1
|
Jiang L, Yuan C, Flaumenhaft R, Huang M. Recent advances in vascular thiol isomerases: insights into structures, functions in thrombosis and antithrombotic inhibitor development. Thromb J 2025; 23:16. [PMID: 39962537 PMCID: PMC11834194 DOI: 10.1186/s12959-025-00699-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/08/2025] [Indexed: 02/20/2025] Open
Abstract
Vascular thiol isomerases (VTIs) encompass proteins such as protein disulfide isomerase (PDI), endoplasmic reticulum protein 5 (ERp5), ERp46, ERp57, ERp72, thioredoxin-related transmembrane protein 1 (TMX1), and TMX4, and play pivotal functions in platelet aggregation and formation of thrombosis. Investigating vascular thiol isomerases, their substrates implicated in thrombosis, the underlying regulatory mechanisms, and the development of inhibitors targeting these enzymes represents a rapidly advancing frontier within vascular biology. In this review, we summarize the structural characteristics and functional attributes of VTIs, describe the associations between these enzymes and thrombosis, and outline the progress in developing inhibitors of VTIs for potential antithrombotic therapeutic applications.
Collapse
Affiliation(s)
- Longguang Jiang
- College of Chemistry, Fuzhou University, Fujian, 350108, China
- National and Local Joint Engineering Research Center On Biopharmaceutical and Photodynamic Therapy Technologies, Fuzhou University, Fuzhou, 350116, China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, Fujian, China
- National and Local Joint Engineering Research Center On Biopharmaceutical and Photodynamic Therapy Technologies, Fuzhou University, Fuzhou, 350116, China
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA, 02215, USA.
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fujian, 350108, China.
- National and Local Joint Engineering Research Center On Biopharmaceutical and Photodynamic Therapy Technologies, Fuzhou University, Fuzhou, 350116, China.
| |
Collapse
|
2
|
Cao H, Xiong Z, Liu Z, Li Y, Pu H, Liu J, Peng L, Zheng T. Influence of morphology and hemodynamics on thrombosis in kawasaki disease patients. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2023. [DOI: 10.1016/j.medntd.2023.100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023] Open
|
3
|
Inhibition of platelet aggregation by extracts and compounds from the leaves of Chilean bean landraces (Phaseolus vulgaris L.). J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
4
|
Inhibition of protein disulfide isomerase with PACMA-31 regulates monocyte tissue factor through transcriptional and posttranscriptional mechanisms. Thromb Res 2022; 220:48-59. [DOI: 10.1016/j.thromres.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022]
|
5
|
Juvenile patients with the homozygous MTHFR C677T genotype develop ischemic stroke 5 years earlier than wild type. J Thromb Thrombolysis 2022; 54:330-338. [PMID: 35917096 DOI: 10.1007/s11239-022-02678-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 10/16/2022]
Abstract
To compare age at 1st ischaemic stroke (IS) in a cohort of juvenile (< 46 years of age) IS patients evaluated for the rs1801133 polymorphism (C → T677) of the methylene tetrahydrofolate reductase (MTHFR) gene; to identify predictors of age at IS and of type of cerebral vessel involvement, small vessel disease (SVD) vs large vessel disease (LVD) responsible for the IS; to evaluate possible associations between other clinical and laboratory variables. Retrospective cohort study on 82 MTHFR TT, 54 MTHFR TC and 34 MTHFR CC participants; data regarding age, sex, age at IS, history of dyslipidaemia, hypertension, smoking, migraine and homocysteine (HC) as well as neuroimaging were collected. Age at IS was lower in MTHFR TT than MTHFR TC and CC (35 ± 4 vs 38 ± 0 vs 40 ± 3 years, respectively, p = 0.002); plasma HC (median, interquartile range) was higher in MTHFR TT than in the other groups [16.7 (11.8, 28.6) vs 11.4 (8.2, 16.1) vs 9.8 (7.9, 1.3) respectively, p < 0.0001)] and was higher in SVD than LVD [17.4 (12.4, 32.5) vs 11.4 (8.8, 16.4) p < 0.0001]. MTHFR TT independently predicted age at IS (p = 0.0008) alongside smoking both as a categorical (p = 0.003) or continuous variable (p = 0.02), whereas HC independently predicted SVD as categorical (p = 0.01) and continuous variable (p < 0.0001). Smoking positively predicted plasma HC (p = 0.005) and negatively the activated partial thromboplastin ratio (aPTTr) (p = 0.02). Juvenile IS carriers of the MTHFR TT genotype develop their 1st occlusion on average 5 years earlier compared to the CC genotype; smoking contributes to this prematurity adversely affecting plasma HC and coagulation whereas plasma HC predicts IS secondary to SVD. Public health campaigns against smoking should highlight the prematurity of IS in the juvenile population.
