotection
- ocular blood flow
- oxidative stress
- retinal ganglion cells
- stem cell therapy
Collapse
Affiliation(s)
- Wesam Shamseldin Shalaby
- Glaucoma Research Center, Wills Eye Hospital, Philadelphia, PA, USA; Department of Ophthalmology, Tanta Medical School, Tanta University, Tanta, Gharbia, Egypt
| | - Osama M Ahmed
- Glaucoma Research Center, Wills Eye Hospital, Philadelphia, PA, USA; Yale University School of Medicine, New Haven, CT, USA
| | - Michael Waisbourd
- Glaucoma Research Center, Wills Eye Hospital, Philadelphia, PA, USA; Department of Ophthalmology, Tel Aviv Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - L Jay Katz
- Glaucoma Research Center, Wills Eye Hospital, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Zaitoun IS, Song YS, Suscha A, El Ragaby M, Sorenson CM, Sheibani N. 7, 8-Dihydroxyflavone, a TrkB receptor agonist, provides minimal protection against retinal vascular damage during oxygen-induced ischemic retinopathy. PLoS One 2021; 16:e0260793. [PMID: 34855884 PMCID: PMC8638941 DOI: 10.1371/journal.pone.0260793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/16/2021] [Indexed: 01/11/2023] Open
Abstract
Retinopathy of prematurity (ROP) is one of the main causes of blindness in children worldwide. Brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase B (TrkB), play critical protective roles in the development and function of neurons and vasculature. Lack of BDNF expression results in increased endothelial cell apoptosis and reduced endothelial cell-cell contact. Premature babies who develop ROP tend to have lower serum BDNF levels. BDNF expression is also significantly lower in mouse retinas following exposure to hyperoxia compared to those reared in room air. Specifically, BDNF promotes angiogenic tube formation of endothelial cells (EC), and it is considered an EC survival factor required for stabilization of intramyocardial vessels. We hypothesized that the activation of TrkB receptor protects retinal vasculature in the mice during oxygen-induced ischemic retinopathy (OIR), a model of ROP. To test this hypothesis, we treated neonatal mice with 7,8-dihydroxyflavone (DHF) (5 mg/kg body weight), a TrkB receptor agonist. We examined its potential protective effects on retinal vessel obliteration and neovascularization, two hallmarks of ROP and OIR. We found that retinas from DHF treated postnatal day 8 (P8) and P12 mice have similar levels of vessel obliteration as retinas from age-matched control mice subjected to OIR. Similarly, DHF showed no significant effect on mitigation of retinal neovascularization during OIR in P17 mice. Collectively, our studies demonstrate that the TrkB receptor agonist DHF provides no significant protective effects during OIR.
Collapse
Affiliation(s)
- Ismail S. Zaitoun
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- * E-mail:
| | - Yong-Seok Song
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Andrew Suscha
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Mohamed El Ragaby
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Christine M. Sorenson
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
- Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| |
Collapse
|
20
|
Wu Y, Szymanska M, Hu Y, Fazal MI, Jiang N, Yetisen AK, Cordeiro MF. Measures of disease activity in glaucoma. Biosens Bioelectron 2021; 196:113700. [PMID: 34653715 DOI: 10.1016/j.bios.2021.113700] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022]
Abstract
Glaucoma is the leading cause of irreversible blindness globally which significantly affects the quality of life and has a substantial economic impact. Effective detective methods are necessary to identify glaucoma as early as possible. Regular eye examinations are important for detecting the disease early and preventing deterioration of vision and quality of life. Current methods of measuring disease activity are powerful in describing the functional and structural changes in glaucomatous eyes. However, there is still a need for a novel tool to detect glaucoma earlier and more accurately. Tear fluid biomarker analysis and new imaging technology provide novel surrogate endpoints of glaucoma. Artificial intelligence is a post-diagnostic tool that can analyse ophthalmic test results. A detail review of currently used clinical tests in glaucoma include intraocular pressure test, visual field test and optical coherence tomography are presented. The advanced technologies for glaucoma measurement which can identify specific disease characteristics, as well as the mechanism, performance and future perspectives of these devices are highlighted. Applications of AI in diagnosis and prediction in glaucoma are mentioned. With the development in imaging tools, sensor technologies and artificial intelligence, diagnostic evaluation of glaucoma must assess more variables to facilitate earlier diagnosis and management in the future.
Collapse
Affiliation(s)
- Yue Wu
- Department of Surgery and Cancer, Imperial College London, South Kensington, London, United Kingdom; Department of Chemical Engineering, Imperial College London, South Kensington, London, United Kingdom
| | - Maja Szymanska
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London, United Kingdom
| | - Yubing Hu
- Department of Chemical Engineering, Imperial College London, South Kensington, London, United Kingdom.
| | - M Ihsan Fazal
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London, United Kingdom
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, South Kensington, London, United Kingdom
| | - M Francesca Cordeiro
- The Imperial College Ophthalmic Research Group (ICORG), Imperial College London, London, United Kingdom; The Western Eye Hospital, Imperial College Healthcare NHS Trust (ICHNT), London, United Kingdom; Glaucoma and Retinal Neurodegeneration Group, Department of Visual Neuroscience, UCL Institute of Ophthalmology, London, United Kingdom.
| |
Collapse
|
21
|
Management of toxic optic neuropathy via a combination of Wharton's jelly-derived mesenchymal stem cells with electromagnetic stimulation. Stem Cell Res Ther 2021; 12:518. [PMID: 34579767 PMCID: PMC8477499 DOI: 10.1186/s13287-021-02577-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/27/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To investigate the effect of the combination of Wharton's jelly derived mesenchymal stem cells (WJ-MSC) and high frequency repetitive electromagnetic stimulation (rEMS) in the therapy of toxic optic neuropathies with severe symptoms after the available current therapy modalities which were unsucessful. MATERIAL AND METHODS This prospective, open-label clinical phase-3 study was conducted at Ankara University Faculty of Medicine, Department of Ophthalmology between April 2019 and April 2021. Thirty-six eyes of 18 patients with toxic optic neuropathy (TON) were included in the study. Within 1-3 months after the emergency interventions, patients with various degrees of sequela visual disturbances were studied in this clinical trial. The cases were divided into three groups according to similar demographic characteristics. Group 1: Consists of 12 eyes of 12 patients treated with the WJ-MSC and rEMS combination in one eye. Group 2: Consists of 12 eyes of 12 patients treated with only rEMS in one eye. Group 3: Consists of 12 eyes of six patients treated with only WJ-MSC in both eyes. The course was evaluated by comparing the quantitive functional and structural assessment parameters measured before and at the fourth month of applications in each group. RESULTS The mean best corrected visual acuity (BCVA) delta change percentages of the groups can be ranked as: Group 1 (47%) > Group 3 (32%) > Group 2 (21%). The mean fundus perimetry deviation index (FPDI) delta change percentages of the groups can be ranked as: Group 1 (95%) > Group 2 (33%) > Group 3 (27%). The mean ganglion cell complex (GCC) thickness delta change (decrease in thickness) percentages can be ranked as: Group 1 (- 21%) > Group 3 (- 15%) > Group 2 (- 13%). The visual evoked potential (VEP) P100 latency delta change percentages of the groups can be ranked as: Group 1 (- 18%) > Group 3 (- 10%) > Group 2 (- 8%). The P100 amplitude delta change percentages of the groups can be ranked as: Group 1 (105%) > Group 3 (83%) > Group 2 (24%). CONCLUSION Toxic optic neuropathies are emergent pathologies that can result in acute and permanent blindness. After poisoning with toxic substances, progressive apoptosis continues in optic nerve axons and ganglion cells. After the proper first systemic intervention in intensive care clinic, the WJ-MSC and rEMS combination seems very effective in the short-term period in cases with TON. To prevent permanent blindness, a combination of WJ-MSC and rEMS application as soon as possible may increase the chance of success in currently untreatable cases. Trial Registration ClinicalTrials.gov ID: NCT04877067.