Collapse
|
6
|
Palazzo FC, Sitia R, Tempio T. Selective Secretion of KDEL-Bearing Proteins: Mechanisms and Functions. Front Cell Dev Biol 2022; 10:967875. [PMID: 35912099 PMCID: PMC9326092 DOI: 10.3389/fcell.2022.967875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
In multicellular organisms, cells must continuously exchange messages with the right meaning, intensity, and duration. Most of these messages are delivered through cognate interactions between membrane and secretory proteins. Their conformational maturation is assisted by a vast array of chaperones and enzymes, ensuring the fidelity of intercellular communication. These folding assistants reside in the early secretory compartment (ESC), a functional unit that encompasses endoplasmic reticulum (ER), intermediate compartment and cis-Golgi. Most soluble ESC residents have C-terminal KDEL-like motifs that prevent their transport beyond the Golgi. However, some accumulate in the ER, while others in downstream stations, implying different recycling rates. Moreover, it is now clear that cells can actively secrete certain ESC residents but not others. This essay discusses the physiology of their differential intracellular distribution, and the mechanisms that may ensure selectivity of release.
Collapse
|
7
|
Ames PRJ, D'Andrea G, Marottoli V, Arcaro A, Iannaccone L, Maraglione M, Gentile F. Earlier onset of peripheral arterial thrombosis in homozygous MTHFR C677T carriers than in other MTHFR genotypes: a cohort study. Clin Exp Med 2022; 23:503-509. [PMID: 35362772 DOI: 10.1007/s10238-022-00819-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/28/2022] [Indexed: 01/27/2023]
Abstract
To investigate whether age at first presentation of pure peripheral arterial thrombosis (PAT) in lower and upper limbs and in the splanchnic circulation occurs earlier in carriers of the methylenetetrahydrofolate reductase (MTHFR) T677T genotype compared to the heterozygous and wild type and to identify predictors of a possible earlier onset. Retrospective cohort study on 27 MTHFR TT, 29 MTHFR TC and 29 MTHFR CC participants; data regarding age, sex, age at PAT, clinical history (dyslipidaemia, hypertension, smoking, obesity) and homocysteine (HC) measured by immunoassay were collected. Age at PAT was lower in MTHFR TT than MTHFR TC and CC (43 ± 9 vs 47 ± 9 vs 51 ± 4 years, respectively, p = 0.02); plasma HC was higher in MTHFR TT than in the other groups (25 ± 19 vs 12.7 ± 6.7 vs 11.3 ± 3.3 μmol/l, respectively, p < 0.001) while the activated partial thromboplastin ratio (aPTTr) was lower in MTHFR TT than in other genotypes (0.90 ± 0.10 vs 0.97 ± 0.12 vs 0.97 ± 0.08 μmol/L p < 0.001). Among categorical variables, MTHFR TT and dyslipidaemia independently predicted age at AT (p = 0.01 & p = 0.03, respectively) whereas among the continuous variables HC independently predicted age at PAT (p = 0.02) as well as the aPTTr (p = 0.001); smoking predicted lower limb PAT (p = 0.005). MTHFR TT carriers develop their first PAT an average of 4 and 8 years earlier than MTHF CT and CC genotypes; MTHFR TT, dyslipidaemia and plasma HC contribute to the prematurity of the PAT while the interplay between elevated HC and smoking may affect type of arterial district occlusion.