Collapse
|
22
|
Effect of Electroacupuncture at Siguan Acupoints on Expression of BDNF and TrkB Proteins in the Hippocampus of Post-Stroke Depression Rats. J Mol Neurosci 2021; 71:2165-2171. [PMID: 34041688 DOI: 10.1007/s12031-021-01844-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
To study the effect of electroacupuncture at the Siguan acupoints on the expression of hippocampal brain-derived neurotrophic factor (BDNF) and tyrosine receptor kinase B (TrkB) in post-stroke depression (PSD) rats, in order to explore its possible mechanism Fifty specific pathogen-free (SPF)-grade adult male Sprague-Dawley (SD) rats were randomly divided into a blank group, stroke group, PSD group, Siguan acupoint group and fluoxetine group according to the random number method. PSD rats were modeled with middle cerebral artery occlusion combined with chronic unpredictable mild stress. After successful modeling, electroacupuncture was applied to Siguan acupoints for a total of 21 days at 30 min/session/day. The rats in the fluoxetine group were fed intragastrically according to body weight, once a day, for a total of 21 days. The rats in each group were bound and intragastrically administered distilled water every day. The depressive behavior of rats was measured according to the horizontal and vertical scores of the open field test and the sucrose water consumption, and the changes in the number of BDNF- and TrkB-positive cells in the hippocampus of rats were observed by immunohistochemistry. After modeling, the behavioral indicators and the numbers of BDNF- and TrkB-positive cells in each model group were significantly lower than those in the blank group (P < 0.01). After treatment, the behavioral indicators and the numbers of BDNF- and TrkB-positive cells in the Siguan acupoint group and fluoxetine group were significantly higher than that in the PSD group (P < 0.01). During the treatment, the horizontal and vertical scores of the Siguan acupoint group were significantly increased on the seventh day of treatment, and the difference was statistically significant when compared with the PSD group (P < 0.05). The sucrose water consumption was significantly increased on the 14th day of treatment, and the difference was significant when compared with the PSD group (P < 0.05), both of which were earlier than that in the fluoxetine group. During the treatment, there was no significant difference between the two groups (P > 0.05). Electroacupuncture at Siguan acupoints has the same antidepressant effect as fluoxetine, and is more effective than fluoxetine in relieving depression in PSD rats. Its mechanism may be related to the activation of the expression of BDNF and its receptor TrkB.
Collapse
|
23
|
Rhee J, Shih KC. Use of Gene Therapy in Retinal Ganglion Cell Neuroprotection: Current Concepts and Future Directions. Biomolecules 2021; 11:biom11040581. [PMID: 33920974 PMCID: PMC8071340 DOI: 10.3390/biom11040581] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
We systematically reviewed published translational research on gene-based therapy for retinal ganglion cell (RGC) neuroprotection. A search was conducted on Entrez PubMed on 23 December 2020 using the keywords "gene therapy", "retinal ganglion cell" and "neuroprotection". The initial search yielded 82 relevant articles. After restricting publications to those with full text available and in the English language, and then curating for only original articles on gene-based therapy, the final yield was 18 relevant articles. From the 18 papers, 17 of the papers utilized an adeno-associated viral (AAV) vector for gene therapy encoding specific genes of interest. Specifically, six of the studies utilized an AAV vector encoding brain-derived neurotrophic factor (BDNF), two of the studies utilized an AAV vector encoding erythropoietin (EPO), the remaining 10 papers utilized AAV vectors encoding different genes and one microRNA study. Although the literature shows promising results in both in vivo and in vitro models, there is still a significant way to go before gene-based therapy for RGC neuroprotection can proceed to clinical trials. Namely, the models of injury in many of the studies were more acute in nature, unlike the more progressive and neurodegenerative pathophysiology of diseases, such as glaucoma. The regulation of gene expression is also highly unexplored despite the use of AAV vectors in the majority of the studies reviewed. It is also expected that with the successful launch of messenger ribonucleic acid (mRNA)-based vaccinations in 2020, we will see a shift towards this technology for gene-based therapy in glaucoma neuroprotection.
Collapse
Affiliation(s)
- Jess Rhee
- Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A3K7, Canada;
| | - Kendrick Co Shih
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Correspondence:
| |
Collapse
|
24
|
Sahli E, Arslan U, Özmert E, İdil A. Evaluation of the effect of subtenon autologous platelet-rich plasma injections on visual functions in patients with retinitis pigmentosa. Regen Med 2021; 16:131-143. [PMID: 33754798 DOI: 10.2217/rme-2020-0075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The photoreceptors in retinitis pigmentosa (RP) remain in dormant status for a while with a decrease in the growth factors in their microenvironment before apoptosis. Growth factors reduce retinal degeneration and apoptosis in animal models. Materials & methods: The data of 188 eyes of 94 patients who were injected with autologous platelet-rich plasma (PRP) into the subtenon space three-times every 2 weeks were evaluated retrospectively. Results: Statistically significant improvements in visual acuity, visual field and fixation stability were detected after treatment. When the treatment response of the patients' better-seeing eye compared with the response of the other eye, there was no statistically significant difference. Conclusion: The PRP treatment has a favorable effect on visual functions in patients with RP. This approach is promising as it is safe and easy.
Collapse
Affiliation(s)
- Esra Sahli
- Department of Ophthalmology, Ankara University, School of Medicine, Ankara 06620, Turkey
| | - Umut Arslan
- Ankara University, Technopolis, Ankara 06830, Turkey.,Bioretina Eye Clinic, Ankara 06560, Turkey
| | - Emin Özmert
- Department of Ophthalmology, Ankara University, School of Medicine, Ankara 06620, Turkey
| | - Aysun İdil
- Department of Ophthalmology, Ankara University, School of Medicine, Ankara 06620, Turkey
| |
Collapse
|
25
|
Aggio-Bruce R, Chu-Tan JA, Wooff Y, Cioanca AV, Schumann U, Natoli R. Inhibition of microRNA-155 Protects Retinal Function Through Attenuation of Inflammation in Retinal Degeneration. Mol Neurobiol 2021; 58:835-854. [PMID: 33037565 PMCID: PMC7843561 DOI: 10.1007/s12035-020-02158-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/01/2020] [Indexed: 01/14/2023]
Abstract
Although extensively investigated in inflammatory conditions, the role of pro-inflammatory microRNAs (miRNAs), miR-155 and miR-146a, has not been well-studied in retinal degenerative diseases. We therefore aimed to explore the role and regulation of these miRNA in the degenerating retina, with a focus on miR-155. C57BL/6J mice were subjected to photo-oxidative damage for up to 5 days to induce focal retinal degeneration. MiR-155 expression was quantified by qRT-PCR in whole retina, serum, and small-medium extracellular vesicles (s-mEVs), and a PrimeFlow™ assay was used to identify localisation of miR-155 in retinal cells. Constitutive miR-155 knockout (KO) mice and miR-155 and miR-146a inhibitors were utilised to determine the role of these miRNA in the degenerating retina. Electroretinography was employed as a measure of retinal function, while histological quantification of TUNEL+ and IBA1+ positive cells was used to quantify photoreceptor cell death and infiltrating immune cells, respectively. Upregulation of miR-155 was detected in retinal tissue, serum and s-mEVs in response to photo-oxidative damage, localising to the nucleus of a subset of retinal ganglion cells and glial cells and in the cytoplasm of photoreceptors. Inhibition of miR-155 showed increased function from negative controls and a less pathological pattern of IBA1+ cell localisation and morphology at 5 days photo-oxidative damage. While neither dim-reared nor damaged miR-155 KO animals showed retinal histological difference from controls, following photo-oxidative damage, miR-155 KO mice showed increased a-wave relative to controls. We therefore consider miR-155 to be associated with the inflammatory response of the retina in response to photoreceptor-specific degeneration.
Collapse
Affiliation(s)
- Riemke Aggio-Bruce
- The John Curtin School of Medical Research, The Australian National University, Garran Road, Acton, Australian Capital Territory, 2601, Australia
- The Australian National University Medical School, Mills Road, Australian Capital Territory, Acton, 2601, Australia
| | - Joshua A Chu-Tan
- The John Curtin School of Medical Research, The Australian National University, Garran Road, Acton, Australian Capital Territory, 2601, Australia
- The Australian National University Medical School, Mills Road, Australian Capital Territory, Acton, 2601, Australia
| | - Yvette Wooff
- The John Curtin School of Medical Research, The Australian National University, Garran Road, Acton, Australian Capital Territory, 2601, Australia
- The Australian National University Medical School, Mills Road, Australian Capital Territory, Acton, 2601, Australia
| | - Adrian V Cioanca
- The John Curtin School of Medical Research, The Australian National University, Garran Road, Acton, Australian Capital Territory, 2601, Australia
| | - Ulrike Schumann
- The John Curtin School of Medical Research, The Australian National University, Garran Road, Acton, Australian Capital Territory, 2601, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Garran Road, Acton, Australian Capital Territory, 2601, Australia.