Collapse
Affiliation(s)
- Paul R J Ames
- Immune Response and Vascular Disease Unit, CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal. .,Dumfries and Galloway Royal Infirmary, Cargenbridge, Dumfries, DG2 8RX, Scotland, UK.
| | - Giovanna D'Andrea
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | | | - Alessia Arcaro
- Department of Medicine and Health Sciences'V. Tiberio', University of Molise, Campobasso, Italy
| | | | - Maurizio Maraglione
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Fabrizio Gentile
- Department of Medicine and Health Sciences'V. Tiberio', University of Molise, Campobasso, Italy
| |
Collapse
|
8
|
Merashli M, Bucci T, Pastori D, Pignatelli P, Arcaro A, Gentile F, Marottoli V, Ames PRJ. Plasma Homocysteine in Behcet's Disease: A Systematic Review and Meta-Analysis. Thromb Haemost 2022; 122:1209-1220. [PMID: 34996122 DOI: 10.1055/s-0041-1740637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AIM To evaluate the relevance of plasma homocysteine (HC) in Behcet's disease (BD) and its clinical manifestations. METHODS Systematic review of EMBASE and PubMed databases according to PRISMA guidelines from inception to July 2021; random-effects meta-analyses for continuous outcomes. RESULTS The search strategy retrieved 48 case-control (2,669 BD and 2,245 control participants) and 5 cohort studies (708 BD participants). Plasma HC was higher in BD than in controls (p < 0.0001) with wide heterogeneity (I2 = 89.7%) that remained unchanged after sensitivity analysis according to year of article publication, age of BD participants, study size, study quality, method of HC determination, and male/female ratio >1.5; some pooled ethnicities explained a small part of the heterogeneity (I2 = 16.3%). Active BD participants had higher HC than inactive ones (p < 0.0001), with moderate heterogeneity (I2 = 49.2%) that disappeared after removal of an outlier study with very high disease activity. BD participants with any vascular involvement had higher HC than those without (p < 0.0001) with wide heterogeneity (I2 = 89.7%); subgroup analysis on venous thrombosis only changed neither effect size (p < 0.0001) nor heterogeneity (I2 = 72.7%). BD participants with ocular involvement had higher HC than those without (p < 0.0001) with moderate heterogeneity (I2 = 40.3%). CONCLUSION Although causality cannot be inferred, the consistency of the elevation of plasma HC in BD, particularly in patients with active disease, with vascular and ocular involvement suggests an intrinsic involvement of HC in these clinical manifestations.
Collapse
Affiliation(s)
- Mira Merashli
- Department of Rheumatology, American University of Beirut, Bliss, Beirut, Lebanon
| | - Tommaso Bucci
- Department of General Surgery, Surgical Specialties and Organ Transplantation "Paride Stefanini," Sapienza University of Rome, Rome, Italy
| | - Daniele Pastori
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Pasquale Pignatelli
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Alessia Arcaro
- Department of Medicine and Health Sciences 'V. Tiberio', Università del Molise, Campobasso, Italy
| | - Fabrizio Gentile
- Department of Medicine and Health Sciences 'V. Tiberio', Università del Molise, Campobasso, Italy
| | | | - Paul R J Ames
- Immune Response and Vascular Disease Unit, CEDOC, Nova University Lisbon, Rua Camara Pestana, Lisbon Portugal.,Department of Haematology, Dumfries Royal Infirmary, Cargenbridge, Dumfries, United Kingdom
| |
Collapse
|
9
|
Yang M, Flaumenhaft R. Oxidative Cysteine Modification of Thiol Isomerases in Thrombotic Disease: A Hypothesis. Antioxid Redox Signal 2021; 35:1134-1155. [PMID: 34121445 PMCID: PMC8817710 DOI: 10.1089/ars.2021.0108] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Oxidative stress is a characteristic of many systemic diseases associated with thrombosis. Thiol isomerases are a family of oxidoreductases important in protein folding and are exquisitely sensitive to the redox environment. They are essential for thrombus formation and represent a previously unrecognized layer of control of the thrombotic process. Yet, the mechanisms by which thiol isomerases function in thrombus formation are unknown. Recent Advances: The oxidoreductase activity of thiol isomerases in thrombus formation is controlled by the redox environment via oxidative changes to active site cysteines. Specific alterations can now be detected owing to advances in the chemical biology of oxidative cysteine modifications. Critical Issues: Understanding of the role of thiol isomerases in thrombus formation has focused largely on identifying single disulfide bond modifications in isolated proteins (e.g., αIIbβ3, tissue factor, vitronectin, or glycoprotein Ibα [GPIbα]). An alternative approach is to conceptualize thiol isomerases as effectors in redox signaling pathways that control thrombotic potential by modifying substrate networks. Future Directions: Cysteine-based chemical biology will be employed to study thiol-dependent dynamics mediated by the redox state of thiol isomerases at the systems level. This approach could identify thiol isomerase-dependent modifications of the disulfide landscape that are prothrombotic.