- The Australian National University Medical School, Mills Road, Australian Capital Territory, Acton, 2601, Australia.
| |
Collapse
|
26
|
Jassim AH, Cavanaugh M, Shah JS, Willits R, Inman DM. Transcorneal Electrical Stimulation Reduces Neurodegenerative Process in a Mouse Model of Glaucoma. Ann Biomed Eng 2021; 49:858-870. [PMID: 32974756 PMCID: PMC7854493 DOI: 10.1007/s10439-020-02608-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022]
Abstract
Glaucoma is a neurodegenerative disease in which the retinal ganglion cell axons of the optic nerve degenerate concomitant with synaptic changes in the retina, leading finally to death of the retinal ganglion cells (RGCs). Electrical stimulation has been used to improve neural regeneration in a variety of systems, including in diseases of the retina. Therefore, the focus of this study was to investigate whether transcorneal electrical stimulation (TES) in the DBA2/J mouse model of glaucoma could improve retinal or optic nerve pathology and serve as a minimally invasive treatment option. Mice (10 months-old) received 21 sessions of TES over 8 weeks, after which we evaluated RGC number, axon number, and anterograde axonal transport using histology and immunohistochemistry. To gain insight into the mechanism of proposed protection, we also evaluated inflammation by quantifying CD3+ T-cells and Iba1+ microglia; perturbations in metabolism were shown via the ratio pAMPK to AMPK, and changes in trophic support were tested using protein capillary electrophoresis. We found that TES resulted in RGC axon protection, a reduction in inflammatory cells and their activation, improved energy homeostasis, and a reduction of the cell death-associated p75NTR. Collectively, the data indicated that TES maintained axons, decreased inflammation, and increased trophic factor support, in the form of receptor presence and energy homeostasis, suggesting that electrical stimulation impacts several facets of the neurodegenerative process in glaucoma.
Collapse
Affiliation(s)
- Assraa Hassan Jassim
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
- Department of Basic and Translational Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - McKay Cavanaugh
- Department of Biomedical Engineering, University of Akron, Akron, OH, USA
| | | | - Rebecca Willits
- Department of Biomedical Engineering, University of Akron, Akron, OH, USA.
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA.
| | - Denise M Inman
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA.
- North Texas Eye Research Institute, UNT-HSC, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| |
Collapse
|
27
|
Neurotrophic Factors in Glaucoma and Innovative Delivery Systems. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10249015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glaucoma is a neurodegenerative disease and a worldwide leading cause of irreversible vision loss. In the last decades, high efforts have been made to develop novel treatments effective in inducing protection and/or recovery of neural function in glaucoma, including neurotrophic factors (NTFs). These approaches have shown encouraging data in preclinical setting; however, the challenge of sustained, targeted delivery to the retina and optic nerve still prevents the clinical translation. In this paper, the authors review and discuss the most recent advances for the use of NTFs treatment in glaucoma, including intraocular delivery. Novel strategies in drug and gene delivery technology for NTFs are proving effective in promoting long-term retinal ganglion cells (RGCs) survival and related functional improvements. Results of experimental and clinical studies evaluating the efficacy and safety of biodegradable slow-release NTF-loaded microparticle devices, encapsulated NTF-secreting cells implants, mimetic ligands for NTF receptors, and viral and non-viral NTF gene vehicles are discussed. NTFs are able to prevent and even reverse apoptotic ganglion cell death. Nevertheless, neuroprotection in glaucoma remains an open issue due to the unmet need of sustained delivery to the posterior segment of the eye. The recent advances in intraocular delivery systems pave the way for possible future use of NTFs in clinical practice for the treatment of glaucoma.
Collapse
|
28
|
Arslan U, Özmert E. Treatment of resistant chronic central serous chorioretinopathy via platelet-rich plasma with electromagnetic stimulation. Regen Med 2020; 15:2001-2014. [PMID: 33107400 DOI: 10.2217/rme-2020-0056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background: To evaluate whether subtenon injection of platelet-rich plasma (PRP) with retinal electromagnetic stimulation (rEMS) is effective in therapy-resistant chronic central serous chorioretinopathy (CSCR). Design: Prospective, sequential. Materials & methods: The study included 22 eyes with resistant chronic CSCR. Cases receiving micropulse laser or additional photodynamic therapy, subtenon PRP, and subtenon PRP + rEMS were classified as times 1, 2 and 3, respectively. Results: At time 3, the mean best-corrected visual acuity was 85.7 and 97.0 letters before and after the procedures, respectively (p = 0.01). Submacular thickness improved by 17, 27 and 51% at times 1, 2 and 3 respectively. Conclusion: For treating resistant CSCR, subtenon PRP + rEMS should be considered as an effective and safe option. Trial Registration: ClinicalTrials.gov ID: NCT04224831.
Collapse
Affiliation(s)
- Umut Arslan
- Ankara University Technopolis, Ankara, Turkey
| | - Emin Özmert
- Ankara University Faculty of Medicine Department of Ophthalmology, Ankara, Turkey
| |
Collapse
|
29
|
A Prospective Cohort Study of Muscular and Performance Fitness and Incident Glaucoma: The Niigata Wellness Study. J Phys Act Health 2020; 17:1171-1178. [PMID: 33055296 DOI: 10.1123/jpah.2019-0660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 07/01/2020] [Accepted: 08/30/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND To examine the association between muscular and performance fitness (MPF) and the incidence of glaucoma. METHODS A total of 27,051 glaucoma-free participants aged 20-87 years underwent physical fitness tests between April 2001 and March 2002. The MPF index was calculated using an age- and sex-specific summed z-score from grip strength, vertical jump, single-leg balance, forward bending, and whole-body reaction time. The participants were divided into quartiles according to the MPF index and each physical fitness test. Participants were followed up for the development of glaucoma, which was defined based on physician-diagnosed glaucoma at an annual health examination between April 2002 and March 2008. Hazard ratios for the incidence of glaucoma were estimated using Cox proportional hazards models. RESULTS During follow-up, 303 participants developed glaucoma. Compared with the lowest MPF index group, hazard ratio (95% confidence interval) of developing glaucoma was 0.64 (0.46-0.89) for the highest MPF index group (P for trend = .001). Vertical jump and whole-body reaction time were associated with incident glaucoma (P for trend = .01 and <.001, respectively). There were no associations between the other physical fitness tests and the incidence of glaucoma. CONCLUSION Higher MPF is associated with lower incidence of glaucoma.
Collapse
|
30
|
Gupta VB, Chitranshi N, den Haan J, Mirzaei M, You Y, Lim JK, Basavarajappa D, Godinez A, Di Angelantonio S, Sachdev P, Salekdeh GH, Bouwman F, Graham S, Gupta V. Retinal changes in Alzheimer's disease- integrated prospects of imaging, functional and molecular advances. Prog Retin Eye Res 2020; 82:100899. [PMID: 32890742 DOI: 10.1016/j.preteyeres.2020.100899] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022]
Abstract
Alzheimer's Disease (AD) is a devastating neurodegenerative disorder of the brain, clinically characterised by cognitive deficits that gradually worsen over time. There is, at present, no established cure, or disease-modifying treatments for AD. As life expectancy increases globally, the number of individuals suffering from the disease is projected to increase substantially. Cumulative evidence indicates that AD neuropathological process is initiated several years, if not decades, before clinical signs are evident in patients, and diagnosis made. While several imaging, cognitive, CSF and blood-based biomarkers have been proposed for the early detection of AD; their sensitivity and specificity in the symptomatic stages is highly variable and it is difficult to justify their use in even earlier, pre-clinical stages of the disease. Research has identified potentially measurable functional, structural, metabolic and vascular changes in the retina during early stages of AD. Retina offers a distinctively accessible insight into brain pathology and current and developing ophthalmic technologies have provided us with the possibility of detecting and characterising subtle, disease-related changes. Recent human and animal model studies have further provided mechanistic insights into the biochemical pathways that are altered in the retina in disease, including amyloid and tau deposition. This information coupled with advances in molecular imaging has allowed attempts to monitor biochemical changes and protein aggregation pathology in the retina in AD. This review summarises the existing knowledge that informs our understanding of the impact of AD on the retina and highlights some of the gaps that need to be addressed. Future research will integrate molecular imaging innovation with functional and structural changes to enhance our knowledge of the AD pathophysiological mechanisms and establish the utility of monitoring retinal changes as a potential biomarker for AD.
Collapse
Affiliation(s)
- Veer B Gupta
- School of Medicine, Deakin University, VIC, Australia
| | - Nitin Chitranshi
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Jurre den Haan
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
| | - Mehdi Mirzaei
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Yuyi You
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Jeremiah Kh Lim
- Optometry and Vision Science, College of Nursing and Health Sciences, Bedford Park, South Australia, 5042, Australia
| | - Devaraj Basavarajappa
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Angela Godinez
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Silvia Di Angelantonio
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Perminder Sachdev
- Centre for Healthy Brain and Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia; Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Ghasem H Salekdeh
- Department of Molecular Systems Biology, Cell Science Research Center, Royan, Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Femke Bouwman
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
| | - Stuart Graham
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia; Save Sight Institute, Sydney University, Sydney, NSW, 2000, Australia.
| | - Vivek Gupta
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia.
| |
Collapse
|
31
|
Özmert E, Arslan U. Management of retinitis pigmentosa by Wharton's jelly-derived mesenchymal stem cells: prospective analysis of 1-year results. Stem Cell Res Ther 2020; 11:353. [PMID: 32787913 PMCID: PMC7425139 DOI: 10.1186/s13287-020-01870-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE The aim of the study was to investigate annual structural and functional results, and their correlation with inheritance pattern of retinitis pigmentosa (RP) patients who were treated with Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs). MATERIAL AND METHODS This prospective, sequential, open-label phase-3 clinical study was conducted at Ankara University Faculty of Medicine, Department of Ophthalmology, between April 2019 and May 2020. The study included 34 eyes from 32 retinitis pigmentosa patients of various genotypes who were enrolled in the stem cells clinical trial. The patients were followed for 12 months after the WJ-MSCs transplantation into subtenon space and evaluated with consecutive examinations. Genetic mutations were investigated using a retinitis pigmentosa panel sequencing method consisting of 90 genes. All patients underwent a complete routine ophthalmic examination with best corrected visual acuity, optical coherence tomography angiography, visual field, and full-field electroretinography. Quantitative data obtained from baseline (T0), 6th month (T1), and 12th month (T2) examinations were compared. RESULTS According to timepoints at T0, T1, and T2: The mean outer retinal thickness was 100.3 μm, 119.1 μm, and 118.0 μm, respectively (p = 0.01; T0 < T1, T2). The mean horizontal ellipsoid zone width were 2.65 mm, 2.70 mm, and 2.69 mm respectively (p = 0.01; T0 < T1, T2). The mean best corrected visual acuity (BCVA) were 70.5 letters, 80.6 letters, and 79.9 letters, respectively (p = 0.01; T0 < T1, T2). The mean fundus perimetry deviation index (FPDI) was 8.0%, 11.4%, and 11.6%, respectively (p = 0.01; T0 < T1, T2). The mean full-field flicker ERG parameters at T0, T1, and T2: amplitudes were 2.4 mV, 5.0 mV, and 4.6 mV, respectively (p = 0.01; T0 < T1, T2). Implicit time were 43.3 ms, 37.9 ms, and 38.6 ms, respectively (p = 0.01; T0 > T1, T2). According to inheritance pattern, BCVA, FPDI, ERG amplitude, and implicit time data improved significantly in autosomal dominant (AD) and in autosomal recessive (AR) RP at 1 year follow-up (pAD = 0.01, pAR = 0.01; pAD = pAR > pX-linked). No ocular or systemic adverse events related to the surgical methods and/or WJ-MSCs were observed during the 1 year follow-up period. CONCLUSION Subtenon transplantation of WJ-MSCs was found to be effective and safe in the treatment of RP during the first year, similar to the sixth month's results. In autosomal dominant and autosomal recessive inheritance of RP, regardless of the genetic mutations, subtenon administration of WJ-MSCs can be considered an effective and safe option without any adverse effect for slowing or stopping the disease progression. TRIAL REGISTRATION ClinicalTrials.gov, NCT04224207 . Registered 8 January 2020.
Collapse
Affiliation(s)
- Emin Özmert
- Faculty of Medicine Department of Ophthalmology, Ankara University, Ankara, Turkey
| | - Umut Arslan
- Bioretina Eye Clinic, Ankara University Technopolis, Neorama Ofis 55-56 Yaşam Cad. No 13/A Beştepe, Yenimahalle, Ankara, Turkey
| |
Collapse
|
32
|
Li Q, Jin R, Zhang S, Sun X, Wu J. Group II metabotropic glutamate receptor agonist promotes retinal ganglion cell survival by reducing neuronal excitotoxicity in a rat chronic ocular hypertension model. Neuropharmacology 2020; 170:108016. [PMID: 32101763 DOI: 10.1016/j.neuropharm.2020.108016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/24/2020] [Accepted: 02/21/2020] [Indexed: 02/06/2023]
Abstract
Glaucoma, the second leading cause of irreversible blindness worldwide, is characterized by the selective death of retinal ganglion cells (RGCs). The group II metabotropic glutamate receptor (mGluR II) activation has been linked to RGC survival, however, the mechanism by which it promotes neuronal survival remains poorly defined. In the present work, we show that extracellular application of LY341495, an mGluR II antagonist could increase the RGC firing frequency, suggesting that activation of mGluR II by endogenously released glutamate could modulate RGC excitability. LY354740, an mGluR II agonist, significantly decreased RGC excitability and the reduced presynaptic excitatory inputs and post-synaptic Ca2+-permeable currents mediated the LY354740-induced effects. By using a well-characterized in vivo male Sprague-Dawley rat glaucoma model, we further demonstrate that in the early stage of experimental glaucoma, the expression of mGluR II dimer-formed protein was significantly reduced, and pre-activation of mGluR II by intravitreal injection of LY354740 before establishment of the glaucoma model could effectively reduce excitatory inputs, thereby reversing hyperexcitability induced by elevated intraocular pressure. Furthermore, LY354740 could increase the expression level of brain-derived neurotrophic factor in the glaucomatous retinas, further protecting RGCs. Our study indicates that the abnormal expression of mGluR II may accelerate RGC apoptosis in glaucoma, and demonstrates that mGluR II agonist LY354740 can be used as a novel method to counter RGC apoptosis in glaucoma.
Collapse
Affiliation(s)
- Qian Li
- Eye Institute, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Ruiri Jin
- Department of Gastroenterology, Songjiang Central Hospital, Shanghai, 201600, China
| | - Shenghai Zhang
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China
| | - Xinghuai Sun
- Eye Institute, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
| | - Jihong Wu
- Eye Institute, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
33
|
Huang P, Liu A, Song Y, Hope JM, Cui B, Duan L. Optical Activation of TrkB Signaling. J Mol Biol 2020; 432:3761-3770. [PMID: 32422149 DOI: 10.1016/j.jmb.2020.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 01/04/2023]
Abstract
Brain-derived neurotrophic factor, via activation of tropomyosin receptor kinase B (TrkB), plays a critical role in neuronal proliferation, differentiation, survival, and death. Dysregulation of TrkB signaling is implicated in neurodegenerative disorders and cancers. Precise activation of TrkB signaling with spatial and temporal resolution is greatly desired to study the dynamic nature of TrkB signaling and its role in related diseases. Here we develop different optogenetic approaches that use light to activate TrkB signaling. Utilizing the photosensitive protein Arabidopsis thaliana cryptochrome 2, the light-inducible homo-interaction of the intracellular domain of TrkB in the cytosol or on the plasma membrane is able to induce the activation of downstream MAPK/ERK and PI3K/Akt signaling as well as the neurite outgrowth of PC12 cells. Moreover, we prove that such strategies are generalizable to other optical homo-dimerizers by demonstrating the optical TrkB activation based on the light-oxygen-voltage domain of aureochrome 1 from Vaucheria frigida. The results open up new possibilities of many other optical platforms to activate TrkB signaling to fulfill customized needs. By comparing all the different strategies, we find that the cryptochrome 2-integrated approach to achieve light-induced cell membrane recruitment and homo-interaction of intracellular domain of TrkB is most efficient in activating TrkB signaling. The optogenetic strategies presented are promising tools to investigate brain-derived neurotrophic factor/TrkB signaling with tight spatial and temporal control.