Collapse
Affiliation(s)
- Moua Yang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Vascular thiol isomerases: Structures, regulatory mechanisms, and inhibitor development. Drug Discov Today 2021; 27:626-635. [PMID: 34757205 DOI: 10.1016/j.drudis.2021.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/15/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022]
Abstract
Vascular thiol isomerases (VTIs), including PDI, ERp5, ERp57, ERp72, and thioredoxin-related transmembrane protein 1 (TMX1), have important roles in platelet aggregation and thrombosis. Research on VTIs, their substrates in thrombosis, their regulatory mechanisms, and inhibitor development is an emerging and rapidly evolving area in vascular biology. Here, we describe the structures and functions of VTIs, summarize the relationship between the vascular TIs and thrombosis, and focus on the development of VTI inhibitors for antithrombotic applications.
Collapse
|
11
|
Sharda AV, Bogue T, Barr A, Mendez LM, Flaumenhaft R, Zwicker JI. Circulating Protein Disulfide Isomerase Is Associated with Increased Risk of Thrombosis in JAK2-Mutated Myeloproliferative Neoplasms. Clin Cancer Res 2021; 27:5708-5717. [PMID: 34400417 DOI: 10.1158/1078-0432.ccr-21-1140] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/07/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Thromboembolic events (TE) are the most common complications of myeloproliferative neoplasms (MPN). Clinical parameters, including patient age and mutation status, are used to risk-stratify patients with MPN, but a true biomarker of TE risk is lacking. Protein disulfide isomerase (PDI), an endoplasmic reticulum protein vital for protein folding, also possesses essential extracellular functions, including regulation of thrombus formation. Pharmacologic PDI inhibition prevents thrombus formation, but whether pathologic increases in PDI increase TE risk remains unknown. EXPERIMENTAL DESIGN We evaluated the association of plasma PDI levels and risk of TE in a cohort of patients with MPN with established diagnosis of polycythemia vera (PV) or essential thrombocythemia (ET), compared with healthy controls. Plasma PDI was measured at enrollment and subjects followed prospectively for development of TE. RESULTS A subset of patients, primarily those with JAK2-mutated MPN, had significantly elevated plasma PDI levels as compared with controls. Plasma PDI was functionally active. There was no association between PDI levels and clinical parameters typically used to risk-stratify patients with MPN. The risk of TE was 8-fold greater in those with PDI levels above 2.5 ng/mL. Circulating endothelial cells from JAK2-mutated MPN patients, but not platelets, demonstrated augmented PDI release, suggesting endothelial activation as a source of increased plasma PDI in MPN. CONCLUSIONS The observed association between plasma PDI levels and increased risk of TE in patients with JAK2-mutated MPN has both prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Anish V Sharda
- Division of Hematology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts.,Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical School and Harvard Medical School, Boston, Massachusetts
| | - Thomas Bogue
- Division of Hematology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Alexandra Barr
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical School and Harvard Medical School, Boston, Massachusetts
| | - Lourdes M Mendez
- Division of Hematology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical School and Harvard Medical School, Boston, Massachusetts
| | - Jeffrey I Zwicker
- Division of Hematology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts. .,Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical School and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
12
|
MacKeigan DT, Ni T, Shen C, Stratton TW, Ma W, Zhu G, Bhoria P, Ni H. Updated Understanding of Platelets in Thrombosis and Hemostasis: The Roles of Integrin PSI Domains and their Potential as Therapeutic Targets. Cardiovasc Hematol Disord Drug Targets 2021; 20:260-273. [PMID: 33001021 DOI: 10.2174/1871529x20666201001144541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 11/22/2022]
Abstract
Platelets are small blood cells known primarily for their ability to adhere and aggregate at injured vessels to arrest bleeding. However, when triggered under pathological conditions, the same adaptive mechanism of platelet adhesion and aggregation may cause thrombosis, a primary cause of heart attack and stroke. Over recent decades, research has made considerable progress in uncovering the intricate and dynamic interactions that regulate these processes. Integrins are heterodimeric cell surface receptors expressed on all metazoan cells that facilitate cell adhesion, movement, and signaling, to drive biological and pathological processes such as thrombosis and hemostasis. Recently, our group discovered that the plexin-semaphorin-integrin (PSI) domains of the integrin β subunits exert endogenous thiol isomerase activity derived from their two highly conserved CXXC active site motifs. Given the importance of redox reactions in integrin activation and its location in the knee region, this PSI domain activity may be critically involved in facilitating the interconversions between integrin conformations. Our monoclonal antibodies against the β3 PSI domain inhibited its thiol isomerase activity and proportionally attenuated fibrinogen binding and platelet aggregation. Notably, these antibodies inhibited thrombosis without significantly impairing hemostasis or causing platelet clearance. In this review, we will update mechanisms of thrombosis and hemostasis, including platelet versatilities and immune-mediated thrombocytopenia, discuss critical contributions of the newly discovered PSI domain thiol isomerase activity, and its potential as a novel target for anti-thrombotic therapies and beyond.