Collapse
Affiliation(s)
- Peiyuan Huang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
| | - Aofei Liu
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Yutong Song
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
| | - Jen M Hope
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Liting Duan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China.
| |
Collapse
|
34
|
Management of Retinitis Pigmentosa via Platelet-Rich Plasma or Combination with Electromagnetic Stimulation: Retrospective Analysis of 1-Year Results. Adv Ther 2020; 37:2390-2412. [PMID: 32303913 DOI: 10.1007/s12325-020-01308-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE To investigate whether the natural progression rate of retinitis pigmentosa can be decreased by subtenon autologous platelet-rich plasma application alone or combination with retinal electromagnetic stimulation. METHODS The study includes retrospective analysis of 60 patients with retinitis pigmentosa. Patients constitute three groups with similar demographic characteristics: the combined management group (group 1) consists of 20 patients with retinitis pigmentosa (40 eyes) who received combined retinal electromagnetic stimulation and subtenon platelet-rich plasma; the subtenon platelet-rich plasma-only group (group 2) consisted of 20 patients with retinitis pigmentosa (40 eyes); the natural course (control) group (group 3) consists of 20 patients with retinitis pigmentosa (40 eyes) who did not receive any treatment. Horizontal and vertical ellipsoid zone width, fundus perimetry deviation index, and best corrected visual acuity changes were compared within and between groups after a 1-year follow-up period. RESULTS Detected horizontal ellipsoid zone percentage changes were + 1% in group 1, - 2.85% in group 2, and - 9.36% in group 3 (Δp 1 > 2 > 3). Detected vertical ellipsoid zone percentage changes were + 0.34% in group 1, - 3.05% in group 2, and - 9.09% in group 3 (Δp 1 > 2 > 3). Detected fundus perimetry deviation index percentage changes were + 0.05% in group 1, - 2.68% in group 2, and - 8.78% in group 3 (Δp 1 > 2 > 3). CONCLUSION Platelet-rich plasma is a good source of growth factors, but its half-life is 4-6 months. Subtenon autologous platelet-rich plasma might more effectively slow down photoreceptor loss when repeated as booster injections and combined with retinal electromagnetic stimulation. TRIAL REGISTRATION ClinicalTrials.gov identifier, NCT04252534.
Collapse
|
35
|
Özmert E, Arslan U. Management of retinitis pigmentosa by Wharton's jelly derived mesenchymal stem cells: preliminary clinical results. Stem Cell Res Ther 2020; 11:25. [PMID: 31931872 PMCID: PMC6958670 DOI: 10.1186/s13287-020-1549-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/12/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE The aim of this study is to determine if umbilical cord Wharton's jelly derived mesenchymal stem cells implanted in sub-tenon space have beneficial effects on visual functions in retinitis pigmentosa patients by reactivating the degenerated photoreceptors in dormant phase. MATERIAL AND METHODS This prospective, open-label, phase-3 clinical trial was conducted between April of 2019 and October of 2019 at Ankara University Faculty of Medicine, Department of Ophthalmology. 32 RP patients (34 eyes) were included in the study. The patients were followed for 6 months after the Wharton's jelly derived mesenchymal stem cell administration, and evaluated with consecutive examinations. All patients underwent a complete routine ophthalmic examination, and best corrected visual acuity, optical coherens tomography angiography, visual field, multifocal and full-field electroretinography were performed. The quantitative results were obtained from a comparison of the pre-injection and final examination (6th month) values. RESULTS The mean best corrected visual acuity was 70.5 letters prior to Wharton's jelly derived mesenchymal stem cell application and 80.6 letters at the 6th month (p = 0.01). The mean visual field median deviation value was 27.3 dB before the treatment and 24.7 dB at the 6th month (p = 0.01). The mean outer retinal thickness was 100.3 μm before the treatment and 119.1 μm at 6th month (p = 0.01). In the multifocal electroretinography results, P1 amplitudes improved in ring1 from 24.8 to 39.8 nv/deg2 (p = 0.01), in ring2 from 6.8 to 13.6 nv/deg2 (p = 0.01), and in ring3 from 3.1 to 5.7 nv/deg2 (p = 0.02). P1 implicit times improved in ring1 from 44.2 to 32.4 ms (p = 0.01), in ring2 from 45.2 to 33.2 ms (p = 0.02), and in ring3 from 41.9 to 32.4 ms (p = 0.01). The mean amplitude improved in 16 Tds from 2.4 to 5.0 nv/deg2 (p = 0.01) and in 32 Tds from 2.4 to 4.8 nv/deg2 (p = 0.01) in the full-field flicker electroretinography results. Full field flicker electroretinography mean implicit time also improved in 16 Tds from 43.3 to 37.9 ms (p = 0.01). No ocular or systemic adverse events related to the two types of surgical methods and/or Wharton's jelly derived mesenchymal stem cells itself were observed during the follow-up period. CONCLUSION RP is a genetic disorder that can result in blindness with outer retinal degeneration. Regardless of the type of genetic mutation, sub-tenon Wharton's jelly derived mesenchymal stem cell administration appears to be an effective and safe option. There are no serious adverse events or ophthalmic / systemic side effects for 6 months follow-up. Although the long-term adverse effects are still unknown, as an extraocular approach, subtenon implantation of the stem cells seems to be a reasonable way to avoid the devastating side effects of intravitreal/submacular injection. Further studies that include long-term follow-up are needed to determine the duration of efficacy and the frequency of application. TRIAL REGISTRATION SHGM56733164. Redistered 28 January 2019 https://shgm.saglik.gov.tr/organ-ve-doku-nakli-koordinatorlugu/56733164/203 E.507.
Collapse
Affiliation(s)
- Emin Özmert
- Faculty of Medicine Department of Ophthalmology, Ankara University, Ankara, Turkey
| | - Umut Arslan
- Ankara University Technopolis, Neorama Ofis 55-56 Yaşam Cad, No 13/A Beştepe /Yenimahalle, Ankara, Turkey.
| |
Collapse
|
36
|
Martinez-Moreno CG, Epardo D, Balderas-Márquez JE, Fleming T, Carranza M, Luna M, Harvey S, Arámburo C. Regenerative Effect of Growth Hormone (GH) in the Retina after Kainic Acid Excitotoxic Damage. Int J Mol Sci 2019; 20:E4433. [PMID: 31509934 PMCID: PMC6770150 DOI: 10.3390/ijms20184433] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
In addition to its role as an endocrine messenger, growth hormone (GH) also acts as a neurotrophic factor in the central nervous system (CNS), whose effects are involved in neuroprotection, axonal growth, and synaptogenic modulation. An increasing amount of clinical evidence shows a beneficial effect of GH treatment in patients with brain trauma, stroke, spinal cord injury, impaired cognitive function, and neurodegenerative processes. In response to injury, Müller cells transdifferentiate into neural progenitors and proliferate, which constitutes an early regenerative process in the chicken retina. In this work, we studied the long-term protective effect of GH after causing severe excitotoxic damage in the retina. Thus, an acute neural injury was induced via the intravitreal injection of kainic acid (KA, 20 µg), which was followed by chronic administration of GH (10 injections [300 ng] over 21 days). Damage provoked a severe disruption of several retinal layers. However, in KA-damaged retinas treated with GH, we observed a significant restoration of the inner plexiform layer (IPL, 2.4-fold) and inner nuclear layer (INL, 1.5-fold) thickness and a general improvement of the retinal structure. In addition, we also observed an increase in the expression of several genes involved in important regenerative pathways, including: synaptogenic markers (DLG1, NRXN1, GAP43); glutamate receptor subunits (NR1 and GRIK4); pro-survival factors (BDNF, Bcl-2 and TNF-R2); and Notch signaling proteins (Notch1 and Hes5). Interestingly, Müller cell transdifferentiation markers (Sox2 and FGF2) were upregulated by this long-term chronic GH treatment. These results are consistent with a significant increase in the number of BrdU-positive cells observed in the KA-damaged retina, which was induced by GH administration. Our data suggest that GH is able to facilitate the early proliferative response of the injured retina and enhance the regeneration of neurite interconnections.
Collapse
Affiliation(s)
- Carlos G Martinez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico.
| | - David Epardo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Jerusa E Balderas-Márquez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico.
| | - Thomas Fleming
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico.
| | - Martha Carranza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico.
| | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico.
| | - Steve Harvey
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico.
| |
Collapse
|
37
|
Özmert E, Arslan U. Management of Deep Retinal Capillary Ischemia by Electromagnetic Stimulation and Platelet-Rich Plasma: Preliminary Clinical Results. Adv Ther 2019; 36:2273-2286. [PMID: 31385285 DOI: 10.1007/s12325-019-01040-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Indexed: 12/22/2022]
Abstract
INTRODUCTION To investigate the efficacy of retinal electromagnetic stimulation and sub-tenon autologous platelet-rich plasma in the treatment of deep retinal capillary ischemia. METHODS The study included 28 eyes of 17 patients aged 15-76 years (mean 37.9 years) who had deep retinal capillary ischemia. Patients who had acute-onset paracentral scotoma in the last 1 month were included in the study between January 2018 and January 2019. The diagnosis of deep retinal capillary ischemia was based on clinical history and typical findings of optical coherence tomography angiography. The eyes were divided into three groups: group 1 (n = 7 eyes) received electromagnetic stimulation alone; group 2 (n = 7 eyes) received electromagnetic stimulation and sub-tenon autologous platelet-rich plasma injection; group 3 had no intervention and served as a control group (n = 14 eyes). The patients underwent ten sessions of electromagnetic stimulation in groups 1 and 2. Sub-tenon autologous platelet-rich plasma injection was performed immediately after the first, fifth, and tenth sessions of electromagnetic stimulation in group 2. The deep retinal capillary density and best corrected visual acuity changes were investigated before and after treatment at the first month. RESULTS The mean deep retinal capillary density was 52.0% before electromagnetic stimulation and 56.1% after ten sessions of application in group 1; this improvement was statistically significant (p = 0.01). In the combined treatment group (group 2), the mean deep retinal capillary density was 46.9% before the treatment and 56.5% after the treatment; this increase was also statistically significant (p = 0.01). Statistically significant best corrected visual acuity improvement (p = 0.01) could be achieved only in group 2. The combined treatment was significantly superior (p < 0.01) to treatment with only electromagnetic stimulation regarding best corrected visual acuity and deep retinal capillary density. In the control group (group 3), there was no statistically significant change (p = 0.09) in the mean deep retinal capillary density and best corrected visual acuity. CONCLUSION Treatment of the underlying cause is a priority in the treatment of deep retinal capillary ischemia. However, in the acute period, local ischemia treatment is necessary to prevent permanent retinal damage and scotomas. In mild cases, only electromagnetic stimulation, which is non-invasive and easy to use, might have a beneficial effect on deep retinal capillary density. In more severe cases, sub-tenon fresh autologous platelet-rich plasma injection together with electromagnetic stimulation may be more effective in the treatment of local ischemia of the retina in order to augment the response. FUNDING The Rapid Service Fees were funded by the Ankara University Tecnopolis Institute. CLINICAL TRIAL REGISTRATION titck.gov.tr identifier, 2018-136.
Collapse
Affiliation(s)
- Emin Özmert
- Department of Ophthalmology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Umut Arslan
- Ankara University Technopolis, Ankara, Turkey.
| |
Collapse
|
38
|
Towards A Microbead Occlusion Model of Glaucoma for a Non-Human Primate. Sci Rep 2019; 9:11572. [PMID: 31399621 PMCID: PMC6689098 DOI: 10.1038/s41598-019-48054-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/27/2019] [Indexed: 12/16/2022] Open
Abstract
Glaucoma is a group of optic neuropathies associated with aging and sensitivity to intraocular pressure (IOP). The disease causes vision loss through the degeneration of retinal ganglion cell neurons and their axons in the optic nerve. Using an inducible model of glaucoma, we elevated IOP in the squirrel monkey (Saimiri boliviensis) using intracameral injection of 35 μm polystyrene microbeads and measured common pathogenic outcomes in the optic projection. A 42% elevation in IOP over 28 weeks reduced anterograde transport of fluorescently-labeled cholera toxin beta from retina to the lateral geniculate nucleus (60% decrease), and to the superior colliculus (49% decrease). Pressure also reduced survival of ganglion cellaxons in the optic nerve by 22%. The same elevation caused upregulation of proteins associated with glaucomatous neurodegeneration in the retina and optic nerve, including complement 1q, interleukin 6, and brain-derived neurotrophic factor. That axon degeneration in the nerve lagged deficits in anterograde transport is consistent with progression in rodent models, while the observed protein changes also occur in tissue from human glaucoma patients. Thus, microbead occlusion in a non-human primate with a visual system similar to our own represents an attractive model to investigate neurodegenerative mechanisms and therapeutic interventions for glaucoma.
Collapse
|
39
|
Yarube I, Saidu A, Hassan S, Mohammed A. Circulating brain-derived neurotrophic factor level in patients with primary open angle glaucoma. SAHEL MEDICAL JOURNAL 2019. [DOI: 10.4103/smj.smj_63_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
40
|
Xu Z, Fouda AY, Lemtalsi T, Shosha E, Rojas M, Liu F, Patel C, Caldwell RW, Narayanan SP, Caldwell RB. Retinal Neuroprotection From Optic Nerve Trauma by Deletion of Arginase 2. Front Neurosci 2018; 12:970. [PMID: 30618589 PMCID: PMC6306467 DOI: 10.3389/fnins.2018.00970] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/04/2018] [Indexed: 01/09/2023] Open
Abstract
Our previous studies have implicated expression of the mitochondrial isoform of the arginase enzyme arginase 2 (A2) in neurovascular injury during ischemic retinopathies. The aim of this study was to characterize the specific involvement of A2 in retinal injury following optic nerve crush (ONC). To accomplish this, wild-type (WT) or A2 knockout (A2-/-) mice were subjected to ONC injury. The contralateral eye served as sham control. Quantitative RT-PCR and western blot were used to evaluate mRNA and protein expression. Retinal ganglion cell (RGC) survival was assessed in retinal whole mounts. Axonal sprouting was determined by anterograde transport of Cholera Toxin B (CTB). These analyses showed increased A2 expression following ONC. Numbers of NeuN-positive neurons as well as Brn3a- and RBPMS-positive RGC were decreased in the WT retinas at 14 days after ONC as compared to the sham controls. This ONC-induced neuronal loss was diminished in the A2-/- retinas. Similarly, axonal degeneration was ameliorated by A2 deletion whereas axon sprouting was enhanced. Significant retinal thinning was also seen in WT retinas at 21 days after ONC, and this was blocked in A2-/- mice. Cell death studies showed an increase in TUNEL positive cells in the RGC layer at 5 days after ONC in the WT retinas, and this was attenuated by A2 deletion. ONC increased glial cell activation in WT retinas, and this was significantly reduced by A2 deletion. Western blotting showed a marked increase in the neurotrophin, brain derived neurotrophic factor (BDNF) and its downstream signaling in A2-/- retinas vs. WT after ONC. This was associated with increases in the axonal regeneration marker GAP-43 in A2-/- retinas. Furthermore, A2-/- retinas showed decreased NLRP3 inflammasome activation and lower interleukin (IL-) 1β/IL-18 levels as compared to WT retinas subjected to ONC. Collectively, our results show that deletion of A2 limits ONC-induced neurodegeneration and glial activation, and enhances axonal sprouting by a mechanism involving increases in BDNF and decreases in retinal inflammation. These data demonstrate that A2 plays an important role in ONC-induced retinal damage. Blockade of A2 activity may offer a therapeutic strategy for preventing vision loss induced by traumatic retinal injury.