Collapse
Affiliation(s)
- Daniel T MacKeigan
- Department of Physiology, University of Toronto, Toronto, ON M5S, Canada
| | - Tiffany Ni
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Canada
| | - Chuanbin Shen
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Canada
| | - Tyler W Stratton
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Canada
| | - Wenjing Ma
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Canada
| | - Guangheng Zhu
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Canada
| | - Preeti Bhoria
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Canada
| | - Heyu Ni
- Department of Physiology, University of Toronto, Toronto, ON M5S, Canada
| |
Collapse
|
13
|
Homozygous methylentetrahydrofolate reductase C667T genotype anticipates age at venous thromboembolism by one decade. Blood Coagul Fibrinolysis 2021; 32:382-386. [PMID: 34397449 DOI: 10.1097/mbc.0000000000001049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of the study was to compare age at first venous thromboembolism (VTE), plasma homocysteine and activated partial thromboplastin time ratio (aPTTr) amongst unprovoked VTE patients with the methylentetrahydrofolate reductase (MTHFR) C667T genotypes, and to identify predictors of age at first VTE, of plasma homocysteine and of the aPTTr; to evaluate whether heterozygous or homozygous prothrombin (PT) G20210A mutation lowered the age at first VTE when associated with MTHFR TT. Retrospective cohort study on 259 MTHFR TT, 76 MTHFR TC and 64 MTHFR CC participants with unprovoked VTE; each participant contributed age, sex, age at VTE, history of dyslipidaemia, hypertension, smoking, homocysteine (measured by enzyme immunoassay) and aPTTr (measured by standard coagulation assay). Age at first VTE was lower in MTHFR TT than MTHFR TC and CC (41 ± 14 vs. 50 ± 16 vs. 51 ± 12 years, respectively, P < 0.0001); plasma homocysteine was higher in MTHFR TT than in the other groups (22 ± 21 vs. 12 ± 11.6 vs. 10 ± 3.3 μmol/l, respectively, P = 0.0005) whilst aPTTr was not different. MTHFR TT independently predicted age at first VTE (P = 0.001), plasma homocysteine (P < 0.0001) alongside sex (P = 0.0007), age and smoking (P = 0.03 for both). Compound MTHFR TT with PT GA or AA had no lowering effect on age at first VTE compared with MTHFR TT alone (41 ± 13 vs. 41 ± 14 years). Plasma homocysteine inversely related to aPTTr in the MTHFR TT group (P = 0.003). MTHFR TT anticipates age at first VTE by an average of 10 years compared with MTHFR TC and CC genotypes.