Collapse
Affiliation(s)
- Zhimin Xu
- Charlie Norwood VA Medical Center, Augusta, GA, United States.,Vascular Biology Center, Augusta University, Augusta, GA, United States.,James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States
| | - Abdelrahman Y Fouda
- Charlie Norwood VA Medical Center, Augusta, GA, United States.,Vascular Biology Center, Augusta University, Augusta, GA, United States.,James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States
| | - Tahira Lemtalsi
- Charlie Norwood VA Medical Center, Augusta, GA, United States.,Vascular Biology Center, Augusta University, Augusta, GA, United States.,James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States
| | - Esraa Shosha
- Charlie Norwood VA Medical Center, Augusta, GA, United States.,Vascular Biology Center, Augusta University, Augusta, GA, United States.,James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States
| | - Modesto Rojas
- Charlie Norwood VA Medical Center, Augusta, GA, United States.,Vascular Biology Center, Augusta University, Augusta, GA, United States.,James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States
| | - Fang Liu
- Charlie Norwood VA Medical Center, Augusta, GA, United States.,Vascular Biology Center, Augusta University, Augusta, GA, United States.,James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States.,Program in Clinical and Experimental Therapeutics, University of Georgia, College of Pharmacy, Augusta, GA, United States
| | - Chintan Patel
- Vascular Biology Center, Augusta University, Augusta, GA, United States
| | - R William Caldwell
- James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States
| | - Subhadra Priya Narayanan
- Charlie Norwood VA Medical Center, Augusta, GA, United States.,Vascular Biology Center, Augusta University, Augusta, GA, United States.,James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States.,Program in Clinical and Experimental Therapeutics, University of Georgia, College of Pharmacy, Augusta, GA, United States
| | - Ruth B Caldwell
- Charlie Norwood VA Medical Center, Augusta, GA, United States.,Vascular Biology Center, Augusta University, Augusta, GA, United States.,James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States.,Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, United States.,Department of Ophthalmology, Augusta University, Augusta, GA, United States
| |
Collapse
|
41
|
Ali Shariati M, Kumar V, Yang T, Chakraborty C, Barres BA, Longo FM, Liao YJ. A Small Molecule TrkB Neurotrophin Receptor Partial Agonist as Possible Treatment for Experimental Nonarteritic Anterior Ischemic Optic Neuropathy. Curr Eye Res 2018; 43:1489-1499. [PMID: 30273053 PMCID: PMC10710940 DOI: 10.1080/02713683.2018.1508726] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/25/2018] [Accepted: 07/30/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE Brain-derived neurotrophic factor (BDNF) and activation of its high affinity receptor tropomyosin kinase (Trk) B promote retinal ganglion cells (RGCs) survival following injury. In this study, we tested the effects of LM22A-4, a small molecule TrkB receptor-specific partial agonist, on RGC survival in vitro and in experimental nonarteritic anterior ischemic optic neuropathy (AION), the most common acute optic neuropathy in those older than 50 years. METHODS We assessed drug effects on immunopanned, cultured RGCs and calculated RGC survival and assessed TrkB receptor activation by mitogen-activated protein (MAP) kinase translocation. To assess effects in vivo, we induced murine AION and treated the animals with one intravitreal injection and three-week systemic treatment. We measured drug effects using serial spectral-domain optical coherence tomography (OCT) and quantified retinal Brn3A+ RGC density three weeks after ischemia. RESULTS In vitro, LM22A-4 significantly increased the survival of cultured RGCs at day 2 (95% CI control: 8.4-13.6; LM22A-4: 23.7-30.3; BDNF: 24.3-29.9; P ≤ 0.0001), similar to the effect of the endogenous TrkB receptor ligand BDNF. There was also significant nuclear and cytoplasmic translocation of MAP kinase (95% CI control: 0.9-6.8; LM22A-4: 38.8-84.4; BDNF: 64.0-93.0; P = 0.0002), a known downstream event of TrkB receptor activation. Following AION, LM22A-4 treatment led to significant preservation of the ganglion cell complex (95% CI: AION-PBS: 66.8-70.7%; AION-LM22A-4: 70.0-73.1; P = 0.03) and total retinal thickness (95% CI: AION-PBS: 185-196%; AION-LM22A-4: 195-203; P = 0.002) as measured by OCT compared with non-treated eyes. There was also significant rescue of the Brn3A+ RGC density on morphometric analysis of whole mount retinae (95% CI control: 2360-2629; AION-PBS: 1647-2008 cells/mm2; AION-LM22A-4: 1958-2216 cells/mm2; P = 0.02). CONCLUSIONS TrkB receptor partial agonist LM22A-4 promoted survival of cultured RGCs in vitro by TrkB receptor activation, and treatment in vivo led to increased survival of RGCs after optic nerve ischemia, providing support that LM22A-4 may be effective therapy to treat ischemic optic neuropathy. ABBREVIATIONS AION: anterior ischemic optic neuropathy, BDNF: Brain-derived neurotrophic factor, GCC: ganglion cell complex, MAP: mitogen-activated protein, OCT: spectral-domain optical coherence tomography, OD: right eye, ON: optic nerve, ONH: optic nerve head, OS: left eye, RGC: retinal ganglion cell; Trk: tropomyosin kinase.
Collapse
Affiliation(s)
- Mohammad Ali Shariati
- a Departments of Ophthalmology , Stanford University School of Medicine , Stanford , CA , USA
| | - Varun Kumar
- a Departments of Ophthalmology , Stanford University School of Medicine , Stanford , CA , USA
| | - Tao Yang
- b Neurobiology , Stanford University School of Medicine , Stanford , CA , USA
| | | | - Ben Anthony Barres
- b Neurobiology , Stanford University School of Medicine , Stanford , CA , USA
| | - Frank Michael Longo
- b Neurobiology , Stanford University School of Medicine , Stanford , CA , USA
| | - Yaping Joyce Liao
- a Departments of Ophthalmology , Stanford University School of Medicine , Stanford , CA , USA
- b Neurobiology , Stanford University School of Medicine , Stanford , CA , USA
| |
Collapse
|
42
|
Huo JF, Chen XB. P2X4R silence suppresses glioma cell growth through BDNF/TrkB/ATF4 signaling pathway. J Cell Biochem 2018; 120:6322-6329. [PMID: 30362154 DOI: 10.1002/jcb.27919] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/27/2018] [Indexed: 02/06/2023]
Abstract
Purinergic receptor P2X 4 (P2X4R), a member of purinergic channels family and a subtype of ionotropic adenosine triphosphate receptors, plays a critical role in tumorigenesis. Evidence suggested that P2X4R is expressed in rat C6 glioma model, however, its role and the underlying mechanism of action are still unclear in human glioblastoma multiforme (GBM). In the current study, our aim is to examine the function and the molecular basis of P2X4R in GBM. We first observed that GBM cells, U251, T98, U87, U373, and A172 were all high expressed P2X4R, when compared with the normal human astrocytes (NHA) cells. To gain the function of P2X4R, P2X4R silence cells were constructed by transfection with P2X4R small interfering RNA (siRNA). We found that P2X4R deletion impeded T98 and U87 cell viability and proliferation, and further studies indicated that cell apoptosis and caspase-3 activity was increased in T98 and U87 cell transfected with P2X4R siRNA. Subsequently, we confirmed that P2X4R silence suppressed brain-derived neurotrophic factor (BDNF), Trk receptor tyrosine kinases (TrkB), and activating transcription factor 4 (ATF4) expression in T98 and U87 cells. And P2X4R siRNA-induced ATF4-expression inhibition dependent on BDNF/TrkB signaling pathway. The impact of P2X4R silence on T98 and U87 cell growth and apoptosis was reversed by ATF4 overexpression. In summary, this study provides the first evidence that P2X4R plays important roles in GBM cell growth and apoptosis.