Collapse
|
14
|
Ren L, You T, Li Q, Chen G, Liu Z, Zhao X, Wang Y, Wang L, Wu Y, Tang C, Zhu L. Molecular docking-assisted screening reveals tannic acid as a natural protein disulphide isomerase inhibitor with antiplatelet and antithrombotic activities. J Cell Mol Med 2020; 24:14257-14269. [PMID: 33128352 PMCID: PMC7753999 DOI: 10.1111/jcmm.16043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Protein disulphide isomerase (PDI) promotes platelet activation and constitutes a novel antithrombotic target. In this study, we reported that a PDI‐binding plant polyphenol, tannic acid (TA), inhibits PDI activity, platelet activation and thrombus formation. Molecular docking using plant polyphenols from dietary sources with cardiovascular benefits revealed TA as the most potent binding molecule with PDI active centre. Surface plasmon resonance demonstrated that TA bound PDI with high affinity. Using Di‐eosin‐glutathione disulphide fluorescence assay and PDI assay kit, we showed that TA inhibited PDI activity. In isolated platelets, TA inhibited platelet aggregation stimulated by either GPVI or ITAM pathway agonists. Flow cytometry showed that TA inhibited thrombin‐ or CRP‐stimulated platelet activation, as reflected by reduced granule secretion and integrin activation. TA also reduced platelet spreading on immobilized fibrinogen and platelet adhesion under flow conditions. In a laser‐induced vascular injury mouse model, intraperitoneal injection of TA significantly decreased the size of cremaster arteriole thrombi. No prolongation of mouse jugular vein and tail‐bleeding time was observed after TA administration. Therefore, we identified TA from natural polyphenols as a novel inhibitor of PDI function. TA inhibits platelet activation and thrombus formation, suggesting it as a potential antithrombotic agent.
Collapse
Affiliation(s)
- Lijie Ren
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySuzhou Key Laboratory of Thrombosis and Vascular DiseasesState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Tao You
- Jiangsu Institute of HematologyKey Laboratory of Thrombosis and Hemostasis of Ministry of HealthThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Department of CardiologyThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Qing Li
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySuzhou Key Laboratory of Thrombosis and Vascular DiseasesState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
| | - Guona Chen
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySuzhou Key Laboratory of Thrombosis and Vascular DiseasesState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
| | - Ziting Liu
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySuzhou Key Laboratory of Thrombosis and Vascular DiseasesState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
| | - Xuefei Zhao
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySuzhou Key Laboratory of Thrombosis and Vascular DiseasesState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
| | - Yinyan Wang
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySuzhou Key Laboratory of Thrombosis and Vascular DiseasesState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
| | - Lei Wang
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySuzhou Key Laboratory of Thrombosis and Vascular DiseasesState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
| | - Yi Wu
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySuzhou Key Laboratory of Thrombosis and Vascular DiseasesState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Chaojun Tang
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySuzhou Key Laboratory of Thrombosis and Vascular DiseasesState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Li Zhu
- Cyrus Tang Hematology CenterCollaborative Innovation Center of HematologySuzhou Key Laboratory of Thrombosis and Vascular DiseasesState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouChina
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
15
|
Tanaka LY, Oliveira PVS, Laurindo FRM. Peri/Epicellular Thiol Oxidoreductases as Mediators of Extracellular Redox Signaling. Antioxid Redox Signal 2020; 33:280-307. [PMID: 31910038 DOI: 10.1089/ars.2019.8012] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Significance: Supracellular redox networks regulating cell-extracellular matrix (ECM) and organ system architecture merge with structural and functional (catalytic or allosteric) properties of disulfide bonds. This review addresses emerging evidence that exported thiol oxidoreductases (TORs), such as thioredoxin, protein disulfide isomerases (PDIs), quiescin sulfhydryl oxidases (QSOX)1, and peroxiredoxins, composing a peri/epicellular (pec)TOR pool, mediate relevant signaling. pecTOR functions depend mainly on kinetic and spatial regulation of thiol-disulfide exchange reactions governed by redox potentials, which are modulated by exported intracellular low-molecular-weight thiols, together conferring signal specificity. Recent Advances: pecTOR redox-modulates several targets including integrins, ECM proteins, surface molecules, and plasma components, although clear-cut documentation of direct effects is lacking in many cases. TOR catalytic pathways, displaying common patterns, culminate in substrate thiol reduction, oxidation, or isomerization. Peroxiredoxins act as redox/peroxide sensors, contrary to PDIs, which are likely substrate-targeted redox modulators. Emerging evidence suggests important pecTOR roles in patho(physio)logical processes, including blood coagulation, vascular remodeling, mechanosensing, endothelial function, immune responses, and inflammation. Critical Issues: Effects of pecPDIs supporting thrombosis/platelet activation have been well documented and reached the clinical arena. Roles of pecPDIA1 in vascular remodeling/mechanosensing are also emerging. Extracellular thioredoxin and pecPDIs redox-regulate immunoinflammation. Routes of TOR externalization remain elusive and appear to involve Golgi-independent routes. pecTORs are particularly accessible drug targets. Future Directions: Further understanding mechanisms of thiol redox reactions and developing assays for assessing pecTOR redox activities remain important research avenues. Also, addressing pecTORs as disease markers and achieving more efficient/specific drugs for pecTOR modulation are major perspectives for diagnostic/therapeutic improvements.
Collapse
Affiliation(s)
- Leonardo Y Tanaka
- Vascular Biology Laboratory, LIM-64 (Translational Cardiovascular Biology), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Percillia V S Oliveira
- Vascular Biology Laboratory, LIM-64 (Translational Cardiovascular Biology), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Francisco R M Laurindo
- Vascular Biology Laboratory, LIM-64 (Translational Cardiovascular Biology), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
16
|
Chen Y, Ju LA. Biomechanical thrombosis: the dark side of force and dawn of mechano-medicine. Stroke Vasc Neurol 2020; 5:185-197. [PMID: 32606086 PMCID: PMC7337368 DOI: 10.1136/svn-2019-000302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022] Open
Abstract
Arterial thrombosis is in part contributed by excessive platelet aggregation, which can lead to blood clotting and subsequent heart attack and stroke. Platelets are sensitive to the haemodynamic environment. Rapid haemodynamcis and disturbed blood flow, which occur in vessels with growing thrombi and atherosclerotic plaques or is caused by medical device implantation and intervention, promotes platelet aggregation and thrombus formation. In such situations, conventional antiplatelet drugs often have suboptimal efficacy and a serious side effect of excessive bleeding. Investigating the mechanisms of platelet biomechanical activation provides insights distinct from the classic views of agonist-stimulated platelet thrombus formation. In this work, we review the recent discoveries underlying haemodynamic force-reinforced platelet binding and mechanosensing primarily mediated by three platelet receptors: glycoprotein Ib (GPIb), glycoprotein IIb/IIIa (GPIIb/IIIa) and glycoprotein VI (GPVI), and their implications for development of antithrombotic 'mechano-medicine' .
Collapse
Affiliation(s)
- Yunfeng Chen
- Molecular Medicine, Scripps Research Institute, La Jolla, California, USA
| | - Lining Arnold Ju
- School of Biomedical Engineering, Heart Research Institute and Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
17
|
Sitia R, Rubartelli A. Evolution, role in inflammation, and redox control of leaderless secretory proteins. J Biol Chem 2020; 295:7799-7811. [PMID: 32332096 DOI: 10.1074/jbc.rev119.008907] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Members of the interleukin (IL)-1 family are key determinants of inflammation. Despite their role as intercellular mediators, most lack the leader peptide typically required for protein secretion. This lack is a characteristic of dozens of other proteins that are actively and selectively secreted from living cells independently of the classical endoplasmic reticulum-Golgi exocytic route. These proteins, termed leaderless secretory proteins (LLSPs), comprise proteins directly or indirectly involved in inflammation, including cytokines such as IL-1β and IL-18, growth factors such as fibroblast growth factor 2 (FGF2), redox enzymes such as thioredoxin, and proteins most expressed in the brain, some of which participate in the pathogenesis of neurodegenerative disorders. Despite much effort, motifs that promote LLSP secretion remain to be identified. In this review, we summarize the mechanisms and pathophysiological significance of the unconventional secretory pathways that cells use to release LLSPs. We place special emphasis on redox regulation and inflammation, with a focus on IL-1β, which is secreted after processing of its biologically inactive precursor pro-IL-1β in the cytosol. Although LLSP externalization remains poorly understood, some possible mechanisms have emerged. For example, a common feature of LLSP pathways is that they become more active in response to stress and that they involve several distinct excretion mechanisms, including direct plasma membrane translocation, lysosome exocytosis, exosome formation, membrane vesiculation, autophagy, and pyroptosis. Further investigations of unconventional secretory pathways for LLSP secretion may shed light on their evolution and could help advance therapeutic avenues for managing pathological conditions, such as diseases arising from inflammation.