Collapse
Affiliation(s)
- Jun-Feng Huo
- Second Ward, Department of Neurosurgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Xiao-Bing Chen
- Second Ward, Department of Neurosurgery, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
43
|
Loss of Shp2 Rescues BDNF/TrkB Signaling and Contributes to Improved Retinal Ganglion Cell Neuroprotection. Mol Ther 2018; 27:424-441. [PMID: 30341011 DOI: 10.1016/j.ymthe.2018.09.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 09/18/2018] [Accepted: 09/27/2018] [Indexed: 12/21/2022] Open
Abstract
Glaucoma is characterized by the loss of retinal ganglion cells (RGC), and accordingly the preservation of RGCs and their axons has recently attracted significant attention to improve therapeutic outcomes in the disease. Here, we report that Src homology region 2-containing protein tyrosine phosphatase 2 (Shp2) undergoes activation in the RGCs, in animal model of glaucoma as well as in the human glaucoma tissues and that Shp2 dephosphorylates tropomyosin receptor kinase B (TrkB) receptor, leading to reduced BDNF/TrkB neuroprotective survival signaling. This was elucidated by specifically modulating Shp2 expression in the RGCs in vivo, using adeno-associated virus serotype 2 (AAV2) constructs. Shp2 upregulation promoted endoplasmic reticulum (ER) stress and apoptosis, along with functional and structural deficits in the inner retina. In contrast, loss of Shp2 decelerated the loss of RGCs, preserved their function, and suppressed ER stress and apoptosis in glaucoma. This report constitutes the first identification of Shp2-mediated TrkB regulatory mechanisms in the RGCs that can become a potential therapeutic target in both glaucoma and other neurodegenerative disorders.
Collapse
|
44
|
Arslan U, Özmert E, Demirel S, Örnek F, Şermet F. Effects of subtenon-injected autologous platelet-rich plasma on visual functions in eyes with retinitis pigmentosa: preliminary clinical results. Graefes Arch Clin Exp Ophthalmol 2018; 256:893-908. [PMID: 29546474 DOI: 10.1007/s00417-018-3953-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 02/26/2018] [Accepted: 03/02/2018] [Indexed: 12/19/2022] Open
Abstract
PURPOSE One of the main reasons for apoptosis and dormant cell phases in degenerative retinal diseases such as retinitis pigmentosa (RP) is growth factor withdrawal in the cellular microenvironment. Growth factors and neurotrophins can significantly slow down retinal degeneration and cell death in animal models. One possible source of autologous growth factors is platelet-rich plasma. The purpose of this study was to determine if subtenon injections of autologous platelet-rich plasma (aPRP) can have beneficial effects on visual function in RP patients by reactivating dormant photoreceptors. MATERIAL AND METHODS This prospective open-label clinical trial, conducted between September 2016 and February 2017, involved 71 eyes belonging to 48 RP patients with various degrees of narrowed visual field. Forty-nine eyes belonging to 37 patients were injected with aPRP. A comparison group was made up of 11 patients who had symmetrical bilateral narrowed visual field (VF) of both eyes. Among these 11 patients, one eye was injected with aPRP, while the other eye was injected with autologous platelet-poor plasma (aPPP) to serve as a control. The total duration of the study was 9 weeks: the aPRP or aPPP subtenon injections were applied three times, with 3-week intervals between injections, and the patients were followed for three more weeks after the third injection. Visual acuity (VA) tests were conducted on all patients, and VF, microperimetry (MP), and multifocal electroretinography (mfERG) tests were conducted on suitable patients to evaluate the visual function changes before and after the aPRP or aPPP injections. RESULTS The best-corrected visual acuity values in the ETDRS chart improved by 11.6 letters (from 70 to 81.6 letters) in 19 of 48 eyes following aPRP application; this result, however, was not statistically significant (p = 0.056). Following aPRP injections in 48 eyes, the mean deviation of the VF values improved from - 25.3 to - 23.1 dB (p = 0.0001). Results regarding the mfERG P1 amplitudes improved in ring 1 from 24.4 to 38.5 nv/deg2 (p = 0.0001), in ring 2 from 6.7 to 9.3 nv/deg2 (p = 0.0301), and in ring 3 from 3.5 to 4.5 nv/deg2 (p = 0.0329). The mfERG P1 implicit times improved in ring 1 from 40.0 to 34.4 ms (p = 0.01), in ring 2 from 42.5 to 33.2 ms (p = 0.01), and in ring 3 from 42.1 to 37.9 ms (p = 0.04). The mfERG N1 amplitudes improved in ring 1 from 0.18 to 0.25 nv/deg2 (p = 0.011) and in ring 2 from 0.05 to 0.08 nv/deg2 (p = 0.014). The mfERG N1 implicit time also improved in ring 1 from 18.9 to 16.2 ms (p = 0.040) and in ring 2 from 20.9 to 15.5 ms (p = 0.002). No improvement was seen in the 11 control eyes into which aPPP was injected. In the 23 RP patients with macular involvement, the MP average threshold values improved with aPRP injections from 15.0 to 16.4 dB (p = 0.0001). No ocular or systemic adverse events related to the injections or aPRP were observed during the follow-up period. CONCLUSION Preliminary clinical results are encouraging in terms of statistically significant improvements in VF, mfERG values, and MP. The subtenon injection of aPRP seems to be a therapeutic option for treatment and might lead to positive results in the vision of RP patients. Long-term results regarding adverse events are unknown. There have not been any serious adverse events and any ophthalmic or systemic side effects for 1 year follow-up. Further studies with long-term follow-up are needed to determine the duration of efficacy and the frequency of application.
Collapse
Affiliation(s)
- Umut Arslan
- Department of Ophthalmology, Ankara Training and Research Hospital, Ankara, Turkey
| | - Emin Özmert
- Faculty of Medicine, Department of Ophthalmology, Ankara University, Ankara, Turkey
| | - Sibel Demirel
- Faculty of Medicine, Department of Ophthalmology, Ankara University, Ankara, Turkey. .,Cebeci Tıp Fakültesi, Vehbi Koç Göz hastanesi, Göz Hastalıkları Ana Bilimdalı, Mamak caddesi, Dikimevi/Ankara, Dikimevi/Ankara, Turkey.
| | - Firdevs Örnek
- Department of Ophthalmology, Ankara Training and Research Hospital, Ankara, Turkey
| | - Figen Şermet
- Faculty of Medicine, Department of Ophthalmology, Ankara University, Ankara, Turkey
| |
Collapse
|
45
|
Mysona BA, Zhao J, Smith S, Bollinger KE. Relationship between Sigma-1 receptor and BDNF in the visual system. Exp Eye Res 2018; 167:25-30. [PMID: 29031856 PMCID: PMC5757370 DOI: 10.1016/j.exer.2017.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/27/2022]
Abstract
Glaucoma is an incurable optic neuropathy characterized by dysfunction and death of retinal ganglion cells (RGCs). Brain derived neurotrophic factor (BDNF) is an essential neurotrophin that supports RGC function and survival. Despite BDNF's importance, our knowledge of molecular mechanisms that modulate BDNF processing and secretion is incomplete. Sigma-1 receptor (S1R) is associated with increased BDNF in hippocampus and with BDNF secretion by brain-derived astrocytes and neuronal cell lines. Much less is known about the relationship between S1R and BDNF in the visual system. Here, we examine how S1R activation and deletion alter expression of mature BDNF (mBDNF) and proBDNF in retina and cultured optic nerve head (ONH) astrocytes. For S1R activation, the S1R agonist (+)-pentazocine (PTZ, 0.5 mg/kg) was administered by intraperitoneal injection to C57BL/6J mice, 3 times per week, for 5 weeks. Expression of proBDNF and mBDNF was also examined in S1R knockout and age-matched C57BL/6J mice. In vitro, cultured ONH astrocytes were treated with 3 μM PTZ for 24 h followed by collection of media and ONH astrocyte lysates. Results showed that treatment with (+)-PTZ increased mBDNF protein in both retina and hippocampus. In contrast, S1R deletion was associated with retinal mBDNF deficits. In ONH astrocytes S1R agonist (+)-PTZ significantly increased levels of secreted BDNF and proBDNF in cell lysates. These findings support a role for S1R in the modulation of BDNF levels within the retina and optic nerve head. Treatment with S1R agonists might provide benefit in diseases such as glaucoma by increasing BDNF levels from endogenous sources.
Collapse
Affiliation(s)
- Barbara A Mysona
- James and Jean Culver Vision Discovery Institute, Augusta, GA, 30912, United States; Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Jing Zhao
- James and Jean Culver Vision Discovery Institute, Augusta, GA, 30912, United States; Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Sylvia Smith
- James and Jean Culver Vision Discovery Institute, Augusta, GA, 30912, United States; Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Kathryn E Bollinger
- James and Jean Culver Vision Discovery Institute, Augusta, GA, 30912, United States; Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States.
| |
Collapse
|