Collapse
Affiliation(s)
- Roberto Sitia
- Division of Genetics and Cell Biology, Protein Transport and Secretion Unit, IRCCS Ospedale San Raffaele/Università Vita-Salute San Raffaele, Milan, Italy
| | - Anna Rubartelli
- Division of Genetics and Cell Biology, Protein Transport and Secretion Unit, IRCCS Ospedale San Raffaele/Università Vita-Salute San Raffaele, Milan, Italy .,Cell Biology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
18
|
Wang Z, Zhang H, Cheng Q. PDIA4: The basic characteristics, functions and its potential connection with cancer. Biomed Pharmacother 2020; 122:109688. [PMID: 31794946 DOI: 10.1016/j.biopha.2019.109688] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/07/2019] [Accepted: 11/16/2019] [Indexed: 12/19/2022] Open
Abstract
Disulfide bond formation is catalyzed by the protein disulfide Isomerases (PDI) family. This is a critical step in protein folding which occurs within the endoplasmic reticulum. PDIA4, as a member of the PDI family, can cause the adjustment of αIIβ 3 affinities which activate platelet and promote thrombosis formation. Endoplasmic reticulum response is triggered by accumulation of abnormal folding proteins concomitant with increasing PDIA4 expression. Besides, current researches indicate that activated platelets and ERS response affect tumor progression. And PDIA4, as previous reported, also participates in tumor progression by affecting cell apoptosis and DNA repair machinery without specific mechanisms revealed.Therefore, PDI inhibitor might possess great potential value in against tumor progression. In this review, we summarize information on PDIA4 including its the basic characteristics and its implication on tumor.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China; Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Changsha 410008, PR China.
| |
Collapse
|
19
|
Oliveira PVSD, Garcia-Rosa S, Sachetto ATA, Moretti AIS, Debbas V, De Bessa TC, Silva NT, Pereira ADC, Martins-de-Souza D, Santoro ML, Laurindo FRM. Protein disulfide isomerase plasma levels in healthy humans reveal proteomic signatures involved in contrasting endothelial phenotypes. Redox Biol 2019; 22:101142. [PMID: 30870787 PMCID: PMC6430080 DOI: 10.1016/j.redox.2019.101142] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/22/2019] [Accepted: 02/12/2019] [Indexed: 12/18/2022] Open
Abstract
Redox-related plasma proteins are candidate reporters of protein signatures associated with endothelial structure/function. Thiol-proteins from protein disulfide isomerase (PDI) family are unexplored in this context. Here, we investigate the occurrence and physiological significance of a circulating pool of PDI in healthy humans. We validated an assay for detecting PDI in plasma of healthy individuals. Our results indicate high inter-individual (median = 330 pg/mL) but low intra-individual variability over time and repeated measurements. Remarkably, plasma PDI levels could discriminate between distinct plasma proteome signatures, with PDI-rich (>median) plasma differentially expressing proteins related to cell differentiation, protein processing, housekeeping functions and others, while PDI-poor plasma differentially displayed proteins associated with coagulation, inflammatory responses and immunoactivation. Platelet function was similar among individuals with PDI-rich vs. PDI-poor plasma. Remarkably, such protein signatures closely correlated with endothelial function and phenotype, since cultured endothelial cells incubated with PDI-poor or PDI-rich plasma recapitulated gene expression and secretome patterns in line with their corresponding plasma signatures. Furthermore, such signatures translated into functional responses, with PDI-poor plasma promoting impairment of endothelial adhesion to fibronectin and a disturbed pattern of wound-associated migration and recovery area. Patients with cardiovascular events had lower PDI levels vs. healthy individuals. This is the first study describing PDI levels as reporters of specific plasma proteome signatures directly promoting contrasting endothelial phenotypes and functional responses.
Collapse
Affiliation(s)
- Percíllia Victória Santos de Oliveira
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Sheila Garcia-Rosa
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil; Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, Sao Paulo, Brazil
| | | | - Ana Iochabel Soares Moretti
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Victor Debbas
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Tiphany Coralie De Bessa
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Nathalia Tenguan Silva
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Alexandre da Costa Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil; Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, Sao Paulo, Brazil
| | | | - Francisco Rafael Martins Laurindo
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|